
designing and learning visual 
representations

stefano soatto 
ucla 

november 13, 2015
1



visual representation: definition 

tradeoffs 

special (trivial) case: local descriptors 

the unreasonable effectiveness of sift 

beyond local: modeling intrinsic variability 

conjectures 

embedding the representation in the scene 

scene topology, gravity
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(
• A(func<on(((((of((past)(data((((((that(is(useful(to(accomplish(a(
task,(once(future(data(((((is(available,(regardless(of(nuisance(
factors(((((affec<ng(the(la)er.(
• Depends(on(the(data,(the(task(and(how(one(
(((measures(“useful”(or(“informa<ve”(
• Visual(data:(images((arrays(of(posi<ve(numbers)(
• Prototype(task:(a(ques-on(about(the(scene((
• Ques<ons(about(geometry((shape),(topology((visibility),(
photometry((appearance,(material),(dynamics((mo<on),(
seman-cs((iden<<es,(rela<ons).(The7scene7is7infinite9
dimensional.77
• Nuisances:(viewpoint(SE(3),(illumina<on,(par<al(occlusion(
• An(op<mal(representa<on(is(one(that(is(maximally(
informa<ve((of(the(data,(for(the(task)(and(minimally(
sensi<ve((to(nuisances),(subject(to(complexity(constraints.(
• Ideally:(a(maximal(invariant(and(minimal(sufficient(sta<s<c.(

• Does(it(exist?((Pi)manSKoopmanSDarmois)(
• What(model/assump<ons?((LambertSAmbient)(
•  Is(it(Computable?(Learnable?(
• What(are(special(cases?(

• A(single(training(image:(DSPSSIFT(
• Local(restric<on:(MVSHOG(

The(SOA(Likelihood(

Can(it(be(computed?(Simple(examples(

• The(likelihood(func<on(((((((((((((((((((((((is(a(minimal(sufficient(sta<s<c,(even(
if(((((is(infiniteSdimensional((Bahadur,(1954).(
• Nuisance(variability(can(be(marginalized:(
(
((but(invariant(only(if(marginaliza<on(is(wrt(the(base(measure(and(in((((((((((((((((((((((((((((
general(not7maximal.7
• Profiling((maxSout):(
(
((yields(a7maximal7invariant,(but((nonSconvex)(search(at(test(<me.(
• (Down)Ssampling(the(profile(likelihood(introduces(aliasing(phenomena(
(extrema(that(do(not(exist(before(downsampling/reconstruc<on)(
• An<Saliasing(=(pooling(=(local(marginaliza<on((((

Data(=(one((training)(image((((((((((((((,(one(test(image(
Nuisances:(photometric((contrast(group),(geometric((planar(
similarity(group),(occlusion((not(a(group);(LA(model(

Measuring(“useful”(

Enter(hierarchical(composi<on(

Enter(intrinsic(variability:(

What(is(a(visual(representa<on?(
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Ac<onable(Informa<on((is considered, to Actionable Information H(y) = H(y) �
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H(�xt,G(y)) [

Cor:(An(ideal(representa<on(is(minimal(sufficient(for(the(scene,(and(sufficient(
(but(not(necessarily)(minimal(for(the(image;(The(predic<ve(likelihood(is(minimal(
sufficient(for(the(image,(but(not(sufficient(for(the(scene.(

Class(prior(((((((((((((:(how(to(construct/learn?(
(
Class(represented(by(ac<on(of(a((rela<vely(simple)(group(on(a(“prototype”(
(
Group(induces((complex)(ac<on(in(data(space((“deformable(template”)(
(
(
(
InfiniteSdimensional(transi<ve(group(ac<on(
(
Locality(reduces(group(ac<on(to(composi<on(of(locally(affine(

