
Supplementary Information for

Efficient variance components analysis across millions of genomes

by Ali Pazokitoroudi et al.

1



1 Supplementary Notes

1.1 Computing the Standard Errors of the RHE-mc estimates

We obtain standard errors for RHE-mc using a block jackknife [1]. A jackknife subsample is created
by leaving out a subset of observations from a dataset. The jackknife estimate of a parameter can
be found by estimating the parameter for each subsample omitting the i-th jackknife block. A
naive way to compute jackknife estimate requires computing the estimator of the parameters for
every sub-sample. For instance, in our problem, if we define J jackknife blocks, then we need to run
RHE-mc for every sub-sample which takes O(J( NMB

max(log3(N),log3(M)) +K2(K +NB))). We propose

an efficient way to compute the jackknife estimate in time O( NMB
max(log3(N),log3(M)) +JK2(K+NB)).

Let X be a N × M matrix of standardized genotypes where N and M are the number of
individuals and SNPs respectively. To generate J jackknife subsamples, we partition X into J
non-overlapping blocks X(1), . . . ,X(J) such that X = [X(1),X(2), . . . ,X(J)] . Note that for every
j, X(j) is a N ×Mj matrix where Mj is the number of SNPs in the j-th block.

We create the j-th jackknife subsample by removing the j-th block X(j) from X. To estimate
the variance components of the j-th jackknife subsample, we need to compute the corresponding

quantities of the jth subsample in the normal equations (Methods). Let K
(−j)
k be the GRM of the

k-th partition which is created by removing the j-th block X(j) from X where k ∈ {1, . . . ,K},

j ∈ {1, . . . , J}. In Algorithm 1.3, we show how we can compute
̂

tr(K
(−j)
k K

(−j)
l ) and yTK

(−j)
i y,

for all k, l ∈ {1, . . . ,K}, j ∈ {1, . . . , J} efficiently.

1.2 Including covariates in RHE-mc

We can extend the LMM to include covariates as follows:

y|ε,β1, . . . ,βk = Wα+
∑
k

Xkβk + ε (1)

Here W is a N × C matrix of covariates while α is a C-vector of fixed effects.
It is easy to see that the matrix V = IN −W (W TW )

−1
W T is symmetric and idempotent

(V 2 = V ) of rank N − C. Therefore, we consider the eigendecomposition of V = EDET , where
D is a diagonal matrix with N − C ones and C zeros on the diagonal (we can assume that first
N − C elements are one). Now let the matrix UN×(N−C) represent the first N − C columns of E.

It is not hard to see that U satisfies UTU = IN−C , UUT = V , UTW = 0. Now we multiplying
by UT on both sides of the above equation:

UTy = UT
∑
k

Xkβk +UT ε (2)

cov(UTy) = E[UTy(UTy)T ]− E[UTy]E[UTy] (3)

The matrix UT is constant and the vector y is random. Therefore, we have E[UTy] = UTE[y].

UTy(UTy)T = (UT
∑
k

Xkβk +UT ε)(UT
∑
k

Xkβk +UT ε)
T

= (4)

∑
i

∑
j

UTXiβi(U
TXjβj)

T + (UT ε)
∑
i

(UTXiβi)
T +

∑
i

UTXiβi(U
T ε)T +UT ε(UT ε)

T
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Hence

E[UTy(UTy)T ] =
∑
k

σ2gk
Mk

(UTXk)(U
TXk)

T + σ2εU
TU (5)

Using Kk =
XkX

T
k

Mk
, we have:

cov(UTy) = UT (
∑
k

σ2gkKk)U + σ2ε IN−C (6)

The MoM estimator is obtained by solving the following ordinary least squares problem:

(σ̃21, . . . , σ̃
2
K , σ̃

2
e) = argmin(σ2

1 ,...,σ
2
K ,σ

2
e)
||UTy(UTy)T −UT (

∑
k

σ2kKk)U − σ2ε IN−C ||2F (7)

We need to solve the following normal equations to estimate the variance components.

