
Chapter 2

Representation of a three dimensional

moving scene

The study of the geometric relationship between a three-dimensional scene and its images taken from
a moving camera boils down to the interplay between two fundamental transformations: the rigid
body motion that models how the camera moves, and the perspective projection which describes
the image formation process. Long before these two transformations were brought together, the
theories for each had been developed independently.

The study of the principles of motion of a material body has a long history belonging to the
foundations of physics. For our purpose, the more recent noteworthy insights to the understanding
of the motion of rigid bodies came from Chasles and Poinsot in the early 1800s. Their findings led
to current treatment of the subject which has since been widely adopted.

We start this chapter with an introduction to the three dimensional Euclidean space as well
as to rigid body transformations. The next chapter will then focus on the perspective projection
model of the camera.

2.1 Three-dimensional Euclidean space

We will use E3 to denote the familiar three-dimensional Euclidean space. In general, a Euclidean
space is a set whose elements satisfy the five axioms of Euclid []. More practically, the three-
dimensional Euclidean space can be represented by a (global) Cartesian coordinate frame: every
point p ∈ E3 can be identified with a point in R3 by three coordinates: X

.
= [X1, X2, X3]

T . Some-
time we will use [X,Y,Z]T to indicate individual coordinates instead of [X1, X2, X3]

T . Through
such an assignment of Cartesian frame, one establishes a one-to-one correspondence between E3

and R3, which allows us to safely talk about points and their coordinates as if they were the same
thing.

Cartesian coordinates are the first step towards being able to measure distances and angles.
In order to do so, E3 must be endowed with a metric. A precise definition of metric relies on the
notion of vector. In the Euclidean space, a vector is identified by a pair of points p, q ∈ E3; that
is, a vector v is defined as a directed arrow connecting p to q. The point p is usually called the
base point of v. In coordinates, the vector v is represented by the triplet [v1, v2, v3]

T ∈ R3, where
each coordinate is the difference between the corresponding coordinates of the two points: if p has

19



20 CHAPTER 2. REPRESENTATION OF A THREE DIMENSIONAL MOVING SCENE

coordinates X and q has coordinates Y, then v has coordinates1

v = Y −X ∈ R3.

One can also introduce the concept of free vector, a vector whose definition does not depend
on its base point. If we have two pairs of points (p, q) and (p′, q′) with coordinates satisfying
Y − X = Y′ − X′, we say that they define the same free vector. Intuitively, this allows a vector
v to be transported in parallel anywhere in E3. In particular, without loss of generality, one can
assume that the base point is the origin of the Cartesian frame, so that X = 0 and v = Y. Note,
however, that this notation is confusing: Y here denotes the coordinates of a vector, that happen
to be the same as the coordinates of the point q just because we have chosen the point p to be the
origin. Nevertheless, the reader should keep in mind that points and vectors are different geometric
objects; for instance, as we will see shortly, a rigid body motion acts differently on points and
vectors. So, keep the difference in mind!

The set of all (free) vectors form a linear (vector) space2, where a linear combination of two
vectors v, u ∈ R3 is given by:

αv + βu = (αv1 + βu1, αv2 + βu2, αv3 + βu3)
T ∈ R3, ∀α, β ∈ R.

The Euclidean metric for E3 is then defined simply by an inner product on its vector space:

Definition 2.1 (Euclidean metric and inner product). A bilinear function 〈·, ·〉 : R3×R3 → R

is an inner product if it is linear, symmetric and positive definite. That is, ∀u, v, w ∈ R3

1. 〈u, αv + βw〉 = α〈u, v〉 + β〈u,w〉, ∀ α, β ∈ R,

2. 〈u, v〉 = 〈v, u〉.

3. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇔ v = 0,

The quantity ‖v‖ =
√

〈v, v〉 is called the Euclidean norm (or 2-norm) of the vector v. It can be
shown that, by a proper choice of the Cartesian frame, any inner product in E3 can be converted
to the following familiar form:

〈u, v〉 = uT v = u1v1 + u2v2 + u3v3. (2.1)

In most of this book (but not everywhere!) we will use the canonical inner product 〈u, v〉 = uT v
and, consequently, ‖v‖ =

√
v2
1 + v2

2 + v2
3 . When the inner product between two vectors is zero,

〈u, v〉, they are said to be orthogonal.
Finally, a Euclidean space E3 can then be formally described as a space which, with respect to

a Cartesian frame, can be identified with R3 and has a metric (on its vector space) given by the
above inner product. With such a metric, one can measure not only distances between points or
angles between vectors, but also calculate the length of a curve, or the volume of a region3

While the inner product of two vectors returns a scalar, the so-called cross product returns a
vector instead.

1Note that we use the same symbol v for a vector and its coordinates.
2Note that points do not.
3For example, if the trajectory of a moving particle p in E3 is described by a curve γ(·) : t 7→ X(t) ∈ R3, t ∈ [0, 1],

then the total length of the curve is given by:

l(γ(·)) =

∫ 1

0

‖Ẋ(t)‖ dt.

where Ẋ(t) = d
dt

(X(t)) ∈ R3 is the so-called tangent vector to the curve.
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Definition 2.2 (Cross product). Given two vectors u, v ∈ R3, their cross product is a third
vector with coordinates given by:

u× v =



u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1


 ∈ R3.

It is immediate from this definition that the cross product of two vectors is linear: u×(αv+βw) =
αu× v + βu×w ∀ α, β ∈ R. Furthermore, it is immediate to verify that

〈u× v, u〉 = 〈u× v, v〉 = 0, u× v = −v × u.

Therefore, the cross product of two vector is orthogonal to each of its factors, and the order of the
factors defines an orientation.

If we fix u, the cross product can be interpreted as a map v 7→ u×v between R3 and R3. Due to
the linearity property, this map is in fact linear and, therefore, like all linear maps between vector
spaces, it can be represented by a matrix. We call such a matrix û ∈ R3×3. It is immediate to
verify by substitution that this matrix is given by

û =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 ∈ R3×3. (2.2)

Hence, we can write u× v = ûv. Note that4 û is a 3 × 3 skew-symmetric matrix, i.e. ûT = −û. It
is immediate to verify that for e1

.
= [1, 0, 0]T , e2

.
= [0, 1, 0]T ∈ R3, we have e1 × e2 = [0, 0, 1]T

.
= e3.

That is for, a standard Cartesian frame, the cross product of the principal axes X and Y gives the
principal axis Z. The cross product therefore conforms with the right-hand rule.

