Applications of admixture models
Fall 2016

Sriram Sankararaman
Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price
Outline

Admixture models

Population structure and GWAS
Mixture model for genetic data

- K: the number of populations (mixture components)
- π_k: mixture weights – they represent how much each population contributes to the final distribution
- $f_{m,k}$: allele frequency in each of K populations.

$$p(x, z) = p(z)p(x|z)$$
Mixture model for genetic data

Denote

\[p(z = k | \pi) = \prod_{k=1}^{K} \pi_k 1\{z=k\} \]

Now, assume the conditional distributions are independent Binomial.

\[p(x | z = k, (f_{m,k})_{m=1}^{M}) = \prod_{m} p(x_m | z = k) = \prod_{m} \text{Bin}(2, f_{m,k}) \]

Then, the marginal distribution of \(x \) is

\[p(x | \theta) = \sum_{k=1}^{K} p(z = k | \pi)p(x | z = k, f_k) \]

The parameters \(\theta = (\pi_k, f_k)_{k=1}^{K} \).
Mixture model for genetic data

- Given N individuals over M SNPs: $x_n, n \in \{1, \ldots, N\}$, write the log likelihood $LL(\theta)$.
- Estimate the maximum likelihood parameters $\hat{\theta}$ using EM.
Supervised mixture models

| Allele frequency | POP1 | 0.25 | 0.57 | 0.29 | 0.38 |
| | POP2 | 0.40 | 0.32 | 0.84 | 0.22 |

| Individual x | 2 0 1 1 |

Does individual x belong to population 1 or 2?

\[
P(Data|x \text{ is in population 1}) = (0.25)^2(0.75)^0(0.57)^0(0.43)^2 \ldots = 0.0006
\]

\[
P(Data|x \text{ is in population 2}) = (0.40)^2(0.60)^0(0.32)^0(0.68)^2 \ldots = 0.0017
\]
Mixture model for genetic data: Example

Supervised mixture models

<table>
<thead>
<tr>
<th>SNPs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP1</td>
<td>0.25</td>
<td>0.57</td>
<td>0.29</td>
<td>0.38</td>
</tr>
<tr>
<td>POP2</td>
<td>0.40</td>
<td>0.32</td>
<td>0.84</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Allele frequency

| Individual x | 2 | 0 | 1 | 1 |

Does individual x belong to population 1 or 2?

\[
P(Data|x \text{ is in population 1})
= (0.25)^2(0.75)^0(0.57)^0(0.43)^2 \ldots = 0.0006
\]

\[
P(Data|x \text{ is in population 2})
= (0.40)^2(0.60)^0(0.32)^0(0.68)^2 \ldots = 0.0017
\]
Unsupervised mixture models

- What if allele frequencies are not known?
- Use EM to infer parameters (HW problem).
• Clustering: sample belongs to exactly one cluster.

• In genetics:
 • Cluster \equiv population
 • Individuals could belong to more than one population.
Admixture models

- Individual can now have fractional memberships in each population.
- Each SNP can have different ancestry.
• Admixed population is one that has ancestry from multiple distinct populations.
Admixture better reflects human biology

Black? White? Asian? More Young Americans Choose All of the Above

From left: Shannon Palmer, Japanese/Irish; Vasco Mateus, Portuguese/African-American/Haitian; Laura Wood, Black/White. More Photos

By SUSAN SAULNY
Published: January 29, 2011
Admixture better reflects human biology

A genetic atlas of human admixture history

Applications of admixture models

Hellenthal et al. Science 2014
Examples of admixed populations

- **African-Americans:**
 - African and European ancestry.
 - 10% of US population
- **Latino Americans (Hispanics):**
 - European, Native American and African
 - 15% of US population
 - Mexican Americans, Puerto Ricans
- **Hawaiians**
- **South Asians**
- **Middle Easterners**
Admixture and ancestry
PCA on genetic data

CHB+JPT

CEU

YRI

CHB

JPT

AA

AA: 21% ± 14%
European ancestry
Admixture leads to variation in proportions of European ancestry in African American populations.
PCA on HapMap Phase 3
PCA on HapMap Phase 3

Applications of admixture models

Admixture models
Each individual n has a parameter $g_n = (g_{n,1}, \ldots, g_{n,K})$ where $g_{n,k} \geq 0$ and $\sum_k g_{n,k} = 1$. Each population has a parameter for a SNP $f_k = (f_{1,k}, \ldots, f_{M,k})$.

\[
z_{n,m,l} | g_n \sim \text{Mult}(g_n), \quad l \in \{1, 2\}
\]
\[
x_{n,m} | z_{n,m,1}, z_{n,m,2}, f_k \sim \text{Ber} (f_{m,z_{n,m,1}}) + \text{Ber} (f_{m,z_{n,m,2}})
\]
Inference in the admixture model

- Parameters: \(\theta = (g_n, f_k) \).
- Use EM to estimate parameters.

