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1. Materials and Methods 

1.1 Ancestry assignment in X. birchmanni x X. malinche hybrids 
To understand the relationship between minor parent ancestry and recombination in 

swordtail hybrids, we generated fine-scale estimates of ancestry throughout the genomes 
of natural hybrids from three different hybrid populations (Fig. 1E).  
 
1.1.1 Sample collection and sequencing of X. birchmanni x X. malinche hybrids 

DNA was extracted from 276 individuals collected from the Totonicapa hybrid 
population in 2013, 2014, and 2015; 193 individuals collected from the Tlatemaco hybrid 
populations in 2012, 2013 and 2015; and 243 individuals collected from the Aguazarca 
hybrid population in 2010, 2013, and 2015. Libraries for these individuals were prepared 
following (30). Briefly, three to ten nanograms of DNA was mixed with Tn5 transposase 
enzyme pre-charged with custom adapters and incubated at 55 °C for 15 minutes. The 
reaction was stopped by adding 0.2% SDS and incubating at 55 °C for an additional 
seven minutes. One of 96 custom indices were added to each sample in a plate with an 
individual PCR reaction including 1 µl of the tagmented DNA; between 13-16 PCR 
cycles were used. After amplification, 5 µl of each reaction was pooled and purified 
using Agencourt AMPpure XP beads. Library size distribution and quality was visualized 
on the Bioanalyzer 1000 (Agilent, Santa Clara, California) and size selected by 
Princeton’s Lewis-Sigler Institute Genomics Core Facility to be between 350-750 base 
pairs (bp). Libraries were sequenced on the Illumina HiSeq 4000 at Weill Cornell 
Medical Center across three lanes to collect paired-end 100 nucleotide reads. 

 
1.1.2 Ancestry assignment in hybrids 

 Ancestry assignment in hybrids was performed using the Multiplexed Shotgun 
Genotyping (“MSG”) pipeline (24). We previously performed extensive simulations and 
sequencing to demonstrate that MSG is predicted to perform well in inferring local 
ancestry for the parameters of the hybrid populations on which we focused here (22, 31). 
However, in this study, we collected substantially more whole genome data at deeper 
coverage (see Materials and Methods 1.2) and thus detected many new polymorphisms in 
X. birchmanni. Because these sites can cause errors in MSG if they are shared between 
species and are not masked before ancestry inference (see next section), we masked 
polymorphic sites identified in the 25 X. birchmanni genomes sequenced here from the 
reference genomes input into MSG, as well as sites detected in two newly sequenced X. 
malinche genomes (SRP130891;SRP018918). Polymorphic sites were detected using the 
GATK pipeline (see Materials and Methods 1.2) and masked in the reference genomes 
using the mutfa function of the program seqtk. 

 For ancestry inference in hybrids, raw data was parsed by barcode and trimmed to 
remove low-quality bps (Phred quality score <20). Reads with fewer than 30 nucleotides 
after trimming were discarded. Because of prohibitively long computational times, reads 
from individuals with more than 16 million reads were subsampled to 16 million before 
running the MSG pipeline. The minimum number of reads for an individual to be 
included was set to 300,000, since ancestry inference with fewer reads is predicted to 
have lower accuracy based on simulations (31). This procedure resulted in the inclusion 
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of 690 individuals in our final analysis (187-266 individuals per population), with an 
average coverage of 7.6 million reads or ~1X coverage genome-wide. 

The parameters used in the MSG run were based on previous work on these hybrid 
populations (22, 32). Data from each population were run separately with population-
specific priors. Namely, the expected number of recombination events per chromosome 
(recRate) was set to 8-17 based on a prior expectation of approximately 35-60 
generations of admixture and assuming initial admixture proportions of 75% of the 
genome derived from one parent and 25% derived from other parent (with the major 
parent varying by population). Similarly, priors for each ancestry state were set using 
previously estimated mixture proportions for each population, assuming Hardy-Weinberg 
equilibrium (32). The recombination rate scaling factor (rfac) was set to the default value 
of 1.  

MSG outputs ancestry in the form of posterior probabilities. We converted these to 
hard ancestry calls, requiring a posterior probability of 0.95 or greater to assign a site to a 
given ancestry state. This threshold was used because past work suggested that posterior 
probabilities may be poorly calibrated, and we wanted our call set to be conservative. 
Sites with lower than 0.95 posterior probability were masked, as were sites that were 
covered in fewer than 25% of individuals in a given population sample. For each 
population, we then summarized minor parent ancestry by averaging the ancestry calls at 
each site, for a range of window sizes (e.g. 5 kb – 1 Mb). 

In summarizing ancestry across the genome, we identified two regions with 
unusually low variance in ancestry, on chromosomes 17 and 24. Investigating these 
signals further, we found that they had high admixture LD and few detectable crossovers, 
leading us to conclude that these are most likely fixed inversions between species (Fig. 
S10). We excluded the two chromosomes containing these putative inversions from all 
subsequent ancestry analyses. 
 
1.1.3 Allele sharing between X. birchmanni and X. malinche and its impact on ancestry 
assignment 

 Shared polymorphisms between species can cause errors in ancestry assignment if 
they are incorrectly included as ancestry informative sites (see previous section). A priori, 
we expected few shared polymorphisms due to incomplete lineage sorting because the 
coalescence times in X. malinche should be much shorter than the divergence to X. 
birchmanni (Fig. 1F; Materials and Methods 1.3). However, given the larger coalescence 
times of X. birchmanni, X. malinche diversity could still fall within the diversity of X. 
birchmanni, i.e., the genealogies of the X. birchmanni and X. malinche lineages will not 
necessarily be reciprocally monophyletic.  

Examining the genome sequences we had collected (see previous section), we found 
that the number of shared polymorphisms between the two species was higher than 
expected from a model with no gene flow: considering 20 unrelated X. birchmanni 
genomes and two X. malinche genomes, 15% of 5 kb windows contained SNPs shared 
between the two species. We hypothesized that the shared SNPs were due to gene flow, 
either between the two species since they split or from other species in the Xiphophorus 
group (3). To explore this possibility, we ran TreeMix (33), including other available 
Xiphophorus genome sequences (7, 34). Results were sensitive to the choice of 
parameters (notably to k, the number of SNPs per window) and the species included; we 
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therefore considered a number of implementations (Fig. S11). Importantly, in no 
implementation was gene flow inferred directly between X. birchmanni and X. malinche 
since their split; however, both species appear to have been the recipients of gene flow 
from closely related outgroup species, events that are presumably the source of the shared 
SNPs.  

As noted in the previous section, when inferring local ancestry in hybrids, we had 
excluded all shared SNPs between X. malinche and X. birchmanni (see previous section). 
Simulations suggest that ancestry inference with MSG is relatively robust to undetected 
shared polymorphism (31); accordingly, the method correctly assigns parental individuals 
as homozygous for ancestry throughout their genomes (22, 32). In light of the discovery 
of gene flow from other species, in addition to excluding the shared SNPs themselves, we 
reanalyzed the data excluding any 10 kb windows with shared SNPs (almost all of which 
also contained fixed differences between samples). Results were unchanged (see 
Materials and Methods 1.4). 

 

1.2 Generating a linkage disequilibrium-based map for X. birchmanni  
 

 To infer fine-scale estimates of recombination rates throughout the genome, we 
generated a linkage disequilibrium (LD)-based recombination map for X. birchmanni. To 
this end, we generated high coverage sequence data for a X. birchmanni population 
sample. Eighteen unrelated individuals were collected from the Coacuilco X. birchmanni 
population in Hidalgo, Mexico in 2010 using baited minnow traps. Individuals were 
stored in 95% ethanol. DNA was extracted from the liver using the Qiagen DNeasy kit 
(Qiagen, Valencia, CA), following the manufacturer’s instructions. DNA was quantified 
on a Qubit fluorometer (Thermo Scientific, Wilmington, DE) and assessed for quality on 
a Nanodrop 1000 (Thermo Scientific, Wilmington, DE). DNA was sheared to 
approximately 400 base pair (bp) fragments using a Covaris LE220 sonicator (Covaris, 
Woburn, MA). Fragmented DNA was prepared for sequencing following the protocol of 
Quail et al. (35). Sheared DNA was end-repaired and A-tailed; custom adapters were 
ligated and libraries were size selected (400-600 bp) on a 1% agarose gel. Purified 
fragments were amplified using the Phusion high fidelity PCR kit (NEB, Ipswich, MA) 
for 10-11 cycles and purified with Agencourt AMPpure XP beads (Beckman Coulter, 
Brea, California). Libraries were evaluated for size distribution and quality on a 
Bioanalyzer 2100 (Agilent, Santa Clara, California). Sequencing was performed with 
Illumina HiSeq 4000 chemistry at Weill Cornell Medical Center across six lanes to 
collect paired-end 100 reads. Average coverage per individual after alignment is reported 
in Table S1. 

 DNA was also extracted from a Coacuilco population male, a female, and five of 
their lab-generated offspring, using the Qiagen DNeasy kit (Qiagen, Valencia, CA). DNA 
was sent to the New York Genome Center for PCR-free library preparation. Libraries 
were sequenced with Illumina HiSeq 2500 chemistry to collect paired-end 150 bp reads. 
All sequence data are available through NCBI’s SRA (SRP130891;SRP018918). Average 
coverage per individual for this pedigree after alignment is also reported in Table S1.  
 
 



 
 

7 
 

1.2.1 SNP calling 
 Raw reads were parsed by index, using a custom python script 

(https://github.com/JaneliaSciComp/msg/blob/master/barcode_splitter.py). Reads were 
trimmed to remove adapter sequences using the program cutadapt v1.9 (36) and mapped 
to the outgroup X. maculatus reference genome (1.5% diverged; 34, 37) using bwa, with 
the bwa-mem algorithm (38). Mapping statistics are provided in Table S1. GATK (v3.4; 
39) was used to convert sam files to bam files and picard tools (v1.118) was used to mark 
and remove duplicates for those libraries that underwent PCR amplification (this step was 
omitted for PCR-free libraries). Insertion-deletion differences (indels) were realigned 
using GATK. Variant calling was performed using GATK with the HaplotypeCaller 
algorithm in the GVCF mode. We lacked access to a high-quality variant set for variant 
recalibration, so did not perform variant recalibration with GATK. 

 Instead, we applied hard call thresholds recommended by GATK 
(https://software.broadinstitute.org/gatk/documentation/article.php?id=3225) and 
additionally masked a 5 bp window around indels and any sites with greater than or less 
than 2X average genome-wide coverage. Previous simulations evaluating the approach 
with parameters matching our data suggested that it should be reliable (7). Moreover, 
since we collected high quality sequence data for two parents and five offspring from a 
family, we were able to quantify Mendelian error rates in this family using plink (v1.07; 
40) and we therefore used them to evaluate the reliability of a hard call approach to 
identify variants. 

 When applying GATK recommended hard calls, we found that our estimated 
Mendelian error rate was fairly low: 0.54% of SNPs had an error in one or more of five 
offspring. Using this information, we further attempted to improve our hard call filtering. 
To this end, we examined the distribution of scores for various quality metrics in the 
family data for calls that were Mendelian errors versus for scores at the same position in 
another offspring in the family that did not have a Mendelian error. We found that two 
quality metrics had significantly different distributions (Fig. S12); based on these results, 
we re-adjusted the required QD score to ≥10 and the required FS score to ≤10. Our error 
rate with this more stringent filtering is therefore likely lower than 0.54%. 

Guided by these analyses, for the population sample of X. birchmanni, we removed 
Mendelian errors identified in the X. birchmanni pedigree and masked sites with greater 
than two-fold the genome-wide average coverage or less than half the genome-wide 
average coverage (41), all indels, all repetitive regions, and any sites within a 5 bp 
window of an indel. In addition, we excluded sites with coverage less than 10 (DP); low 
quality score (variant quality - GQ or invariant quality - RGQ <20) or quality by depth 
score (QD<10); low mapping quality (MQ < 40); high Fisher strand score (FS>10); high 
strand odds ratio (SOR > 4); low read position rank sum score (ReadPosRankSum< -8); 
and low mapping quality rank sum score (MQRankSum < -12.5). Note that for invariant 
sites, only RGQ and DP filters can be used. This filtered dataset was used in subsequent 
steps. 
 
1.2.2 Inference of ancestral sequences and mutation matrix 

 LDhelmet, the program that we used to build a linkage disequilibrium (LD) based 
recombination map, requires a quadra-allelic mutation model and thus relies on a 4x4 
mutation transition matrix (42). To infer this matrix, we needed to generate ancestral 
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sequences for X. birchmanni. We tried two methods to infer ancestral sequences, relying 
on the root state probabilities output by RAxML (v7.2.8; 43) and those produced by 
Phylofit (v1.3; 44). To test the performance of these two approaches, we used macs (45) 
to simulate sequences with phylogenetic relationships corresponding to those for the 
available swordtail genomes (Fig. S13). Split times were estimated from the relationship 
Tdiv(4N)=0.5(Dxy/θ - 1), where θ is the population mutation rate and Dxy is the average 
pairwise divergence between species. We assumed θ = 0.001 per site for all species, 
which is approximately the estimated θ in most swordtail species studied to date (7, 46). 
We simulated 1,000 one Mb sequences and input the macs output into seq-gen (47) to 
generate nucleotide sequences using the observed base composition in swordtails. We 
then inferred the swordtail root sequence with both approaches (3). We compared the 
accuracy of the inferred ancestral sequence to the true simulated ancestral sequence, only 
considering bases at which an allele was assigned a probability ≥0.99 of being ancestral. 
Both programs significantly outperformed a strict parsimony approach (Fig. S14) and had 
comparable performance on the parameters tested.  

For the real data, we inferred the ancestral sequence using Phylofit and the available 
whole genome sequences for swordtails (Fig. S13). Because Phylofit does not 
accommodate polymorphic sites, we used a base by base coin flip to pick an allele at 
known polymorphic bases. To generate the mutation matrix for LDhelmet, we counted 
the number of mutations of each possible class in the population data that we had 
collected for X. birchmanni, given the inferred ancestral sequence (following 42). We 
then calculated mutation frequencies and converted the mutation frequencies to a 
mutation matrix.  
 
1.2.3 Evaluating the reliability of the approach taken to estimate recombination rates in X. 
birchmanni 

 To evaluate how reliable we should expect an LD map for X. birchmanni built 
with LDhelmet to be, and to inform our choice of parameters, we performed simulations. 
Because of the computational resources required by these simulations, we ran only 15 
replicates.  