The cross product allows us to define a map between a vector, u, and a skew-symmetric,
3 × 3 matrix û. Is the converse true? Can every 3 × 3 skew-symmetric matrix be associated
with a three-dimensional vector u? The answer is yes, as it is easy to verify. Let M ∈ R3×3 be
skew-symmetric, that is M = −MT . By writing this equation in terms of the elements of the
matrix, we conclude that m11 = m22 = m23 = 0 and mij = −mji, i, j = 1, 2, 3. This shows
that a skew-symmetric matrix has only three degrees of freedom, for instance m21,m13,m32. If
we call u1 = m32; u2 = m13; u3 = m21, then û = M . Indeed, the vector space R3 and the
space of skew-symmetric 3 × 3 matrices so(3) can be considered as the same thing, with the
cross product that maps one onto the other, × : R → so(3); u 7→ û, and the inverse map,
called “vee”, that extracts the components of the vector u from the skew-symmetric matrix û:
∨ : so(3) → R; M = −MT 7→M∨ = [m32,m13,m21]

T .

2.2 Rigid body motion

Consider an object moving in front of a camera. In order to describe its motion one should,
in principle, specify the trajectory of every single point on the object, for instance by giving its
coordinates as a function of time X(t). Fortunately, for rigid objects we do not need to specify the
motion of every particle. As we will see shortly, it is sufficient to specify the motion of a point, and
the motion of three coordinate axes attached to that point.

4In some computer vision literature, the matrix û is also denoted as u×.
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The condition that defines a rigid object is that the distance between any two points on it does
not change over time as the object moves. So if X(t) and Y(t) are the coordinates of any two
points p and q respectively, their distance between must satisfy:

‖X(t) −Y(t)‖ = constant, ∀t ∈ R. (2.3)

In other words, if v is the vector defined by the two points p and q, then the norm (or length) of v
remains the same as the object moves: ‖v(t)‖ = constant. A rigid body motion is then a family of
transformations that describe how the coordinates of every point on the object change as a function
of time. We denote it by g:

g(t) : R3 → R3

X 7→ g(t)(X)

If, instead of looking at the entire continuous moving path of the object, we concentrate on the
transformation between its initial and final configuration, this transformation is usually called a
rigid body displacement and is denoted by a single mapping:

g : R3 → R3

X 7→ g(X)

Besides transforming the coordinates of points, g also induces a transformation on vectors. Suppose
v is a vector defined by two points p and q: v = Y−X; then, after the transformation g, we obtain
a new vector:

g∗(v)
.
= g(Y) − g(X).

That g preserves the distance between any two points can be expressed in terms of vectors as
‖g∗(v)‖ = ‖v‖ for ∀v ∈ R3.

However, preserving distances between points is not the only requirement that a rigid object
moving in space satisfies. In fact, there are transformations that preserve distances, and yet they
are not physically realizable. For instance, the mapping

f : [X1, X2, X3]
T 7→ [X1, X2,−X3]

T

preserves distance but not orientation. It corresponds to a reflection of points about the XY plane
as a double-sided mirror. To rule out this type of mapping, we require that any rigid body motion,
besides preserving distance, preserves orientation as well. That is, in addition to preserving the
norm of vectors, it must preserve their cross product. The coordinate transformation induced by
a rigid body motion is called a special Euclidean transformation. The word “special” indicates the
fact that it is orientation-preserving.

Definition 2.3 (Rigid body motion or special Euclidean transformation). A mapping
g : R3 → R3 is a rigid body motion or a special Euclidean transformation if it preserves the norm
and the cross product of any two vectors:

1. Norm: ‖g∗(v)‖ = ‖v‖, ∀v ∈ R3.

2. Cross product: g∗(u) × g∗(v) = g∗(u× v), ∀u, v ∈ R3.
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In the above definition of rigid body motion, it is explicitly required that the distance between
points be preserved. Then how about angles between vectors? Although it is not explicitly stated
in the definition, angles are indeed preserved by any rigid body motion since the inner product 〈·, ·〉
can be expressed in terms of the norm ‖ · ‖ by the polarization identity:

uT v =
1

4
(‖u+ v‖2 − ‖u− v‖2). (2.4)

Hence, for any rigid body motion g, one can show that:

uT v = g∗(u)
T g∗(v), ∀u, v ∈ R3. (2.5)

In other words, a rigid body motion can also be defined as one that preserves both inner product
and cross product.

How do these properties help us describe rigid motion concisely? The fact that distances and
orientations are preserved in a rigid motion means that individual points cannot translate relative
to each other. However, they can rotate relative to each other, but they have to collectively, in order
to not alter any mutual distance between points. Therefore, a rigid body motion can be described
by the motion of any one point on the body, and the rotation of a coordinate frame attached to that
point. In order to do this, we represent the configuration of a rigid body by attaching a Cartesian
coordinate frame to some point on the rigid body and keeping track of the motion of this coordinate
frame relative to a fixed frame.

To see this, consider a “fixed” (world) coordinate frame, given by three orthonormal vectors
e1, e2, e3 ∈ R3; that is, they satisfy

eTi ej = δij

{
δij = 1 for i = j
δij = 0 for i 6= j

. (2.6)

Typically, the vectors are ordered so as to form a right-handed frame: e1 × e2 = e3. Then, after a
rigid body motion g, we have:

g∗(ei)
T g∗(ej) = δij , g∗(e1) × g∗(e2) = g∗(e3). (2.7)

That is, the resulting three vectors still form a right-handed orthonormal frame. Therefore, a rigid
object can always be associated with a right-handed, orthonormal frame, and its rigid body motion
can be entirely specified by the motion of such a frame, which we call the object frame. In in Figure
2.1 we show an object (in this case a camera) moving relative to a fixed “world” coordinate frame
W . In order to specify the configuration of the camera relative to the world frame W , one may pick
a fixed point o on the camera and attach to it an orthonormal frame, the camera coordinate frame
C. When the camera moves, the camera frame also moves as if it were fixed to the camera. The
configuration of the camera is then determined by (1) the vector between the origin of the world
frame o and the camera frame, g(o), called the “translational” part and denoted as T , and (2) the
relative orientation of the camera frame C, with coordinate axes g∗(e1), g∗(e2), g∗(e3), relative to
the fixed world frame W with coordinate axes e1, e2, e3,called the “rotational” part and denoted
by R.

In the case of vision, there is no obvious choice of the origin o and the reference frame e1, e2, e3.
Therefore, we could choose the world frame to be attached to the camera and specify the translation
and rotation of the scene (assuming it is rigid!), or we could attach the world frame to the scene
and specify the motion of the camera. All that matters is the relative motion between the scene and
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the camera, and what choice of reference frame to make is, from the point of view of geometry5,
arbitrary.

Remark 2.1. The set of rigid body motions, or special Euclidean transformations, is a (Lie) group,
the so-called special Euclidean group, typically denoted as SE(3). Algebraically, a group is a set
G, with an operation of (binary) multiplication ◦ on elements of G which is:

• closed: If g1, g2 ∈ G then also g1 ◦ g2 ∈ G;

• associative: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), for all g1, g2, g3 ∈ G;

• unit element e: e ◦ g = g ◦ e = g, for all g ∈ G;

• invertible: For every element g ∈ G, there exists an element g−1 ∈ G such that g ◦ g−1 =
g−1 ◦ g = e.