[
T b

bT N − C

]
σ21
...
σ2k
σ2e

 =

[
c

yTV y

]
(8)

Here V = IN −W (W TW )−1W T and T is a K ×K matrix where Tk,l = tr(KkV KlV ), and b is
a K−vector where bk = tr(V Kk), and c is a K- vector where ck = yTV KkV y. Commonly, the
number of covariates C is small (tens to hundreds) so that including covariates does not significantly
affect the computational cost. The cost of computing the elements of the normal equations 8
includes the cost of inverting W TW which is a C ×C matrix and multiplying W by a real-valued
N -vector which can be done in O(C3 +NC).

1.3 Streaming version

Here we describe the streaming version of RHE-mc algorithm. In Methods section, we showed that
our MoM estimator satisfy the following normal equation.[

T b

bT N

][
σ̃2
g

σ̃2e

]
=

[
c
yTy

]
(9)

Here σ̃2
g =

 σ̃
2
1
...

σ̃2K

, T is a K ×K matrix with entries Tk,l = tr(KkK l), k, l ∈ {1, . . . ,K}, b is a

K-vector with entries bk = tr(Kk) = N (because Xks is standardized ), and c is a K-vector with
entries ck = yTKky. Here we estimate Tk,l as follows :

Tk,l = tr(KkK l) ≈ T̂k,l =
1

B

1

MkMl

∑
b

zTbXkX
T
kX lX

T
l zb (10)

Here z1, . . . ,zB are B independent random vectors with zero mean and covariance IN .
We read genotype matrix Xk for every k ∈ {1, . . . ,K} block by block. We define J blocks over

Xk by partitioning the columns of Xk to J groups such that Xk = [Xk
(1) . . .Xk

(J)].
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Algorithm 1: Streaming version of RHE-mc

for every genotype matrix k ∈ {1, ..,K} do
for every block j ∈ {1, .., J} do

Read Xj
k

for every random vector b ∈ {1, .., B} do

Z(k,j,b)=X
j
kX

j
k

T
zb

end

v = Xj
k

T
y

H(k,j) = vT v

Release the memory allocated to Xj
k

end

end
Let Uk,b,0 =

∑
j Z(k,j,b), and

Let Uk,b,j = Uk,b,0 − Z(k,j,b), for every k, b, j.
Let Vk,0 =

∑
j Hk,j ,

Let Vk,j = Vk,0 −Hk,j for every k, j
for every j ∈ {0, 1, .., J} do

for every pairs of genotype matrices k and l ∈ {1, ..,K} do

T̂k,l = 1
B

1
MkMl

∑
b U

T
(k,j,b)U(l,j,b)

end
for every genotype matrix k ∈ {1, ..,K} do

ck = 1
Mk
V T
(k,j)V(k,j)

end

Solve the normal equation for jth sub-sample (j = 0 corresponds to the original genotype
matrix used for computing the point estimates)

end
Compute the jackknife SE from the point estimates of J sub-samples.

In the above algorithm, the 3-D matrices Z and U need O(JKBN) memory, the 2-D matrices
V and H need O(JN) memory. So the total space complexity will be O(JKBN). The total
running time of this implementation is O( NMB

max(log3(N),log3(M)) + JK2(K +NB))). For simplicity we
assume that the streaming blocks are same as jackknife blocks. However, we can set the size of the
streaming blocks to be different from the jackknife blocks to make the algorithm more efficient in
terms of memory usage.

1.4 Parameter settings for summary statistics methods

For running LDSC we computed the LD score of each SNP within 2-Mb windows centered on
the SNP. We ran LD score regression with an unconstrained intercept and with regression weights
that account for correlations between association statistics at SNPs in LD and heteroscedasticity
[2]. For preventing the LDSC software from dropping high-effect SNPs we used the following flags
–not-M-5-50 and –chisq-max 99999.
In simulations, we ran S-LDSC with 10 binary MAF bins which are defined such that each bin
contains 10% of the typed SNPs; this is done to reflect the 10 MAF bin annotations in the S-LDSC
baseline-LD model [3] (see Table 5 for the details of MAF bins). In analyzing the 22 real complex
traits, we run S-LDSC with baseline-LD model[3].
To run SumHer, first we computed the default LDAK weights using in-sample LD [4]. After that
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we computed LD tagging using 1-Mb windows centered on each SNP and setting α = −0.25 as
recommended [5]. We used default values for the other parameter settings for running SumHer.