Marginalizing(occlusion(induces(locality(in(the(representa<on((
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Thus, if we indicate with gk

j

the restriction of the group action gk on the domain of the receptive field gj ,
we can consider the global group nuisance gi, the group selector of receptive fields

represented in an image by a triple: {V, {gk
j
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Marginalizing(small(group(ac<ons(at(each(layer(achieves((invariance(to(large(groups(

SOA(Likelihood:((

Thm:(first(layer(of(CNN(approximates(local(representa<on(of(one(image(

TakeShome:(
•  Define(representa<ons(as(approxima<ons(of(minimal(sufficient(

sta<s<cs((of(the(data,(for(the(task)(that(are(also(maximal(
invariant((to(nuisance(factors)(

•  Profile(likelihood((rela<ve(to(a(model)(is(one(such(
•  Interpret(sampled(profile(likelihood(according(to(classical(

sampling(theory;(an<Saliasing(corresponds(to(local(
marginaliza<on,(or(“mean(pooling”,(and(the(SOA(Likelihood(

•  Simple(examples(improve(local(descriptors(for(wideSbaseline(
matching,(as(well(as(firstSlayer(of(CNN((DSPSCNN)(

•  Marginaliza<on(of(complex(deforma<ons(due(to(induced(
intrinsic(variability(can(be(achieved(by(composi<on(of(simple(
group(marginaliza<on(

Extend(to(DSPSCNN(

representation
a function of the data that is useful for a task … 
regardless of nuisance factors affecting (future) data 

data 
images 

task 
decision or control actions on the scene portrayed by the images 

nuisance factors 
viewpoint, illumination, partial occlusion, sensor characteristics 

useful 
“informative”
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optimal representation

‘most informative’ function of the data, for a 
task: sufficient statistic 
‘most compressed’: minimal sufficient 
statistic 
‘most insensitive’ to nuisance factors 
affecting future data: minimal sufficient 
invariant statistic
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(fake) bad news

‘invariance’ cannot be attained, so settle for 
‘approximate invariance’ 
invariance trades off information 
(discriminative power)
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a few facts
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the sample-orbit antialiased likelihood is a minimal 
sufficient invariant statistic: optimal representation



simple example
training set: a single image 
task: binary classification (correspondence) 
nuisances: planar similarities 
optimal representation (closed form):
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3.4 Contrast invariance

Contrast is a monotonic continuous transformation of the (range space of the) data, which can be used to
(locally) model changes due to illumination. It is well-known that the curvature of the level sets at each
point is a maximal invariant [1]. Since it is everywhere orthogonal to the level sets, the gradient orientation
is also a maximal contrast invariant. Here we compute a contrast invariant by marginalizing the norm of
the gradient of the test image (thus retaining its orientation) in the likelihood function of a training image.
Since the action of contrast transformations is spatially independent, in the absence of other nuisances we
assume that the gradient of the test image y can be thought of as a noisy version of the gradient of the
training image x, i.e.,

ry ⇠ N (rx, ✏2) (15)

and compute the density of y given x marginalized with respect to contrast transformations H of y.

Theorem 2 (Contrast-invariant su�cient statistic). The likelihood of a training image x at a given pixel,
given a test image y, marginalized with respect to contrast transformations of the latter, is given by

p
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.
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The expression in (16) is, by construction, a minimal su�cient statistic of y that is invariant to contrast
transformations.

Comparison of (16) with SIFT [42] is described in Remark 5, but already at the outset we notice that the
latter is neither a density (it does not integrate to one as the angle \ry spans the circle), nor does it reduce
to uniform when the training patch is flat (krxk = 0). Fig. 1 compares the two as functions of ↵ = \ry
for randomly sampled x.
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Figure 1: SIFT integrand (30) (red) vs. marginalized likelihood (16) (blue) computed for a random patch on ↵ 2
[�⇡,⇡] (left), and on a regular sub-sampling of 8 orientations (right). Several random tests are shown as mean and error-bars
corresponding to three standard deviations across trials.
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Abstract

