Appendix A

Basic facts from linear algebra

We assume that the reader is familiar with the basic notions of linear algebra.

A.1 Linear maps and linear groups

A linear transformation of a linear (vector) space (modeled as R") is defined as a map 7' : R* — R”
such that

e T'(z+y)=T(x)+T(y) Vz,y e R
o T(ar) =aT(z) Vz € R", a e R

If we consider (the ring of) all n x n matrices over the field R, its group of units GL£(n) — which
consists of all n x n invertible matrices and is called the general linear group — can be identified
with the set of linear maps:

T:R" > R* z— T(z) =Tz | T € GL(n). (A.1)
We recall that a set G is a group if it closed with respect to an operation, call it -

- G@GxGd@ — @G
(91,92) — g1-92 (A.2)

which is associative, has a null element and an inverse:
1. (g1-92)-93=g1-(92-93) V g1,92,93 € G (associative)
2.3ee€G|g-e=gVge G (null element)
3.YgeGIgleG|g-gt=g"' g=e (inverse).

The set of n X n non-singular matrices is a group under the usual matrix product. Such a group
can also be identified with the metric (vector) space R"”.
We say that a linear transformation of a space with inner product is orthogonal if it preserves
such inner product:
(Tz, Ty) = (z,y) V z,y € R". (A.3)
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The set of n x n orthogonal matrices forms the orthogonal group O(n). If M is a matrix represen-
tative of an orthogonal transformation, expressed relative to an orthonormal reference frame, then
it is easy to see that the orthogonal group is characterized as

O(n) ={M € GL(n) | MMT =T}. (A.4)

The determinant of an orthogonal matrix can be +1. The subgroup of O(n) with unit determinant
is called the special orthogonal group SO(n).

A.2 Gram-Schmidt orthonormalization

A matrix in GL£(n) has n independent rows (columns). A matrix in O(n) has orthonormal rows
(columns). The Gram-Schmidt procedure can be viewed as a map between GL(n) and O(n), for
it transforms a nonsingular matrix into an orthonormal one. Call £ (n) the subset of GL(n)
consisting of lower triangular matrices with positive elements along the diagonal. Such matrices
form a subgroup of GL(n). Then we have

Theorem A.l. (Gram-Schmidt) VM € GL(n) 'L € L, (n) E € O(n) such that
M=LE (A.5)

Proof. The proof consists in constructing L and F iteratively from the rows m; of M:

<

vy, = my, — e = T
Vo, = my, — (mg,e; e, — €9 = |Iz§:||
: —
vV, = my, — Z;’:—11<m,-_,ei_)ei_ — e, = HzZH
Then £ = [e{_ e eZ,]T and the matrix L is obtained as
vl 0o ... 0
(mg,e1) |val ... 0
L= . .
[Vl

O

Remark A.1. Gram-Schmidt’s procedure has the peculiarity of being causal, in the sense that the
k-th column of the transformed matriz depends only upon rows with index | < k of the original
matriz. The choice of the name E for the orthogonal matriz above is not random. In fact we
will view the Kalman filter as a way to perform a Gram-Schmidt orthonormalization on a peculiar
Hilbert space, and the outcome E of the procedure is traditionally called the innovation.

A.3 Symmetric matrices

Definition A.1. Q € R**" js symmetric iff Q7 = Q.

Theorem A.2. () is symmetric then
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1. Let (v, \) be eigenvalue-eigenvector pairs. If \; # \j then v; Lvj, i.e. eigenvectors correspond-
ing to distinct eigenvalues are orthogonal.

2. A n orthonormal eigenvectors of Q), which form a basis for R".

3. Q>04ff N >0Vi=1:n,ie Q is positive semi-definite iff all eigenvalues are non-negative.

4. if Q>0 and Ay > Ao+ Xy, then IIla,X||w||2:1<.'L', Qz) = A1 and minHw”Fl(m, Qz) = M.
Remark A.2.

e from point (3) of the previous theorem we see that if V = [ vl Vg ot Up ] is the matriz
of all the eigenvectors, and A = diag{\; --- A\p} is the diagonal matriz of the corresponding
eigenvalues, then we can write Q = VAVT; note that V is orthonormal.

e Proofs of the above claims are easy ezxercises.

Definition A.2. Let A € R™*" then we define the induced 2-norm of A as an operator between
R™ and R™ as

|A| = max ||Az||? = max (z, AT Az).
[lzll2=1 ||z||2=1

Remark A.3.

o Similarly other induced operator norms on A can be defined starting from different norms on
the domain and co-domain spaces on which A operates.

o let A be as above, then AT A is clearly symmetric and positive semi-definite, so it can be diag-
onalized by a orthogonal matriz V. The eigenvalues, being non-negative, can be written as 2.
By ordering the columns of V' so that the eigenvalue matriz A has decreasing eigenvalues on
the diagonal, we see, from point (e) of the previous theorem, that AT A = Vdiag{o?--- o2}V 7T
and ||All2 = o1.

A.4 Structure induced by a linear map

e Let A be an operator from a vector space F to a space F

e Let E have a scalar product (, )g : E x E — F and F have finite dimension and a scalar
product (, )p: Fx F —F

e Let E be decomposed as:
E = Nu(4) & Nu(A)*

e Let F be decomposed as E = Ra(A) ElLB Ra(A)*.
Theorem A.3. Let A, E, F be defined as above; then

a) Nu(A)* = Ra(AT)

b) Ra(A)* = Nu(AT)

c) Nu(AT) = Nu(AAT)

d) Ra(A)! = Ra(AAT).
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A.5 The Singular Value Decomposition (SVD)

The SVD is a useful tool to capture essential features of a linear operator, such as the rank, range
space, null space, induced norm etc. and to “generalize” the concept of “eigenvalue- eigenvector”
pair.

