# Appendix A

# Basic facts from linear algebra

We assume that the reader is familiar with the basic notions of linear algebra.

## A.1 Linear maps and linear groups

A linear transformation of a linear (vector) space (modeled as  $\mathbb{R}^n$ ) is defined as a map  $T: \mathbb{R}^n \to \mathbb{R}^n$  such that

- $T(x+y) = T(x) + T(y) \ \forall \ x, y \in \mathbb{R}^n$
- $T(\alpha x) = \alpha T(x) \ \forall \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}$ .

If we consider (the ring of) all  $n \times n$  matrices over the field  $\mathbb{R}$ , its group of units  $\mathcal{GL}(n)$  – which consists of all  $n \times n$  invertible matrices and is called the general linear group – can be identified with the set of linear maps:

$$T: \mathbb{R}^n \to \mathbb{R}^n; \ x \mapsto T(x) = \mathbf{T}x \mid \mathbf{T} \in \mathcal{GL}(n).$$
 (A.1)

We recall that a set G is a group if it closed with respect to an operation, call it  $\cdot$ 

$$\begin{array}{cccc}
\cdot : G \times G & \longrightarrow & G \\
(g_1, g_2) & \mapsto & g_1 \cdot g_2
\end{array} \tag{A.2}$$

which is associative, has a null element and an inverse:

- 1.  $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3) \ \forall \ g_1, g_2, g_3 \in G$  (associative)
- 2.  $\exists e \in G \mid g \cdot e = g \ \forall g \in G \ \text{(null element)}$
- 3.  $\forall g \in G \; \exists \; g^{-1} \in G \; | \; g \cdot g^{-1} = g^{-1} \cdot g = e \; \text{ (inverse)}.$

The set of  $n \times n$  non-singular matrices is a group under the usual matrix product. Such a group can also be identified with the *metric* (vector) space  $\mathbb{R}^{n^2}$ .

We say that a linear transformation of a space with inner product is *orthogonal* if it preserves such inner product:

$$\langle \mathbf{T}x, \mathbf{T}y \rangle = \langle x, y \rangle \ \forall \ x, y \in \mathbb{R}^n.$$
 (A.3)

The set of  $n \times n$  orthogonal matrices forms the *orthogonal group* O(n). If M is a matrix representative of an orthogonal transformation, expressed relative to an orthonormal reference frame, then it is easy to see that the orthogonal group is characterized as

$$O(n) = \{ M \in \mathcal{GL}(n) \mid MM^T = I \}. \tag{A.4}$$

The determinant of an orthogonal matrix can be  $\pm 1$ . The subgroup of O(n) with unit determinant is called the *special orthogonal group* SO(n).

## A.2 Gram-Schmidt orthonormalization

A matrix in  $\mathcal{GL}(n)$  has n independent rows (columns). A matrix in O(n) has orthonormal rows (columns). The Gram-Schmidt procedure can be viewed as a map between  $\mathcal{GL}(n)$  and O(n), for it transforms a nonsingular matrix into an orthonormal one. Call  $\mathcal{L}_+(n)$  the subset of  $\mathcal{GL}(n)$  consisting of lower triangular matrices with positive elements along the diagonal. Such matrices form a subgroup of  $\mathcal{GL}(n)$ . Then we have

**Theorem A.1.** (Gram-Schmidt)  $\forall M \in \mathcal{GL}(n) \exists ! L \in \mathcal{L}_{+}(n) \ E \in O(n) \ such \ that$ 

$$M = LE \tag{A.5}$$

*Proof.* The proof consists in constructing L and E iteratively from the rows  $\mathbf{m}_{i.}$  of M:

Then  $E = [\mathbf{e}_1^T \dots \mathbf{e}_n^T]^T$  and the matrix L is obtained as

$$L = \left[ egin{array}{cccc} \|\mathbf{v}_1.\| & 0 & \dots & 0 \ \langle \mathbf{m}_2, \mathbf{e}_1.
angle & \|\mathbf{v}_2.\| & \dots & 0 \ dots & dots & \ddots & dots \ dots & dots & \dots & \|\mathbf{v}_{n.}\| \end{array} 
ight]$$

**Remark A.1.** Gram-Schmidt's procedure has the peculiarity of being causal, in the sense that the k-th column of the transformed matrix depends only upon rows with index  $l \leq k$  of the original matrix. The choice of the name E for the orthogonal matrix above is not random. In fact we will view the Kalman filter as a way to perform a Gram-Schmidt orthonormalization on a peculiar Hilbert space, and the outcome E of the procedure is traditionally called the innovation.