Specifically, we simulated ten Mb chromosomes from one population for a sample 
of 40 individuals using macs with θ = 0.001 and a background population recombination 
rate of ρ = 0.0006 per bp (i.e., the median ρ per bp estimated from the data; see below). 
We placed four hotspots per Mb, with heat drawn from a random uniform distribution of 
heat from 10x background to 50x the background. In order to incorporate the ancestral 
allele inference step into our simulations, we inferred ancestral sequences as described 
above, and converted macs output into sequences using the seq-gen program. Next, we 
selected four haplotypes from the simulated 40 X. birchmanni sequences, two to serve as 
the maternal and two as the paternal chromosomes. We then used custom scripts to 
generate five “offspring” between these parental haplotypes to mimic the pedigree that 
we had generated. For each offspring, we randomly chose a genetic distance; converted it 
into a physical location on the genome of each parent; introduced a crossover between the 
haplotypes at this location and generated diploid offspring with one recombinant paternal 
and maternal chromosome (ignoring in particular the negligible number of de novo 
mutations that are expected). We collapsed pairs of haplotypes into diploid genotypes and 
used these data in subsequent steps.  
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LDhelmet requires phased haplotypes. Phased haplotypes can increase the resolution 
and reliability of LD-based recombination maps, but errors introduced by incorrect 
phasing can potentially result in spurious inferences of recombination. As a result, we 
also evaluated this tradeoff in our simulations. Specifically, using the simulated data, we 
compared how well phasing performed using one of two programs, shapeit2 (48) or 
impute2 (49). In order to apply shapeit2, we converted the sequence files to ped format, 
indicating known family relationships, and then ran shapeit2 with the duohmm flag (48). 
In turn, to run impute2, we converted the sequence files to ped format and then used hapi 
to generate haplotypes for the family (48-50). We used these haplotypes as input for 
impute2 (49), treating them as known without error, then inferring haplotypes for the 
population data. With these two sets of phased haplotypes from the population data and 
the ancestral sequence and mutation matrix obtained from the same simulation (see 
previous section), we were now ready to run LDhelmet.  

One key parameter in LDhelmet is the block penalty, which is the penalty imposed 
for switching recombination rates. A higher block penalty will result in fewer rate 
switches and a smoother recombination landscape, whereas a lower block penalty will 
result in more rate switches and a less smooth inferred rate landscape. The LDhelmet 
documentation recommends using a block penalty of 5 for humans and a block penalty of 
50 for Drosophila melanogaster, but in general the optimal choice depends on the true 
and unknown heterogeneity in recombination rates. Since swordtails appear to have 
hotspots based on previous work (25), a sensible guess is that 5 would be the appropriate 
block penalty. We tested this notion in simulations by running LDhelmet on the 
simulated sequences described in the previous paragraph for a range of block penalties (5, 
20 and 50).  

To evaluate performance in these simulations, we considered LDhelmet inferred 
rates in 50 kb windows and compared them to the true rates in 50 kb windows. Overall, 
the inferred LD map was strongly correlated with the true map in simulations (Fig. S15). 
Both in terms of estimated rates in 50 kb windows and estimated hotspot heats, LDhelmet 
performed better in simulations with a block penalty of 5 or 20 than a block penalty of 50 
(Fig. S15). On that basis, we used a block penalty of 5 in our analysis. For phasing 
pipelines, we found that with both phasing approaches, the average correlation between 
the true and simulated map for all simulations was 0.66. In the real data, we chose to use 
the simpler, one step pipeline of shapeit2. 

Since LDhelmet requires phased haplotypes, the above simulations allowed us to 
evaluate the performance of LDhelmet with different phasing pipelines, but not whether 
phasing improves the reliability of rate inference compared to using unphased data. For a 
direct comparison, we used the program LDhat, which (in contrast to LDhelmet) can 
generate LD maps using both genotypes and haplotypes (51). In data analyses however, 
we used LDhelmet, because it was found to outperform LDhat (42). In simulations with 
shapeit2 phasing, the correlations between the true and inferred maps were higher when 
using inferred haplotypes rather than genotypes (Fig. S16), suggesting a net gain in map 
reliability despite phasing errors (assuming LDhelmet has similar properties to LDhat in 
this regard, as seems sensible). We therefore used inferred haplotypes when analyzing the 
real data. 
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1.2.4 An LD-based recombination map for X. birchmanni 
 Given the approaches that worked better in simulations, we used phased 

haplotypes from all unrelated individuals (in total, 40 haplotypes) to construct an LD-
based recombination map with the program LDhelmet (42). We generated ancestral 
sequences using several previously sequenced swordtail genomes (Fig. S13), the program 
Phylofit (44) and inferred a mutation matrix following Chan et al. (42), as described 
above. We computed a likelihood lookup table for a grid of ρ values for each set of 
haplotypes for each chromosome. To infer recombination rates, we used the rjMCMC 
procedure with a block penalty of 5 and a burn-in of 100,000 and ran the Markov chain 
for 1,000,000 iterations. After excluding SNPs for which recombination rate was 
estimated to be implausibly high (ρ/bp ≥ 0.4), we summarized recombination rates in 5, 
50, 1000 and 5000 kb windows. For 5 and 50 kb windows, we removed windows that 
overlapped with a contig boundary, as rate estimates may be inaccurate for adjacent SNPs 
across a contig boundary. We proceeded with this LD-based map for subsequent 
analyses.  
 

1.3 Demographic history of X. birchmanni and X. malinche and its consequences for 
load 
 

Understanding differences in the demographic history of both X. birchmanni and X. 
malinche is important in evaluating the nature of selection on hybrids (Materials  and 
Methods 1.5; 6, 11). We therefore used multiple approaches to better understand their 
demographic history. 
 
1.3.1 Estimation of nucleotide diversity and the mutation rate 

 We estimated average pairwise nucleotide diversity (π) to be 0.0012 per bp for X. 
birchmanni and 0.0003 per bp for X. malinche using biallelic sites (almost all 
polymorphic positions in our samples) in data from 20 unrelated X. birchmanni 
individuals from a single population and two X. malinche individuals from a single 
population. To understand if low levels of genetic diversity in X. malinche are a general 
feature of this species, we analyzed an individual from an X. malinche population in an 
independent river system, and found comparably low levels of genome-wide π (an 
average of 0.00036 per bp). Recent work in cichlid fish, which are ~100 million years 
diverged from swordtails reported mutation rates for three species of around 3.5x10-9 per 
bp per generation, similar to estimates from another fish species (52). We used this 
estimate in our analyses. 

 Since X. birchmanni and X. malinche differ markedly in levels of genetic 
diversity, we asked whether there was evidence that the mutation rate differs between 
species using the relative rates test (53), assuming that the two species have the same 
generation time. We computed the proportion of sites that differed between the X. 
birchmanni sequence and X. maculatus sequence and X. malinche sequence and X. 
maculatus sequence in 1 Mb windows. For polymorphic sites, we randomly selected one 
of the alleles. We then calculated the relative branch lengths of X. malinche and X. 
birchmanni in terms of pairwise divergence:  

 



 
 

11 
 

lA =  dXmal_Xbir + dXmal_Xmac - dXbir_Xmac 
 
lB =  dXmal_Xbir + dXbir_Xmac - dXnal_Xmac 
 
Given the above assumptions, we expect that lA – lB will be zero if mutation rates are 

the same. Indeed, the branch length for X. birchmanni was only 1.007x the branch length 
for X. malinche. This finding suggests that the mutation rates in these two lineages do not 
differ appreciably and that differences in π reflect long-term differences in effective 
population sizes. 

 Assuming a standard neutral model of a constant population size, and relying on a 
mutation rate of 3.5x10-9 per bp per generation, we would therefore estimate that the 
effective population size of X. malinche, Nmalinche, is approximately 21,000, and the 
effective population size of X. birchmanni, Nbirchmanni, is approximately 86,000. 

 
1.3.2 Demographic inference in X. birchmanni and X. malinche and possible effects on 
estimates of the population recombination rate 

To investigate the demographic history of X. birchmanni and X. malinche, we ran 
PSMC (54) on two (unphased) diploid individuals of X. malinche from separate river 
populations (22; this study - SRP018918) and on all 20 unrelated X. birchmanni genomes 
collected for this study from a single population. We set the –r parameter, the ratio of θ to 
ρ, to 2; the –g parameter, the number of years per generation, to 0.5 (55); and the 
mutation rate to 3.5x10-9 per bp per generation (see previous section). We present results 
truncated at approximately 2Nbirchmanni generations or 80,000 years, but note that 
bootstrapping results suggest that for X. malinche, population size estimates for times 
beyond 104 years ago may not be reliable. Based on the bootstrapping results, we also do 
not consider timepoints more recent than 1 Kya (Fig. 1F). Results are roughly consistent 
with those obtained from diversity levels under a constant population size model, in that 
the harmonic means of the PSMC estimated population sizes are similar to Nmalinche and 
Nbirchmanni. 

 The PSMC results further confirmed our expectation, based on levels of genetic 
diversity, that X. malinche has had much lower historical effective population sizes than 
X. birchmanni, approximately four-fold lower for the past twenty thousand generations 
(Fig. 1F). This finding suggests that historical population sizes in X. malinche could have 
allowed for the accumulation and fixation of weakly deleterious mutations that would 
have been effectively purged from the larger X. birchmanni population. We therefore 
tested this possibility, as described below in Evidence for higher load in X. malinche. 

 We also used the PSMC results to ask whether the demographic history of X. 
birchmanni is likely to have a major impact on the accuracy of recombination rate 
estimates generated by LDhelmet, which were inferred under the assumption of a 
constant size, panmictic model. In species where this demographic model is clearly 
violated, such as humans, this type of misspecification has been reported to affect the 
reliability of estimates (56). For simplicity, in simulations we used step-wise changes in 
population size with the –en option in macs (Fig. S17). We chose a value of θ for 
simulations that yields roughly the observed present-day diversity levels (Fig. S18). To 
specify the recombination map, we used the observed LDhelmet recombination rates for 
the first 10 Mb of chromosome 1. In other respects, simulations followed the pipeline 
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described above (see Evaluating the reliability of the approach taken to estimate 
recombination rates in X. birchmanni). When we simulated data under the inferred 
demographic history for X. birchmanni but estimated recombination rates under a model 
of constant population size, there was little impact on the reliability of the map at the 
scale of 50 kb. Specifically, in the 10 simulations we ran, the Spearman’s correlations 
between the simulated and true maps were no worse than those observed in 10 
simulations of a constant population size (0.74-0.81 vs 0.73-0.8, respectively). We 
therefore considered the estimates obtained under a constant population size model in our 
analyses. 
 
1.3.3 Evidence for higher load in X. malinche 

Smaller historical population sizes can lead to the fixation of deleterious mutations 
that would be efficiently purged in larger populations. Notably, results of the PSMC 
analysis highlight that population sizes have been low in X. malinche for approximately 
the last Nmalinche generations, the relevant timescale for such mutations. We wanted to 
examine if there was indeed evidence for higher load on the X. malinche lineage, as 
expected given four-fold differences in total diversity levels. We therefore used the 
approach of Do et al. (26, 57) to ask whether a single diploid X. malinche genome shows 
an excess of derived non-synonymous sites relative to a single diploid X. birchmanni 
genome (Rbirchmanni/malinche), compared to the inferred ancestral northern swordtail 
sequence (see Materials and Methods 1.2). Based on this measure, we estimated 
Rbirchmanni/malinche to be 0.975±0.004, with the standard error estimated from jack-knife 
bootstrapping of the variant data divided into 100 contiguous blocks. The ratio is 
significantly different from 1 (p = 0.016, estimated by bootstrapping), indicating an 
excess of non-synonymous substitutions in X. malinche relative to X. birchmanni. Given 
that selection is less effective in regions of low recombination, we might expect an even 
larger difference in regions of the genome with low recombination.   

 

1.4 Evaluating the relationship between minor parent ancestry and recombination 
rate in three swordtail hybrid populations 
 
1.4.1 Minor parent ancestry and recombination 

 Having inferred local recombination rates and ancestry throughout the genome, we 
set out to understand their relationship in each of the three swordtail hybrid populations. 
Selection on hybrids is predicted to generate correlations between minor parent ancestry 
and recombination rates (Fig. 1; Materials and Methods 1.5). The appropriate size scale 
for this analysis depends on a number of parameters, notably the number of generations 
over which selection has operated since hybridization. To guide our analysis, we 
performed admix’em (58) simulations of hybrid incompatibilities, as described in detail 
in Materials and Methods 1.5 (simulations with 4 BDMIs, s=0.1, h=0.5), and examined 
how ancestry changed over time. Though a decrease in average minor parent ancestry 
near hybrid incompatibilities was observed early on in simulations (e.g., after 10 
generations, when ancestry blocks are Mbs in length), it became more pronounced and 
localized over time (Fig. S19). Motivated by these simulations, and the observation that 
that the median length of ancestry tracts that are homozygous for the minor parent in the 
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swordtail hybrid populations is 84-225 kb (Materials and Methods 1.5, 1.7), we 
considered relationships between local recombination rates and ancestry over the scale of 
100s of kb in the empirical data (Table S2).  

 At some of the scales considered, nearby windows are likely not independent, due 
to LD. As an illustration, the expected correlation in allele frequencies, E(r2), falls to 
approximately 0.1 within 50 kb in X. birchmanni. To address this issue, we thinned 
analyses in 50 and 250 kb windows such that we sampled approximately one window 
every 250 kb, a distance over which there is little or no significant pairwise LD (i.e., we 
picked one window of every six in the analysis of 50 kb windows and one window of 
every two in the analysis of 250 kb windows). When we apply this thinning in neutral 
simulations (see Materials and Methods 1.5), ~5% of simulations show a significant 
relationship (at α = 0.05) between minor parent ancestry and recombination rate, 
suggesting that this thinning results in properly calibrated p-values.  

We identified significant positive correlations between minor parent ancestry and 
the recombination rate in all three hybrid swordtail populations, regardless of our choice 
of window size (main text; Table S2). However, recombination rates are also correlated 
with other features in the genome that may influence selection on hybrids, including the 
number of coding and conserved bps. To investigate these effects, we examined minor 
parent ancestry in a focal 50 kb window as a function of the number of coding or 
conserved bps within 0.1 cM on either side of the window (which seems an appropriate 
scale based on the data; Fig. S20), using the reported Xiphophorus chromosome lengths 
in cM from a previous pedigree study (37). Using this approach, we found a significant 
negative relationship between minor parent ancestry and the number of linked coding or 
conserved bps in all populations (Table S5). However, these relationships became weaker 
and in some cases non-significant when the data were thinned as described in the 
previous paragraph.  

To consider minor parent ancestry, recombination, and putatively functional bps 
jointly, we calculated the partial correlation between local ancestry and the recombination 
rate, controlling for the number of coding (or conserved) bp in a window of a given 
physical size, using the “ppcor” package in R (considering 50 kb, 250 kb and 500 kb 
windows). Regardless of the choice of window size, we consistently identified an 
association between minor parent ancestry and recombination, after controlling for other 
features, and recombination rate was always the stronger predictor of minor parent 
ancestry (Table S2; Table S3).  
 