In the next few sections, we will focus on studying in detail how to represent the special Euclidean
group SE(3). More specifically, we will introduce a way to realize elements in the special Euclidean
group SE(3) as elements in a group of n× n non-singular (real) matrices whose multiplication is
simply the matrix multiplication. Such a group of matrices is usually called a general linear group
and denoted as GL(n) and such a representation is called a matrix representation. A representation
is a map

R : SE(3) → GL(n)

g 7→ R(g)

which preserves the group structure of SE(3).6 That is, the inverse of a rigid body motion and the
composition of two rigid body motions are preserved by the map in the following way:

R(g−1) = R(g)−1, R(g ◦ h) = R(g)R(h), ∀g, h ∈ SE(3). (2.8)
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Figure 2.1: A rigid body motion which, in this instance, is between a camera and a world coordinate
frame.

We start with the rotational component of motion.
5The neuroscience literature debates on whether the primate brain maintains a view-centered or an object-centered

representation of the world. From the point of view of geometry, the two are equivalent, for they only differ by an
arbitrary change of coordinates.

6Such a map is called group homeomorphism in algebra.
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2.3 Rotational motion and its representations

Suppose we have a rigid object rotating about a fixed point o ∈ E3. How do we describe its
orientation relative a chosen coordinate frame, say W ? Without loss of generality, we may always
assume that the origin of the world frame is the center of rotation o. If this is not the case, simply
translate the origin to the point o. We now attach another coordinate frame, say C to the rotating
object with origin also at o. The relation between these two coordinate frames is illustrated in
Figure 2.2. Obviously, the configuration of the object is determined by the orientation of the frame
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Figure 2.2: Rotation of a rigid body about a fixed point o. The solid coordinate frame W is fixed
and the dashed coordinate frame C is attached to the rotating rigid body.

C. The orientation of the frame C relative to the frame W is determined by the coordinates of
the three orthonormal vectors r1 = g∗(e1), r2 = g∗(e2), r3 = g∗(e3) ∈ R3 relative to the world frame
W , as shown in Figure 2.2. The three vectors r1, r2, r3 are simply the unit vectors along the three
principal axes X ′, Y ′, Z ′ of the frame C respectively. The configuration of the rotating object is
then completely determined by the following 3 × 3 matrix:

Rwc = [r1, r2, r3] ∈ R3×3

with r1, r2, r3 stacked in order as its three columns. Since r1, r2, r3 form an orthonormal frame, it
follows that:

rT
i rj = δij

{
δij = 1 for i = j
δij = 0 for i 6= j

∀i, j ∈ {1, 2, 3}.

This can be written in matrix form as:

RT
wcRwc = RwcR

T
wc = I.

Any matrix which satisfies the above identity is called an orthogonal matrix. It follows from the
definition that the inverse of an ortohgonal matrix is simply its transpose: R−1

wc = RT
wc. Since

r1, r2, r3 form a right-handed frame, we further have that the determinant of Rwc must be positive
1. This can be easily seen when looking at the determinant of the rotation matrix:

detR = rT
1 (r2 × r3)

which is equal to 1 for right-handed coordinate systems. Hence Rwc is a special orthogonal matrix
where, as before, the word “special” indicates orientation preserving. The space of all such special
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orthogonal matrices in R3×3 is usually denoted by:

SO(3) = {R ∈ R3×3 | RTR = I,det(R) = +1} .

Traditionally, 3× 3 special orthogonal matrices are called rotation matrices for obvious reasons. It
is straightforward to verify that SO(3) has a group structure. That is, it satisfies all four axioms
of a group mentioned in the previous section. We leave the proof to the reader as an exercise.
Therefore, the space SO(3) is also referred to as the special orthogonal group of R3, or simply
the rotation group. Directly from the definition of the rotation matrix, we can show that rotation
indeed preserves both the inner product and the cross product of vectors. We also leave this as an
exercise to the reader.

Going back to Figure 2.2, every rotation matrix Rwc ∈ SO(3) represents a possible configuration
of the object rotated about the point o. Besides this, Rwc takes another role as the matrix that
represents the actual coordinates transformation from the frame C to the frame W . To see this,
suppose that, for a given a point p ∈ E3, its coordinates with respect to the frame W are Xw =
[X1w, X2w, X3w]T ∈ R3. Since r1, r2, r3 form a basis for R3, Xw can also be expressed as a linear
combination of these three vectors, say Xw = X1cr1 + X2cr2 +X3cr3 with [X1c, X2c, X3c]

T ∈ R3.
Obviously, Xc = [X1c, X2c, X3c]

T are the coordinates of the same point p with respect to the frame
C. Therefore, we have:

Xw = X1cr1 +X2cr2 +X3cr3 = RwcXc.

In this equation, the matrix Rwc transforms the coordinates Xc of a point p relative to the frame
C to those Xw relative to the frame W . Since Rwc is a rotation matrix, its inverse is simply its
transpose:

Xc = R−1
wcXw = RT

wcXw.

That is, the inverse transformation is also a rotation; we call it Rcw, following an established
convention, so that

Rcw = R−1
wc = RT

wc.

The configuration of the continuously rotating object can be then described as a trajectory R(t) :
t 7→ SO(3) in the space SO(3). For different times, the composition law of the rotation group then
implies:

R(t2, t0) = R(t2, t1)R(t1, t0), ∀t0 < t1 < t2 ∈ R.

Then, for a rotating camera, the world coordinates Xw of a fixed 3-D point p are transformed to
its coordinates relative to the camera frame C by:

Xc(t) = Rcw(t)Xw.

Alternatively, if a point p fixed with respect to the camera frame with coordinates Xc, its world
coordinates Xw(t) as function of t are then given by:

Xw(t) = Rwc(t)Xc.
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2.3.1 Canonical exponential coordinates

So far, we have shown that a rotational rigid body motion in E3 can be represented by a 3 × 3
rotation matrix R ∈ SO(3). In the matrix representation that we have so far, each rotation matrix
R is described and determined by its 3 × 3 = 9 entries. However, these 9 entries are not free
parameters - they must satisfy the constraint RTR = I. This actually imposes 6 independent
constraints on the 9 entries. Hence the dimension of the rotation matrix space SO(3) is only 3, and
6 parameters out of the 9 are in fact redundant. In this and the next section, we will introduce a
few more representations (or parameterizations) for rotation matrix.

Given a curve R(t) : R → SO(3) which describes a continuous rotational motion, the rotation
must satisfy the following constraint:

R(t)RT (t) = I.

Computing the derivative of the above equation with respect to time t, noticing that the right hand
side is a constant matrix, we obtain:

Ṙ(t)RT (t) +R(t)ṘT (t) = 0 ⇒ Ṙ(t)RT (t) = −(Ṙ(t)RT (t))T .