The computation of the SVD is numerically well-conditioned, so it makes sense to try to solve
some typical linear problems as matrix inversions, calculation of rank, best 2-norm approximations,
projections and fixed-rank approximations, in terms of the SVD of the operator.

A.5.1 Algebraic derivation

Theorem A.4. Let A € R™*" have rank p. Furthermore suppose, WLOG, that m > n, then
e dU € R™*P whose columns are orthonormal
e IV € R"*P whose columns are orthonormal
o IX € RP*P Y = diag{oy ---op} diagonal with o1 > 09 > -+ > 0y

such that A=UXVT.

Constructive proof

e compute AT A: it is symmetric and positive semi-definite of dimension n x n. Then order its
eigenvalues in decreasing order and call them o} > --- > 02 > --- 07 > 0. Call the o; singular
values.

e From an orthonormal set of eigenvectors of AT A create an orthonormal basis for R* such that
span{vy---vp} = Ra(AT) and span{vpi1---v,} = Nu(A). Note that the latter eigenvectors
correspond to the zero singular values, since Nu(AT A) = Nu(A).

o define u; such that Av; = o;u;Vi = 1 : p, and see that the set {u;} is orthonormal (proof left
as exercise).

e Complete the basis {u;}yi=1:, which spans Ra(A) (by construction), to all R™.

01 0 cer eee e 0
0 gy or -on e 0
Do oy : _ s
e then Afvy---vy] =[ur---up) | . . . . ) which we name AV =UX
0 0 O 0n,
[0 0 O |

hence A = UXV7T

Then the claim follows by deleting the columns of U and the rows of VT which multiply the
zero singular values.
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A.5.2 Geometric interpretation

Theorem A.5. Let A € R™" = UXVT, then A maps B(0,1) = {z € R* : ||z|2 = 1} to an
ellipsoid with half-azes o;u;

Proof:

let z,y be such that Az = y. {v1---v,} is an orthonormal basis for R”. With respect to

such basis z has coordinates [(v1,z), (v2,Z), - ,(vy,x)]. Idem for {u;}. Let y = >0 yiu; —

Az = Y1 ouplz = Y0 oui(vi, ) = Y0 yiu; = y. Hence oi(v;,z) = y;. Now ||z])3 =
2

3 (i, x)? = 1Vz € B(0,1), from which we conclude Y 7 ; %5 = 1, which represents the equation

of an ellipsoid with half-axes of length o;.

A.5.3 Some properties of the SVD
Rank and Null space
Theorem A.6. LetA = UZV"T have rank r; then
e Nu(A) =span{vy4i...vp}
e Ra(AT) = Nu(A)* = span{v; ...v,}
e Ra(A) =span{u;...u,}

e Ra(A)* = Nu(AT) = span{u,11...u,}

proof: by construction.

Generalized (Moore-Penrose) Inverse

The problems involving orthogonal projections onto invariant subspaces of A, as Linear Least
Squares (LLSE) or Minimum Energy problems, are easily solved using the SVD.

Definition A.3. Let A € R™*" A = UAVT where A is the diagonal matriz with diagonal elements
(Ay-. o Ar,0...0); then

Af = UAL VT, Ay = diag(AT!,...A.1,0...0)

Theorem A.7.
o AATA=A
o ATAAT = At

Least squares solution of a linear systems

Theorem A.8. Consider the problem Az = b with A € R™" of rank p < min(m,n), then the
solution & that minimizes |AZ — b|| is given by & = A'b.
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Fixed rank approximations

One of the most important properties of the SVD has to deal with fixed-rank approximations of a
given operator. Given A as an operator from a space X to a space Y of rank n, we want to find
an operator B from the same spaces such that it has rank p < n fixed and ||A — B||r is minimal,
where the F' indicates the Frobenius norm (in this context it is the sum of the singular values).

If we had the usual 2-norm and we calculate the SVD of A = ULV’ then by simply setting all
the singular values but the first p to zero, we have an operator B = UZX VT, where 2 (p) denotes
a matrix obtained from ¥ by setting to zero the elements on the diagonal after the p!®, which has
exactly the same two norm of A and satisfies the requirement on the rank.

It is not difficult to see the following result

Theorem A.9. Let A, B be defined as above, then |A — B||rp = op41. Furthermore such norm is
the minimum achievable.

Proof: easy exercise; follows directly from the orthogonal projection theorem and the properties
of the SVD given above.
Perturbations

Consider a non-singular matrix A € R™*" (if A is singular substitute its inverse by the moore-
penrose pseudo-inverse). Let dA be a full-rank perturbation. Then

o |ox(A+0A) —ok(A)| <01(6A) VE=1:n
e 0,(AdA) > 0,(A)on(6A)

° 0'1(A71) = G'n%A)

Condition number

Consider again the problem Az = b, and consider a “perturbed” full rank problem (a+d0A)z = b+db.

Since Az = b, then to first order approximation dz = —A'§Az. Hence ||0z| < ||AT||||6A]|||z|, from

which 122l — | AT Al % = k(A)%. “k(A)” is called the condition number of A. It easy to see
g1

[l

that k(A) = 2

op "