1.4.2 Taking into account possible differences in power among windows 

Our ability to reliably estimate recombination rates in X. birchmanni depends on 
SNP density and our power to detect ancestry switches in hybrids depends on divergent 
site density. Since both SNPs and divergent sites vary in density along the genome, so 
may the reliability of our results. Moreover, if they vary in ways that are correlated with 
features of interest, it could mislead us into thinking there are interesting biological 
differences when in fact there are just differences in error rates. To evaluate these 
possibilities, we thinned the data with respect to these features and re-inferred both 
recombination rates and ancestry.  

 For the LDhelmet map, we evaluated the distribution of polymorphic sites in 50 
kb windows. We calculated the median number of polymorphic sites in all 50 kb 
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windows, which was 58. Next, for all windows with more than 58 polymorphic sites, we 
randomly subsampled 58 polymorphic positions for that window. We re-ran LDhelmet as 
described in Materials and Methods 1.2 to infer recombination rates based on these 
thinned data. We then re-analyzed the correlations between recombination rates and local 
ancestry.  

 For local ancestry inference, we evaluated the distribution of ancestry informative 
sites in 10 kb windows. As above, we calculated the median number of fixed ancestry 
informative sites in all 10 kb windows, which was 20. For windows with greater than 20 
ancestry informative sites, we randomly sampled 20 of these sites and re-ran the HMM 
inference step of MSG. As with the polymorphism data, we asked whether relationships 
between ancestry and rate based on these thinned data were qualitatively changed.  

Our results remained qualitatively unchanged after these thinning procedures. 
Specifically, the relationship between minor parent ancestry and recombination rate 
remained when the recombination rate was quantified using the thinned LD map (Fig. 
S21) and when ancestry was quantified based on inferences from the thinned ancestry 
calls (Fig. S21). Furthermore, this relationship was still observed when we reanalyzed the 
data in 10 kb windows, considering only the 50% of windows in the thinned dataset in 
which ancestry was inferred based on the exact same number of markers (20 markers; 
Fig. S22), and when considering the top 50% of windows where we expect to have the 
best power for rate inference with LDhelmet (Fig. S22). Finally, to guard against errors in 
ancestry assignment, in addition to excluding any shared polymorphic sites before 
ancestry inference, we re-analyzed the data excluding entire windows (of 10 kb) that 
contain any shared polymorphisms. The relationship is qualitatively unchanged (Fig. 
S22). 
 
1.4.3 Possible effects of linked selection on the relationship of minor parent ancestry to 
recombination 

  LD-based methods to infer the recombination rate provide an estimate of ρ, the 
recombination rate scaled by the effective population size Ne. As a result, estimates of the 
local recombination rate will potentially confound variation in Ne with variation in 
recombination rate. In particular, selection on genic regions can reduce Ne nearby, 
potentially leading to under-estimates of ρ. In practice, there is only a weak correlation 
between distance to the nearest exon and levels of genetic diversity, which should also 
reflect variation in Ne (Fig. S23), and the relationship between π and ρ is driven only by 
the lowest recombination rate windows (Fig. S23). Nonetheless, we checked the 
robustness of our results by excluding any 50 kb windows with values for ρ in the lowest 
25% quantile (i.e., < 0.00026 per bp; Fig. S23). We compared this analysis to correlations 
obtained when excluding windows with values for ρ in the highest 25% rate quantile, to 
account for the effect of excluding a quarter of windows. A similar correlation between 
minor parent ancestry and recombination rate was obtained when analyzing both sets 
(Table S6).  
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1.5 Modeling interactions between selection, the local recombination rate, and 
minor parent ancestry  
  

To better understand the expected relationships between minor parent ancestry and 
recombination rate under neutrality and under different models of selection, we 
performed a series of simulations, using the hybrid population simulator admix’em (58).  
 
1.5.1 Determining simulation parameters for the neutral simulations 

 Previous analyses based on the decay of admixture LD suggested that swordtail 
hybrid populations formed approximately 35-60 generations ago (22). We therefore 
performed simulations for times since admixture around those estimates and compared 
results to the real data. We simulated two 25 Mb chromosomes and placed crossover 
events along each chromosome according to the probabilities of the LDhelmet inferred 
map for chromosome 1 and chromosome 2 in swordtails, so that local rates in simulations 
mimicked the rate variation of the real data for swordtails. We simulated mixture 
proportions of 30:70 to approximately match observed mixture proportions in the data 
(Fig. 1E) and simulated a hybrid population size of 10,000. We found that simulations of 
70 generations of admixture generated results similar to the data for one of the 
populations, and were not too far off for the other two. For instance, for these simulated 
parameters, the median homozygous tract length for the minor parent was 117 kb, with 
95% central intervals ranging from 85 to 159 kb; by comparison, in population 1 
(Totonicapa), the median length was 84 kb; in population 2 (Aguazarca), 225 kb; and in 
population 3 (Tlatemaco), 103 kb. In addition, the number of observed ancestry 
transitions in these simulations was similar to the observed data. We observed 103,819 - 
388,963 events genome-wide in the three swordtail hybrid populations, compared to a 
95% central interval of 217,712 - 331,134 events predicted genome-wide based on 
simulations. Thus, we proceeded with 70 generations in simulations as a rough 
approximation, but note that the presence of selection and demographic factors not 
considered in the simulations will influence tract lengths in the real data; we note further 
that these simulations are a better match to populations 1 and 3 than population 2, 
plausibly because of assortative mating in the latter (32). 

Based on these results, we performed simulations of neutral admixture as described 
above; at generation 70, we randomly sampled 250 individuals from the population and 
summarized ancestry in 50 kb windows. Ancestry analyses and window thinning were 
performed as described for the real data (Materials and Methods 1.4). We note that in 
these simulations, ancestry is true ancestry, not inferred ancestry. We performed 200 
neutral simulations for comparison with simulations of selection (see next section). Since 
our simulations mimic only ~10% of the genome and are computationally expensive, to 
match the approximate amount of data used in our actual analyses, we sampled 11 
simulations without replacement 200 times. This procedure generated a distribution of 
Spearman correlation coefficients for the relationship between minor parent ancestry and 
recombination rate under neutrality (Fig. S1).  
 
1.5.2 Simulations of selection on hybrids 

We performed simulations under three models of selection on hybrids: 1) BDM 
hybrid incompatibilities, a model in which selection occurs because of epistatic 
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interactions between pairs of loci with different parental ancestries; 2) hybridization load, 
in which purifying selection on hybrids occurs due to long-term population size 
differences between the parental species (6, 11, 12); and 3) ecological selection, a model 
in which selection acts against minor parent ancestry because hybrids are in an 
environment more like that of the major parent and the two parental species are 
ecologically diverged. These three alternative models are obviously an oversimplification 
of the dynamics in natural populations and need not be mutually exclusive. In particular, 
in cases in which the traits underlying ecological specialization interact (e.g. 14), loci 
under ecological selection may behave more like the BDM incompatibilities modeled 
here.  

All three models of selection on hybrids predict that minor parent ancestry should 
depend on linkage to deleterious mutations, and that the recombination rate and the 
location of deleterious mutations should be key parameters shaping the distribution of 
minor parent ancestry in the genome. For each model, we picked selection coefficients so 
that the total selection on F1 and F2 hybrids was similar across scenarios (wF1 = 0.9 and 
average wF2 ≈ 0.9). Under all models, effects of selected loci on individual fitness were 
multiplicative. Simulations and analyses were performed as with the neutral simulations 
described in the previous section, except that selection occurred every generation. In 
addition, we only performed 100 simulations under the hybridization load model, as these 
simulations were computationally extremely expensive. 

In simulations of BDM incompatibilities, we modeled BDMIs as arising due to 
neutral fixation (i.e., we considered the derived alleles in the parental species to have the 
same fitness as the ancestral alleles) but, as we show below, the same patterns result from 
other types of incompatibility models. We simulated four pairs of hybrid 
incompatibilities with s=0.1 and h=0.5, placing their positions randomly in physical 
distance on one of the two simulated chromosomes. Extrapolating this number to the 
whole genome would suggest approximately 56 incompatible pairs across the genome, 
which is on the low end of what has been estimated for swordtail hybrid populations 
previously (based on two of the three populations included here; 22, 23). 

 In simulations of hybridization load, we simulated 1,000 sites under weak 
selection, with s=2x10-4 and h=0.5; their positions were randomly chosen along the 
physical maps of the two chromosomes. While this choice of dominance coefficient is 
arbitrary, we expect it to capture the effects of a range of h values (14); the exception is 
complete recessivity (i.e., h=0), in which case introgression could lead to heterosis in 
hybrids and patterns quite distinct to those observed (14). We chose this selection 
coefficient because demographic inference suggests X. birchmanni had a long-term 
population size four times that of X. malinche for the last Nmalinche generations (Fig. 1F). 
Simulating a population size of 10,000 for X. birchmanni, mutations with this selective 
disadvantage (Nes = -2) would be effectively purged in X. birchmanni (as single 
mutations) but behave nearly neutrally in X. malinche (in which Nes = -0.5). These 
mutations are the types that are hypothesized to lead to selection against X. malinche 
ancestry in hybrids under a load scenario (6, 11). Note that, for computational efficiency, 
the population size used here is lower than the likely historical population size for X. 
birchmanni (Fig. 1F); this choice will not impact simulation results, as the salient 
parameters are the compound values of Nes and the relative difference in population size.  
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 In simulations of ecological selection against minor parent ancestry, we simulated 
four loci that reduced fitness if the allele is derived from the minor parent, each with 
s=0.05 and h=0.5. As above, we randomly placed their positions in physical distance on 
one of the two chromosomes.  

The results of these simulations show that all three models of selection can induce a 
correlation between minor parent ancestry and recombination (Fig. 1; Fig. S1). In cases 
of incompatibility selection and ecological selection, minor parent ancestry is more likely 
to persist in regions of the genome with higher recombination rates. In the model of 
hybridization load, the direction of the correlation between minor parent ancestry and the 
recombination rate depends on which parent species has higher genetic load (Fig. S7).  

 Because the genetic architecture of hybrid incompatibility loci is not well 
understood, we also performed simulations under alternate hybrid incompatibility 
models, namely BDM incompatibilities that arise due to coevolution between loci or the 
fixation of beneficial alleles in the parental species. These incompatibility models differ 
from models in which the BDMIs fixed due to genetic drift alone (59). We performed 
simulations as described above, except that we modified selection coefficients (s=0.05 
and h=0.5) so that average fitness of F1 and F2 hybrids matched the simulations described 
above. The results of these simulations indicate the relationship between minor parent 
ancestry and recombination rate is not dependent on the specific hybrid incompatibility 
model used (Fig. S24).  

 Similarly, because BDMIs between species may have a range of dominance 
coefficients (9, 60, 61), we performed simulations as described above, except with h=0 
(setting s = 0.2 such that average fitness in the F2 generation matched the previous 
simulations). In this case, a significantly positive relationship between minor parent 
ancestry and recombination rate was seen somewhat less often (in 52% of simulations; 
Fig. S24). This finding suggests that while the qualitative prediction of the model is 
similar, power to detect this relationship may be lower when BDMIs are fully recessive, 
presumably because fewer genotype combinations are under selection in this scenario. In 
practice, we probably expect a combination of dominance coefficients and even when h< 
0.5, it may be rare for it to be precisely 0, as modeled. 

Together, these simulation results demonstrate that local recombination rate is an 
important parameter in predicting patterns of minor parent ancestry in the genome, 
regardless of the major source of selection on hybrids. 

 
1.5.3 Additional demographic models 

 In the previous section, we simulated a simple demographic history consisting of 
a single admixture event. To confirm that these expectations also held under more 
complex demographic histories, we considered two additional scenarios that are 
plausible: 1) multiple pulses of migration from the minor parent species (as seen in some 
swordtail hybrid populations; 32) and 2) a strong, continual bottleneck in the hybrid 
population (Fig. S25). For simulations with multiple pulses of migration, we simulated a 
pulse of migration from the minor parent every ten generations with a migration rate of 
1%. To generate final mixture proportions similar to other simulations, we set the initial 
mixture proportions to 20% parent 1 and 80% parent 2. For simulations of a bottlenecked 
population, we set the hybrid population size to 200 individuals, and otherwise performed 
200 simulations as described in the previous section. We found that neither of these 



 
 

18 
 

scenarios resulted in a significant relationship between minor parent ancestry and 
recombination more often than expected by chance (i.e., by a two-tailed test, 8% of 200 
simulations with multiple admixture pulses and 6% of simulations with a strong 
bottleneck were significant at the 5% level).  
 
1.5.4 Impact of recombination rate and functional elements  

The probability of minor parent ancestry is expected to depend on the number of 
deleterious alleles to which a region has been linked since hybridization occurred. 
Although this number is unknown, we expect that it should depend both on the local 
recombination rate and the number of selected sites nearby. To verify this intuition, we 
ran simulations relying on the locations of exons on chromosomes 1 and 2 of swordtails 
and placing selected sites within exons uniformly. We performed replicate simulations 
for BDMI, hybridization load, and ecological selection scenarios (as described in 
Simulations of selection on hybrids; 100 replicates for load simulations, 200 for other 
simulations). When considered jointly, both the local recombination rate in a window and 
the number of coding bps in a window predicted average minor parent ancestry in these 
simulations, over a range of scales (Table S7). In practice, selected sites may occur 
outside of exons; in the case of BDMIs, for instance, it is known that non-coding DNA 
and selfish genetic elements can be involved in incompatibilities between species 
(reviewed in 62), and such regions may also play a role in hybridization load and 
ecological selection on hybrids. As expected from these simulations, when analyzed 
jointly, both the recombination rate and number of coding (or conserved) bps in a 
physical window are correlated with average minor parent ancestry in swordtail hybrids, 
though depending on the scale, the number of coding (or conserved) bps is not always a 
significant predictor (Table S2; Table S3; Table S8).  

We further examined if the number of coding (and conserved) bps within a given 
genetic window—a measure that combines both features—is a better predictor of minor 
parent ancestry in the swordtail hybrid data than recombination rates or the number of 
coding base pairs within a physical distance alone. At the 0.1 cM scale at least, we found 
that minor parent ancestry was more strongly correlated with the local recombination rate 
alone than the number of coding or conserved bps at a given genetic distance (Table S2; 
Table S5; 0.1 cM windows were on average 56 kb). We therefore focus on results for 
partial correlations with recombination rates and coding or conserved base pairs as 
separate predictors (Table S2; Table S3).  

 
1.5.5 Implications for the source of selection on swordtail hybrids 

 Recent work on the human-Neanderthal admixture event suggested that because 
Neanderthals had a persistently lower effective population size, they may have 
accumulated weakly deleterious mutations that were then selected against in the modern 
human gene pool following admixture (6, 11). Because Neanderthals are the minor parent 
species and also the population with lower effective population size, we expect that 
selection against BDMIs, selection due to hybridization load, and ecological selection 
against minor parent ancestry could all lead to increased minor parent ancestry in regions 
of high recombination (Fig. S1, Fig. S7; see Materials and Methods 1.9). Thus, based 
only on the relationship between average minor parent ancestry and recombination rate, 
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we cannot distinguish between the different modes of selection that could have led to this 
correlation, and indeed there may be multiple operating.  