The resulting constraint which we obtain reflects the fact that the matrix Ṙ(t)RT (t) ∈ R3×3 is a
skew symmetric matrix (see Appendix ??). Then, as we have seen, there must exist a vector, say
ω(t) ∈ R3 such that:

ω̂(t) = Ṙ(t)RT (t).

Multiplying both sides by R(t) to the right yields:

Ṙ(t) = ω̂(t)R(t). (2.9)

Notice that, from the above equation, if R(t0) = I for t = t0, we have Ṙ(t0) = ω̂(t0). Hence, around
the identity matrix I, a skew symmetric matrix gives a first-order approximation of rotation matrix:

R(t0 + dt) ≈ I + ω̂(t0) dt.

The space of all skew symmetric matrices is denoted as:

so(3) = {ω̂ ∈ R3×3 | ω ∈ R3}

and thanks to the above observation it is also called the tangent space at the identity of the matrix
group SO(3)7. If R(t) is not at the identity, the tangent space at R(t) is simply so(3) transported
to R(t) by a multiplication of R(t) to the right: Ṙ(t) = ω̂(t)R(t). This also shows that elements of
SO(3) only depend upon three parameters.

Having understood its local approximation, we will now use this knowledge to obtain a repre-
sentation for rotation matrices. Let us start by assuming that the matrix ω̂ in (2.9) is constant:

Ṙ(t) = ω̂R(t). (2.10)

In the above equation, ω̂ can be interpreted as the state transition matrix for the following linear
ordinary differential equation (ODE):

ẋ(t) = ω̂x(t), x(t) ∈ R3.
7Since SO(3) is a Lie group, so(3) is also called its Lie algebra.
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It is then immediate to verify that the solution to the above ODE is given by:

x(t) = eω̂tx(0) (2.11)

where eω̂t is the matrix exponential:

eω̂t = I + ω̂t+
(ω̂t)2

2!
+ · · · + (ω̂t)n

n!
+ · · · . (2.12)

eω̂t is also denoted as exp(ω̂t). Due to the uniqueness of the solution for the ODE (2.11), and
assuming R(0) = I as initial condition, we must have:

R(t) = eω̂t (2.13)

To confirm that the matrix eω̂t is indeed a rotation matrix, one can directly show from the definition
of matrix exponential:

(eω̂t)−1 = e−ω̂t = eω̂
T t = (eω̂t)T .

Hence (eω̂t)T eω̂t = I. It remains to show that det(eω̂t) = +1 and we leave this fact to the reader
as an exercise. A physical interpretation of the equation (2.13) is: if ‖ω‖ = 1, then R(t) = e ω̂t is
simply a rotation around the axis ω ∈ R3 by t radians. Therefore, the matrix exponential (2.12)
indeed defines a map from the space so(3) to SO(3), the so-called exponential map:

exp : so(3) → SO(3)

ω̂ ∈ so(3) 7→ eω̂ ∈ SO(3).

Note that we obtained the expression (2.13) by assuming that the ω(t) in (2.9) is constant.
This is however not always the case. So a question naturally arises here: Can every rotation matrix
R ∈ SO(3) be expressed in an exponential form as in (2.13)? The answer is yes and the fact is
stated as the following theorem:

Theorem 2.1 (Surjectivity of the exponential map onto SO(3)). For any R ∈ SO(3), there
exists a (not necessarily unique) ω ∈ R3, ‖ω‖ = 1 and t ∈ R such that R = eω̂t.

Proof. The proof of this theorem is by construction: if the rotation matrix R is given as:

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 ,

the corresponding t and ω are given by:

t = cos−1

(
trace(R) − 1

2

)
, ω =

1

2 sin(t)



r32 − r23
r13 − r31
r21 − r12


 .
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The significance of this theorem is that any rotation matrix can be realized by rotating around
some fixed axis by a certain angle. However, the theorem only guarantees the surjectivity of the
exponential map from so(3) to SO(3). Unfortunately, this map is not injective hence not one-to-
one. This will become clear after we have introduced the so-called Rodrigues’ formula for computing
R = eω̂t.

From the constructive proof for Theorem 2.1, we now know how to compute the exponential
coordinates (ω, t) for a given rotation matrix R ∈ SO(3). On the other hand, given (ω, t), how do
we effectively compute the corresponding rotation matrix R = eω̂t? One can certainly use the series
(2.12) from the definition. The following theorem however simplifies the computation dramatically:

Theorem 2.2 (Rodrigues’ formula for rotation matrix). Given ω ∈ R3 with ‖ω‖ = 1 and
t ∈ R, the matrix exponential R = eω̂t is given by the following formula:

eω̂t = I + ω̂ sin(t) + ω̂2(1 − cos(t)) (2.14)

Proof. It is direct to verify that powers of ω̂ can be reduced by the following two formulae:

ω̂2 = ωωT − I,

ω̂3 = −ω̂.

Hence the exponential series (2.12) can be simplified as:

eω̂t = I +

(
t− t3

3!
+
t5

5!
− · · ·

)
ω̂ +

(
t2

2!
− t4

4!
+
t6

6!
− · · ·

)
ω̂2.

What in the brackets are exactly the series for sin(t) and (1 − cos(t)). Hence we have eω̂t =
I + ω̂ sin(t) + ω̂2(1 − cos(t)).

Using the Rodrigues’ formula, it is immediate to see that if t = 2kπ, k ∈ Z, we have

eω̂2kπ = I

for all k. Hence, for a given rotation matrix R ∈ SO(3) there are typically infinitely many expo-
nential coordinates (ω, t) such that eω̂t = R. The exponential map exp : so(3) → SO(3) is therefore
not one-to-one. It is also useful to know that the exponential map is not commutative either, i.e.
for two ω̂1, ω̂2 ∈ so(3), usually

eω̂1eω̂2 6= eω̂2eω̂1 6= eω̂1+ω̂2

unless ω̂1ω̂2 = ω̂2ω̂1.

Remark 2.2. In general, the difference between ω̂1ω̂2 and ω̂2ω̂1 is called the Lie bracket on so(3),
denoted as:

[ω̂1, ω̂2] = ω̂1ω̂2 − ω̂2ω̂1, ∀ω̂1, ω̂2 ∈ so(3).