To do a direct comparison among LDSC, S-LDSC, and SumHer, we ran an in-sample LD version
of each method meaning that we used same set of SNPs to compute LD scores and LDAK weights,
perform the regression, and estimate SNP-heritability.

1.5 Continuous annotations

We assessed the accuracy of RHE-mc in estimating variance components with continuous anno-
tation. We simulated a phenotype with true heritability 0.5 from 9K individuals and 15k SNPs
under the GCTA model. We ran RHE-mc with single component, no annotations, and standardized
genotypes. We next ran RHE-mc with single component, non-standardized genotypes, where we
added a continuous annotation defined as 1/var(i) for SNP i where var(i) is the variance of SNP i
across individuals. We obtain concordant estimate of genome-wide SNP heritability 0.45± 0.03 in
the first case and 0.46± 0.03 in the second case.

1.6 Power as a function of annotation size

To quantify the power of RHE-mc as a function of the size of an annotation, we performed simula-
tions using N = 291, 273 unrelated white British individuals and M = 459, 792 common SNPs. We
defined 8 annotations (4 MAF bins and 2 LD bins) in which we fixed the heritability of a selected
bin and varied the proportion of SNPs in the selected category. We then plotted probability of
rejection; the results are displayed in Supplementary Figure 11 . Furthermore, we simulated phe-
notypes in which we fixed the enrichment of a selected bins and varied the size of the selected bin,
the results are displayed in Supplementary Table 6.
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2 Supplementary Figures

Supplementary Figure 1: Comparison of RHE-mc heritability estimates with B = 10 and B = 100
random vectors on large-scale simulated data (M=590K array SNPs and N=337K individuals):
We ran RHE-mc with 24 bins( based on 6 MAF bins and 4 LDAK bins, see Methods). Here x-axis represents
the bins (i.j denotes the bin defined based on i-th ldak bin and j-th MAF bin) and y-axis represents
the heritability. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5×
interquartile range (IQR) from the first and third quartiles, respectively. Each box plot represents estimates
from 100 simulations. Diamond points and error bars represent the mean and ±2 SE centered on estimated
heritability respectively. Mean and standard errors (SE’s) are computed from 100 replicates.