 However, when the major parent is the species that carries more deleterious 
mutations, it is possible to distinguish between a hybridization load model and other 
models. Thus, in swordtail fish, our access to three populations with different mixture 
proportions (Fig. 1, 2) allowed us to explicitly evaluate the hybridization load hypothesis. 
As discussed above, the X. malinche source population has a much lower effective 
population size (Fig. 1), and has accumulated more non-synonymous mutations along its 
lineage, raising the possibility that selection on hybrids may be driven by weakly 
deleterious mutations carried by X. malinche. However, our simulation results suggest 
that if selection on hybridization load were the major source of selection on swordtail 
hybrids, population 3 should show a negative correlation between minor parent ancestry 
and recombination rate rather than a positive correlation (compare Fig. 2 to Fig. S7). The 
fact that a positive correlation is observed instead indicates that incompatibility selection 
(or ecological selection) is the dominant (though not necessarily sole) force shaping the 
relationship between recombination rate and minor parent ancestry in the three swordtail 
hybrid populations (Fig. 3). 

Because the simulations described above in Simulations of selection on hybrids were 
designed to capture properties of all three of the swordtail hybrid populations, we reran 
simulations specifically for population 3, which is most informative in distinguishing 
between BDMI and hybridization load as sources of selection. To this end, we repeated 
BDMI and hybridization load simulations as described previously, except that we set 
initial mixture proportions such that the average minor parent ancestry after selection was 
28%, matching observed mixture proportions in population 3 (Fig. 1E). Patterns were 
largely unchanged from what we had previously obtained. We observed a significant 
positive correlation between minor parent ancestry and recombination rate in BDMI 
simulations in 62% of simulations. In hybridization load simulations, we observed a 
significant positive correlation between minor parent ancestry and recombination rate 
when the minor parent species had higher load in 81% of simulations, and a significant 
negative correlation between minor parent ancestry and recombination rate when the 
major parent species had higher load in 86% of simulations. 

In principle, strong ecological selection on hybrids could also generate the observed 
relationship between minor parent ancestry and recombination rate, but in practice there 
is no clear concordance between the ecologies of the swordtail hybrid populations and the 
parent species from which they derive most of their genome. In particular, population 3 
(Tlatemaco), which derives the majority of its genome from the high-altitude and cold 
tolerant X. malinche parent, is found at lower altitudes (480 meters) than either of the 
hybrid populations with X. birchmanni as the major parent (population 1 – Totonicapa: 
720 meters; population 2 – Aguazarca: 985-1000 meters). This mismatch between the 
ecological environment of the hybrid populations and their major parent populations can 
also be seen in available temperature data. In population 3 (for which the major parent is 
X. malinche), the average temperature in June 2015 was 24.1±1.4°C and in December 
2015 was 20.1±1.1°C, whereas in population 2 (where the major parent is X. 
birchmanni), the average temperature in June was 20.8±1.2°C and in December was 
16.2±1.3°C (temperatures are summarized from temperature loggers recording four times 
daily). Thus, the hybrid population with greater X. malinche ancestry is found in a 



 
 

20 
 

warmer habitat, whereas at least one of the populations where X. birchmanni is the major 
parent species is found in a colder habitat, when the opposite is true of the parental 
species (63, 64). These patterns run counter to our expectations if ecological selection 
due to temperature were responsible for the observed relationship between minor parent 
ancestry and recombination rate (Fig. 3).  

 Together, these results strongly suggest that BDMIs are a source of selection on 
swordtail hybrids, but it could be that both BDMIs and hybridization load are operating. 
To explore this possibility, we simulated both BDMIs and load, considering two 
scenarios for load: one in which the major parent species was the species that harbored 
fewer weakly deleterious mutations and one in which the major parent species was not. 
Consistent with previous simulations, we set selection coefficients such that the fitness of 
F1 hybrids due to all sources of selection was ~0.9 (simulating two BDMI pairs with 
s=0.1, h=0.5 and 500 weakly selected loci with s=2x10-4, h=0.5), performing 100 
replicate simulations as described above. The results of these simulations suggest that 
when the impact of BDMIs and hybridization load on hybrid fitness are similar, the same 
qualitative relationship between minor parent ancestry and recombination rate is observed 
when the major parent is the low load parent, but no relationship between minor parent 
ancestry and recombination rate is observed when the major parent is the high load parent 
(Fig. S26). Given that minor parent ancestry increases with recombination rate regardless 
of whether it is the parent with greater or smaller load (Fig. 2), we conclude that selection 
on BDMIs is the predominant source of selection shaping ancestry patterns. We note, 
however, that there are necessarily many models with multiple sources of selection on 
hybrids that we do not explore. 

 Providing further support for the importance of BDMIs, deviations in minor 
parent ancestry are more pronounced near putative hybrid incompatibilities. Previous 
work in this system used signals of ancestry LD in two swordtail hybrid populations 
(populations 2 and 3, Aguazarca and Tlatemaco) to identify on the order of 100 pairs of 
unlinked putative BDMIs (22, 23). While the focus was on unlinked BDMIs because 
these are easier to identify without ambiguity, there could also be many (unmapped) 
linked BDMIs, especially if genes with related functions are often clustered in the 
genome (65, 66). To examine ancestry patterns at the unlinked, putative BDMIs, we 
selected pairs of loci previously identified in the 1% tail of ancestry LD in populations 2 
and 3 (23) and used bedtools2 (67) to identify 50 kb windows overlapping with these 
sites, removing duplicate windows. We then compared average minor parent ancestry in 
these windows to that from 1,000 null datasets, generated by randomly selecting the same 
number of windows from the background and calculating the average minor parent 
ancestry. In all three hybrid populations, putative BDMIs had unusually low minor parent 
ancestry compared to that expected by chance (Fig. 3). We confirmed that this pattern is 
expected in simulations of hybrid incompatibilities (Fig. S27), based on 500 simulations 
sampled after 50 generations of admixture, with s = 0.1. Importantly, low minor parent 
ancestry at simulated incompatibilities is obtained whether or not we condition on a 
significant p-value for ancestry LD (at p < 0.05), so this observation is not due to the way 
in which the putative BDMIs were originally identified. Moreover, while low minor 
parent ancestry is seen in these simulations at truly epistatically interacting loci, it is not 
observed in false positives (e.g., loci in ancestry LD at p<0.05 that are not in fact under 
selection). Thus, the observation of lower minor parent ancestry than expected at putative 



 
 

21 
 

BDMIs is further support for selection against minor parent ancestry driven by linkage to 
a BDMI. 

 Together, these results suggest that hybrid incompatibilities are playing a 
predominant role in shaping the relationship between minor parent ancestry and 
recombination rate in these swordtail fish hybrids. 
 
1.5.6 The impact of recombination localization mechanisms 

 If higher recombination rates predict the persistence of minor parent ancestry, 
then in species that use PRDM9, such as humans, minor parent ancestry should persist in 
distinct regions of the genome compared to in species that do not, such as swordtails (see 
Materials and Methods 1.6). In particular, because recombination is concentrated near 
CpG islands and TSSs in swordtail fish (Fig. S2; Materials and Methods 1.6), as in other 
species lacking PRDM9-directed recombination, then all else being equal, we might 
expect an enrichment of minor parent ancestry near these functional annotations. To test 
this prediction, we performed 100 simulations with admix’em as described above, 
placing hybrid incompatibilities uniformly within exons. Using the functional annotations 
of the simulated chromosomes, and roughly matching the amount of real data, we found 
that selection against hybrid incompatibilities leads to significantly higher minor parent 
ancestry near CpG islands in 99% of simulations at the 5% level (although the median 
Spearman’s ρ between minor parent ancestry and distance from a CpG island in these 
simulations was -0.06; Fig. 4).  

 To compare patterns of minor parent ancestry near and away from functional 
elements in the data, we summarized average minor parent ancestry in 50 kb windows 
and used the program bedops (68) to determine the distance of each window to the 
nearest CpG island (see Materials and Methods 1.9 for details of the ancestry analysis in 
humans). For each window that overlapped a CpG island, we identified another window 
on the same chromosome that did not overlap a CpG island but was within 1% of the GC 
content of the focal window based on the hg19 and X. birchmanni reference genome 
sequences. We repeated this analysis for the TSS (Fig. S28).  

 To test whether the enrichment in minor parent ancestry observed at CpG islands 
(and at the TSS) is statistically significant, we randomly chose a set of windows in the 
genome, matching the number of windows that overlapped a CpG island (or TSS) in the 
actual data, then paired each randomly chosen window to a window with similar GC 
content. We repeated this procedure 200 times to obtain 200 sets of paired windows. We 
then asked in how many of the 200 sets the fold-enrichment in minor parent ancestry 
between the focal and matched set was greater than or equal to what is observed in the 
real data. By this procedure and as expected from simulations, we found that hybrid 
swordtail populations have significantly higher minor parent ancestry in windows 
overlapping CpG islands and TSSs, whereas humans do not (Fig. 4; Fig. S28). 
 

1.6 Broad-scale patterns of recombination in X. birchmanni and expected rate 
conservation across species 
 

In our analyses of the relationship between minor parent ancestry and 
recombination rate, we did not attempt to evaluate fine-scale rates in X. malinche, which 
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has very low diversity levels. Instead, we used recombination rates as estimated from LD 
data for X. birchmanni (Materials and Methods 1.4, 1.5), and assumed that recombination 
rates are conserved between X. birchmanni and X. malinche, as well as in their hybrids. 
This assumption is justified by what is known about mechanisms of recombination in 
these species. Notably in species that do not use PRDM9, including birds and yeasts, 
recombination hotspots have been shown to be remarkably stable, even over millions of 
years of divergence (69, 70), likely due to slow evolution of genomic features with which 
rates are associated. Our previous work with a lower-resolution crossover map (based on 
ancestry switchpoints in hybrids) suggested that swordtail fish behave like PRDM9-
knockouts with regard to the genomic localization of recombination events, despite 
carrying a partial ortholog (25).  

With our higher resolution population recombination map based on LD, we revisited 
patterns of recombination along the genome. We used the program bedops (68) and 
annotations available from the X. maculatus reference genome to assess how estimated 
recombination rates vary with distance to the nearest annotated transcriptional start site, 
CpG island, and H3K4me3 peak inferred from native Chip-seq of X. birchmanni testis 
(25). We also identified potential PRDM9 binding sites in the X. birchmanni genome 
based on the computationally predicted motif with the polynomial SVM model (71), 
using the program FIMO with a binding score cutoff of 5 (72). Based on these analyses, 
we confirmed our previous results of a strong relationship between the recombination rate 
and distance to CpG islands and testis H3K4me3 peaks (Fig. S2), and again found that 
recombination is not locally enriched near the computationally-predicted PRDM9 
binding motif (Fig. S29).  These findings support the hypothesis that the partial PRDM9 
ortholog carried by swordtail fish is not involved in recombination (25).  

Moreover, should PRDM9 play some role that we did not detect, the predicted 
PRDM9 binding motif is identical between X. birchmanni and X. malinche (25). Finally, 
the hybrid map also looks quite similar to the one obtained for X. birchmanni (see 
below). Together, these findings made us confident that fine-scale recombination rates 
are highly similar between the parental species. 
 

1.7 A hybrid recombination map and differences to the parental map 
 

We expected that hybrid and parental recombination maps will be highly similar 
(Materials and Methods 1.6) in the absence of strong selection on hybrid recombinants. 
To test this prediction, we generated a recombination map for hybrids using ancestry 
switchpoints and a novel Markov Chain Monte Carlo (MCMC) based approach and 
compared the hybrid map to the LD-based map generated for X. birchmanni.  
 
1.7.1 Building a high resolution hybrid map for Xiphophorus hybrids 

 In inferring hybrid recombination maps using our ancestry data, we focused on 
two of the hybrid populations (the Totonicapa and Tlatemaco populations, populations 1 
and 3 respectively), in which the data we had collected for ancestry inference was high 
enough coverage to infer precise locations of switches between parental species in the 
hybrids and built an admixture-based crossover map. The output of the ancestry inference 
program, MSG, are the posterior probabilities for each ancestry state. To identify 
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switches that correspond to crossover events in a hybrid ancestor, we considered the 
interval over which the posterior probability changed from ≥0.95 in support of one 
ancestry state to ≥0.95 in support of a different ancestry state. Before identifying these 
intervals, we excluded all markers that were not in Hardy-Weinberg equilibrium after a 
genome-wide Bonferroni correction, concerned that genotyping errors could generate 
spurious switchpoints (1-1.2 million markers remained in the two populations). We also 
excluded any breakpoints within 10 kb of a contig edge, as we suspected that ancestry 
inference may be less accurate there. Because a subset of these ancestry switch calls may 
still be spurious, we assessed how the choice of filters impacts overall recombination 
patterns and correlations between hybrid and parental maps (see below). 

This procedure resulted in 388,963 candidate intervals within which we infer a 
recombination event to have occurred in population 1 and 379,119 in population 3. The 
inferred recombination intervals varied substantially in their lengths, i.e., in the resolution 
of the crossover event. The median interval resolution was 15 kb in population 1, with 
75% of breakpoints resolved within 35 kb or less, and a median resolution of 22 kb in 
population 3, with 68% of breakpoints resolved with 35 kb or less. The frequency of 
these switchpoints in a given window can be used to estimate a recombination rate. 
However, because of the large average size of these intervals, we expect the resulting 
map to be fairly low resolution.  

To improve the resolution of the hybrid recombination maps, we developed and 
applied a novel MCMC based approach for the inference of recombination rate using 
observed intervals of ancestry switching. The input to our inference was a set of 
recombination events detected by an inferred switch of ancestry, and a genomic interval 
in which the switching occurs. There are two types of parameters that our procedure tried 
to infer. The first type of parameter is a recombination rate for each genomic window. 
Because recombination events are rare, we can approximate the process of recombination 
as a Poisson process. Namely, if, at each bp, there is a small probability of a 
recombination event that is independent of other events, the number of events happening 
in each genomic window is Poisson-distributed. The parameter of this Poisson 
distribution is its recombination rate. The second type of parameter is the exact position 
of the recombination event for each recombination interval. This parameter is necessary 
because the uncertainty in the location of the ancestry switchpoints is large. If we simply 
assumed that the event is equally likely to happen anywhere within the region of ancestry 
switching, we would lose information and obtain a noisier estimate. These two types of 
parameters are dependent on each other. Intuitively, if the exact positions of all 
recombination events are known, then due to the properties of the Poisson process, the 
recombination rate is equal to the expected number of recombination events. On the other 
hand, if the recombination rate is known, then the distribution of the exact position of the 
recombination event is simply a uniform distribution weighted by the recombination rate. 
Thus, we used a Gibbs Sampler procedure to sample from the posterior distribution. The 
idea of the Gibbs Sampler is to sample each variable conditional on the current values of 
all other parameters. Although the current values of each parameter might not represent 
the true values, this algorithm guarantees that the stationary distribution of the Markov 
Chain is equal to the joint probability distribution of all parameters. We implemented our 
algorithm in R. The output of the R program is a series of recombination rate estimates at 
each iteration, and the likelihood of all observed recombination intervals given the 
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recombination rate. The distribution of the recombination rate at each window can be 
approximated by the empirical distribution of the recombination rate estimates after 
discarding the burn-in samples before the likelihood reaches its stable level.  

