# designing and learning visual representations

stefano soatto ucla

november 13, 2015

- visual representation: definition
  - tradeoffs
- special (trivial) case: local descriptors
  - the unreasonable effectiveness of sift
- beyond local: modeling intrinsic variability
  - conjectures
- embedding the representation in the scene
  - scene topology, gravity

### representation

- a function of the data that is useful for a task ....
  regardless of nuisance factors affecting (future) data
  - data  $x^t = \{x_1, \dots, x_t\}$ 
    - images
  - ullet task heta



- decision or control actions on the scene portrayed by the images
- ullet nuisance factors g
  - viewpoint, illumination, partial occlusion, sensor characteristics
- useful
  - "informative"

# optimal representation

- 'most informative' function of the data, for a task: sufficient statistic
- 'most compressed': minimal sufficient statistic
- 'most insensitive' to nuisance factors affecting future data: minimal sufficient invariant statistic

### (fake) bad news

- 'invariance' cannot be attained, so settle for 'approximate invariance'
- invariance trades off information (discriminative power)

### a few facts

- The likelihood function  $L(\theta) \doteq p_{\theta}(x)$  is a minimal sufficient statistic, even if  $\theta$  is infinite-dimensional (Bahadur, 1954).
- Nuisance variability can be marginalized:  $p_{\theta}(x|G) \doteq \int_{G} p_{\theta}(x|g) dP(g)$

but invariant only if marginalization is wrt the base measure and in general *not maximal*.

• Profiling (max-out): 
$$p_{\theta,G}(x) \doteq \sup_{g \in G} p_{\theta,g}(x)$$

yields a maximal invariant, but (non-convex) search at test time.

- (Down)-sampling the profile likelihood introduces aliasing phenomena (extrema that do not exist before downsampling/reconstruction)
- Anti-aliasing = pooling = local marginalization

$$\hat{p}_{\theta,G}(y) = \max_{i} \hat{p}_{\theta,g_i}(y) = \max_{i} \int_{G} p_{\theta,g_i}(gy) w(g) d\mu(g)$$

the sample-orbit antialiased likelihood is a minimal sufficient invariant statistic: optimal representation

# simple example

- training set: a single image
- task: binary classification (correspondence)
- nuisances: planar similarities
- optimal representation (closed form):

$$p_x(y|\mathcal{H}) \doteq p(\angle \nabla y | \nabla x) = \frac{1}{\sqrt{2\pi\epsilon^2}} \exp\left(-\frac{1}{2\epsilon^2} \sin^2(\angle \nabla y - \angle \nabla x) \|\nabla x\|^2\right) M$$

$$M = \frac{\epsilon e^{-\frac{(m)^2}{2\epsilon^2}}}{\sqrt{2\pi}} + m - m\Psi\left(-\frac{m}{\epsilon}\right)$$

### SIFT revisited

$$h_{\text{SIFT}}(\theta|I) = \int \kappa_{\epsilon} (\theta - \angle \nabla I(y)) \kappa_{\sigma}(y - x) ||\nabla I(y)|| dy$$



$$h_{DSP}(\theta|I) = \iint \kappa_{\epsilon} \left(\theta - \angle \nabla I(y)\right) \kappa_{\sigma}(y - x) \|\nabla I(y)\| dP(\sigma) dy$$



#### CLAMPING



# multi-view descriptors

$$\qquad \forall \forall t \in \mathcal{J} \quad \phi_{\mathbf{z}}^t(\theta|\mathbf{y}^t) \doteq \frac{1}{\tau} \sum_{\tau=1}^t \int \mathcal{N}_{\mathbb{S}^1}(\theta - \angle g\mathbf{y}(\tau)) \|\nabla \mathbf{y}\| dP(g)$$

w/ j. dong, j. hernandez, d. davis, j. balzer

### where are we?

- structure in the representation?
- topology? geometry?



### more realistically

intra-class variability (separation principle)

$$p_{\theta}(y|k) = \int p_{\theta}(y|x_k, g_k) dP(g_k|k) \doteq \int p_{\theta_k, g_k}(y) dP(g_k|k)$$

occlusion (combinatorics)

$$\begin{split} \hat{p}_{\theta,G,\hat{V}}(y|k) &= \max_{i,V \in \mathcal{P}(D)} \int_{\text{diff}(D)} \prod_{j \in V} \hat{p}_{\theta_k,g_i}(y_j|x_k,g_k) dP(g_k|k) \\ &\simeq \max_{i,V} \int_{G^M} \prod_{j \in V} \hat{p}_{\theta_k,g_kg_i}(y_{|g_j\mathcal{B}_0}) dP(g_1^{-1}g_k,\dots,g_M^{-1}g_k|k) \\ &= \max_{i,V} \int_{G^M} \prod_{j \in V} \hat{p}_{\theta_k,g_kg_i}(g_jy_{|\mathcal{B}_0}) dP(g_1^{-1}g_k,\dots,g_M^{-1}g_k|k) \\ &= \max_{V} \int_{G^M} \prod_{j \in V} \hat{p}_{\theta_k,g_{k_j}}(y) dP_G(g_{k_1},\dots,g_{k_M}|k) \end{split}$$

architecture?



# still missing

- scene topology (detachable objects)
- global referencing (gravity)
- extension to tasks other than detection

### summary

- definition, analytical characterization of an ideal visual representation:
- simple case where inference is tractable
- conjectures on extensions to include intraclass variability: relation to cnn's
- representation of the scene, not the image
- extension to more general (control, decision) tasks
- support "query system" on the scene