Supplementary Figure 2: Comparison of RHE-mc estimates with B=10 and B=100 on small scale data
(M=590K array SNPs and N=10k individuals): We simulated 100 phenotypes such that the true total
heritability is 0.25. Here x-axis represents the RHE-mc estimates when B = 10, and y-axis represents
RHE-mc estimates when B = 100.
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Supplementary Figure 3: Accuracy of genome-wide SNP heritability estimated by RHE-mc across
64 distinct MAF- and LD-dependent architectures in genome-wide simulations (N = 337, 205
unrelated individuals, M = 593, 300 array SNPs). For simulating the phenotypes, we chose true
heritability from {0.1, 0.25, 0.5, 0.8}, varied the ratio of causal variants (causal ratio ∈ {0.01, 1.0}), varied
the MAF range of causal variants (MAF of CV), the coupling of MAF with effect size (a = 0 indicates
no coupling of MAF and a = 0.75 indicates coupling of MAF), and the effect of local LD on effect size
(b = 0 indicates no LDAK weights and b = 1 indicates LDAK weights) (see Methods). We ran RHE-mc
using 24 bins formed by the combination of 6 bins based on MAF as well as 4 bins based on quartiles of the
LDAK score of a SNP (see Methods). Boxplot whiskers extend to the minimum and maximum estimates
located within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each box plot
represents RHE-mc estimates from 100 simulations.
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Supplementary Figure 4: Comparison of estimates of genome-wide SNP heritability from RHE-mc
with LDSC, S-LDSC , and SumHer when only rare variants are causal in large-scale simulations
(N = 337, 205 unrelated individuals, M = 593, 300 array SNPs). We compared methods for heritability
estimation under different genetic architectures when only rare variants are causal. We set true heritability
to 0.5, the MAF range of causal variants (MAF of CV) to be between [0.009, 0.011] and varied the coupling
of MAF with effect size (a = 0 indicates no coupling of MAF and a = 0.75 indicates coupling of MAF), and
the effect of local LD on effect size (b = 0 indicates no LDAK weights and b = 1 indicates LDAK weights)
(see Methods). Here, we run RHE-mc using 24 bins formed by the combination of 6 bins based on MAF as
well as 4 bins based on quartiles of the LDAK score of a SNP (see Methods). We run S-LDSC with 10 MAF
bins (see Supplementary Table S5 ). To do a fair comparison, for every method, we computed LD scores
and LDAK weights by using in-sample LD, and in all simulations we aim to estimate the SNP-heritability
explained by the same set of M SNPs. Boxplot whiskers extend to the minimum and maximum estimates
located within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each box plot
represents estimates from 100 simulations. Diamond points and error bars represent the mean and ±2 SE
centered on estimated heritability respectively. Mean and standard errors (SE’s) are computed from 100
simulations.
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Supplementary Figure 5: Comparison of RHE-mc (red color) with GCTA-mc(blue color) in esti-
mating partitioned heritability under 8 different genetic architectures on small-scale simulated
data (M = 590k array SNPs and N = 10k individuals): We partition SNPs into 24 bins based on 6
MAF bins and 4 LDAK bins (Methods). True total SNP heritability is 0.25. Here x-axis represents the
partitions (i.j denotes the bin defined based on i-th ldak bin and j-th MAF bin. The lower bin number
denotes the lower MAF (LDAK weights). For example, bin 1.6 contains SNPs which are in the first quartile
of LDAK weights and MAF> 0.05 ). y-axis represents the heritability. Each boxplot shows the distribution
of estimates from 100 simulations. Note that GCTA-mc did not run successfully on all 100 simulations.
Boxplot whiskers extend to the minimum and maximum estimates located within 1.5× interquartile range
(IQR) from the first and third quartiles, respectively. Each box plot represents estimates from 100 simu-
lations. Diamond points and error bars represent the mean and ±2 SE centered on estimated heritability
respectively. Mean and standard errors (SE’s) are computed from 100 replicates.
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Supplementary Figure 6: Partitioned heritability estimates from RHE-mc on large-scale simulated
data (M = 590K array SNPs and N = 337K individuals): We ran RHE-mc with 24 bins based on
6 MAF bins and 4 LDAK bins (Methods) over 8 different genetic architectures. Here x-axis represents the
partitions (i.j denotes the bin defined based on i-th ldak bin and j-th MAF bin) and y-axis represents
the heritability. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5×
interquartile range (IQR) from the first and third quartiles, respectively. Each box plot represents estimates
from 100 simulations. Diamond points and error bars represent the mean and ±2 SE centered on estimated
heritability respectively. Mean and standard errors (SE’s) are computed from 100 replicates.
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Supplementary Figure 7: Estimates of genome-wide SNP heritability from RHE-mc for 22 complex
traits and diseases in the UK Biobank: We restricted our analysis to N = 291, 273 unrelated white
British individuals. First, we applied RHE-mc to M = 459, 792 array SNPs (MAF> 1%) with 8 MAF/LD
bins. Second, we applied RHE-mc to M = 4, 824, 392 imputed SNPs (MAF > 1%) with 8 MAF/LD
bins(Methods). Third, we applied RHE-mc to M = 7, 774, 235 imputed SNPs (MAF > 0.1%) with 144
MAF/LD bins (Methods). Black bars mark ±2 standard errors centered on estimated heritability.
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Supplementary Figure 8: Enrichment of heritability across 28 functional annotations: We applied
RHE-mc to N = 291, 273 unrelated white British individuals and M = 5, 670, 959 imputed SNPs (MAF
> 0.1% and present in 1000 Genomes Project). SNPs were partitioned based on 28 functional annotations
that were defined in a previous study [6]. We grouped 22 traits in the UK Biobank into five categories
(autoimmune, diabetes, respiratory, anthropometric, cardiovascular). Black bars mark ±2 standard errors
centered on estimated enrichment. Annotations are ordered by the proportions of SNPs in that annotation
(given in parentheses)
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Supplementary Figure 9: Per-allele effect size squared of 22 traits as a function of MAF: We applied
RHE-mc to N = 291, 273 unrelated white British individuals and M = 7, 774, 235 imputed SNPs. SNPs were
partitioned into 144 bins based on LD score (4 bins based on quartiles of the LD score with i denoting the ith

