Determining and Object’s Appearance

Ultimately, we’re interested in modeling light transport in scene
 Light is emitted from light sources and interacts with surfaces
« on impact with an object, some is reflected and some is absorbed
« distribution of reflected light determines “finish” (matte, glossy, ...)
« composition of light arriving at eye determines what we see

Let’s focus on the local interaction of light with single surface point

:T P N
TS : ,
% Incident light
. = Some reaches eye
Reflected light

Some light is absorbed

Modeling Light Sources

In general, light sources have a very complex structure
 incandescent light bulbs, the sun, CRT monitors, ...

To simplify things, we’ll focus on point light sources for now
* light source is a single infinitesimal point
« emits light equally in all directions (isotropic illumination)
 outgoing light is set of rays originating at light point

Creating lights in OpenGL
* glEnable(GL_LIGHTING) — turn on lighting of objects
* glEnable(GL_LIGHTO) — turn on specific light
« glLight(...) — specify position, emitted light intensity, ...

Basic Local lllumination Model

We’re only interested in light that finally arrives at view point
« a function of the light & viewing positions
» and local surface reflectance .

Characterize light using RGB triples
» can operate on each channel separately

Given a point, compute intensity of reflected light

©)

Local lllumination physics

Law of reflection and Snell’s law of

refraction

incidenf""--..__-....
flux

AN

."J
/ reflected
er flux

4

absorbed
flux =

l"-, transmitted
! 'a.ﬂux

4

What are we trying to model ?

diffuse specular

Diffuse Reflection

This is the simplest kind of reflection
» also called Lambertian reflection
* models dull, matte surfaces — materials like chalk

Ideal diffuse reflection
« scatters incoming light equally in all directions ké,

« identical appearance from all viewing directions

LN
» reflected intensity depends only on direction of light source g

Light is reflected according to Lambert’s Law

Lambert’s Law for Diffuse Reflection

Purely diffuse object O
[=1k, cos6 \ n
=/, k,(n-L) M

[: resulting intensity

[, : light source intensity

k, . (diffuse) surface reflectance coefficient
k,e[0,1]

6 : angle between normal & light direction

Proof of Lambert’s cosine law

n »~
v ~-

/l\

dB = dAcosO %

Y dB
0

< dA

Specular Reflection

Diffuse reflection is nice, but many surfaces are shiny
* their appearance changes as the viewpoint moves
 they have glossy specular highlights (or specularities)
» because they reflect light coherently, in a preferred direction

G,

A mirror is a perfect specular reflector
* incoming ray reflected about normal direction
 nothing reflected in any other direction

Most surfaces are imperfect specular reflectors
» reflect rays in cone about perfect reflection direction

Phong lllumination Model

[=1,k,cos@+1,k, cos"¢
=1,k,(n-L)+ 1,k (r-v)

One particular specular reflection model
* quite common in practice
* it Is purely empirical
* there’s no physical basis for it

resulting intensity

. light source intensity
. (specular) surface reflectance coefficient

k. e[0,1]
angle between viewing & reflection direction
"shininess" factor

Computing R

All vectors unit length!!

~_ —'- - R=(NeLYN + S
L™>~._| .~ R S = (NSL) N - L

/\ R = 2N (NeL) - L

The effect of the exponent n

1 -\"‘-\ | | I | | |
.t cos{alpha) —
L cosialphaj**a ----
08 I BN cos{alpha)**50 ------
08 [\‘ -
04 Y, 4
.l \'.
02 ' \\\ -
0] i TV]]] \""1-._]

0 02 04 08 08B 1 1.2 1.4

Comparison

diffuse specular

Examples of Phong Specular Model

_ Diffuse + Specular Diffuse + Specular
Diffuse only (shininess 5) (shininess 50)

The Blinn-Torrance Specular Model

Agrees better with experimental results

I=1Kspec(H V) 7
H=L+V
Halfway vector H TL+v Tl
Ly ot4”

8 v

J

Advantages of the Blinn Specular
Model

Theoritical basis

No need to compute reflective direction R

N-H cannot be negative if y_;.v
N-L>0 and N-V>0 TL+v Tl

If the light is directional and

we have orthographic projection
then N*H constant

The Ambient Glow

So far, areas not directly illuminated by any light appear black
* this tends to look rather unnatural
* in the real world, there’s lots of ambient light

To compensate, we invent new light source
« assume there is a constant ambient “glow”
* this ambient glow is purely fictitious

Just add in another term to our illumination equation

[=1k,cos0+1,k cos" ¢p+1k,

[: ambient light intensity

a

k : (ambient) surface reflectance coefficient

a

Our Three Basic Components of lllumination

Diffuse Specular Ambient

Combined for the Final Result

Lights and materials

ObjectColor, =1=1, K, , +1; Ky AN-L)+]; Kspeo (R-V)"

ObjectColor, =1 =1, K, 4+ 1; K o(N-L)*]; Kspee o(RV)"

ObjectColor, = 1,= 1, pKy p + I pKaisr o(N-L) ¥ pKspec p(R-V)"
Material properties:

K, Ky Kspoes 1

spec’

Light properties

/ a’ / diffr / spec

Questions

If you shine red light (1,0,0) to a white object
what color does the object appear to have?

