CS 289 Communication Complexity
Instructor: Alexander A. Sherstov
Handout: Fields

Definitions

A field is a set F with two operations + and \cdot defined on it, such that the following properties hold.

- Closure. For any $a, b \in F$, one has $a+b \in F$ and $a \cdot b \in F$.
- Associativity. For any $a, b, c \in F$, one has $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
- Commutativity. For any $a, b \in F$, one has $a+b=b+a$ and $a \cdot b=b \cdot a$.
- Identities. There is an element $0 \in F$ such that $0+a=a$ for all $a \in F$. There is an element $1 \in F$ such that $1 \cdot a=a$ for all $a \in F$ with $a \neq 0$.
- Inverses. For every $a \in F$, there is an element $-a$ with $a+(-a)=0$. For every $a \in F$ with $a \neq 0$, there exists an element a^{-1} with $a \cdot a^{-1}=1$.
- Distributivity. For all $a, b, c \in F$, one has $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.

Shorthand notation. It is customary to abbreviate

$$
a b=a \cdot b, \quad a-b=a+(-b), \quad \frac{a}{b}=a \cdot\left(b^{-1}\right)
$$

Example. The reals \mathbb{R} and the rationals \mathbb{Q} are fields, with respect to usual addition and multiplication.

Example. The positive reals \mathbb{R}^{+}are not a field because $-1 \notin \mathbb{R}^{+}$. The integers \mathbb{Z} are not a field because $2^{-1} \notin \mathbb{Z}$.

Finite fields

A field with a finite number of elements is called a finite field.

Fact. For any prime p, the integers $0,1,2,3, \ldots, p-1$ form a field (with addition and multiplication performed modulo p). This field is denoted \mathbb{F}_{p}.

Exercise. What are the multiplicative inverses in the field $\mathbb{F}_{5}=\{0,1,2,3,4\}$? What about $\mathbb{F}_{11}=\{0,1,2,3, \ldots, 10\}$?

Fact. For any prime power p^{k}, there exists a field F with $|F|=p^{k}$.