## A.3 Symmetric matrices

**Definition A.1.**  $Q \in \mathbb{R}^{n \times n}$  is symmetric iff  $Q^T = Q$ .

**Theorem A.2.** Q is symmetric then

- 1. Let  $(v, \lambda)$  be eigenvalue-eigenvector pairs. If  $\lambda_i \neq \lambda_j$  then  $v_i \perp v_j$ , i.e. eigenvectors corresponding to distinct eigenvalues are orthogonal.
- 2.  $\exists n \text{ orthonormal eigenvectors of } Q, \text{ which form a basis for } \mathbb{R}^n$ .
- 3.  $Q \ge 0$  iff  $\lambda_i \ge 0 \forall i = 1:n$ , i.e. Q is positive semi-definite iff all eigenvalues are non-negative.
- 4. if  $Q \geq 0$  and  $\lambda_1 \geq \lambda_2 \cdots \lambda_n$  then  $\max_{\|x\|_2=1} \langle x, Qx \rangle = \lambda_1$  and  $\min_{\|x\|_2=1} \langle x, Qx \rangle = \lambda_n$ .

#### Remark A.2.

- from point (3) of the previous theorem we see that if  $V = [v_1 \ v_2 \ \cdots \ v_n]$  is the matrix of all the eigenvectors, and  $\Lambda = diag\{\lambda_1 \cdots \lambda_n\}$  is the diagonal matrix of the corresponding eigenvalues, then we can write  $Q = V\Lambda V^T$ ; note that V is orthonormal.
- Proofs of the above claims are easy exercises.

**Definition A.2.** Let  $A \in \mathbb{R}^{m \times n}$ , then we define the <u>induced 2-norm</u> of A as an operator between  $\mathbb{R}^n$  and  $\mathbb{R}^m$  as

$$||A|| \doteq \max_{||x||_2=1} ||Ax||_2^2 = \max_{||x||_2=1} \langle x, A^T A x \rangle.$$

#### Remark A.3.

- Similarly other induced operator norms on A can be defined starting from different norms on the domain and co-domain spaces on which A operates.
- let A be as above, then  $A^TA$  is clearly symmetric and positive semi-definite, so it can be diagonalized by a orthogonal matrix V. The eigenvalues, being non-negative, can be written as  $\sigma_i^2$ . By ordering the columns of V so that the eigenvalue matrix  $\Lambda$  has decreasing eigenvalues on the diagonal, we see, from point (e) of the previous theorem, that  $A^TA = V \operatorname{diag}\{\sigma_1^2 \cdots \sigma_n^2\}V^T$  and  $\|A\|_2 = \sigma_1$ .

# A.4 Structure induced by a linear map

- ullet Let A be an operator from a vector space E to a space F
- Let E have a scalar product  $\langle \ , \ \rangle_E : E \times E \longrightarrow \mathbb{F}$  and F have <u>finite dimension</u> and a scalar product  $\langle \ , \ \rangle_F : F \times F \longrightarrow \mathbb{F}$
- $\bullet$  Let E be decomposed as:

$$E = Nu(A) \stackrel{\perp}{\oplus} Nu(A)^{\perp}$$

• Let F be decomposed as  $E = Ra(A) \stackrel{\perp}{\oplus} Ra(A)^{\perp}$ .

**Theorem A.3.** Let A, E, F be defined as above; then

- a)  $Nu(A)^{\perp} = Ra(A^T)$
- b)  $Ra(A)^{\perp} = Nu(A^T)$
- c)  $Nu(A^T) = Nu(AA^T)$
- d)  $Ra(A)^{\perp} = Ra(AA^T)$ .