 The computational details of our model are described as follows. Let there be N 
genomic windows and M recombination intervals. We defined genomic windows to be 
the same as those used to summarize parental rates at a given size scale. Let the ith 
window be written as Wi and the recombination rate of Wi be ri. The prior of ri is a 
gamma distribution of rate parameter of 1 and shape parameter of average genome-wide 
recombination rate. Let posj be the position of the jth recombination event, and Lj be the 
observed interval within which the breakpoint lies. 

 
INITIATION 
 𝑝𝑟𝑖𝑜𝑟	~	𝐺𝑎𝑚𝑚𝑎 𝑎𝑙𝑝ℎ𝑎 = -

./012/	345/∗7
, 𝑏𝑒𝑡𝑎 = 1  

 𝑂>4 = 𝑤𝑖𝑑𝑡ℎ(	𝑜𝑣𝑒𝑟𝑙𝑎𝑝(	𝑊4	, 𝐿>	)	) 
 𝑟𝑎𝑡𝑒F = 𝑠𝑎𝑚𝑝𝑙𝑒	(𝑠𝑖𝑧𝑒 = 𝑁, 𝑝𝑟𝑖𝑜𝑟) 
ITERATION: 
 𝐹𝑜𝑟	𝑘	𝑖𝑛	#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: 
 𝑃 𝑝𝑜𝑠> ∈ 𝑊4 = 		 𝑟4 ∗ 𝑂>4 
 𝑝𝑙𝑎𝑐𝑒	𝑒𝑣𝑒𝑛𝑡	𝑗	𝑖𝑛	𝑎	𝑔𝑒𝑛𝑜𝑚𝑖𝑐	𝑤𝑖𝑛𝑑𝑜𝑤	𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔	𝑡𝑜	𝑖𝑡𝑠	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
 𝐶4 = 		𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡𝑠	𝑖𝑛	𝑊4 
 𝑟4	~	𝐺𝑎𝑚𝑚𝑎(𝑎𝑙𝑝ℎ𝑎 =

XY
Z4[\] ^Y

+	 -
./012/	345/∗7

, 𝑏𝑒𝑡𝑎 = 1 + 𝐾) 
 𝑟𝑎𝑡𝑒a = 	𝑠𝑎𝑚𝑝𝑙𝑒	𝑟4	𝑓𝑟𝑜𝑚	𝑖𝑡𝑠	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑a = 	 ( 𝑟4 ∗ 𝑂>4b

4cd )-
>cd  

TERMINATION: 
 𝐸 𝑟4 = 	𝑚𝑒𝑎𝑛 𝑟4a 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘 > 𝑏𝑢𝑟𝑛𝑖𝑛	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  
 𝑉𝑎𝑟 𝑟4 = 	𝑣𝑎𝑟 𝑟4a 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘 > 𝑏𝑢𝑟𝑛𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
 
Since recombination events are inferred based on switches of ancestry, a 

recombination event can only be observed if, at the time of the recombination event, the 
ancestral individual was heterozygous for ancestry. Thus, we can think of our estimated ri 
not as the true recombination Poisson Process rate, but as the rate of a thinned Poisson 
Process, where the event is only observed with probability p, where p is the probability of 
being heterozygous integrated over all generations since time of admixture. This 
probability p is unknown; we approximated it by using the current admixture proportion 
genome-wide and letting 𝑝 = 2𝑓(1 − 𝑓). By properties of thinned Poisson Process, the 
original rate before thinning is then jY

k
.  

We applied this MCMC approach to ancestry switch intervals from populations 1 
and 3, inferring rates separately for each population. We estimated hybrid rates in 5, 10, 
and 50 kb intervals and compared these maps to the X. birchmanni LD-based map (see 
Correlations between hybrid and parental maps). 
 
1.7.2 Evaluating the accuracy of the MCMC approach using simulations 

 Since this MCMC approach is a new method for inferring recombination rates in 
hybrids, we wanted to evaluate its performance. To this end, we simulated 10 Mb 
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sequences with the program macs (45), with parameters matching estimates in X. 
birchmanni. We used a similar approach as described in Materials and Methods 1.2, 
except that we used inferred recombination rates from the first 10 Mb of chromosome 1 
as the recombination map input into macs to better match the observed rates and rate 
variation in X. birchmanni. We also simulated sequences for X. malinche, setting 
divergence time between the species in units of 4Nbirchmanni generations (where Nbirchmanni 
is the effective population size of X. birchmanni at present) to 2. Because X. malinche has 
approximately one fourth the diversity levels of X. birchmanni (see Materials and 
Methods 1.3), we set the relative effective population size of X. malinche to 1/4th that of 
X. birchmanni for Nbirchmanni generations. Although PSMC results (Fig. 1) support a more 
gradual decrease in effective population size for X. malinche, this choice leads to a rough 
match to the observed number of ancestry informative markers between X. malinche and 
X. birchmanni and thus seems sensible. In the simulations, we generated a hybrid 
population between simulated X. birchmanni and X. malinche populations with mixture 
proportions of 75:25 approximately 70 generations ago (Materials and Methods 1.4, 1.5).  

Next, we sampled 500 haplotypes to generate 250 hybrid individuals and generated 
fastq files for these individuals with the program wgsim (v0.3.1-r13), with a sequencing 
error rate of 0.01. We simulated 100 bp single end reads and generated 100,000 reads per 
individual, equivalent to 1X coverage of this region (our average coverage in the real 
hybrid data). Using these simulated reads and the parental genomes, we ran MSG to infer 
local ancestry and ancestry transition intervals. Because in practice, inferred intervals in 
these simulations were better resolved than those observed in the real data, for each 
breakpoint identified in the simulated data, we sampled an interval size from the 
distribution of observed breakpoint intervals in population 1. We then applied the MCMC 
approach to infer hybrid rates. We performed 10 replicate simulations of this entire 
pipeline. 

 We used simulations to compare the performance of the MCMC approach to an 
approach where, when a breakpoint spanned multiple windows, we picked a window at 
random and placed the breakpoint in it uniformly. Since most intervals were shorter than 
50 kb, the MCMC approach was (as expected) only modestly more correlated to the true 
map at the 50 kb scale: Spearman’s ρ was 0.5 – 0.6 whereas after applying the MCMC, it 
was 0.51 – 0.65. However, at the 5 kb scale, the MCMC approach provided a substantial 
improvement over the uniform placement of breakpoints within windows: Spearman’s ρ 
was 0.14 – 0.20, while after applying the MCMC, it was 0.28 – 0.43.  
 
1.7.3 Correlations between hybrid and parental maps 

 In species without PRDM9-directed recombination, parental recombination maps 
are expected to be highly similar (Materials and Methods 1.6), and thus hybrids are 
expected to have the same underlying recombination rates as observed in the parental 
species, unless there is strong and ubiquitous selection on recombinants or BDMIs that 
involve the recombination machinery. Because the hybrid and parental maps were 
generated using different approaches, however, which vary in power and specificity, it is 
unclear how correlated maps obtained from the two approaches should be, even in the 
absence of true differences among them, and therefore it is unclear how to interpret any 
apparent differences between them. To explore this question, we performed simulations 
in which the two approaches were applied to the same underlying map. We note that our 



 
 

26 
 

simulations do not incorporate several, potentially important sources of error (e.g., 
mapping errors), so we view the expected correlations from these simulations as an upper 
bound on the expected correlations between maps.  

 We performed macs simulations as described above (Evaluating the accuracy of 
the MCMC approach using simulations). From the simulated X. birchmanni population, 
we sampled 40 haplotypes as before and generated sequences with seq-gen, then inferred 
an LD map as described in Materials and Methods 1.2. We generated the hybrid 
recombination map for each simulation as described above (in Evaluating the accuracy of 
the MCMC approach using simulations). We compared the resulting hybrid rates to 
estimates from the simulated LDhelmet map in 50 kb windows. Because we used 
Spearman’s correlation to evaluate map correlations in the real data, we also used it here. 

 Since these simulations were highly computationally intensive, we only 
performed 10 replicate simulations. However, results from these simulations suggest that 
even in this best case scenario, we only expect hybrid and LD maps to be moderately 
correlated: ρ varied from 0.5 to 0.68 across the 10 replicates. In general, simulated LD 
maps were better correlated with the true map than were hybrid maps: in comparisons of 
the LD map vs. the true map, ρ varied from 0.73-0.8 whereas in comparisons of the 
hybrid map vs. the true map, ρ ranged from 0.51 to 0.65.  

This finding justifies our choice to investigate the relationships between 
recombination rates, functional annotations and local ancestry in hybrids using the fine-
scale map obtained in X. birchmanni. Not only is this map predicted to be more reliable 
based on these simulations, it presents the advantage of being independently derived from 
the ancestry correlations that we are interested in investigating in hybrids. 

 
1.7.4 Filtering approaches applied to the hybrid maps 

 To compare inferred hybrid and parental recombination rates, we quantified the 
recombination rate in each window as the rate in that window divided by the sum of the 
rate in all windows in the genome with rate estimates for both parentals and hybrids. We 
observed that, excluding the putative large species-specific inversions on chromosome 17 
and chromosome 24 (Fig. S10), correlations between both hybrid maps and the parental 
map at the 50 kb scale were moderate (Spearman’s ρ in population 1 = 0.4 and in 
population 3 = 0.36). Although the observed correlations between hybrid and parental 
maps were somewhat lower than might be expected based on simulations (where we 
obtained a range from ρ = 0.5 to 0.68 across 10 replicates), our simulations lacked 
sources of error likely present in the real data. Further, much of the difference between 
hybrid and parental maps is predicted by local ancestry variation in the hybrid 
populations (in population 1, ρ = 0.26, p < 10-100; in population 3, ρ = 0.15, p < 10-100). 
Thus, part of the explanation may also stem from local ancestry variation in hybrids 
impacting our power to detect ancestry transitions (73).  

To evaluate whether additional filters might yield better correlations between the 
hybrid and parental maps, we tried different approaches. To this end, we focused our 
analysis on the hybrid map generated from population 1, since it is the highest resolution 
map and is slightly more strongly correlated to the parental LD map than the hybrid map 
generated from population 3. We asked if the correlation to the parental map was 
improved when requiring a breakpoint to be supported by 5, 10, or 100 markers on its 5’ 
and 3’ edges and then re-inferring rates based on these filtered breakpoints. None of these 
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approaches substantially improved the correlation between the hybrid and parental map, 
yielding a range of ρ from 0.35 to 0.41 for 100 to 5 markers, respectively. 

A switch in ancestry that is shortly followed by a reversion to the previous ancestry 
state could likewise indicate genotyping errors or gene conversion events that are 
mistaken for recombination events. We generated a version of the hybrid map for 
population 1 where we removed all such switches when one of the flanking tracts was ≤5 
kb. As above, this filtering did not improve correlations between the hybrid and parental 
maps (the resulting ρ=0.35). 

 Six individuals included in our analysis of population 1 have unusual ancestry 
(with hybrid indexes of 50%-86% of the genome derived from X. malinche, compared to 
~25% for the rest of the population); these individuals are likely descendants of recent 
migrants from upstream X. malinche populations. We inferred the hybrid map excluding 
breakpoints identified in these individuals but found that it did not affect the correlation 
between maps.  
 
1.7.5 Understanding local deviations between hybrid and parental maps 

 Although overall parental and hybrid maps are only slightly less correlated than 
expected under a best case scenario, hybrid maps in populations 1 and 3 had significantly 
lower estimated recombination rates than did X. birchmanni around the TSS, H3K4me3 
peaks identified in the testis, and CpG islands. The greatest deviation between maps was 
seen at CpG islands, where hybrids have 11-13% lower heat in 5 kb windows 
overlapping CpG islands. This signal could be indicative of selection against 
recombination events, or could be a technical artifact of differing error profiles or 
sensitivity of the methods used to generated LD or admixture-based maps. 

 To ask if our estimation methods alone could generate these types of deviations, 
we simulated the first 10 Mb of the observed swordtail map for chromosomes 1-5 in 
macs (45), following the simulation procedure described above, and inferred the parental 
and hybrid maps in 5 kb windows using LDhelmet and MSG and our MCMC-based 
approach, as in the real data. Because these simulations are computationally intensive, we 
only performed five replicate simulations of each chromosome. We then asked whether 
this procedure resulted in any deviation in inferred hybrid rates near CpG islands. We 
found that the differences in map inference approach did not result in higher inferred 
parental rates near CpG islands (Fig. S30). Although there are many sources of error that 
we did not model and could contribute to the difference between hybrid and parental 
maps at CpG islands, these results suggest that the map differences are not due to biases 
in our estimators.  

 We therefore explored other scenarios that could result in a rate depression at 
CpG islands such as the one that we observe in the real data with admix’em simulations. 
As before, we simulated a hybrid population generated from 30:70 mixture between the 
parental species and allowed admixture to occur for 70 generations. Finding no evidence 
that the estimated rate was decreased in CpG islands in the simulation scenarios 
described in Materials and Methods 1.5 with few BDMIs, we performed simulations with 
50 pairs of weakly selected BDMIs per chromosome (s=0.01; average F2 fitness ~0.9), 
with both randomly placed BDMIs and linked pairs in separate simulations (each 
interacting locus separated by 1 Mb). We also considered a scenario with a strong 
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bottleneck, where the hybrid population was formed with 200 individuals and maintained 
at this small population size.  

Simulating many selected loci resulted in a modest but significant decrease in the 
estimated recombination rate in 5 kb windows overlapping with CpG islands (when 
BDMIs were unlinked, by 0.035 ± 0.006; when they were linked, by 0.02 ± 0.005). 
Simulations of strong genetic drift also resulted in significant rate decreases near CpG 
islands (0.06 ± 0.01). Thus, some combination of selection and genetic drift could explain 
the observation that estimated recombination rates in hybrids are lower near CpG islands.  
Importantly, however, simulations of genetic drift alone did not result in elevated minor 
parent ancestry at windows overlapping with CpG islands (Fig. S31), or generate a 
relationship between recombination rate and minor parent ancestry (Fig. S25). 

1.8 Correlations in ancestry across independently formed hybrid populations 
 

 We observed local correlations in ancestry across all three independently formed 
swordtail hybrid populations (see main text, Fig. 3). To understand whether observed 
correlations in ancestry across populations are expected under different models of 
selection, we performed simulations using admix’em as described in Materials and 
Methods 1.5, simulating three hybrid populations formed by admixture of the two 
parental species (two at 25:75 mixture and one 75:25), with the same underlying selected 
loci in each set of simulations.  

