You have 90 minutes to complete this exam. You may state without proof any fact taught in class or assigned as homework.

(3 pts) 1 Give a simple verbal description of the language recognized by the following DFA.

![DFA Diagram]

2 Draw NFAs for the following languages, taking full advantage of nondeterminism:

(2 pts) a. binary strings that contain at least two 0s and end with a 1;
(2 pts) b. binary strings that contain 0101 or 11101 or both as a substring.
3 Prove that the following languages are regular:

(2 pts) a. binary strings in which the number of 0s and the number of 1s are equal modulo 2016;
(2 pts) b. binary strings in which every 0 is immediately preceded and immediately followed by a 1;
(2 pts) c. binary strings of length 8 that read the same backward as forward.
Describe an algorithm that takes as input two DFAs and determines whether there is a string that they both accept. Your algorithm must run in finite time.

For a language L, let $\text{trap}(L)$ denote the set of strings v such that no string in L starts with v. Prove that $\text{trap}(L)$ is regular whenever L is regular.
For a language L over a given alphabet $Σ$, define $\text{swap}(L)$ to be the set of strings that can be obtained from a string in L by swapping two characters in it. Formally, $\text{swap}(L)$ is the set of all strings of the form $uσvτw$ such that $uτvσw \in L$, where u, v, w denote arbitrary strings and $σ, τ$ denote alphabet symbols. Prove that regular languages are closed under the swap operation.

For a string v, a subsequence of v is either v itself or any string obtained by deleting one or more characters in v. For example, the subsequences of 123 are $ε, 1, 2, 3, 12, 13, 23, 123$. Prove that for any regular language L, the set of all subsequences of strings in L is regular.
SOLUTIONS
You have 90 minutes to complete this exam. You may state without proof any fact taught in class or assigned as homework.

1. Give a simple verbal description of the language recognized by the following DFA.

![DFA Diagram]

Solution. Binary strings in which the first and last symbols differ.

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:
 a. binary strings that contain at least two 0s and end with a 1;
 b. binary strings that contain 0101 or 11101 or both as a substring.

 ![NFA Diagram]

 Solution.

 a.
 b.
3 Prove that the following languages are regular:

(2 pts) a. binary strings in which the number of 0s and the number of 1s are equal modulo 2016;
(2 pts) b. binary strings in which every 0 is immediately preceded and immediately followed by a 1;
(2 pts) c. binary strings of length 8 that read the same backward as forward.

Solution.

a. A DFA for this language just counts the number of 0s and the number of 1s modulo 2016, accepting if the numbers match. Formally, the DFA is

\[(\{0, 1, \ldots, 2015\} \times \{0, 1, \ldots, 2015\}, \{0, 1\}, \delta, (0, 0), \{(0, 0), (1, 1), \ldots, (2015, 2015)\}),\]

where

\[\delta((i, j), \sigma) = \begin{cases}
((i + 1) \mod 2016, j) & \text{if } \sigma = 0, \\
(i, (j + 1) \mod 2016) & \text{if } \sigma = 1.
\end{cases}\]

b. This language is recognized by the following DFA:

```
\[
\begin{array}{c}
\text{0, 1} \\
\text{0} \\
\text{1}
\end{array}
\]
```

\[
\text{0, 1} \\
\text{1} \\
\text{0}
\]

\[
\text{1}
\]

\[
\text{0, 1}
\]

```
```

This language contains a finite number of strings and is therefore regular.
(3 pts) 4 Describe an algorithm that takes as input two DFAs and determines whether there is a string that they both accept. Your algorithm must run in finite time.

Solution. Let D_1 and D_2 be the input DFAs. Use the Cartesian product construction from class to obtain a DFA D that recognizes the intersection of the languages of D_1 and D_2. Then, check to see if D has a path from the start state to an accept state. This second step can be done either by trying out all candidate paths in a brute force manner, or by using an efficient graph algorithm that you have encountered in CS 180, such as depth- or breadth-first search.

(3 pts) 5 For a language L, let $\text{trap}(L)$ denote the set of strings v such that no string in L starts with v. Prove that $\text{trap}(L)$ is regular whenever L is regular.

Solution. Let $(Q, \Sigma, \delta, q_0, F)$ be a DFA for L. Then $\text{trap}(L)$ is recognized by $(Q, \Sigma, \delta, q_0, F')$, where $F' \subseteq Q$ is the set of all states from which it is impossible to reach any state in F.

Alternate solution. Observe that $\text{trap}(L) = \overline{\text{prefix}(L)}$. Since regular languages are closed under the prefix and complement operations, it follows that $\text{trap}(L)$ is regular.
For a language L over a given alphabet Σ, define $\text{swap}(L)$ to be the set of strings that can be obtained from a string in L by swapping two characters in it. Formally, $\text{swap}(L)$ is the set of all strings of the form $u\sigma v\tau w$ such that $u\tau v\sigma w \in L$, where u, v, w denote arbitrary strings and σ, τ denote alphabet symbols. Prove that regular languages are closed under the swap operation.

Solution. Let $(Q, \Sigma, \delta, q_0, F)$ be a DFA for the original language L. An NFA for $\text{swap}(L)$ is as follows.

For a string v, a subsequence of v is either v itself or any string obtained by deleting one or more characters in v. For example, the subsequences of 123 are $\epsilon, 1, 2, 3, 12, 13, 23, 123$. Prove that for any regular language L, the set of all subsequences of strings in L is regular.

Solution. Starting with a DFA for L, supplement the label of every arrow to contain “ϵ”. The resulting NFA accepts exactly those strings that are subsequences of strings in L.

(3 pts)