What if you shine red light (1,0,0) to a green
object (0,1,0) ?

What is the color of the highlight?

Special cases

I.=1, K, +I, K;, (Nx)+I, K

spec _r

(RX)"
I, =1, K, +1, K, (N<L)+I, K__ (RX)

[b =]a_bKa_b + [i_bKa’iff_b(N XL) +]i_stpec_b (R >J/')”
What should be done if | >17?
Clamp the value of | to one.
What should be done if N*L < 07
Clamp the value of | to zero or flip the normal.

How can we handle multiple light sources?
Sum the intensity of the individual contributions.

Shading Polygons: Flat Shading

lllumination equations are evaluated at surface locations
* so where do we apply them?

We could just do it once per polygon

« fill every pixel covered by polygon
with the resulting color

OpenGL — glShadeModel(GL_FLAT)

Shading Polygons: Gouraud Shading

Alternatively, we could evaluate at every vertex
« compute color for each covered pixel
* linearly interpolate colors over polygon

Misses details that don’t fall on vertex
 specular highlights, for instance

OpenGL — glShadeModel(GL_SMOOTH)

Shading Polygons: Phong Shading

Don’t just interpolate colors over polygons

Interpolate surface normal over polygon
 evaluate illumination equation at each pixel

OpenGL — not supported

Defining Materials in OpenGL

Just like everything else, there is a current material
« specifies the reflectances of the objects being drawn
- reflectances (e.g., k,) are RGB triples

Set current values with glMaterial(...)

GLfloat tan[] = {0.8, 0.7, 0.3, 1.0};
GLfloat tan2[] = {0.4, 0.35, 0.15, 1.0};

glMaterial fv (GL_FRONT AND BACK, GL AMBIENT,
glMaterial fv (GL_FRONT AND BACK, GL DIFFUSE,
glMaterial fv (GL_FRONT AND BACK, GL_SPECULAR,
glMaterial f (GL_FRONT AND BACK, GL SHININESS,

tan) ;
tan) ;
tan2) ;
50.0) ;

Defining Lights in OpenGL

A fixed set of lights are available (at least 8)
« turn them on with glEnable(GL_LIGHTX)
« set their values with glLight(...)

GLfloat whitel[]

= {1.0, 1.0, 1.0, 1.0}
GLfloat pl[] = {-2.0

, -3.0, 10.0, 1.0}; /w=0 fordirectional light

glEnable (GL LIGHTING) ;
glEnable (GL _LIGHTO) ;
glLightModeli (GL LIGHT MODEL TWO SIDE, GL TRUE) ;

glLightfv(GL LIGHTO, GL POSITION, p);
glLightfv(GL _LIGHTO, GL DIFFUSE, white);
glLightfv(GL LIGHTO, GL SPECULAR, white); //can be different

glEnable (GL _NORMALIZE) ; //guarantee unit normals

Tricky Point about light position in
OpenGL

The light position is specified in world coordinates,
transformed with the current modelview matrix and
stored in EYE coordinates.

What does that mean?

It means that if you change the position of the eye after the light
position is set

GLfloat pos[4] = {0,0,0,1} ;

glLightfv(GL_LIGHTO, GL_POSITION, pos) ;

gluLookAt(.....);

The light will maintain its position with the respect to the new
eye! i.e it will move with the camera.

Example1:

Where is the light with respect to the eye?

GLfloat pos[4] = {0,0,0,1} ;
GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadldentity() ;

glLightfv(GL_LIGHTO, GL_POSITION, pos) ;
gluLookAt(eye,ref,up) ;

World?

Example1:

Where is the light with respect to the eye?

GLfloat pos[4] = {0,0,0,1} ;
GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadldentity() ; // that means camera matrix identity as well
glLightfv(GL_LIGHTO, GL_POSITION, pos) ; // 0 with respect to

// current camera

gluLookAt(eye,ref,up) ; // O with respect to new
// camera

World?
(0,0,10)

Example2:

Where is the light with respect to the eye?

GLfloat pos[4] = {0,0,0,1} ;
GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadldentity() ;

glTranslatef(0,0,-10) ;

glLightfv(GL_LIGHTO, GL_POSITION, pos) ;
gluLookAt(eye,ref,up) ;

World?