Obviously, [ω̂1, ω̂2] is also a skew symmetric matrix in so(3). The linear structure of so(3) together
with the Lie bracket form the Lie algebra of the (Lie) group SO(3). For more details on the Lie
group structure of SO(3), the reader may refer to [21]. The set of all rotation matrices e ω̂t, t ∈ R

is then called a one parameter subgroup of SO(3) and the multiplication in such a subgroup is
commutative, i.e. for the same ω ∈ R3, we have:

eω̂t1eω̂t2 = eω̂t2eω̂t1 = eω̂(t1+t2), ∀t1, t2 ∈ R.
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2.3.2 Quaternions and Lie-Cartan coordinates

Quaternions

We know that complex numbers C can be simply defined as C = R+Ri with i2 = −1. Quaternions
are to generalize complex numbers in a similar fashion. The set of quaternions, denoted by H, is
defined as

H = C + Cj, with j2 = −1 and i · j = −j · i. (2.15)

So an element of H is of the form

q = q0 + q1i+ (q2 + iq3)j = q0 + q1i+ q2j + q3ij, q0, q1, q2, q3 ∈ R. (2.16)

For simplicity of notation, in the literature ij is sometimes denoted as k. In general, the multi-
plication of any two quaternions is similar to the multiplication of two complex numbers, except
that the multiplication of i and j is anti-commutative: ij = −ji. We can also similarly define the
concept of conjugation for a quaternion

q = q0 + q1i+ q2j + q3ij ⇒ q̄ = q0 − q1i− q2j − q3ij. (2.17)

It is direct to check that

qq̄ = q2
0 + q21 + q22 + q23. (2.18)

So qq̄ is simply the square of the norm ‖q‖ of q as a four dimensional vector in R4. For a non-zero
q ∈ H, i.e. ‖q‖ 6= 0, we can further define its inverse to be

q−1 = q̄/‖q‖2. (2.19)

The multiplication and inverse rules defined above in fact endow the space R4 an algebraic structure
of a skew field. H is in fact called a Hamiltonian field, besides another common name quaternion
field.

One important usage of quaternion field H is that we can in fact embed the rotation group
SO(3) into it. To see this, let us focus on a special subgroup of H, the so-called unit quaternions

S3 = {q ∈ H | ‖q‖2 = q20 + q21 + q22 + q23 = 1}. (2.20)

It is obvious that the set of all unit quaternions is simply the unit sphere in R4. To show that S3

is indeed a group, we simply need to prove that it is closed under the multiplication and inverse of
quaternions, i.e. the multiplication of two unit quaternions is still a unit quaternion and so is the
inverse of a unit quaternion. We leave this simple fact as an exercise to the reader.

Given a rotation matrix R = eω̂t with ω = [ω1, ω2, ω3]
T ∈ R3 and t ∈ R, we can associate to it

a unit quaternion as following

q(R) = cos(t/2) + sin(t/2)(ω1i+ ω2j + ω3ij) ∈ S3. (2.21)

One may verify that this association preserves the group structure between SO(3) and S3:

q(R−1) = q−1(R), q(R1R2) = q(R1)q(R2), ∀R,R1, R2 ∈ SO(3). (2.22)

Further study can show that this association is also genuine, i.e. for different rotation matrices, the
associated unit quaternions are also different. In the opposite direction, given a unit quaternion
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q = q0 + q1i + q2j + q3ij ∈ S3, we can use the following formulae find the corresponding rotation
matrix R(q) = eω̂t

t = 2arccos(q0), ωm =

{
qm/ sin(t/2), t 6= 0

0, t = 0
, m = 1, 2, 3. (2.23)

However, one must notice that, according to the above formula, there are two unit quaternions
correspond to the same rotation matrix: R(q) = R(−q), as shown in Figure 2.3. Therefore,
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Figure 2.3: Antipodal unit quaternions q and −q on the unit sphere S3 ⊂ R4 correspond to the
same rotation matrix.

topologically, S3 is a double-covering of SO(3). So SO(3) is topologically the same as a three-
dimensional projective plane RP3.

Compared to the exponential coordinates for rotation matrix that we studied in the previous
section, using unit quaternions S3 to represent rotation matrices SO(3), we have much less redun-
dancy: there are only two unit quaternions correspond to the same rotation matrix while there are
infinitely many for exponential coordinates. Furthermore, such a representation for rotation ma-
trix is smooth and there is no singularity, as opposed to the Lie-Cartan coordinates representation
which we will now introduce.

Lie-Cartan coordinates

Exponential coordinates and unit quaternions can both be viewed as ways to globally parameterize
rotation matrices – the parameterization works for every rotation matrix practically the same way.
On the other hand, the Lie-Cartan coordinates to be introduced below falls into the category of
local parameterizations. That is, this kind of parameterizations are only good for a portion of SO(3)
but not for the entire space. The advantage of such local parameterizations is we usually need only
three parameters to describe a rotation matrix, instead of four for both exponential coordinates:
(ω, t) ∈ R4 and unit quaternions: q ∈ S3 ⊂ R4.

In the space of skew symmetric matrices so(3), pick a basis (ω̂1, ω̂2, ω̂3), i.e. the three vectors
ω1, ω2, ω3 are linearly independent. Define a mapping (a parameterization) from R3 to SO(3) as

α : (α1, α2, α3) 7→ exp(αω̂1 + α2ω̂2 + α3ω̂3).

The coordinates (α1, α2, α3) are called the Lie-Cartan coordinates of the first kind relative to the
basis (ω̂1, ω̂2, ω̂3). Another way to parameterize the group SO(3) using the same basis is to define
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another mapping from R3 to SO(3) by

β : (β1, β2, β3) 7→ exp(β1ω̂1) exp(β2ω̂2) exp(β3ω̂3).

The coordinates (β1, β2, β3) are then called the Lie-Cartan coordinates of the second kind.

In the special case when we choose ω1, ω2, ω3 to be the principal axes Z, Y,X, respectively, i.e.

ω1 = [0, 0, 1]T
.
= z, ω2 = [0, 1, 0]T

.
= y, ω3 = [1, 0, 0]T

.
= x,

the Lie-Cartan coordinates of the second kind then coincide with the well-known ZY X Euler angles
parametrization and (β, β2, β3) are the corresponding Euler angles. The rotation matrix is then
expressed by:

R(β1, β2, β3) = exp(β1ẑ) exp(β2ŷ) exp(β3x̂). (2.24)

Similarly we can define Y ZX Euler angles and ZY Z Euler angles. There are instances when
this representation becomes singular and for certain rotation matrices, their corresponding Euler
angles cannot be uniquelly determines. For example, the ZYX Euler angles become singular when
β2 = −π/2. The presence of such singularities is quite expected because of the topology of the
space SO(3). Globally SO(3) is very much like a sphere in R4 as we have shown in the previous
section, and it is well known that any attempt to find a global (three-dimensional) coordinate chart
for it is doomed to fail.

2.4 Rigid body motion and its representations

In Section 2.3, we have studied extensively pure rotational rigid body motion and different repre-
sentations for rotation matrix. In this section, we will study how to represent a rigid body motion
in general - a motion with both rotation and translation.