 - E-step: Compute \(r_{n,m,a,b}^{(t)} \equiv p(z_{n,m} = (a, b) | x_{n,m}, g_n^{(t)}, f_{m,k}^{(t)}) \).
 - M-step: Update estimates of the parameters. **Work out the updates!**
• Parameters: \(\theta = (g_n, f_k) \).
• Use EM to estimate parameters.
• E-step: Compute \(r_{n,m,a,b}^{(t)} \equiv p(z_{n,m} = (a, b) | x_{n,m}, g_{n}^{(t)}, f_{m,k}^{(t)}) \).
• M-step: Update estimates of the parameters. Work out the updates!
Supervised admixture models

<table>
<thead>
<tr>
<th>Allele frequency</th>
<th>POP1</th>
<th>POP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>0.57</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.29</td>
<td>0.84</td>
</tr>
<tr>
<td>4</td>
<td>0.38</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Individual x has ancestry α from population 1 and $(1 - \alpha)$ from population 2. Find α.

$$P(Data|\alpha) = [0.25\alpha + 0.40(1 - \alpha)]^2[(1 - 0.25)\alpha + (1 - 0.40)(1 - \alpha)]^0$$

$$[0.57\alpha + 0.32(1 - \alpha)]^0[(1 - 0.57)\alpha + (1 - 0.32)(1 - \alpha)]^2$$

...

Maximum value of P attained at $\alpha = 0.22$.
Supervised admixture models

<table>
<thead>
<tr>
<th>Allele frequency</th>
<th>POP1</th>
<th>POP2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>0.29</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td>0.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual x</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

Individual x has ancestry α from population 1 and $(1 - \alpha)$ from population 2. Find α.

\[
P(Data|\alpha) = [0.25\alpha + 0.40(1 - \alpha)]^2[(1 - 0.25)\alpha + (1 - 0.40)(1 - \alpha)]^0
\]
\[
[0.57\alpha + 0.32(1 - \alpha)]^0[(1 - 0.57)\alpha + (1 - 0.32)(1 - \alpha)]^2
\]

Maximum value of P attained at $\alpha = 0.22$.
Applying admixture models to HGDP

Human Genome Diversity Project
Applying admixture models to HGDP

Human Genome Diversity Project

- 938 HGDP individuals (118 related individuals removed)
- 51 world populations (N. Han and S. Han merged)
- Illumina 650K chip

FRAPPE results at K=7:

Li et al. Science 2008
Admixture models outside of genetics

- Also known as topic models or LDA (Latent Dirichlet Allocation).
- Used to model topics in documents.
 - Genotypes = words
 - Individual = document
 - Population = topic
- Each document has different distributions over topics.
- Each topic specifies distribution over words.
Admixture models outside of genetics

A generalized3 fundamental146 theorem267 of natural250 selection250 is derived233 for populations250 incorporating149 both genetic250 and cultural250 transmission25. The phenotype3 is determined17 by an arbitrary3 number257 of multiallelic3 loci3 with two271 -factor60 epistasis250 and an arbitrary149 linkage3 map3, as well as by cultural250 transmission25 from the parents250. Generations250 are discrete69 but partially273 overlapping146, and mating250 may be nonrandom250 at either the genotypic250 or the phenotypic250 level199 (or both). I show25 that cultural250 transmission25 has several173 important17 implications17 for the evolution250 of population250 fitness250, most notably230 that there is a time72 lag72 in the response213 to selection250 such that the future257 evolution250 depends105 on the past selection250 history250 of the population250.

Griffiths and Steyvers, PNAS 2004
Outline

Admixture models

Population structure and GWAS
Population structure can lead to false discoveries

Applications of admixture models

Population structure and GWAS
Population structure can lead to false discoveries

Applications of admixture models

Population structure and GWAS
Structured association

- Cluster individuals into populations.
- Do GWAS in each population.
- Combine results.
Principal Components

- Include Principal Components in the model.
\[n = 200 \]
\[m = 1000 \]
\[Z_n \in \{1, 2\} \]
\[Z_n = 1, \; n \leq 100 \]
\[Z_n = 2, \; n > 100 \]
\[Y_n|Z_n \sim \begin{cases}
\mathcal{N}(10, 1), & Z_n = 1 \\
\mathcal{N}(0, 1), & Z_n = 2
\end{cases} \]
\[X_{n,m}|Z_n \sim \text{Ber} \left(f_{Z_n,m} \right) \]
How well does the model fit?

True ancestry Z known
How well does the model fit?

True ancestry \(\mathcal{Z} \) unknown

We find 222 SNPs that are statistically significant (p-value < .05/1000)
How well does the model fit?

Visualize these associations

![Box plot](image-url)
How well does the model fit?

Visualize these associations in each population

![Box plots showing phenotype distribution for different alleles in P1 and P2 populations.](image)
How well does the model fit?

Infer PCs (PC scores for first PC)
How well does the model fit?

Infer PCs (PC1 vs PC2)
How well does the model fit?

Fraction of variance explained

About 6% variance explained by PC1
How well does the model fit?

Correct for PCs

No association is significant!

Applications of admixture models
Population structure and GWAS
Summary

• PCA is an example of a latent variable model with continuous latent variable. Unlike clustering, where the latent variable is discrete.
• Probabilistic model corresponding to PCA.
• Admixture models or topic models or LDA are generalizations of clustering.
• Applications to infer ancestry and correct for population structure.
• Question: When do we include PCs in our regression?