 In the case of selection on hybrid incompatibilities, we expected that selection 
should induce local ancestry correlations between independently formed hybrid 
populations based on results from previous work modeling hybrid incompatibilities (59). 
Specifically, in populations with the same mixture proportions, the same loci are 
expected to fix for the major parent over time, inducing strong correlations in local 
ancestry (Fig. S6). Correlations in local ancestry are also expected for populations with 
different mixture proportions, because selection on hybrids to resolve the BDMI initially 
shifts ancestry at the loci involved in the incompatibility in the same direction, although 
to differing extents (Fig. S6; 59). This counterintuitive behavior is illustrated in Fig. S6B 
and stems from that fact that, at least initially, resolution of the BDMI involves a fixation 
event at only one of the two loci involved in the incompatibility and an increase in the 
ancestral allele frequency at the other.  

Consistent with these predictions from models of BDMIs, simulation results show 
that selection against the same incompatibilities induces positive correlations in local 
ancestry between independently formed hybrid populations, even if they differ in mixture 
proportion. Between simulated populations with the same mixture proportions (25:75 and 
25:75), positive correlations in local ancestry in 0.1 cM windows were significant at the 
5% level in 92% of 100 simulations, with Spearman’s correlation coefficients ranging 
from ρ=0.14 to 0.78. In populations with opposite mixture proportions (25:75 and 75:25), 
positive correlations were significant in 68% of the 100 replicate simulations, with 
Spearman’s correlation coefficients ranging from ρ=0.11 to 0.7 (whereas significant 
negative correlations were observed in 3% of simulations).  In practice, correlations in 
ancestry as strong as those we observed in simulations may not be expected given the 
other forces influencing ancestry variation in independently formed hybrid populations, 
such as differences in demographic history among populations. 
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 Repeating these simulations for a hybridization load scenario (as described in 
Materials and Methods 1.5), we also found positive correlations in local ancestry across 
hybrid populations with different mixture proportions. Because of the computational 
demands of these simulations, we only performed 50 simulations for each mixture 
scenario. In simulations of populations with the same mixture proportions, positive 
correlations in local ancestry were significant at the 5% level in 52% of simulations, with 
correlation coefficients ranging from 0.12 to 0.31. In simulations of populations with 
different mixture proportions, positive correlations in local ancestry were significant in 
62% of simulations, with correlation coefficients ranging 0.11-0.32. Thus, both 
incompatibility selection and selection against hybridization load could drive the cross-
population correlations in ancestry that we observe, but several other lines of evidence 
argue for selection against hybrid incompatibilities being the dominant process (Fig. 3C; 
Materials and Methods 1.5).  

 In contrast, simulations of repeated selection against minor parent ancestry in 
hybrids (e.g., due to ecological differences between the parental species) should lead to a 
distinct outcome. While local ancestry was positively correlated at the 5% level in 99% 
of simulations when comparing populations with the same mixture proportions (with 
correlation coefficients ranging from 0.15 to 0.74), negative correlations in local ancestry 
were significant in 100% of simulations comparing populations with different mixture 
proportions (with correlation coefficients ranging from -0.15 to -0.73). This finding 
suggests that ecological selection against minor parent ancestry does not explain the 
observed positive correlations in local ancestry between populations with different major 
parents. 

 

1.9 Re-analysis of previously collected data on archaic ancestry in the human 
genome 
 

One of the few other cases in which both local ancestry in the genome and fine-scale 
recombination rates are well characterized is the admixture of modern humans and 
Neanderthals. This case differs in many respects from that of X. birchmanni and X. 
malinche. For example, human-Neanderthal admixture occurred approximately 2,000 
generations ago (74) vs. fewer than 100 generations (22), so that selection has had longer 
to act on segments of minor parent ancestry. In addition, the starting mixture proportions 
were likely much more skewed, with some studies suggesting that at most ~10% of the 
genome was initially derived from Neanderthals (6, 11). However, these admixture 
events also have interesting similarities. As is the case with swordtails (Materials and 
Methods 1.3), Neanderthals had a much smaller long term effective population size than 
modern humans, and previous work has implicated this difference as a plausible cause of 
the distribution of Neanderthal ancestry in the human genome (6, 11). Specifically, a 
model of selection against weakly deleterious alleles introduced by hybridization alone 
provides a good fit to the distribution of Neanderthal ancestry along the human genome 
(6). Other work proposed instead that hybrid incompatibilities played a role in shaping 
the distribution of Neanderthal ancestry in the human genome (4, 75).  

Previous work investigating the distribution of Neanderthal ancestry in the human 
genome showed that it tends to be lower in regions linked to more coding sites (6, 11) 
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and that the strength of background selection, as measured by the B-statistic (76), is 
correlated with the frequency of Neanderthal ancestry (4, 75). However, B is an estimate 
of the strength of within-species selection against strongly deleterious mutations at linked 
sites, a phenomenon which should be operating in both parental species. As a result, it is 
not obvious a priori why it should be associated with low minor parent ancestry, apart 
from being a function of underlying features that are predicted to interact with selection 
after admixture, i.e., the local recombination rate and the presence of deleterious 
mutations. Thus, we focused our analyses directly on the local recombination rate and the 
number of linked coding bps. As with the swordtail data, we thinned the data such that 
one window was sampled every 500 kb (Materials and Methods 1.4).  

 We explored several options for quantifying Neanderthal ancestry in the human 
genome. We initially relied on estimates that have been widely used (e.g. 6, 77, 78), 
namely posterior probabilities from Sankararaman et al. (4), calling a site as Neanderthal 
when the posterior probability exceeded 0.9. However, we found that these calls differed 
substantially depending on the choice of prior on the local recombination rate 
(specifically, a rate prior based on the human LD-based genetic map, (4) versus a uniform 
recombination rate prior), raising the concern that the relationship of Neanderthal 
ancestry to recombination could reflect in part the prior. We then considered the 
proportion of Neanderthal haplotypes, obtained by averaging the frequency of 
Neanderthal haplotypes at each site in a window (from 4). These calls remained relatively 
insensitive to the choice of prior: the correlation between haplotype-based ancestry 
estimates generated from calls under a uniform rate prior versus prior from the combined 
human LD-based genetic map is ρ = 0.95 in 50 kb windows (ρ = 0.98 in 500 kb 
windows). We thus proceeded with the previously published haplotype-based measure of 
Neanderthal ancestry (from 4). We note that using haplotype-based estimates of 
Neanderthal ancestry likely reduces the power to detect Neanderthal ancestry tracts in the 
human genome (as suggested by an estimated genome-wide mixture proportion for 
Europeans (CEU) of 2.5% based on posterior probabilities versus 1.1% based on 
haplotypes). To estimate the recombination rate, we used the human LD-based genetic 
map relied on by (4), which is combined across current human populations. Results are 
reported in Table S2.  

One caveat is the greater power to detect Neanderthal ancestry tracts in some 
regions of the genome. However, if there were no true relationship of Neanderthal 
ancestry to recombination, then if anything, we would expect to see a negative correlation 
between minor parent ancestry and recombination rate, since there should be greater 
power to detect introgression in low recombination rate regions of the human genome (4). 
As discussed in the main text, our analysis instead reveals a positive relationship between 
recombination rate and Neanderthal ancestry (Fig. 2; Fig. S8).  Thus, to the extent that 
systematic differences in power contribute to the relationship, we predict that the 
underlying signal is even stronger than what we report. 

As a second approach to quantifying Neanderthal ancestry, we analyzed a call set 
developed for the diCal-admix project (79; http://dical-admix.sourceforge.net). 
Importantly, these Neanderthal ancestry calls were inferred with a uniform recombination 
prior across each chromosome. To obtain an estimate of the proportion of Neanderthal 
ancestry in a window, we used the “strict” mappability filter call set; converted posterior 
probabilities to ancestry calls (0 or 1 for Neanderthal ancestry) at a posterior probability 
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threshold of Neanderthal ancestry of 0.42; took the average ancestry over sites in the 
window for each individual and then took the average over individuals (80). We found 
that these calls were highly correlated with the haplotype-based calls of Sankararaman et 
al. (at the 50 kb scale, Spearman’s ρ = 0.88; at the 500 kb scale, ρ = 0.94), and we found 
the same qualitative relationship between Neanderthal ancestry and recombination rate 
using these ancestry calls (Table S2).  

Finally, we analyzed data from a reference-free approach for identifying archaic 
ancestry. Using archaic reference genomes will increase sensitivity to detecting 
introgressed haplotypes from populations closely related to the reference individual, but 
could introduce bias in the case of introgression from more distantly related populations. 
The approach of Skov et al. (https://github.com/LauritsSkov/Introgression-detection) uses 
a HMM applied to variants that are identified only in non-Africans relative to Africans. 
We used a posterior probability cutoff of 0.5 for data from the 1000 genomes project 
analyzed by Skov et al. (https://github.com/LauritsSkov/Introgression-detection), treating 
1 kb regions with greater than >0.5 posterior probability as introgressed from archaic 
hominins and regions <0.5 posterior probability as not, then took the average ancestry 
over sites in the window for each individual and then the average over individuals. We 
excluded regions that were not analyzed for archaic ancestry due to poor callability 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genom
e_masks/StrictMask/) or because of repeat masking 
(hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromFaMasked.tar.gz). We then 
repeated analyses as described above. We again found the same qualitative relationship 
between archaic ancestry and recombination rate alone and when accounting for the 
number of coding bps in the window (Table S2). Because different filtering approaches 
were applied to the hominin datasets in the studies described above, results reported in 
Table S2 are based on windows included in all datasets. 

 Due to rapid turnover of the fine-scale recombination landscape in species with 
PRDM9 (81-83), local recombination rates on the scale of 10s of kbs likely differ among 
modern human populations (even though at broader scales they remain similar, 81) and 
could possibly have changed in the 47–65 Kya since humans and Neanderthals are 
thought to have interbred. We therefore repeated our analysis using multiple human 
recombination maps: the deCode map for Icelandic individuals based on pedigree data, 
the Yoruba LD-based map, and an African-American admixture map (downloaded from 
http://www.well.ox.ac.uk/~anjali/AAmap/). Our results are qualitatively similar across 
maps for a range of scales: regardless of the human recombination map used, Neanderthal 
ancestry is most depleted from the regions of the genome with the lowest recombination 
rates (Table S4).   

Several groups have reported evidence for adaptive introgression of Neanderthal 
ancestry into modern human populations (4, 78, 84, 85). Because positive selection for 
Neanderthal ancestry could act as a countervailing force against genome-wide patterns of 
selection against Neanderthal ancestry, we also analyzed the relationship between minor 
parent ancestry and recombination when excluding windows in the top 1% Neanderthal 
ancestry. Interestingly, the relationship is strengthened (Fig. 2; Fig. S8). 

Local ancestry data for Denisovan introgression into human populations are also 
available (75, 86). Because levels of introgression are reported to be highest in Oceanic 
populations, we focused our analysis on data from these populations. We analyzed data 
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from Sankararaman et al. (75) and Skov et al. 
(https://github.com/LauritsSkov/Introgression-detection; 87). The approach of Skov et al. 
detects archaic ancestry tracts, then in a second step assigns an origin to the introgressed 
segments; thus, it does not initially distinguish between Neanderthal and Denisovan 
ancestry. To distinguish between these sources, we removed archaic ancestry tracts that 
are found outside of Oceanic populations, as all non-African human populations share an 
admixture event with Neanderthals (27, 88), but only Oceanic populations derive a 
substantial proportion of their genomes from admixture with Denisovans. Importantly, 
calls from Skov et al. are expected to be less sensitive to divergence between the 
Denisovan reference sequence and the hybridizing Denisovan population because of the 
reference-free approach (see above). We performed analyses as described for 
Neanderthal introgression except that for the calls from Sankararaman et al. (75), we used 
a posterior probability cutoff of 0.5, the threshold used in the original study.  

We found a significant positive relationship between Denisovan ancestry and 
recombination rate using the calls of Skov et al. (87), over all scales considered (Fig. 2; 
Table S2). Using the calls of Sankararaman et al. (75), which rely on the Denisovan 
reference, we found a much weaker but similar relationship (Table S2). 
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2 Appendix of representative commands 
 
Trimming adapter sequences from reads with cutadapt 
./cutadapt  -b AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -b 
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -b 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT -b 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT -o 
Family_father_read_1.trimmed.fq.gz -p 
Family_father_read_2.trimmed.fq.gz Father-
family_TCCGGAGA_HVF33CCXX_L007_001.R1.fastq.gz Father-
family_TCCGGAGA_HVF33CCXX_L007_001.R2.fastq.gz 

  
Mapping with bwa 
./bwa mem -t 3 -M -R 
'@RG\tID:Fatherfamily\tSM:Fatherfamily\tPL:illumina\tLB:Fatherfamilylib
\tPU:NYGCIllumina' xma_washu_4.4.2-jhp_0.1_combined-unplaced-mito.fa 
Family_father_read_1.trimmed.fq.gz Family_father_read_2.trimmed.fq.gz > 
Family-father_RG.sam 
 

Processing with picardtools 
java -jar ./picard-tools-1.118/SortSam.jar INPUT=Family-father_RG.sam 
OUTPUT=Family-father_RG.sorted.bam SORT_ORDER=coordinate 
 
java -jar ./picard-tools-1.118/BuildBamIndex.jar INPUT=Family-
father_RG.sorted.bam 
 
 

Realign indels with GATK 
java -jar ./GATK3.4/GenomeAnalysisTK.jar -T RealignerTargetCreator -R 
xma_washu_4.4.2-jhp_0.1_combined-unplaced-mito.fa -I Family-
father_RG.sorted.bam -o target_intervals_fatherfamily.list  
 
java -jar ./GATK3.4/GenomeAnalysisTK.jar -T IndelRealigner -R 
xma_washu_4.4.2-jhp_0.1_combined-unplaced-mito.fa -I Family-
father_RG.sorted.bam  -targetIntervals 
target_intervals_fatherfamily.list -o Family-
father_RG.sorted.realigned.bam  
 

Call variants with GATK 
java -jar ./GATK3.4/GenomeAnalysisTK.jar -T HaplotypeCaller -R 
xma_washu_4.4.2-jhp_0.1_combined-unplaced-mito.fa -I Family-
father_RG.sorted.realigned.bam --genotyping_mode DISCOVERY -L group1 -
stand_emit_conf 10 -stand_call_conf 30 -ERC GVCF -o Family-
father_raw_variants_group1.g.vcf  
 
java -jar ./GATK3.4/GenomeAnalysisTK.jar -T GenotypeGVCFs -R 
xma_washu_4.4.2-jhp_0.1_combined-unplaced-mito.fa --variant Family-
father_raw_variants_group1.g.vcf --sample_ploidy 2 --
max_alternate_alleles 4 --includeNonVariantSites --
standard_min_confidence_threshold_for_calling 30 -o Family-
father_GVCF_group1.g.vcf 
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Create hard-call files with custom script 
perl create_insnp_oneindiv_GATK3_4_v10.pl Family-
father_GVCF_group1.g.vcf 20 20 10 40 2 60 4 -12.5 -8.0 10 100 25 
 

