You have 90 minutes to complete this exam. You may state without proof any fact taught in class or assigned as homework.

(3 pts) 1 Give a simple verbal description of the language recognized by the following NFA:

![NFA Diagram]

Solution: binary strings that do not start with 11111.

2 Draw NFAs for the following languages, taking full advantage of nondeterminism:

(2 pts) a. binary strings that have odd length or contain at most one 1;

(2 pts) b. binary strings in which every 0 is immediately preceded and immediately followed by a 1.

Solution.

a.

![NFA Diagram]

b.

![NFA Diagram]
Prove that the following languages L are regular:

(2 pts) a. binary strings that begin and end with 010;
(2 pts) b. binary strings in which 01 occurs more times than 10;
(2 pts) c. decimal strings in which every digit (0, 1, 2, ..., 9) occurs at most once.

Solution.

a. The language of strings that begin with 010 is regular, with NFA

![NFA](image)

The language of strings that end with 010 is also regular, with NFA

![NFA](image)

The intersection of these two languages is the language L in the problem statement. This makes L regular because regular languages are closed under intersection.

b. This language is recognized by the following NFA:

![NFA](image)

c. Any decimal string of length greater than 10 will contain a pair of identical symbols. It follows that the strings in L are bounded in length by 10, which makes L finite. We proved in class that every finite language is regular.
For a binary string w, its \textit{bitwise complement} is denoted \overline{w} and defined as the string obtained by flipping every bit of w. Prove that for every regular language L over the binary alphabet, the language $L' = \{\overline{w} : w \in L\}$ is also regular.

Solution. Starting with a DFA for L, swap the edge labels 0 and 1 out of every state. The resulting DFA recognizes L'. Formally, let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA for L. Then L' is recognized by $(Q, \Sigma, \delta', q_0, F)$, where $\delta'(q, \sigma) = \delta(q, \overline{\sigma})$.

Let L be a regular language. Define L^\dagger to be the set of all strings that can be obtained by concatenating one or more nonempty strings in L. Prove that L^\dagger is regular.

Solution. Note that $L^\dagger = L^* \setminus \{\varepsilon\}$, where L and $\{\varepsilon\}$ are regular. Since regular languages are closed under Kleene star and set difference, L^\dagger is also regular.

An incorrect solution. Starting with a DFA for L, make the initial state rejecting and add ε-transitions from every accepting state back to the initial state. It is tempting to claim that the resulting automaton recognizes L^\dagger. This is incorrect in general. The new automaton may not accept all strings in L^\dagger.

For a language \(L \), define \(\text{core}(L) \) as the set of all strings \(v \) such that \(uwv \in L \) for some nonempty strings \(u \) and \(w \). Prove that \(\text{core}(L) \) is regular for every regular language \(L \).

Solution. Let \((Q, \Sigma, \delta, q_0, F)\) be a DFA for \(L \). To recognize \(\text{core}(L) \), we make two changes to this DFA. First, we add a new start state \(q_{\text{new}} \) and link it with \(\varepsilon \)-transitions to every state of \(Q \) that is reachable from \(q_0 \) via a nonempty path. Second, we redefine the accept/reject states in this augmented automaton, marking as accepting those states of \(Q \) that have a nonempty path to a state of \(F \).

Fix an arbitrary NFA \(N \). We say that \(N \) strongly accepts a given string \(w \) iff \(N \) can end up in two or more accept states after processing \(w \). Show that \(N \)'s strongly accepted strings form a regular language.

Solution. Let \(N = (Q, \Sigma, \delta, q_0, F) \) be the given NFA. Use the construction from class to convert \(N \) to an equivalent DFA: \(D = (\mathcal{P}(Q), \Sigma, \Delta, S_0, \mathcal{F}) \). Then \(N \) strongly accepts a string \(w \) iff \(D \)'s end state on \(w \) contains two or more of the NFA's accept states, \(F \). Therefore, \(N \)'s strongly accepted strings are recognized by the DFA \((\mathcal{P}(Q), \Sigma, \Delta, S_0, \mathcal{F}')\), where \(\mathcal{F}' = \{ S \subseteq Q : |S \cap F| \geq 2 \} \).