quartile) and MAF (36 MAF bins) (see Methods). Per allele heritability for bin k is defined as
h2
k

Mk∗2fk∗(1−fk)

where h2k is the heritability attributed to bin k, Mk is the number of SNPs in bin k, and fk is the average
MAF in bin k. Points represent estimated per-allele heritability. Bars mark ±2 standard errors centered on
estimated per-allele heritability.
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Supplementary Figure 10: Partitioning of genome-wide SNP heritability from RHE-mc for 22
complex traits and diseases in the UK Biobank (N = 291, 273 unrelated white British individ-
uals, M = 459, 792 common SNPs with respect to 300 bins defined based on 10Mb base pairs.
Here we plot the empirical cumulative probability respectively of the enrichment.
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Supplementary Figure 11: Power as a function of annotation size. Each point represents a rejection
probability over 100 simulations. All simulations have h2total = 0.7, N = 291, 273, M = 459, 792, pcausal =
0.05.
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3 Supplementary Tables

Number of random vectors Point estimate (true SE) Point estimate (SE of the estimator
due to randomization)

10 0.24 (0.06) 0.24 (0.02)
100 0.24 (0.05) 0.25 (0.001)

Supplementary Table 1: Comparison of RHE-mc estimates with B=10 and B=100 on small scale
(M=590K array SNPs and N=10k individuals). Here we quantify the contribution of randomization
to the SE of the estimator. Here the true total heritability is 0.25. We first computed the SE of RHE-mc
for B = 10 and B = 100 from 100 simulation replicates (second column). We then computed the SE of the
estimates (due to the randomization) for a single replicate. For B = 10, randomization contributes about a
third of the total SE ( 0.02

0.06 ).

Genetic architecture True SE Jackknife SE
Percentage of
causal SNPs

MAF of causal
SNPs

MAF and LD
coupling

True h2

0.01 [0.01,0.05] a=b=0 0.5 0.012 0.013
0.01 [0.01,0.05] a=0,b=1 0.5 0.018 0.015
0.01 [0.01,0.05] a=0.75,b=0 0.5 0.016 0.015
0.01 [0.01,0.05] a=0.75,b=1 0.5 0.013 0.013
0.01 [0.0,0.5] a=b=0 0.5 0.009 0.013
0.01 [0.0,0.5] a=0,b=1 0.5 0.016 0.014
0.01 [0.0,0.5] a=0.75,b=0 0.5 0.018 0.019
0.01 [0.0,0.5] a=0.75,b=1 0.5 0.012 0.015
0.01 [0.05,0.5] a=b=0 0.5 0.012 0.015
0.01 [0.05,0.5] a=0,b=1 0.5 0.021 0.017
0.01 [0.05,0.5] a=0.75,b=0 0.5 0.014 0.014
0.01 [0.05,0.5] a=0.75,b=1 0.5 0.015 0.017
1.0 [0.0,0.5] a=b=0 0.5 0.007 0.007
1.0 [0.0,0.5] a=0,b=1 0.5 0.007 0.007
1.0 [0.0,0.5] a=0.75,b=0 0.5 0.006 0.006
1.0 [0.0,0.5] a=0.75,b=1 0.5 0.007 0.008