# A.5 The Singular Value Decomposition (SVD)

The SVD is a useful tool to capture essential features of a linear operator, such as the rank, range space, null space, induced norm etc. and to "generalize" the concept of "eigenvalue- eigenvector" pair.

The computation of the SVD is numerically well-conditioned, so it makes sense to try to solve some typical linear problems as matrix inversions, calculation of rank, best 2-norm approximations, projections and fixed-rank approximations, in terms of the SVD of the operator.

### A.5.1 Algebraic derivation

**Theorem A.4.** Let  $A \in \mathbb{R}^{m \times n}$  have rank p. Furthermore suppose, WLOG, that  $m \geq n$ , then

- $\exists U \in \mathbb{R}^{m \times p}$  whose columns are orthonormal
- $\exists V \in \mathbb{R}^{n \times p}$  whose columns are orthonormal
- $\exists \Sigma \in \mathbb{R}^{p \times p}, \Sigma = diag\{\sigma_1 \cdots \sigma_p\} \ diagonal \ with \ \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$

such that  $A = U\Sigma V^T$ .

Constructive proof

- compute  $A^TA$ : it is symmetric and positive semi-definite of dimension  $n \times n$ . Then order its eigenvalues in decreasing order and call them  $\sigma_1^2 \ge \cdots \ge \sigma_p^2 \ge \cdots \sigma_n^2 \ge 0$ . Call the  $\sigma_i$  singular values.
- From an orthonormal set of eigenvectors of  $A^TA$  create an orthonormal basis for  $\mathbb{R}^n$  such that  $span\{v_1\cdots v_p\}=Ra(A^T)$  and  $span\{v_{p+1}\cdots v_n\}=Nu(A)$ . Note that the latter eigenvectors correspond to the zero singular values, since  $Nu(A^TA)=Nu(A)$ .
- define  $u_i$  such that  $Av_i = \sigma_i u_i \forall i = 1 : p$ , and see that the set  $\{u_i\}$  is orthonormal (proof left as exercise).
- Complete the basis  $\{u_i\}_{\forall i=1:p}$ , which spans Ra(A) (by construction), to all  $\mathbb{R}^m$ .

• then 
$$A[v_1\cdots v_n]=[u_1\cdots u_m]$$

$$\begin{bmatrix} \sigma_1 & 0 & \cdots & \cdots & 0 \\ 0 & \sigma_2 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \vdots & \vdots & 0_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0_m \end{bmatrix}$$
 which we name  $A\tilde{V}=\tilde{U}\tilde{\Sigma}$ 

• hence  $A = \tilde{U}\tilde{\Sigma}\tilde{V}^T$ 

Then the claim follows by deleting the columns of  $\tilde{U}$  and the rows of  $\tilde{V}^T$  which multiply the zero singular values.

### A.5.2 Geometric interpretation

**Theorem A.5.** Let  $A \in \mathbb{R}^{n \times n} = U\Sigma V^T$ , then A maps  $B(0,1) \doteq \{x \in \mathbb{R}^n : ||x||_2 = 1\}$  to an ellipsoid with half-axes  $\sigma_i u_i$ 

Proof:

let x, y be such that Ax = y.  $\{v_1 \cdots v_n\}$  is an orthonormal basis for  $\mathbb{R}^n$ . With respect to such basis x has coordinates  $[\langle v_1, x \rangle, \langle v_2, x \rangle, \cdots, \langle v_n, x \rangle]$ . Idem for  $\{u_i\}$ . Let  $y = \sum_{i=1}^n y_i u_i \to Ax = \sum_{i=1}^n \sigma_i u_i v_i^T x = \sum_{i=1}^n \sigma_i u_i \langle v_i, x \rangle = \sum_{i=1}^n y_i u_i = y$ . Hence  $\sigma_i \langle v_i, x \rangle = y_i$ . Now  $\|x\|_2^2 = \sum_{i=1}^n \langle v_i, x \rangle^2 = 1 \forall x \in B(0, 1)$ , from which we conclude  $\sum_{i=1}^n \frac{y_i^2}{\sigma_i^2} = 1$ , which represents the equation of an ellipsoid with half-axes of length  $\sigma_i$ .

