1. Prove the following assertions, where $\Sigma = \{0, 1\}$.

(a) $\Sigma^* \setminus (0^* \cup 1^*) = 0^* \cup 1^*$

(b) $0^*(10^+)^*(\varepsilon \cup 1) = (\varepsilon \cup 1)(01 \cup 0)^*$

Solution.

(a) $\Sigma^* \setminus (0^* \cup 1^*) = \Sigma^* \cap \overline{0^* \cup 1^*} = \Sigma^* \cup \overline{0^* \cup 1^*} = \emptyset \cup 0^* \cup 1^* = 0^* \cup 1^*$.

(b) The left-hand side corresponds to binary strings in which every 1, with the possible exception of the last 1, is immediately followed by a 0. The right-hand side corresponds to binary strings in which every 1, with the possible exception of the first 1, is immediately preceded by a 0. In both cases, the language is $\Sigma^* \Pi \Sigma^*$.

2. Give a regular expression for each of the following languages over $\Sigma = \{0, 1\}$:

(a) even-length strings that contain 01;

(b) strings in which every 1 is adjacent to a 0.

Solution.

(a) $(\Sigma \Sigma)^*01(\Sigma \Sigma)^* \cup \Sigma(\Sigma \Sigma)^*01\Sigma(\Sigma \Sigma)^*$

(b) $(0 \cup 01 \cup 10 \cup 101)^*$
3. Let L be a nonempty finite language in which the longest string has length n. Prove that any DFA for L must have at least $n + 1$ states.

Solution. For the sake of contradiction, assume that L has a DFA D with at most n states. Let $w \in L$ be a string of length n. Clearly, D accepts w. Moreover, by the same argument as in the pumping lemma, D must visit some state at least twice while processing w. The segment of w between those visits can be repeated as many times as desired without affecting D’s output. This gives an infinite family of strings accepted by D, a contradiction to the fact that L is finite.

4. Construct a DFA for the language $0\Sigma^* \cup \Sigma^*11$ over the binary alphabet, using the smallest possible number of states. Prove that your DFA is the smallest possible.

Solution. The language $L = 0\Sigma^* \cup \Sigma^*11$ consists of binary strings that begin with 0 or end with 11. It is recognized by the following DFA:

![DFA Diagram](image)

By the Myhill–Nerode theorem, no smaller DFA exists for L because each of the five strings $\varepsilon, 0, 1, 10, 11$ is in a different equivalence class of \equiv_L. The distinguishing suffixes are as follows:

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>0</th>
<th>1</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>ε</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ε</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>ε</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>ε</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ε</td>
<td>0</td>
<td>ε</td>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
Prove or disprove:

a. if \(L \) is a nonregular language and \(w \) a string, then the concatenation \(wL \) is nonregular; (2 pts)

b. if \(L \) is a nonregular language, then prefix(\(L \)) is also nonregular; (2 pts)

c. if \(L \) is a regular language, then the language \(L' \) of even-length strings whose first half is in \(L \) is also regular. (2 pts)

Solution.

a. True. If \(wL \) were regular with a DFA \(D = (Q, \Sigma, \delta, q_0, F) \), then \(L \) would be recognized by the DFA \((Q, \Sigma, \delta, q, F) \), where \(q \) is the end state of \(D \) after processing \(w \).

b. False. Consider the language \(L \) of strings that contain as many 0s as 1s. We showed in class that \(L \) is nonregular. But prefix(\(L \)) = \(\Sigma^* \), which is a regular language because it is given by a regular expression.

c. False. Consider the regular language \(L = 0^* \). Then \(L' \) is the set of even-length binary strings whose first half does not contain a 1. For any nonnegative integers \(i < j \), we have \(0^i1^j \notin L' \) but \(0^i1^j \in L' \). Therefore, each of the strings \(\varepsilon, 0, 00, 000, \ldots \) is in a different equivalence class of \(\equiv_{L'} \). Since there are infinitely many equivalence classes, \(L' \) is nonregular by the Myhill–Nerode theorem.
For each of the following languages \(L \) over the binary alphabet, determine whether it is regular and prove your answer:

(a) even-length strings whose first half contains as many 0s as the second half; (2 pts)
(b) strings \(w \) such that every prefix of \(w \) is equal to some suffix of \(w \); (2 pts)
(c) strings whose length, when expressed as a decimal integer, uses no digits other than 0 and 1. (2 pts)

Solution.

(a) Nonregular. For any nonnegative integers \(i \neq j \), we have \(0^i1^{i+j}0^j \notin L \) but \(0^j1^{i+j}0^i \in L \). Therefore, each of the strings \(\varepsilon, 0, 00, 000, \ldots \) is in a different equivalence class of \(\equiv_L \). Since there are infinitely many equivalence classes, \(L \) is nonregular by the Myhill–Nerode theorem.

(b) Regular, with regular expression \(L = 0^* \cup 1^* \). Indeed, \(L \) by definition contains every string in \(0^* \cup 1^* \). Conversely, let \(w = w_1w_2\ldots w_n \) be any string in \(L \). Then the prefix \(w_1w_2\ldots w_{n-1} \) must be equal to some suffix of \(w \). But \(w \)'s only suffix of length \(n-1 \) is \(w_2w_3\ldots w_n \). This means that \(w_1w_2\ldots w_{n-1} = w_2w_3\ldots w_n \), which simplifies to \(w_1 = w_2 = \cdots = w_n \) and thus \(w \in 0^* \cup 1^* \).

(c) Nonregular. Consider the following family of strings whose length is a power of ten: \(0^1, 010, 0100, 01000, \ldots \) Each of them is in a different equivalence class of \(\equiv_L \). Indeed, for any nonnegative integers \(i \neq j \), we have \(0^{10^i}0^{10^j} = 0^{2 \cdot 10^i} \notin L \) but \(0^{10^j}0^{10^i} = 0^{10^i+10^j} \in L \). Since there are infinitely many equivalence classes, \(L \) is nonregular by the Myhill–Nerode theorem.