Figure 2.4 illustrates a moving rigid object with a coordinate frame C attached to it. To describe
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Figure 2.4: A rigid body motion between a moving frame C and a world frame W .

the coordinates of a point p on the object with respect to the world frame W , it is clear from the
figure that the vector Xw is simply the sum of the translation Twc ∈ R3 of the center of frame C
relative to that of frame W and the vector Xc but expressed relative to frame W . Since Xc are the
coordinates of the point p relative to the frame C, with respect to the world frame W , it becomes
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RwcXc where Rwc ∈ SO(3) is the relative rotation between the two frames. Hence the coordinates
Xw are given by:

Xw = RwcXc + Twc. (2.25)

Usually, we denote the full rigid motion as gwc = (Rwc, Twc) or simply g = (R, T ) if the frames
involved are clear from the context. Then g represents not only a description of the configuration
of the rigid body object but a transformation of coordinates between the frames. In a compact
form we may simply write:

Xw = gwc(Xc).

The set of all possible configurations of rigid body can then be described as:

SE(3) = {g = (R, T ) | R ∈ SO(3), T ∈ R3} = SO(3) × R3

so called special Euclidean group SE(3). Note that g = (R, T ) is not yet a matrix representation for
the group SE(3) as we defined in Section 2.2. To obtain such a representation, we must introduce
the so-called homogeneous coordinates.

2.4.1 Homogeneous representation

One may have already noticed from equation (2.25) that, unlike the pure rotation case, the coor-
dinate transformation for a full rigid body motion is not linear but affine instead.8 Nonetheless,
we may convert such an affine transformation to a linear one by using the so-called homogeneous
coordinates: Appending 1 to the coordinates X = [X1, X2, X3]

T ∈ R3 of a point p ∈ E3 yields a
vector in R4 denoted by X̄:

X̄ =

[
X
1

]
=




X1

X2

X3

1


 ∈ R4.

Such an extension of coordinates, in effect, has embedded the Euclidean space E3 into a hyper-
plane in R4 instead of R3. Homogeneous coordinates of a vector v = X(q) − X(p) are defined as
the difference between homogeneous coordinates of the two points hence of the form:

v̄ =

[
v
0

]
=

[
X(q)

1

]
−

[
X(p)

1

]
=




v1
v2
v3
0


 ∈ R4.

Notice that, in R4, vectors of the above form give rise to a subspace hence all linear structures
of the original vectors v ∈ R3 are perfectly preserved by the new representation. Using the new
notation, the transformation (2.25) can be re-written as:

X̄w =

[
Xw

1

]
=

[
Rwc Twc

0 1

] [
Xc

1

]
=: ḡwcX̄c

8We say two vectors u, v are related by a linear transformation if u = Av for some matrix A, and by an affine

transformation if u = Av + b for some matrix A and vector b.
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where the 4 × 4 matrix ḡwc ∈ R4×4 is called the homogeneous representation of the rigid motion
gwc = (Rwc, Twc) ∈ SE(3). In general, if g = (R, T ), then its homogeneous representation is:

ḡ =

[
R T
0 1

]
∈ R4×4. (2.26)

Notice that, by introducing a little redundancy into the notation, we represent a rigid body trans-
formation of coordinates by a linear matrix multiplication. The homogeneous representation of g
in (2.26) gives rise to a natural matrix representation of the special Euclidean group SE(3):

SE(3) =

{
ḡ =

[
R T
0 1

] ∣∣∣R ∈ SO(3), T ∈ R3

}
⊂ R4×4

It is then straightforward to verify that so-defined SE(3) indeed satisfies all the requirements of a
group. In particular, ∀g1, g2 and g ∈ SE(3), we have:

ḡ1ḡ2 =

[
R1 T1

0 1

] [
R2 T2

0 1

]
=

[
R1R2 R1T2 + T1

0 1

]
∈ SE(3)

and

ḡ−1 =

[
R T
0 1

]−1

=

[
RT −RTT
0 1

]
∈ SE(3).

In homogeneous representation, the action of a rigid body transformation g ∈ SE(3) on a vector
v = X(q) −X(p) ∈ R3 becomes:

ḡ∗(v̄) = ḡX̄(q) − ḡX̄(p) = ḡv̄.

That is, the action is simply represented by a matrix multiplication. The reader can verify that
such an action preserves both inner product and cross product hence ḡ indeed represents a rigid
body transformation according to the definition we gave in Section 2.2.

2.4.2 Canonical exponential coordinates

In Section 2.3.1, we have studied exponential coordinates for rotation matrix R ∈ SO(3). Similar
coordination also exists for the homogeneous representation of a full rigid body motion g ∈ SE(3).
For the rest of this section, we demonstrate how to extend the results we have developed for
rotational motion in Section 2.3.1 to a full rigid body motion. The results developed here will be
extensively used throughout the entire book.

Consider that the motion of a continuously moving rigid body object is described by a curve
from R to SE(3): g(t) = (R(t), T (t)), or in homogeneous representation:

g(t) =

[
R(t) T (t)

0 1

]
∈ R4×4.

Here, for simplicity of notation, we will remove the “bar” off from the symbol ḡ for homogeneous
representation and simply use g for the same matrix. We will use the same convention for point:
X for X̄ and for vector: v for v̄ whenever their correct dimension is clear from the context. Similar
as in the pure rotation case, lets first look at the structure of the matrix ġ(t)g−1(t):

ġ(t)g−1(t) =

[
Ṙ(t) Ṫ (t)

0 0

] [
RT (t) −RT (t)T (t)

0 1

]
=

[
Ṙ(t)RT (t) Ṫ (t) − Ṙ(t)RT (t)T (t)

0 0

]
. (2.27)
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From our study of rotation matrix, we know Ṙ(t)RT (t) is a skew symmetric matrix, i.e. there exists
ω̂(t) ∈ so(3) such that ω̂(t) = Ṙ(t)RT (t). Define a vector v(t) ∈ R3 such that v(t) = Ṫ (t)−ω̂(t)T (t).
Then the above equation becomes:

ġ(t)g−1(t) =

[
ω̂(t) v(t)
0 0

]
∈ R4×4.

If we further define a matrix ξ̂ ∈ R4×4 to be:

ξ̂(t) =

[
ω̂(t) v(t)
0 0

]
,

then we have:
ġ(t) = (ġ(t)g−1(t))g(t) = ξ̂(t)g(t). (2.28)

ξ̂ can be viewed as the “tangent vector” along the curve of g(t) and used for approximate g(t)
locally:

g(t+ dt) ≈ g(t) + ξ̂(t)g(t)dt =
(
I + ξ̂(t)dt

)
g(t).

In robotics literature a 4 × 4 matrix of the form as ξ̂ is called a twist. The set of all twist is then
denoted as:

se(3) =

{
ξ̂ =

[
ω̂ v
0 0

] ∣∣∣ ω̂ ∈ so(3), v ∈ R3

}
⊂ R4×4

se(3) is called the tangent space (or Lie algebra) of the matrix group SE(3). We also define two
operators ∨ and ∧ to convert between a twist ξ̂ ∈ se(3) and its twist coordinates ξ ∈ R6 as follows:

[
ω̂ v
0 0

]∨
.
=

[
v
ω

]
∈ R6,

[
v
ω

]∧
.
=

[
ω̂ v
0 0

]
∈ R4×4.