## A.5.3 Some properties of the SVD

#### Rank and Null space

**Theorem A.6.** Let  $A = U\Sigma V^T$  have rank r; then

- $Nu(A) = \operatorname{span}\{v_{r+1} \dots v_n\}$
- $Ra(A^T) = Nu(A)^{\perp} = \operatorname{span}\{v_1 \dots v_r\}$
- $Ra(A) = \operatorname{span}\{u_1 \dots u_r\}$
- $Ra(A)^{\perp} = Nu(A^T) = \operatorname{span}\{u_{r+1} \dots u_n\}$

proof: by construction.

#### Generalized (Moore-Penrose) Inverse

The problems involving orthogonal projections onto invariant subspaces of A, as Linear Least Squares (LLSE) or Minimum Energy problems, are easily solved using the SVD.

**Definition A.3.** Let  $A \in \mathbb{R}^{m \times n}$ ,  $A = U\Lambda V^T$  where  $\Lambda$  is the diagonal matrix with diagonal elements  $(\lambda_1, \ldots, \lambda_r, 0 \ldots 0)$ ; then

$$A^{\dagger} = U\Lambda_{(r)}^{-1}V^{T}, \quad \Lambda_{(r)}^{-1} = diag(\lambda_{1}^{-1}, \dots \lambda_{r}^{-1}, 0 \dots 0)$$

Theorem A.7.

- $\bullet AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$

#### Least squares solution of a linear systems

**Theorem A.8.** Consider the problem Ax = b with  $A \in \mathbb{R}^{m \times n}$  of rank  $p \leq min(m, n)$ , then the solution  $\hat{x}$  that minimizes  $||A\hat{x} - b||$  is given by  $\hat{x} = A^{\dagger}b$ .

#### Fixed rank approximations

One of the most important properties of the SVD has to deal with fixed-rank approximations of a given operator. Given A as an operator from a space X to a space Y of rank n, we want to find an operator B from the same spaces such that it has rank p < n fixed and  $||A - B||_F$  is minimal, where the F indicates the Frobenius norm (in this context it is the sum of the singular values).

If we had the usual 2-norm and we calculate the SVD of  $A = U\Sigma V^T$ , then by simply setting all the singular values but the first p to zero, we have an operator  $B \doteq U\Sigma_{(p)}V^T$ , where  $\Sigma_{(p)}$  denotes a matrix obtained from  $\Sigma$  by setting to zero the elements on the diagonal after the  $p^{th}$ , which has exactly the same two norm of A and satisfies the requirement on the rank.

It is not difficult to see the following result

**Theorem A.9.** Let A, B be defined as above, then  $||A - B||_F = \sigma_{p+1}$ . Furthermore such norm is the minimum achievable.

Proof: easy exercise; follows directly from the orthogonal projection theorem and the properties of the SVD given above.

#### **Perturbations**

Consider a non-singular matrix  $A \in \mathbb{R}^{n \times n}$  (if A is singular substitute its inverse by the moore-penrose pseudo-inverse). Let  $\delta A$  be a full-rank perturbation. Then

- $|\sigma_k(A + \delta A) \sigma_k(A)| \le \sigma_1(\delta A) \ \forall k = 1: n$
- $\sigma_n(A\delta A) \ge \sigma_n(A)\sigma_n(\delta A)$
- $\sigma_1(A^{-1}) = \frac{1}{\sigma_n(A)}$

#### Condition number

Consider again the problem Ax = b, and consider a "perturbed" full rank problem  $(a + \delta A)x = b + \delta b$ . Since Ax = b, then to first order approximation  $\delta x = -A^{\dagger}\delta Ax$ . Hence  $\|\delta x\| \leq \|A^{\dagger}\| \|\delta A\| \|x\|$ , from which  $\frac{\|\delta x\|}{\|x\|} = \|A^{\dagger}\| \|A\| \frac{\|\delta A\|}{\|A\|} \doteq k(A) \frac{\|\delta A\|}{\|A\|}$ . "k(A)" is called the condition number of A. It easy to see that  $k(A) = \frac{\sigma_1}{\sigma_n}$ .