Generate updated genomes 
./seqtk mutfa xma_washu_4.4.2-jhp_0.1_combined-rm-mask.fa Family-
father_allgroups_maxcov.g.vcf.insnp > Xbirchmanni_COAC-family-
father_backbonejhp_0.1_rm-mask.fa 
 

Identify Mendelian errors 
./plink-1.07-x86_64/plink --noweb --file family-genomes_group1.phy --
mendel --out group1_family 
 

Generate ancestral sequences 
./phastcons/phast-1.3/bin/phyloFit --tree 
"(((((Xmal_group1,Xbir_group1),Xcor_group1),Xmont_group1),(Xvar_group1,
Xmac_group1)),Xhel_group1)" allspecies_group1_nopoly.fa 
 

Phasing 
./shapeit_precompiled/bin/shapeit --input-ped combine_final-filter-
freq_family_population_data_group1.ped combine_final-filter-
freq_family_population_data_group1.map --input-map prior_map_group1.map 
--output-max combine_final-filter-
freq_family_group1.shapeit2.phased.haps combine_final-filter-
freq_family.shapeit2.phased.sample --duohmm -W 5 --output-graph 
duohmm.graph 
 

LDhelmet 
./LDhelmet_v1.7/ldhelmet find_confs --num_threads 10 -w 50 -o 
combine_final-filter-freq_family_group1.conf combine_final-filter-
freq_family_group1.shapeit2.phased.haps.fa 
 
./LDhelmet_v1.7/ldhelmet table_gen --num_threads 10 -c combine_final-
filter-freq_family_group1.conf -t 0.001 -r 0.0 0.01 1.0 1.0 10.0 -o 
combine_final-filter-freq_family_group1.lk 
 
./LDhelmet_v1.7/ldhelmet pade --num_threads 10 -c combine_final-filter-
freq_family_group1.conf -t 0.001 -x 11 -o combine_final-filter-
freq_family_group1.pade 
 
cut -f 4 combine_final-filter-freq_family_population_data_group1.map > 
snp_positions_birchmanni_group1.txt 
 
./LDhelmet_v1.7/ldhelmet rjmcmc --num_threads 5 -w 5 -l combine_final-
filter-freq_family_group1.lk -p combine_final-filter-
freq_family_group1.pade -b 50.0 --snps_file combine_final-filter-
freq_family_group1.shapeit2.phased.haps.fa --pos_file 
snp_positions_birchmanni_group1.txt -a ancestral.Xmal_group1-
Xhel_group1.probs_snps_probs -m mutation_matrix --burn_in 100000 -n 
1000000 -o combine_final-filter-freq_family_group1.post 
 

Run ancestry inference 
perl msg/msgCluster.pl 
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PSMC command line 
./psmc –N25 -t150 -r2 -p "4+25*2+4+6" -o xbir_COAC1.psmc 
xbir_COAC1.psmc.fa 
 
Admix’em selection file generation and simulation command line 
Rscript generate_neutral_DMI_rec_exons.R 4 0.1 
 
./admixemp admixsimul.cfg 

 
Running MCMC rate inference 
Rscript run_group1_MCMC_rate_inference.R  
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3 Supplementary Figures 
 
 

 
Fig. S1. Expected relationship between minor parent ancestry and recombination rate for 
different scenarios of selection on hybrids. Each simulation mimics the amount of real 
data; results plotted here are from the last simulation. Red points and whiskers indicate 
the mean minor parent ancestry with two standard errors of the mean determined by 
bootstrapping windows and gray points show raw data; note that the y-axis is truncated. 
A relationship between minor parent ancestry and recombination rate is not expected in a 
neutral admixture scenario (Panel A; 6% of 200 simulations were significant at the 5% 
level). In contrast, a positive correlation is expected in simulations of selection on hybrid 
incompatibilities (Fig. 1; 74% of simulations were significantly positive at the 5% level); 
in simulations of hybridization load with a lower long-term effective population size of 
the minor parent (B; 85% of simulations were significantly positive at the 5% level); or 
when there is ecological selection against minor parent ancestry (C; 90% of simulations 
were significantly positive at the 5% level). See Materials and Methods 1.5 for details of 
the simulations.  
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Fig. S2. Recombination events are elevated around promoter-like features. 
Recombination rates in the X. birchmanni LD-based map (red) and in two maps based on 
ancestry switches in hybrids (both blue) are higher around CpG islands (CGI) and 
transcriptional start sites (TSS), similar to what is observed in other species that do not 
use PRDM9-directed recombination and as expected from previous work in these 
swordtail fish (25). Gray lines show results of 500 replicate simulations jointly 
bootstrapping windows from the hybrid and parental maps. See Materials and Methods 
1.7 for a discussion of the slight rate differences between maps. 
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Fig. S3. Relationship between minor parent ancestry and recombination rate in swordtail 
hybrid populations, for different size scales. Results in the main text (Fig. 2) summarize 
the data in 50 kb windows. In A, results are shown for 100 kb windows and in B, for 250 
kb windows. Red points and whiskers indicate the mean minor parent ancestry with two 
standard errors of the mean determined by bootstrapping windows; gray points show raw 
data. Note that the y-axis is truncated. Quantile binning is for visual representation only; 
all statistical tests reported in Table S2 were performed on the unbinned data. See 
Materials and Methods 1.4 for details. 
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Fig. S4. Minor parent ancestry tends to increase in regions linked to fewer linked 
conserved base pairs. Shown here is the relationship between minor parent ancestry in a 
50 kb window and the number of linked conserved elements (from 7) within 0.1 cM of 
either side of the window. Spearman’s correlation coefficient ρ ranges from -0.09 to -
0.12, depending on the population (see Materials and Methods 1.4 and Table S5 for 
statistics for each population). The window size was chosen based on average tract length 
(Fig. S20). Points show the mean minor parent ancestry and whiskers indicate two 
standard errors of the mean, estimated from 1,000 replicates bootstrap resampling the 
data. A qualitatively similar relationship is seen for coding base pairs (Fig. S5). Quantile 
binning is for visual representation only; all statistical tests reported in Materials and 
Methods 1.4 were performed on the unbinned data. 
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Fig. S5. Minor parent ancestry tends to increase in regions linked to fewer linked coding 
bps. Shown here is the relationship between minor parent ancestry in a 50 kb window and 
the number of linked coding bps within 0.1 cM of either side of the window. Spearman’s 
correlation coefficient, calculated on raw, unbinned data, ranges from ρ= -0.05 to -0.1, 
depending on the population (see Materials and Methods 1.4 and Table S5 for details). 
The window size was chosen based on average tract length (Fig. S20). Points show the 
mean minor parent ancestry and whiskers indicate two standard errors of the mean, 
estimated from 1,000 replicates bootstrap resampling the data. A qualitatively similar 
relationship is seen for the number of linked conserved base pairs (Fig. S4). Quantile 
binning is for visual representation only; all statistical tests reported in Materials and 
Methods 1.4 were performed on the unbinned data. 
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Fig. S6. Positive correlations in ancestry among hybrid populations with different 
admixture proportions are expected as a result of “neutral” BDMIs, where derived 
genotypes in the parental species do not have a fitness advantage compared to the 
ancestral genotype. (A) Frequency changes of each locus involved in a neutral BDMI 
hybrid incompatibility pair, in a deterministic model showing two hybrid populations 
with different starting admixture proportions. The dashed line tracking ancestry at locus 1 
over time decreases in parent 2 ancestry in both populations, whereas the solid line 
tracking ancestry at locus 2 over time increases in parent 2 ancestry in both populations. 
As a result, regardless of mixture proportions, loci involved in BDMIs shift in ancestry in 
the same direction (though to differing extents; 59), resulting in correlations in local 
ancestry even between hybrid populations that differ in their initial admixture proportions 
(Materials and Methods 1.8). (B) The mechanism driving this dynamic can be seen by 
examining the evolutionary history of a hypothetical BDMI. Ancestry for parent 1 is 
highlighted in blue and for parent 2 is highlighted in red. Because ancestral and 
transitional genotypes are equally fit under the neutral BDMI model, after selection on 
hybrids purges the BDMI from the population, they are expected to be fixed for the allele 
of the major parent at one of the loci involved in the BDMI and retain minor parent 
alleles at the other locus. This resolution will lead to positively correlated changes in 
ancestry in the two populations, despite their differing mixture proportions. In the case of 
“non-neutral” BDMIs, where derived genotypes in the parental species have a fitness 
advantage compared to the ancestral genotype (89), the parental genotypes are ultimately 
expected to fix in hybrid populations (e.g., the populations will be fixed for AA-bb and 
aa-BB), but the dynamics in recently formed hybrid populations should initially be 
similar to those presented here. 
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Fig. S7. Correlation between minor parent ancestry and the local recombination rate in 
simulations of hybridization load. Red points and whiskers indicate the mean minor 
parent ancestry with two standard errors of the mean determined by bootstrapping 
windows; gray points show raw data. Note that the y-axis is truncated. Each simulation 
mimics the amount of real data; results plotted here show data from a randomly chosen 
simulation (the last one). Selection against hybrid incompatibilities, ecological selection 
against minor parent ancestry and selection against hybridization load can all induce 
positive correlations between minor parent ancestry and recombination rates (Fig. 1, Fig. 
S1). In cases where hybridization load is the source of selection on hybrids, the direction 
of the relationship between minor parent ancestry and recombination rate depends on 
which parent species has had the lower long-term effective population size. In Panel A, 
85% of 100 simulations had a significantly positive relationship between minor parent 
ancestry and rate at the 5% level. In B, 89% of 100 simulations had a significantly 
negative relationship between minor parent ancestry and rate at the 5% level. See 
Materials and Methods 1.5 for details.  
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Fig. S8. Correlation between Neanderthal ancestry and local recombination rates in the 
human genome, when filtering out windows of unusually high Neanderthal ancestry (top 
1%), which may be enriched for regions that have undergone adaptive introgression (47, 
51,56-58). In data shown here, rate and ancestry are summarized in 250 kb windows but 
results are similar across size scales (Table S2). Red points and whiskers show the mean 
minor parent ancestry with two standard errors of the mean determined by bootstrapping 
windows; gray points show raw data. Note that the y-axis is truncated. Data are quantile-
binned for visualization purposes; all statistical analyses were performed on the unbinned 
data. The resulting correlation (Spearman’s ρ = 0.23, p = 10-14) is stronger than when not 
excluding the top 1% (compare to Fig. 2).  
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Fig. S9. Correlations in local ancestry between swordtail populations 2 and 3 in 0.1 cM 
windows (Aguazarca and Tlatemaco, respectively). Local ancestry is more strongly 
correlated between hybrid swordtail populations with similar genome-wide ancestry 
proportions (Fig. 3A,B). Points show the mean ancestry and whiskers indicate two 
standard errors of the mean. Quantile binning is for visualization only; all analyses were 
performed on the unbinned data.  
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Fig. S10. Analysis of putative species-specific inversions on chromosome 17. Hybrid 
(red, blue) and parental maps (black) differ most strikingly in regions where few hybrid 
recombination events are observed—likely due to fixed inversions between species (A). 
These putative inversions can also be visualized in patterns of ancestry linkage 
disequilibrium, shown here for chromosome 17 (B). In B, red coloration indicates 
correlations in ancestry close to 1 and blue indicates correlations in ancestry close to 0.  
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Fig. S11.  Results from several implementations of Treemix. Each panel shows the 
maximum likelihood tree for swordtail species with four migration events inferred by 
TreeMix. The k parameter refers to the number of SNPs included in a window; it was set 
to 1,000 in all analyses, except for implementation shown in panel B. Arrows indicate 
inferred migration events, with the color proportional to the inferred weight of the 
migration event. Migration weights are related to the proportion of alleles in the recipient 
population derived from the migration event, and range from 0.008 to 0.09 in panel A. In 
no case is gene flow inferred between X. malinche and X. birchmanni since they split, but 
in all implementations, they both receive some gene flow from related species. 
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Fig. S12. Distributions of various quality scores for Mendelian errors identified through 
analysis of the family data (pink) versus matched non-errors from another individual in 
the family dataset (blue), at the same set of sites. These distributions were used to guide 
cutoffs in hard-call variant filtering; specifically, we modified our hard call cutoffs for the 
QD and FS metrics (see Materials and Methods 1.2). 
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Fig. S13. Phylogenetic relationships between swordtail species (5) for which genomes 
were available and of sufficient quality for inclusion when inferring the ancestral 
sequence of swordtail species. Except for X. maculatus, genome sequences are pseudo-
genomes generated by alignment to the X. maculatus reference. 
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Fig. S14. Distribution of the number of errors in ancestral sequence inference per 
simulated 1 Mb sequence in 1,000 simulations. Both Phylofit and RAxML ancestral 
sequence inference outperformed a parsimony-based approach in simulations (see 
Materials and Methods 1.2). 
  