Example3:

Where is the light with respect to the eye?

GLfloat pos[4] = {0,0,0,1} ;
GLfloat eye[3] = {0,0,10} ;
GLfloat ref[3] = {0,0,0} ;
GLfloat up[3] = {0,1,0} ;

glMatrixMode(GL_MODELVIEW) ;
glLoadldentity() ;

gluLookAt(eye,ref,up) ;
glLightfv(GL_LIGHTO, GL_POSITION, pos) ;
glutSwapBuffers() ;

World?

Summarizing the Shading Model

We describe local appearance with illumination equations
» consists of a sum of set of components — light is additive

* treat each wavelength independently
 currently: diffuse, specular, and ambient terms

[=1,k,cos@+1k cos"op+1 k

Must shade every pixel covered by polygon
» flat shading: constant color
» Gouraud shading: interpolate corner colors
* Phong shading: interpolate corner normals

Examples

&2 c:\users\pfal\courses\cs174\code\material\Debug\material.exe

Problems with shading
algorithms

Orientation dependence
Silhouettes

Perspective distortion

* It happens at screen space so need to use hyperbolic
interpolation

T-vertices

 If you do not have smooth normals color changes if
polygon order changes

Generation of vertex normals

Advanced concepts

Physics-based illumination models
BRDF: Bidirectional reflectance function

p(ﬂiacpiaﬂr 9(Pr9}\) ‘L N &
A : light wavelength [~ 7
< ﬁ/ﬁ 5 }

lllumination in Graphics Pipeline

OCS

WCS

VCS

CCS

Modeling
transformation

Viewing

transformation

Projection
transformation

Rasterization

Viewport

transformation

 Perspective
division

DCS

NDCS

lllumination in Graphics Pipeline

OCS

WCS

[llumination

/

ves /

CCS

Modeling
transformation

Viewing

transformation

Projection

Em— .
transformation

Rasterization

Viewport

transformation

 Perspective
division

DCS

NDCS

Z-buffer Graphics Pipeline

OCS

WCS

lllu

ves /

mination

CCS

Modeling
transformation

Viewing
transformation

——

Projection
transformation

/R\%

Viewport
transformation

| ——

Perspective
division

DCS

NDCS

Z-buffer algorithm

for each polygon in model
project vertices of polygon onto viewing plane

for each pixel inside the projected polygon P aice
calculate pixel colour

calculate pixel z-value -
compare pixel z-value to value stored for pixel in.g:buffer
if pixel is closer, draw it in frame-buffer and z-bﬁlﬁér

end

end

scat
convert

COMPLETION OF
Z-buffer Graphics Pipeline

lllumination

CCS

OCS WCS VCS /
Modeling Viewing Projection
transformation transformation transformation
.. Viewport P Perspective
Rasterization [«— transformation division
NDCS
- DCS

What Have We Ignored?

Some local phenomena
* shadows — every point is illuminated by every light source
« attenuation — intensity falls off with square of distance to light
* transparent objects — light can be transmitted through surface

Global illumination
» reflections of objects in other objects
« indirect diffuse light — ambient term is just a hack

Realistic surface detail
* can make an orange sphere
* but it doesn’t have the texture of the real fruit

Realistic light sources

Global lllumination

Computing light interface between all

surfaces .
Courtesy of Henrik Wann Jensen

Radiosity

Ray tracing

Radiosity (Hii: not covered. Foley & van Dam: ch 16.13, p. 793-806)

Physics-based (heat transfer and
illumination engineering)

Suited for Diffuse reflection o
Infinite reflections WARYEAR
Soft shadows [~

Radiosity algorithm

Break scene into small patches

Assume uniform reflection and emission per
patch

Energy balance for all patches:
Light leaving surface=emitted light + reflected light

Notation

Flux: energy per unit time (W)
Radiosity B: exiting flux density (W/m”2)
E: exiting flux density for light sources

Reflectivity R: fraction of incoming light reflected
(unitless)

Form factor Fij: fraction of energy leaving Ai and
arriving at Aj determined by the geometry of polygons i
and |

Energy balance

light leaving _ emitted) reflected
surface - light light

B4 = E& + R ZBI i &

Bi=E+R ZBJ jl

form-factor reciprocity:

Linear system

Eq ' 1—-R1Fy1 -+ —RiFy,
Loy | _ | —Rof21 - —Rokpy
i En | i _RnFnl c s 1 — Rnan |
Matrix o(n"2)

Form-factor computing
Constant radiosity patches

Example: The Cornell scene

Radiosity summary

Object space algorithm
Suited for diffuse reflections
Nice soft-shadows