Supplementary Table 2: Comparison of true SE with jackknife SE under 16 different genetic
architectures: We defined 100 blocks over SNPs to estimate block jackknife SE. We ran RHE-mc with 24
bins based on 6 MAF bins and 4 LDAK score bins (see Methods). True SE is computed from 100 replicates
for every setting. Jackknife SE yields estimates of true SE with relative bias −3% on average over 16 genetic
architectures.
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Genetic architecture Heritability (GCTA-mc) Heritability (RHE-mc)
MAF of causal SNPs MAF and LD coupling Causal bin Non-causal bin Causal bin Non-causal bin
[0.01, 0.05] a = b = 0 0.244±0.061 0.009± 0.051 0.242±0.064 0.004±0.052
[0.01, 0.05] a = 0, b = 1 0.243±0.062 0.008±0.047 0.247±0.060 0.003±0.051
[0.01, 0.05] a = 0.75, b = 0 0.241±0.061 0.009±0.050 0.240±0.062 0.002±0.051
[0.01, 0.05] a = 0.75, b = 1 0.247±0.056 0.004± 0.048 0.244±0.06 0.003±0.051
[0.05, 0.5] a = b = 0 0.251±0.048 0.012±0.003 0.251±0.052 0.007± 0.058
[0.05, 0.5] a = 0, b = 1 0.248±0.052 0.014±0.054 0.240±0.049 0.001± 0.055
[0.05, 0.5] a = 0.75, b = 0 0.255±0.047 0.000± 0.060 0.251±0.052 0.000± 0.060
[0.05, 0.5] a = 0.75, b = 1 0.250±0.048 0.005±0.05 0.241±0.050 0.002±0.058

Supplementary Table 3: Heritability contribution of causal bin vs non-causal bins on small-scale
simulated data (M = 590k array SNPs and N = 10k individuals): We ran both RHE-mc and GCTA-
mc with 24 bins based on 6 MAF bins and 4 LDAK bins for 8 genetic architectures (Methods). In all
simulations, the proportion of causal variants is 0.01 and true total heritability is 0.25. The causal SNPs are
restricted to lie within a specific range of MAF, i.e., within [0.01, 0.05] for the first four rows and [0.05, 0.5]
for the last four. Non-causal bins refer to those bins where none of the SNPs is causal, i.e., in each of the
first four genetic architectures, these would correspond to bins with MAF /∈ [0.01, 0.05]. Causal bins refer to
all remaining bins. Standard errors are computed from 100 replicates.

Genetic architecture Heritability
Percentage of
causal SNPs

MAF of causal
SNPs

MAF and LD
coupling

True total h2 Causal bin Non-causal bin

0.01 [0.01,0.05] a=b=0 0.5 0.501 ±0.006 0.000 ±0.004
0.01 [0.01,0.05] a=0,b=1 0.5 0.498 ±0.007 0.000 ±0.003
0.01 [0.01,0.05] a=0.75,b=0 0.5 0.500 ±0.008 0.002 ±0.004
0.01 [0.01,0.05] a=0.75,b=1 0.5 0.490 ±0.007 0.001 ±0.003
0.01 [0.05,0.5] a=b=0 0.5 0.501 ±0.036 -0.001 ±0.030
0.01 [0.05,0.5] a=0,b=1 0.5 0.487 ±0.012 0.005 ±0.005
0.01 [0.05,0.5] a=0.75,b=0 0.5 0.508 ±0.026 -0.005 ±0.023
0.01 [0.05,0.5] a=0.75,b=1 0.5 0.490 ±0.009 0.000 ±0.005

Supplementary Table 4: Heritability contribution of causal vs non-causal bins on large-scale sim-
ulated data (M = 590K array SNPs and N = 337K individuals): We ran RHE-mc with 24 bins based
on 6 MAF bins and 4 LDAK bins (Methods). Standard errors are computed from 100 replicates.
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MAF bin Range Number of SNPs

