

Local Illumination physics
Law of reflection and Snell’s law of
refraction

What are we trying to model ?

Surface

Proof of Lambert’s cosine law

n
dB

dA

Computing R
All vectors unit length!!

The effect of the exponent n

Comparison

The Blinn-Torrance Specular Model

Agrees better with experimental results
 Is=IiKspec(H·V) n

Halfway vector H

Advantages of the Blinn Specular
Model

• Theoritical basis
• No need to compute reflective direction R
• N·H cannot be negative if

N·L>0 and N·V>0
• If the light is directional and

we have orthographic projection
then N*H constant

Lights and materials
ObjectColorr = Ir= Ia_rKa_r + Ii_rKdiff_r(N·L)+Ii_rKspec_r(R·V)n

ObjectColorg = Ig=Ia_gKa_g + Ii_gKdiff_g(N·L)+Ii_gKspec_g(R·V)n

ObjectColorb = Ib= Ia_bKa_b + Ii_bKdiff_b(N·L)+Ii_bKspec_b(R·V)n

Material properties:
Ka,Kdiff,Kspec,n

Light properties
Ia,Idiff,Ispec

Questions
If you shine red light (1,0,0) to a white object
what color does the object appear to have?

What if you shine red light (1,0,0) to a green
object (0,1,0) ?

What is the color of the highlight?

Special cases

• What should be done if I >1?
Clamp the value of I to one.

• What should be done if N*L < 0?
Clamp the value of I to zero or flip the normal.

• How can we handle multiple light sources?
 Sum the intensity of the individual contributions.

Tricky Point about light position in
OpenGL

The light position is specified in world coordinates,
transformed with the current modelview matrix and
stored in EYE coordinates.
• What does that mean?
• It means that if you change the position of the eye after the light

position is set
GLfloat pos[4] = {0,0,0,1} ;
glLightfv(GL_LIGHT0, GL_POSITION, pos) ;
gluLookAt(…..) ;
The light will maintain its position with the respect to the new
eye! i.e it will move with the camera.

Example1:
Where is the light with respect to the eye?
 GLfloat pos[4] = {0,0,0,1} ;

GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ;
glLightfv(GL_LIGHT0, GL_POSITION, pos) ;
gluLookAt(eye,ref,up) ;

World?

Example1:
Where is the light with respect to the eye?
 GLfloat pos[4] = {0,0,0,1} ;

GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ; // that means camera matrix identity as well
glLightfv(GL_LIGHT0, GL_POSITION, pos) ; // 0 with respect to
 // current camera
gluLookAt(eye,ref,up) ; // 0 with respect to new
 // camera

World?
 (0,0,10)

Example2:
Where is the light with respect to the eye?
 GLfloat pos[4] = {0,0,0,1} ;

GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ;
glTranslatef(0,0,-10) ;
glLightfv(GL_LIGHT0, GL_POSITION, pos) ;
gluLookAt(eye,ref,up) ;

World?

Example3:
Where is the light with respect to the eye?
 GLfloat pos[4] = {0,0,0,1} ;

GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ;
gluLookAt(eye,ref,up) ;
glLightfv(GL_LIGHT0, GL_POSITION, pos) ;
glutSwapBuffers() ;

World?

Examples

Problems with shading
algorithms

Orientation dependence
Silhouettes
Perspective distortion
• It happens at screen space so need to use hyperbolic

interpolation

T-vertices
• If you do not have smooth normals color changes if

polygon order changes

Generation of vertex normals

Advanced concepts
Physics-based illumination models
BRDF: Bidirectional reflectance function

Illumination in Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

 Rasterization

Illumination in Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

 Rasterization

Illumination

Z-buffer Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

 Rasterization

Illumination

Z-buffer algorithm
for each polygon in model
 project vertices of polygon onto viewing plane
 for each pixel inside the projected polygon
 calculate pixel colour
 calculate pixel z-value
 compare pixel z-value to value stored for pixel in z-buffer
 if pixel is closer, draw it in frame-buffer and z-buffer
 end
end

COMPLETION OF
Z-buffer Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

 Rasterization

Illumination

Global Illumination
Computing light interface between all
surfaces

Radiosity

Ray tracing

Courtesy of Henrik Wann Jensen

Radiosity (Hill: not covered. Foley & van Dam: Ch 16.13, p. 793-806)

Physics-based (heat transfer and
illumination engineering)
Suited for Diffuse reflection
Infinite reflections
Soft shadows

Radiosity algorithm
Break scene into small patches
Assume uniform reflection and emission per
patch

Energy balance for all patches:
Light leaving surface=emitted light + reflected light

Notation
• Flux: energy per unit time (W)
• Radiosity B: exiting flux density (W/m^2)
• E: exiting flux density for light sources
• Reflectivity R: fraction of incoming light reflected

(unitless)
• Form factor Fij: fraction of energy leaving Ai and

arriving at Aj determined by the geometry of polygons i
and j

Energy balance

Linear system

Matrix o(n^2)
Form-factor computing
Constant radiosity patches

Example: The Cornell scene

Radiosity summary

Object space algorithm
Suited for diffuse reflections
Nice soft-shadows