In the twist coordinates ξ, we will refer to v as the linear velocity and ω as the angular velocity,
which indicates that they are related to either translational or rotational part of the full motion.
Let us now consider a special case of the equation (2.28) when the twist ξ̂ is a constant matrix:

ġ(t) = ξ̂g(t).

Hence we have again a time-invariant linear ordinary differential equation, which can be intergrated
to give:

g(t) = eξ̂tg(0).

Assuming that the initial condition g(0) = I we may conclude that:

g(t) = eξ̂t

where the twist exponential is:

eξ̂t = I + ξ̂t+
(ξ̂t)2

2!
+ · · · + (ξ̂t)n

n!
+ · · · . (2.29)

Using Rodrigues’ formula introduced in the previous section, it is straightforward to obtain that:

eξ̂t =

[
eω̂t (I − eω̂t)ω̂v + ωωT vt
0 1

]
(2.30)
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It it clear from this expression that the exponential of ξ̂t is indeed a rigid body transformation
matrix in SE(3). Therefore the exponential map defines a mapping from the space se(3) to SE(3):

exp : se(3) → SE(3)

ξ̂ ∈ se(3) 7→ eξ̂ ∈ SE(3)

and the twist ξ̂ ∈ se(3) is also called the exponential coordinates for SE(3), as ω̂ ∈ so(3) for SO(3).
One question remains to answer: Can every rigid body motion g ∈ SE(3) always be represented

in such an exponential form? The answer is yes and is formulated in the following theorem:

Theorem 2.3 (Surjectivity of the exponential map onto SE(3)). For any g ∈ SE(3), there

exist (not necessarily unique) twist coordinates ξ = (v, ω) and t ∈ R such that g = e ξ̂t.

Proof. The proof is constructive. Suppose g = (R, T ). For the rotation matrix R ∈ SO(3) we can
always find (ω, t) with ‖ω‖ = 1 such that eω̂t = R. If t 6= 0, from equation (2.30), we can solve for
v ∈ R3 from the linear equation

(I − eω̂t)ω̂v + ωωTvt = T ⇒ v = [(I − eω̂t)ω̂ + ωωT t]−1T.

If t = 0, then R = I. We may simply choose ω = 0, v = T/‖T‖ and t = ‖T‖.

Similar to the exponential coordinates for rotation matrix, the exponential map from se(3)
to SE(3) is not injective hence not one-to-one. There are usually infinitely many exponential
coordinates (or twists) that correspond to every g ∈ SE(3). Similarly as in the pure rotation case,
the linear structure of se(3), together with the closure under the Lie bracket operation:

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1 =

[
ω̂1 × ω2 ω1 × v2 − ω2 × v1

0 0

]
∈ se(3).

makes se(3) the Lie algebra for SE(3). The two rigid body motions g1 = eξ̂1 and g2 = eξ̂2 commute
with each other : g1g2 = g2g1, only if [ξ̂1, ξ̂2] = 0.

2.5 Coordinates and velocity transformation

In the above presentation of rigid body motion we described how 3-D points move relative to the
camera frame. In computer vision we usually need to know how the coordinates of the points and
their velocities change with respect to camera frames at different locations. This is mainly because
that it is usually much more convenient and natural to choose the camera frame as the reference
frame and to describe both camera motion and 3-D points relative to it. Since the camera may be
moving, we need to know how to transform quantities such as coordinates and velocities from one
camera frame to another. In particular, how to correctly express location and velocity of a (feature)
point in terms of that of a moving camera. Here we introduce a few conventions that we will use
for the rest of this book. The time t ∈ R will be always used as an index to register camera motion.
Even in the discrete case when a few snapshots are given, we will order them by some time indexes
as if th! ey had been taken in such order. We found that time is a good uniform index for both
discrete case and continuous case, which will be treated in a unified way in this book. Therefore,
we will use g(t) = (R(t), T (t)) ∈ SE(3) or:

g(t) =

[
R(t) T (t)

0 1

]
∈ SE(3)
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to denote the relative displacement between some fixed world frame W and the camera frame C at
time t ∈ R. Here we will ignore the subscript cw from supposedly gcw(t) as long as the relativity
is clear from the context. By default, we assume g(0) = I, i.e. at time t = 0 the camera frame
coincides with the world frame. So if the coordinates of a point p ∈ E3 relative to the world frame
are X0 = X(0), its coordinates relative to the camera at time t are then:

X(t) = R(t)X0 + T (t) (2.31)

or in homogeneous representation:

X(t) = g(t)X0 . (2.32)

If the camera is at locations g(t1), . . . , g(tm) at time t1, . . . , tm respectively, then the coordinates
of the same point p are given as X(ti) = g(ti)X0, i = 1, . . . ,m correspondingly. If it is only the
position, not the time, that matters, we will very often use gi as a shorthand for g(ti) and similarly
Xi for X(ti).

When the starting time is not t = 0, the relative motion between the camera at time t2 relative to
the camera at time t1 will be denoted as g(t2, t1) ∈ SE(3). Then we have the following relationship
between coordinates of the same point p:

X(t2) = g(t2, t1)X(t1), ∀t2, t1 ∈ R.

Now consider a third position of the camera at t = t3 ∈ R3, as shown in Figure 2.5. The relative
motion between the camera at t3 and t2 is g(t3, t2) and between t3 and t1 is g(t3, t1). We then have
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Figure 2.5: Composition of rigid body motions.

the following relationship among coordinates

X(t3) = g(t3, t2)X(t2) = g(t3, t2)g(t2, t1)X(t1).

Comparing with the direct relationship between coordinates at t3 and t1:

X(t3) = g(t3, t1)X(t1),

the following composition rule for consecutive motions must hold:

g(t3, t1) = g(t3, t2)g(t2, t1).
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The composition rule describes the coordinates X of the point p relative to any camera position,
if they are known with respect to a particular one. The same composition rule implies the rule of
inverse

g−1(t2, t1) = g(t1, t2)

since g(t2, t1)g(t1, t2) = g(t2, t2) = I. In case time is of no physical meaning to a particular problem,
we might use gij as a shorthand for g(ti, tj) with ti, tj ∈ R.

Having understood transformation of coordinates, we now study what happens to velocity. We
know that the coordinates X(t) of a point p ∈ E3 relative to a moving camera, are a function of
time t:

X(t) = gcw(t)X0.

Then the velocity of the point p relative to the (instantaneous) camera frame is:

Ẋ(t) = ġcw(t)X0.