1 [0, 0.0126) 59330
2 [0.0126, 0.020) 59330
3 [0.020, 0.029) 59330
4 [0.029, 0.0433) 59330
5 [0.043, 0.0658) 59330
6 [0.065, 0.106) 59330
7 [0.106, 0.170) 59330
8 [0.170, 0.260) 59330
9 [0.260, 0.373) 59330
10 [0.373, 0.5) 59330

Supplementary Table 5: MAF bins which are used in running S-LDSC over the large scale simu-
lated data.

True enrichment Proportion of SNPs point estimate SE Pr(rejection at p< 0.05)

2 0.4% 2.06 0.4 100%
1 0.4% 1.02 0.14 100%
0 0.4% 0.0 0.02 0.5%
2 0.01% 2.18 1.07 30%

Supplementary Table 6: Power as a function of annotation size. SE, point estimate, and probability of
rejections are computed from 100 replicates. All simulations have h2total = 0.7, N = 291, 273, M = 459, 792,
pcausal = 0.05.
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Trait Heritability
Chromosome MAF/LD 10Mb

Autoimmune Traits 0.064± 0.005 0.054± 0.006 0.070± 0.004
Auto Immune Traits (Sure) 0.011± 0.002 0.023± 0.006 0.029± 0.001
Dermatologic Diseases 0.020± 0.003 0.0172± 0.003 0.021± 0.001
Psoriasis 0.017± 0.002 0.014± 0.005 0.022± 0.003
Rheumatoid Arthritis 0.008± 0.002 0.008± 0.002 0.010± 0.003
Eczema 0.124± 0.007 0.104± 0.005 0.13± 0.006
Hypothyroidism 0.097± 0.008 0.081± 0.005 0.11± 0.007
Thyroid 0.095± 0.009 0.081± 0.008 0.109± 0.008
Diastolic Blood Pressure 0.170± 0.005 0.145± 0.004 0.173± 0.003
Systolic Blood Pressure 0.172± 0.006 0.146± 0.004 0.171± 0.004
Cardiovascular Diseases 0.165± 0.006 0.134± 0.005 0.17± 0.004
Hypertension 0.179± 0.006 0.150± 0.005 0.183± 0.006
High Cholesterol 0.099± 0.015 0.070± 0.008 0.102± 0.003
Diabetes (any) 0.069± 0.004 0.058± 0.003 0.072± 0.003
Endocrine and Diabetes Diseases 0.064± 0.004 0.053± 0.003 0.065± 0.003
Type 2 Diabetes 0.068± 0.004 0.057± 0.003 0.069± 0.005
BMI 0.330± 0.014 0.264± 0.007 0.328± 0.013
Height 0.583± 0.026 0.492± 0.017 0.59± 0.021
Waist-hip Ratio 0.196± 0.009 0.167± 0.007 0.2± 0.005
Asthma 0.122± 0.009 0.101± 0.006 0.127± 0.007
Smoking Status 0.130± 0.004 0.111± 0.003 0.132± 0.002
Respiratory and Ear-nose-throat Diseases 0.086± 0.007 0.071± 0.004 0.091± 0.004

Supplementary Table 7: Estimates of genome-wide SNP heritability from RHE-mc for 22 complex
traits and diseases in the UK Biobank (N = 291, 273 unrelated white British individuals, M =
459, 792 common SNPs). We run RHE-mc with 8 bins defined based on two MAF bins (MAF≤ 0.05,
MAF> 0.05) and quartiles of the LD-scores. Furthermore, we run RHE-mc with 22 bins defined based on
chromosome number. On average, partitioning based on chromosome numbers leads 21% higher estimates of
genome-wide SNP heritability for 22 traits than partitioning based on MAF and LD. For instance, it leads
18% and 13% higher estimates of heritability for height and BMI respectively. We also partitioned SNP
based on 10 Mb genomic regions (300 variance components).
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