We introduce a simple modification of local image
descriptors, such as SIFT, that improves matching
performance by 33% on the Oxford image match-
ing benchmark and is implementable in two lines
of code. To put it in perspective, this is more than
half of the improvement that SIFT provides over raw
image intensities on the same datasets. The trick
consists of pooling gradient orientations across dif-
ferent domain sizes, in addition to spatial locations,
and yields a descriptor of the same dimension of
the original, which we call DSP-SIFT. Domain-size
pooling causes DSP-SIFT to outperform by 8.5% a
Convolutional Neural Network, which in turn has
been recently reported to outperform ordinary SIFT
by 23%. This is despite the network being trained
on millions of images and outputting a descriptor
of size 512 rather than 128. Domain-size pooling
is counter-intuitive and contrary to the practice of
scale selection as taught in scale-space theory, but
has solid roots in classical sampling theory.

1. Introduction

Local image descriptors, such as SIFT and its
variants [25], are engineered to reduce variability
due to illumination and vantage point while retain-
ing discriminative power. This facilitates local cor-
respondence between di↵erent views of the same un-
derlying scene. In a wide-baseline matching task
on the Oxford benchmark [27], nearest-neighbor
SIFT descriptors achieve an average precision (AP)
of 25.73%, best among all local descriptors tested
and a 61% improvement over direct comparison of
grayscale values (improperly labeled “RGB” [13],
15.98%AP). Similar results have been obtained on
other datasets [28]. Functions that reduce sensitiv-
ity to nuisance variability can also be learned from

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

�
2.

An efficient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with � equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 � d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.
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Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with � equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
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at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with � equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 � d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 1: In SIFT (top [25]) isolated scales are selected

(a) and the descriptor constructed from the image at the

selected scale (b) by computing gradient orientations (c)

and pooling them in spatial neighborhoods (d) yield-

ing histograms that are normalied and concatenated to

form the descriptor (e). In DSP-SIFT (bottom), pool-

ing occurs across di↵erent domain sizes (a): Patches

of di↵erent sizes are re-scaled (b), gradient orientation

computed (c) and pooled across locations and scales (d),

and concatenated yielding a descriptor (e) of the same

dimension of ordinary SIFT.

data [26, 33, 34, 38, 30], both supervised and unsu-
pervised. Convolutional Neural Networks (CNNs)
have been trained to “learn away” nuisance vari-
ability while retaining class labels using large an-
notated datasets such as ImageNet. The response
of a CNN to image values in a region can be inter-
preted as a descriptor, and used for correspondence
much in the same way as SIFT, albeit with di↵erent
dimension (the fourth layer of the CNN in [13, 20]
has 512 dimensions, whereas SIFT has 128). Direct
comparison on the Oxford benchmark, performed
by [13], shows that the CNN outperforms SIFT
by a significant margin (23%), from 25.73%AP to
31.64%. However, we show that a simple modifica-
tion of SIFT, obtained by pooling gradient orien-
tations across di↵erent domain sizes (“scales”), in
addition to spatial locations, improves it by an even

1

8

hSIFT(✓|I) =
Z

✏ (✓ � \rI(y))�(y � x)krI(y)kdy

hDSP (✓|I) =
ZZ

✏ (✓ � \rI(y))�(y � x)krI(y)kdP (�)dy

w/ j. dong
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3.4 Contrast invariance

Contrast is a monotonic continuous transformation of the (range space of the) data, which can be used to
(locally) model changes due to illumination. It is well-known that the curvature of the level sets at each
point is a maximal invariant [1]. Since it is everywhere orthogonal to the level sets, the gradient orientation
is also a maximal contrast invariant. Here we compute a contrast invariant by marginalizing the norm of
the gradient of the test image (thus retaining its orientation) in the likelihood function of a training image.
Since the action of contrast transformations is spatially independent, in the absence of other nuisances we
assume that the gradient of the test image y can be thought of as a noisy version of the gradient of the
training image x, i.e.,

ry ⇠ N (rx, ✏2) (15)

and compute the density of y given x marginalized with respect to contrast transformations H of y.

