CS 289 Communication Complexity Instructor: Alexander A. Sherstov Handout: Fields

Definitions

A *field* is a set F with two operations + and \cdot defined on it, such that the following properties hold.

- Closure. For any $a, b \in F$, one has $a + b \in F$ and $a \cdot b \in F$.
- Associativity. For any $a, b, c \in F$, one has (a+b) + c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- Commutativity. For any $a, b \in F$, one has a + b = b + a and $a \cdot b = b \cdot a$.
- *Identities.* There is an element $0 \in F$ such that 0 + a = a for all $a \in F$. There is an element $1 \in F$ such that $1 \cdot a = a$ for all $a \in F$ with $a \neq 0$.
- Inverses. For every $a \in F$, there is an element -a with a + (-a) = 0. For every $a \in F$ with $a \neq 0$, there exists an element a^{-1} with $a \cdot a^{-1} = 1$.
- Distributivity. For all $a, b, c \in F$, one has $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.

Shorthand notation. It is customary to abbreviate

$$ab = a \cdot b,$$
 $a - b = a + (-b),$ $\frac{a}{b} = a \cdot (b^{-1}).$

Example. The reals \mathbb{R} and the rationals \mathbb{Q} are fields, with respect to usual addition and multiplication.

Example. The positive reals \mathbb{R}^+ are not a field because $-1 \notin \mathbb{R}^+$. The integers \mathbb{Z} are not a field because $2^{-1} \notin \mathbb{Z}$.

Finite fields

A field with a finite number of elements is called a **finite field**.

Fact. For any prime p, the integers $0, 1, 2, 3, \ldots, p-1$ form a field (with addition and multiplication performed modulo p). This field is denoted \mathbb{F}_p .

Exercise. What are the multiplicative inverses in the field $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$? What about $\mathbb{F}_{11} = \{0, 1, 2, 3, \dots, 10\}$?

Fact. For any prime power p^k , there exists a field F with $|F| = p^k$.