You have 90 minutes to complete this exam. You may state without proof any fact taught in class or assigned as homework.

1. Give a simple verbal description of the language recognized by the following NFA with alphabet \{0, 1, 2\}:

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:
 a. binary strings that start with a 1 or have a 1 in the third position from the end;
 b. binary strings that contain 01 or 10 but not both.
3 Prove that the following languages over the binary alphabet are regular:

(2 pts) a. even-length strings that contain 0101;
(2 pts) b. strings in which every 1 is adjacent to a 0;
(2 pts) c. strings in which the substring 01 occurs an even number of times.
For languages A and B over a given alphabet Σ, define $A \circ B$ to be the set of all strings in A that do not contain a substring that is in B. Prove that regular languages are closed under the \circ operation.

Let L be a given regular language. Define L^\dagger to be the set of all strings obtained by taking a nonempty string in L and removing its last symbol. Prove that L^\dagger is regular.
Describe an algorithm that takes as input an NFA N and outputs the minimum length of a string rejected by N. If no such string exists, the algorithm should output ∞. Your algorithm must run in finite time.

Let D be a given DFA. Let W be the set of all strings w such that every state of D is visited while processing w. Prove that W is regular.
SOLUTIONS
You have 90 minutes to complete this exam. You may state without proof any fact taught in class or assigned as homework.

1. Give a simple verbal description of the language recognized by the following NFA with alphabet \{0, 1, 2\}:

Solution: nonempty strings in which the first symbol occurs only once.

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:

 a. binary strings that start with a 1 or have a 1 in the third position from the end;
 b. binary strings that contain 01 or 10 but not both.

Solution.
Prove that the following languages over the binary alphabet are regular:

(a) even-length strings that contain 0101;
(b) strings in which every 1 is adjacent to a 0;
(c) strings in which the substring 01 occurs an even number of times.

Solution.

(a) This language is given by the intersection \(A \cap B \), where \(A \) is the set of even-length strings and \(B \) is the set of strings that contain 0101. We proved in class that \(A \) and \(B \) are both regular. By the closure properties of regular languages, \(A \cap B \) is regular as well.

(b) This language is recognized by the following NFA:

![NFA Diagram]

(c) This language is recognized by the following DFA:

![DFA Diagram]
For languages \(A \) and \(B \) over a given alphabet \(\Sigma \), define \(A \circ B \) to be the set of all strings in \(A \) that do not contain a substring that is in \(B \). Prove that regular languages are closed under the \(\circ \) operation.

\[
A \circ B = A \setminus (\Sigma^* B \Sigma^*).
\]

Solution. Let \(A \) and \(B \) be regular. We have \(A \circ B = A \setminus (\Sigma^* B \Sigma^*) \). Here \(A \) and \(B \) are regular by hypothesis, and \(\Sigma \) is regular because it is finite. Since regular languages are closed under Kleene star, concatenation, and set difference, we conclude that \(A \circ B \) is regular.

Let \(L \) be a given regular language. Define \(L^\dagger \) to be the set of all strings obtained by taking a nonempty string in \(L \) and removing its last symbol. Prove that \(L^\dagger \) is regular.

Solution. Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a DFA for \(L \). Then \(L^\dagger \) is recognized by the DFA \((Q, \Sigma, \delta, q_0, F^\dagger) \), where \(F^\dagger = \{ q \in Q : \delta(q, \sigma) \in F \text{ for some } \sigma \} \). The new DFA operates like the old one but accepts the input if and only if it can be extended by a single character to a string that \(D \) would accept.
Describe an algorithm that takes as input an NFA N and outputs the minimum length of a string rejected by N. If no such string exists, the algorithm should output “∞.” Your algorithm must run in finite time.

Solution. Convert N to an equivalent DFA D via the construction given in class. Then, view D as a directed graph and run breadth-first search from the initial state to compute the distance to the nearest rejecting state. If it so happens that no rejecting state is reachable in D from the initial state, output “∞.”

Let D be a given DFA. Let W be the set of all strings w such that every state of D is visited while processing w. Prove that W is regular.

Solution. Let $D = (Q, \Sigma, \delta, q_0, F)$ be the given DFA. Then W is recognized by the DFA $(Q \times \mathcal{P}(Q), \Sigma, \Delta, (q_0, \{q_0\}), Q \times \{Q\})$, where $\Delta((q, S), \sigma) = (\delta(q, \sigma), S \cup \{\delta(q, \sigma)\})$. The DFA for W operates just like D but additionally keeps track of the set of states visited so far, accepting if and only if all states have been visited.