Theorem 2 (Contrast-invariant su�cient statistic). The likelihood of a training image x at a given pixel,
given a test image y, marginalized with respect to contrast transformations of the latter, is given by

p
x

(y|H)
.
= p(\ry|rx) =

1p
2⇡✏2

exp

✓
� 1

2✏2
sin2(\ry � \rx)krxk2

◆
M (16)

where, if we call  (a)
.
= 1p

2⇡

R
a

�1 e�
1
2 ⌧

2

d⌧ for any a 2 R, and m
.
= cos(\ry � \rx)krxk, then

M =
✏e�

(m)2

2✏

2

p
2⇡

+ m � m 
⇣
�m

✏

⌘
. (17)

The expression in (16) is, by construction, a minimal su�cient statistic of y that is invariant to contrast
transformations.

Comparison of (16) with SIFT [42] is described in Remark 5, but already at the outset we notice that the
latter is neither a density (it does not integrate to one as the angle \ry spans the circle), nor does it reduce
to uniform when the training patch is flat (krxk = 0). Fig. 1 compares the two as functions of ↵ = \ry
for randomly sampled x.
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Figure 1: SIFT integrand (30) (red) vs. marginalized likelihood (16) (blue) computed for a random patch on ↵ 2
[�⇡,⇡] (left), and on a regular sub-sampling of 8 orientations (right). Several random tests are shown as mean and error-bars
corresponding to three standard deviations across trials.

Proof. We denote with ry
.
= ry

kryk the normalized gradient of y, and similarly for x; � maps it to polar

coordinates (↵, ⇢) = �(ry) and (�, �) = �(rx), where

↵
.
= \ry ⇢

.
= kryk �

.
= \rx �

.
= krxk.

The conditional density of ry given rx takes the polar form

p(⇢, ↵|rx) = p(ry|rx)ry=�

�1
(⇢,↵)

⇢

p(ry|rx) = 1

2⇡✏

2 e�
1

2✏

2 kry�rxk2

.
(18)
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Figure 2: Clamping e↵ects: For ↵ 2 [�⇡,⇡] (abscissa), the top shows the marginalized likelihood p(↵|rx) (16) (blue), the
SIFT integrand (30) (solid red), and its clamped version (35) (dashed red) for thresholds ranging from 50% to 10% of its
maximum. The bottom shows the same discretized to 8 orientation bins. The clamping approximation is sensible only for
coarse binning, and heavily influenced by the choice of threshold. For an 8-bin histogram, the best approximation is typically
achieved with clamping threshold between 10% and 30% of the maximum; note that [42] empirically chose 20%.

3.5 Rotation Invariance

replace ↵ with y
Canonization [58] is particularly well suited to deal with planar rotation, since it is possible to design co-

variant detectors with few isolated extrema. An example is the local maximum of the norm of the gradient
along the direction ↵ = ↵̂

l

(x). 26 Invariance to G = SO(2) can be achieved by retaining the samples
{p

✓

(↵|↵̂
l

)}L

l=1

. CHECK: Rotation anti-aliasing is performed by regularizing the orientation histogram,
implicit in the construction of many local descriptors and controlled by the parameter ✏

↵

in (25). Note
that, again, planar rotations can a↵ect both the training image x and the test image y. In some cases, a
consistent reference (canonical element) is available. For instance, for geo-referenced scenes L = 1, and the
projection of the gravity vector onto the image plane [37], ↵̂, provides a canonical reference unless the two
are orthogonal:

p
✓

(↵|G) = p
✓

(↵|↵̂). (36)

In reality, rotation canonization should contend with spatial quantization, neglected here since rotation errors
are absorbed by the binning of gradient orientation ✏

↵

.