In order express Ẋ(t) in terms of quantities expressed in the moving frame we substitute for
X0 = g−1

cw (t)X0 and using the notion of twist define:

V̂ c
cw(t) = ġcw(t)g−1

cw (t) ∈ se(3) (2.33)

where an expression for ġcw(t)g−1
cw (t) can be found in (2.27). The above equation can be rewritten

as:

Ẋ(t) = V̂ c
cw(t)X(t) (2.34)

Since V̂ c
cw(t) is of the form:

V̂ c
cw(t) =

[
ω̂(t) v(t)
0 0

]
,

we can also write the velocity of the point in 3-D coordinates (instead of in the homogeneous
coordinates) as:

Ẋ(t) = ω̂(t)X(t) + v(t) . (2.35)

The physical interpretation of the symbol V̂ c
cw is the velocity of the world frame moving relative

to the camera frame, as viewed in the camera frame – the subscript and superscript of V̂ c
cw indicate

that. Usually, to clearly specify the physical meaning of a velocity, we need to specify: It is the
velocity of which frame moving relative to which frame, and in which frame it is viewed. If we
change where we view the velocity, the expression will change accordingly. For example suppose
that a viewer is in another coordinate frame displaced relative to the camera frame by a rigid body
transformation g ∈ SE(3). Then the coordinates of the same point p relative to this frame are
Y(t) = gX(t). Compute the velocity in the new frame we have:

Ẏ(t) = gġcw(t)g−1
cw (t)g−1Y(t) = gV̂ c

cwg
−1Y(t).

So the new velocity (or twist) is:
V̂ = gV̂ c

cwg
−1.

This is the simply the same physical quantity but viewed from a different vantage point. We see
that the two velocities are related through a mapping defined by the relative motion g, in particular:

adg : se(3) → se(3)

ξ̂ 7→ gξ̂g−1.
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This is the so-called adjoint map on the space se(3). Using this notation in the previous example
we have V̂ = adg(V̂

c
cw). Clearly, the adjoint map transforms velocity from one frame to another.

Using the fact that gcw(t)gwc(t) = I, it is straightforward to verify that:

V̂ c
cw = ġcwg

−1
cw = −g−1

wc ġwc = −gcw(ġwcg
−1
wc )g−1

cw = adgcw(−V̂ w
wc).

Hence V̂ c
cw can also be interpreted as the negated velocity of the camera moving relative to the

world frame, viewed in the (instantaneous) camera frame.

2.6 Summary

The rigid body motion introduced in this chapter is an element g ∈ SE(3). The two most commonly
used representation of elements of g ∈ SE(3) are:

• Homogeneous representation:

ḡ =

[
R T
0 1

]
∈ R4×4 withR ∈ SO(3) and T ∈ R3.

• Twist representation:

g(t) = eξ̂t with the twist coordinates ξ = (v, ω) ∈ R6 and t ∈ R.

In the instanteneous case the velocity of a point with respect to the (instanteneous) camera frame
is:

Ẋ(t) = V̂ c
cw(t)X(t) where V̂ c

cw = ġcwg
−1
cw

and gcw(t) is the configuration of the camera with respect to the world frame. Using the actual 3D
coordinates, the velocity of a 3D point yields the familiar relationship:

Ẋ(t) = ω̂(t)X(t) + v(t).

2.7 References

The presentation of the material in this chapter follows the development in [?]. More details on
the abstract treatment of the material as well as further references can be also found there.

2.8 Exercises

1. Linear vs. nonlinear maps
Suppose A,B,C,X ∈ Rn×n. Consider the following maps from Rn×n → Rn×n and determine
if they are linear or not. Give a brief proof if true and a counterexample if false:

(a) X 7→ AX +XB

(b) X 7→ AX +BXC

(c) X 7→ AXA−B

(d) X 7→ AX +XBX

Note: A map f : Rn → Rm : x 7→ f(x) is called linear if f(αx+ βy) = αf(x) + βf(y) for all
α, β ∈ R and x, y ∈ Rn.
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2. Group structure of SO(3)
Prove that the space SO(3) is a group, i.e. it satisfies all four axioms in the definition of
group.

3. Skew symmetric matrices
Given any vector ω = [ω1, ω2, ω3]

T ∈ R3, define a 3 × 3 matrix associated to ω:

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (2.36)

According to the definition, ω̂ is skew symmetric, i.e. ω̂T = −ω̂. Now for any matrix A ∈ R3×3

with determinant detA = 1, show that the following equation holds:

AT ω̂A = Â−1ω. (2.37)

Then, in particular, if A is a rotation matrix, the above equation holds.

Hint: Both AT (̂·)A and Â−1(·) are linear maps with ω as the variable. What do you need to
prove that two linear maps are the same?

4. Rotation as rigid body motion
Given a rotation matrix R ∈ SO(3), its action on a vector v is defined as Rv. Prove that any
rotation matrix must preserve both the inner product and cross product of vectors. Hence, a
rotation is indeed a rigid body motion.

5. Range and null space
Recall that given a matrix A ∈ Rm×n, its null space is defined as a subspace of Rn consisting
of all vectors x ∈ Rn such that Ax = 0. It is usually denoted as Nu(A). The range of the
matrix A is defined as a subspace of Rm consisting of all vectors y ∈ Rm such that there
exists some x ∈ Rn such that y = Ax. It is denoted as Ra(A). In mathematical terms,

Nu(A) = {x ∈ Rn | Ax = 0}, Ra(A) = {y ∈ Rm | ∃x ∈ Rn, y = Ax} (2.38)

(a) Recall that a set of vectors V is a subspace if for all vectors x, y ∈ V and scalars α, β ∈ R,
αx+ βy is also a vector in V . Show that both Nu(A) and Ra(A) are indeed subspaces.

(b) What are Nu(ω̂) and Ra(ω̂) for a non-zero vector ω ∈ R3? Can you describe intuitively
the geometric relationship between these two subspaces in R3? (A picture might help.)

6. Properties of rotation matrices
Let R ∈ SO(3) be a rotation matrix generated by rotating about a unit vector ω ∈ R3 by θ
radians. That is R = eω̂θ.

(a) What are the eigenvalues and eigenvectors of ω̂? You may use Matlab and try some
examples first if you have little clue. If you happen to find a brutal-forth way to do it,
can you instead use results in Exercise 3 to simplify the problem first?

(b) Show that the eigenvalues of R are 1, eiθ, e−iθ where i =
√
−1 the imaginary unit. What

is the eigenvector which corresponds to the eigenvalue 1? This actually gives another
proof for det(eω̂θ) = 1 · eiθ · e−iθ = +1 but not −1.
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7. Adjoint transformation on twist
Given a rigid body motion g and a twist ξ̂

g =

[
R T
0 1

]
∈ SE(3), ξ̂ =

[
ω̂ v
0 0

]
∈ se(3),

show that gξ̂g−1 is still a twist. Notify what the corresponding ω and v terms have become
in the new twist. The adjoint map is kind of a generalization of Rω̂RT = R̂ω.
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