You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1. Give a simple verbal description of the language recognized by the following DFA.

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:
 a. strings over alphabet \{0, 1, \ldots, 9\} where the final digit has not appeared before;
 b. binary strings that begin or end with 00 or 11.
Prove that the following languages over the binary alphabet are regular:

(2 pts)
(a) strings in which every 1 is immediately followed by 00;

(2 pts)
(b) strings that contain both 010 and 101 as substrings;

(2 pts)
(c) strings that end with 00.
4 Let L_1 and L_2 be languages that can be recognized by NFAs with n_1 and n_2 states, respectively. Prove that $L_1 \cap L_2$ can be recognized by a DFA with at most $2^{n_1 + n_2}$ states.

5 Prove that every language $L \subseteq \{0, 1\}^*$ can be expressed as a countable union $L = \bigcup_{i=1}^{\infty} R_i$ for some regular languages R_1, R_2, R_3, \ldots.
6 For a language $L \subseteq \Sigma^*$, define $\text{delete}(L) = \{uv : u\sigma v \in L \text{ for some } \sigma \in \Sigma\}$. Thus, $\text{delete}(L)$ is the set of all strings obtained by taking a nonempty string in L and deleting a single character from it. Prove that if L is regular, so is $\text{delete}(L)$.

7 For a language L, define $\text{suffix}(L) = \{v : uv \in L \text{ for some } u\}$. Thus, $\text{suffix}(L)$ is the set of all suffixes of strings in L. Show how to transform a DFA for any given regular language L into an NFA for $\text{suffix}(L)$.
SOLUTIONS
You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1. Give a simple verbal description of the language recognized by the following DFA.

\[\begin{array}{c}
\text{1} & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array} \]

Solution. All binary strings that end with 0010.

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:

 a. strings over alphabet \{0, 1, \ldots, 9\} where the final digit has *not* appeared before;
 b. binary strings that begin or end with 00 or 11.

Solution.

\[\text{a.} \quad \text{b.} \]
Prove that the following languages over the binary alphabet are regular:

(2 pts) a. strings in which every 1 is immediately followed by 00;
(2 pts) b. strings that contain both 010 and 101 as substrings;
(2 pts) c. strings that end with 00.

Solution.

a. The language is recognized by the following NFA:

![NFA](image)

b. The language of strings containing 010 is recognized by

![NFA](image)

Analogously, the language of strings containing 101 is recognized by

![NFA](image)

Since regular languages are closed under intersection, the language in the problem statement is regular.

c. The language is recognized by the following NFA:

![NFA](image)
Let \(L_1 \) and \(L_2 \) be languages that can be recognized by NFAs with \(n_1 \) and \(n_2 \) states, respectively. Prove that \(L_1 \cap L_2 \) can be recognized by a DFA with at most \(2^{n_1+n_2} \) states.

Solution. Using the method discussed in class, transform the NFAs for \(L_1 \) and \(L_2 \) to DFAs with at most \(2^{n_1} \) and \(2^{n_2} \) states, respectively. Then combine these DFAs to obtain a DFA for \(L_1 \cap L_2 \) with at most \(2^{n_1} \times 2^{n_2} = 2^{n_1+n_2} \) states, using the Cartesian-product construction from class.

Prove that every language \(L \subseteq \{0, 1\}^\ast \) can be expressed as a countable union \(L = \bigcup_{i=1}^{\infty} R_i \) for some regular languages \(R_1, R_2, R_3, \ldots \).

Solution. For any string \(w \in \{0, 1\}^\ast \), the language \(\{w\} \) is regular because it is recognized by the NFA

![Diagram](image)

Now define \(R_i \) to be the language whose only string is the \(i \)th string in \(L \), in lexicographic order (with the understanding that \(R_i = \emptyset \) if \(L \) has fewer than \(i \) strings). Then

\[
L = \bigcup_{i=1}^{\infty} R_i,
\]

where each \(R_i \) is regular by above.
For a language $L \subseteq \Sigma^*$, define $\text{delete}(L) = \{uv : u\sigma v \in L \text{ for some } \sigma \in \Sigma\}$. Thus, $\text{delete}(L)$ is the set of all strings obtained by taking a nonempty string in L and deleting a single character from it. Prove that if L is regular, so is $\text{delete}(L)$.

Solution:

For a language L, define $\text{suffix}(L) = \{v : uv \in L \text{ for some } u\}$. Thus, $\text{suffix}(L)$ is the set of all suffixes of strings in L. Show how to transform a DFA for any given regular language L into an NFA for $\text{suffix}(L)$.

Solution. Add ε-transitions from the initial state q_0 to every state reachable from q_0.