Remark 7 (Mean pooling = local marginalization = anti-aliasing). When the number of classes grows
to infinity, as discussed in Sect. 4, sampling error reduces to the approximation error between the orbit
and its reconstruction using the samples. Although there is no stationarity assumption, and therefore no
“Nyquist rate” in our context, in general the reconstruction from the samples exhibits aliasing artifacts,
i.e., “structures” that do not exist in the original function (aliases). These can be reduced by anti-aliasing.
While in general anti-aliasing can be performed with respect to any set of weights w, that can be optimized to
reduce reconstruction error, if such weights are positive, then dP (g) = w(g)dµ(g) can be interpreted as a prior
on G and the anti-aliasing above corresponds to marginalization against such prior. When restricted to planar
translations, this procedure is known as spatial pooling and practiced in most descriptors as well as CNNs,
using Gaussian or bilinear priors. However, there is no reason to restrict oneself to the translation group. In
[23], anti-aliasing is extended to the translation-scale group with sizable performance improvements. Optimal
choice of pooling weights, characterization of su�cient sampling conditions for a desired approximation, and
quantification of the complexity/fidelity tradeo↵ are interesting and important theoretical questions that, with
the interpretation proposed here, can now be posed within the framework of sampling theory.

Remark 8 (Max-pooling = co-variant sampling = canonization). In the context of achieving invariance to
group actions, the samples mechanism has to respect the equivariant properties of the model. Canonization
[58] is an adaptive sampling mechanism that can also be thought of as a vehicle to perform co-variant sampling
when the nuisance acts in data space (rather than on the hidden variable ✓); we indicate the action as gx.

26Here g acts on x via gx(u
i

, v

i

) = x(u00
i

, v

00
i

) where u

00 = u cos↵� v sin↵ and v

00 = u sin↵+ v cos↵, and a canonical element
ĝ

l

(x) = ↵̂ can be obtained as ↵̂ = argmax
↵

krx(u0
i

, v

0
i

)k. The corresponding rotation invariant ĝ

�1(x)x is \rx(u0
i

, v

0
i

) where
u

0 = u cos↵+ v sin↵ and v

0 = �u sin↵+ v cos↵
.

= ↵

0.
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where are we?

structure in the 
representation? 
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more realistically
intra-class variability (separation principle) 

occlusion (combinatorics) 

architecture?
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Thus, if we indicate with gk

j

the restriction of the group action gk on the domain of the receptive field gj ,
we can consider the global group nuisance gi, the group selector of receptive fields
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the restriction of the group action gk on the domain of the receptive field gj ,
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Marginalizing(small(group(ac<ons(at(each(layer(achieves((invariance(to(large(groups(

SOA(Likelihood:((

Thm:(first(layer(of(CNN(approximates(local(representa<on(of(one(image(

TakeShome:(
•  Define(representa<ons(as(approxima<ons(of(minimal(sufficient(

sta<s<cs((of(the(data,(for(the(task)(that(are(also(maximal(
invariant((to(nuisance(factors)(
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•  Interpret(sampled(profile(likelihood(according(to(classical(

sampling(theory;(an<Saliasing(corresponds(to(local(
marginaliza<on,(or(“mean(pooling”,(and(the(SOA(Likelihood(

•  Simple(examples(improve(local(descriptors(for(wideSbaseline(
matching,(as(well(as(firstSlayer(of(CNN((DSPSCNN)(

•  Marginaliza<on(of(complex(deforma<ons(due(to(induced(
intrinsic(variability(can(be(achieved(by(composi<on(of(simple(
group(marginaliza<on(

Extend(to(DSPSCNN(
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still missing

scene topology (detachable objects) 

global referencing (gravity) 

extension to tasks other than detection
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summary
definition, analytical characterization of an 
ideal visual representation: 

simple case where inference is tractable 

conjectures on extensions to include intra-
class variability: relation to cnn’s 

representation of the scene, not the image 

extension to more general (control, 
decision) tasks 

support “query system” on the scene
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