0 500 1000 1500 2000 2500 3000

0e
+0
0

2e
-0
4

4e
-0
4

6e
-0
4

8e
-0
4

Parsimony

Number of errors

D
en
si
ty

0 50 100 150 200
0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

Phylofit

Number of errors

D
en
si
ty

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

RAxML

Number of errors

D
en
si
ty



 
 

50 
 

 
 
Fig. S15. Performance of LDhelmet in 15 replicate simulations with a block penalty of 
either 5, 20, or 50. The block penalty is the penalty imposed for switching recombination 
rates. Based on these simulations and other considerations, we used a block penalty of 5.  
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Fig. S16. Reliability of map inference in LDhat with different input data types in 15 
replicate simulations. We ran these simulations to evaluate the impact of statistical 
phasing of haplotypes on the reliability of the resulting fine-scale genetic map. We report 
Spearman’s correlation between the true and inferred maps in 50 kb windows. These 
simulations used LDhat, rather than LDhelmet as in the main analyses, because 
LDhelmet does not accommodate unphased data.  
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Fig. S17. Schematic of the approach used when evaluating the performance of LDhelmet 
under a more complex demographic history. Solid black lines show the simplified 
demographic history used in simulations (black) alongside the actual PSMC results for an 
X. birchmanni individual (blue); see Materials and Methods 1.3 for more details. 
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Fig. S18. Choosing the population mutation rate for simulations of more realistic 
demographic histories (see Fig. S17; Materials and Methods 1.3). The mode of the 
distribution of observed θ in 1,000 simulations of 10 Mb segment under this demographic 
history closely matches the observed θ in present day X. birchmanni when simulated θ is 
0.00065.  
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Fig. S19. The decrease in minor parent ancestry near hybrid incompatibility loci becomes 
more extreme and more localized over time. Shown here is average minor parent ancestry 
as a function of distance from a locus involved in a BDMI pair, sampled 10, 20, 30 and 
50 generations after hybridization in 100 admix’em simulations (58). Gray lines show 
mean minor parent ancestry from 100 replicates bootstrapping windows.  
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Fig. S20. The distribution of tracts homozygous for the minor parent in hybrid population 
1 (Totonicapa). The red dashed line indicates the median tract length (estimated to be 
~0.15 cM). This length is roughly the size scale that we focus on in analyses of linked 
coding and conserved base pairs (Materials and Methods 1.4).  
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Fig. S21. Relationship between minor parent ancestry and local recombination rate after 
thinning. Specifically, we thinned ancestry informative markers before ancestry inference 
and the SNP data before LD-based rate inference. Thinning data before MSG inference of 
ancestry (shown in Panel A) or LDhelmet inference of recombination rate (B) does not 
change the qualitative relationships between minor parent ancestry and recombination 
rate: in unthinned analyses, Spearman’s ρ = 0.12, p = 10-8 whereas in the MSG thinned 
analyses, ρ = 0.10, p = 10-4 and in the LDhelmet thinned analyses, ρ = 0.10, p = 10-4. 
Ancestry proportions and rates are summarized in 50 kb windows. Red points and 
whiskers indicate the mean minor parent ancestry with two standard errors of the mean 
determined by bootstrapping windows; gray points show raw data. Note that the y-axis is 
truncated. Quantile binning is for visual representation only; all statistical tests were 
performed on the unbinned data. 
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Fig. S22. Results considering only windows with lower predicted error rates for each 
analysis. (A) Results are shown for the 50% of 10 kb windows where ancestry was 
inferred based on exactly the same number of markers. (B) Results are shown for the 
50% of 10 kb windows with highest SNP density, where LDhelmet estimates should be 
most reliable. (C) Results are shown excluding 10 kb windows that overlap shared 
polymorphisms between X. birchmanni and X. mallinche; although shared 
polymorphisms were masked prior to ancestry inference, this analysis guards against 
higher error rates in those windows. The correlations are similar to those for the entire 
dataset: without filtering, Spearman’s ρ = 0.11, p = 10-157; with equal AIM density in 10 
kb windows, ρ = 0.12, p = 10-46; using high SNP density 10 kb windows, ρ = 0.1, p = 10-

50; and removing 10 kb windows with shared polymorphism, ρ = 0.11, p = 10-114. Note 
that in contrast to the p-values reported in Table S2, these p-values are reported based on 
all windows. Red points and whiskers indicate the mean minor parent ancestry with two 
standard errors of the mean determined by bootstrapping windows; gray points show raw 
data. Note that the y-axis is truncated. Quantile binning is for visual representation only; 
all statistical tests were performed on the unbinned data. 
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Fig. S23. Relationship between the heterozygosity (π) per bp, the population 
recombination rate, and the genetic distance to the nearest exon. Gray points show the 
raw data; red lines show a loess fit to these points. (A) As in other species, there is a 
positive relationship between π and the population recombination rate ρ/bp, summarized 
in 50 kb windows. We note that this relationship is expected from the fact that both π and 
ρ depend on the effective population size, but is also likely to reflect linked selection 
reducing diversity levels in regions of very low recombination. (B) Diversity is decreased 
within 0.05 cM of an exon, but not discernibly at farther distances. 
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Fig. S24. Predicted relationship between minor parent ancestry and the local 
recombination rate under different models of hybrid incompatibilities. Red points and 
whiskers show the mean minor parent ancestry with two standard errors of the mean 
determined by bootstrapping windows; gray points show raw data. Note that the y-axis is 
truncated. The simulations shown here mimic the amount of real data; results plotted 
show data from the last of 200 simulations. In A, results are shown for simulations in 
which BDMIs are recessive (h=0). In this case, a significant positive relationship between 
minor parent ancestry and recombination rate still arises, but less frequently, with 52% of 
200 simulations significant at the 5% level. In B, results are shown for simulations under 
a different hybrid incompatibility model. Specifically, in simulations of BDMIs shown in 
the main text (Fig. 1), we considered the case where the ancestral genotype has equal 
fitness to the derived genotypes (see Fig. S6). In contrast, under a coevolution model of 
hybrid incompatibilities, the ancestral genotype is also selected against (59).  As 
illustrated here (B), this case is also predicted to generate a positive correlation between 
minor parent ancestry and local recombination rates; there was a significant positive 
correlation between rate and ancestry at the 5% level in 92% of 200 simulations. See 
Materials and Methods 1.5 for more details on these simulations.  
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Fig. S25. Neutral simulations under additional demographic scenarios. In simulations 
with multiple pulses of admixture (A) and of a highly bottlenecked hybrid population (B), 
no relationship between minor parent ancestry and recombination is observed in the 
absence of selection. In Panel A, 8% of 200 simulations had a significant relationship 
between minor parent ancestry and recombination at the 5% level. In B, 6% of 200 
simulations had a significant relationship between minor parent ancestry and 
recombination at the 5% level. Red points and whiskers indicate the mean minor parent 
ancestry with two standard errors of the mean determined by bootstrapping windows; 
gray points show raw data. Note that the y-axis is truncated. Each simulation mimics the 
amount of data used in our analyses of swordtail populations; results plotted here show 
data from the last simulation. See Materials and Methods 1.5 for details.  
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Fig. S26. Relationships between minor parent ancestry and recombination in the presence 
of both BDMIs and hybridization load. (A) In simulations with both BDMIs and 
hybridization load in which the major parent had lower load, positive correlations 
between minor parent ancestry and recombination rate were observed in 70% of 100 
simulations at the 5% level. (B) In simulations with both BDMIs and hybridization load 
in which the major parent had higher load, positive correlations between minor parent 
ancestry and recombination rate were observed in only 6% of 100 simulations at the 5% 
level. Red points and whiskers indicate the mean minor parent ancestry with two standard 
errors of the mean determined by bootstrapping windows; gray points show raw data. 
Note that the y-axis is truncated. Each simulation mimics the amount of real data; results 
plotted here show data from the last simulation. See Materials and Methods 1.5 for 
simulation details. 
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Fig. S27. In simulations of BDMIs, minor parent ancestry is unusually low at loci 
involved in BDMIs compared to loci that are not under selection. Shown here are results 
of 500 simulations, each including one “neutral” BDMI pair (s=0.1; h=0.5). To generate 
non-BDMI loci, 500 pairs were randomly selected from the background; to generate non-
BDMI loci that further satisfy an admixture LD criterion, pairs were randomly selected 
from the background until a pair with admixture LD at p<0.05 was found. Pairs of loci 
randomly selected from the background have higher minor parent ancestry than BDMIs, 
whether or not they show a signal of admixture LD at p<0.05 (light and dark gray, 
respectively). In turn, pairs of loci involved in BDMIs have lower than average minor 
parent ancestry, whether or not they show a signal of admixture LD at p<0.05 (light and 
dark blue, respectively). Results for the real data are shown in Fig. 4. 
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Fig. S28. Comparison of average minor parent ancestry in 50 kb windows that overlap a 
transcription start site (TSS) and windows with similar GC content (within 1%) that do 
not. Neanderthal ancestry in the human genome is not significantly elevated in 50 kb 
windows that overlap with the TSS compared to windows that do not (the fold difference 
is 0.99, one-tailed p=0.65). In contrast, swordtail populations show a significant elevation 
of minor parent ancestry in windows overlapping the TSS: for population 1, the fold-
difference is 1.03, p<0.005 for population 2, the fold-difference is 1.05, p<0.005; and for 
population 3, the fold-difference is 1.02, p<0.005. See Materials and Methods 1.5 for a 
description of these analyses. Points show the mean of each group and whiskers show 
two standard errors of the mean determined by 1,000 joint bootstrap samples of the data. 
The difference is smaller than that observed for windows overlapping CGIs (Fig. 4), as 
expected from recombination rates being more elevated around CGIs than TSSs in these 
swordtail fish species (25).   
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Fig. S29. Recombination rates are not locally elevated around computationally predicted 
PRDM9 binding sites. Shown here is recombination rate in 5 kb windows as a function of 
distance from predicted PRDM9 binding motifs in the X. birchmanni genome. The 
average rate is show in blue and results of 500 replicate bootstraps resampling the data in 
gray. The Spearman’s correlation coefficient between distance from the predicted 
PRDM9 binding motif and rate is ρ = -0.01 (p=0.19). 
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Fig. S30. No evidence that observed differences between parental and hybrid 
recombination maps are due to differences in power and errors in the two approaches 
(LD-based and ancestry-based) used to infer recombination rates. Simulations of LD and 
hybrid maps based on five replicate simulations of the first 10 Mb of chromosomes 1-5 
show that the map inferences should not produce the observed depression in hybrid rates 
around CGIs (Fig. S2), at least as modeled; see Materials and Methods 1.7 for simulation 
details and discussion.  
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Fig. S31. Elevated minor parent ancestry is not expected around CpG islands due to 
strong genetic drift alone. To check whether genetic drift alone generates higher minor 
parent ancestry at windows that overlap with CpG islands, we relied on admix’em 
simulations of bottlenecked populations (described in Materials and Methods 1.5), which 
used the observed recombination rates from swordtail chromosomes 1 and 2. The non-
CpG island comparison set used here was the same set of windows used for 
chromosomes 1 and 2 in the real data. Our results suggest that genetic drift alone does not 
lead to a signal of increased minor parent ancestry around CpG islands observed in 
swordtail hybrid populations (Fig. 4). Points show average minor parent ancestry and 
whiskers indicate two standard errors from 1,000 bootstraps resampling the data. The 
number of simulations sampled was chosen to mimic the amount of real data (Fig. 4). 
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4 Supplementary Tables 
 
Table S1. Number of reads per individual, mapping statistics, and per bp coverage after 
alignment and filtering. Paired-end 150 bp reads were collected for individuals included 
for family sequencing; for all other individuals, we obtained paired-end 100 bp reads. 
 

Individual id Number of 
reads 

Number 
reads 

mapped 

Average 
coverage per 

basepair 
COAC10F 191005850 184051735 18.6 
COAC12F 191390021 185686732 21.3 
COAC14F 184842328 179344024 19.7 
COAC15F 172964665 165568247 16.7 
COAC16F 212780097 204529674 21.5 
COAC17F 210315871 202209760 18.8 
COAC19F 182415266 175069512 16.7 
COAC1F 210257267 203299687 21.9 
COAC2010F06 259945683 252095137 26.7 
COAC2010F09 162419570 153329498 15.3 
COAC2010F18 273717455 266364176 27.9 
COAC2010M01 185480458 178111891 16.1 
COAC2010M02 230737120 222223567 20.9 
COAC2010M03 263799977 255861972 26.5 
COAC7F 186498562 180913544 19.6 
COAC8F 206167003 200104405 21.3 
COAC9F 295955137 278688874 26.2 
COAC-ref 323438540 312972455 31.9 
COAC-family-father 281936948 268019429 49.4 
COAC-family-mother 240956081 229658118 43.5 
COAC-family-offspring11 199819622 190226809 36.8 
COAC-family-offspring12 212314024 203558618 38.6 
COAC-family-offspring13 166798052 159974927 31.3 
COAC-family-offspring14 243458992 233719087 43.4 
COAC-family-offspring15 166730135 159946152 31.2 
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Table S2.  Relationship between minor parent ancestry and recombination rate. 
Spearman’s correlations between average minor parent ancestry and recombination rate 
at several scales, in swordtail hybrid populations and for archaic ancestry in the human 
genome. Also shown are partial correlation results, controlling for the number of coding 
base pairs (for conserved base pairs, see Table S3). P-values were obtained after thinning 
windows, to minimize correlations among nearby windows (see Materials and Methods 
1.4).  
 

 
Population 

 

Spearman’s correlation 
between minor ancestry and rate 

 

 

Spearman’s partial correlation 
between minor ancestry and rate, 

including coding base pairs 
 

 50 kb  250 kb  500 kb  50 kb  250 kb  500 kb  
Swordtail population 1 

(Totonicapa) 
 

ρ = 0.12 
p = 10-8 

ρ = 0.13 
p = 10-6 

ρ = 0.18 
p = 10-9 

ρ = 0.12 
p = 10-8 

ρ = 0.14 
p = 10-6 

ρ = 0.18 
p = 10-10 

Swordtail population 2 
(Aguazarca) 

 

ρ = 0.11 
p = 10-5 

ρ = 0.10 
p = 10-3 

ρ = 0.09 
p = 0.001 

ρ = 0.10 
p = 10-5 

ρ = 0.10 
p = 10-3 

ρ = 0.09 
p = 0.001 

Swordtail population 3 
(Tlatemaco) 

 

ρ = 0.08 
p = 10-4 

ρ = 0.10 
p = 10-3 

ρ = 0.11 
p = 10-4 

ρ = 0.08 
p = 10-4 

ρ = 0.10 
p = 10-3 

ρ = 0.11 
p = 10-4 

Neanderthal ancestry in humans  
(80) 

ρ = 0.09 
p = 10-17 

ρ = 0.17 
p = 10-33 

ρ = 0.19 
p = 10-42 

ρ = 0.09 
p = 10-16 

ρ = 0.17 
p = 10-33 

ρ = 0.19 
p = 10-43 

Neanderthal ancestry in humans  
(4) 

ρ = 0.07 
p = 10-9 

ρ = 0.14 
p = 10-25 

ρ = 0.17 
p = 10-33 

ρ = 0.06 
p = 10-9 

ρ = 0.14 
p = 10-25 

ρ = 0.17 
p = 10-34 

Neanderthal ancestry in humans 
(87) 

ρ = 0.07 
p = 10-11 

ρ = 0.13 
p = 10-21 

ρ = 0.15 
p = 10-30 

ρ = 0.07 
p = 10-11 

ρ = 0.13 
p = 10-21 

ρ = 0.16 
p = 10-30 

Denisovan ancestry in humans 
(75) 

ρ = 0.02 
p = 0.46 

ρ = 0.04 
p = 10-3 

ρ = 0.07 
p = 10-6 

ρ = 0.02 
p = 0.62 

ρ = 0.04 
p = 10-3 

ρ = 0.07 
p = 10-6 

Denisovan ancestry in humans 
(87) 

ρ = 0.08 
p = 10-14 

ρ = 0.14 
p = 10-24 

ρ = 0.15 
p = 10-29 

ρ = 0.08 
p = 10-14 

ρ = 0.14 
p = 10-24 

ρ = 0.15 
p = 10-29 
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Table S3. Relationship between average minor parent ancestry and the recombination 
rate in partial correlation analyses including the number of conserved bps per window. 
Results for Spearman’s partial correlations between average minor parent ancestry and 
recombination rate at several size scales in three swordtail fish hybrid populations, 
including as a covariate the number of conserved bps in that window. For analysis details 
see Materials and Methods 1.4; results for the same analysis with coding bps are reported 
in Table S2. P-values are obtained after thinning windows, to minimize correlations 
among nearby windows (see Materials and Methods 1.4). 
 

 
Population 

 

Spearman’s correlation 
between minor ancestry and rate 
including conserved base pairs 

 

 50 kb  250 kb  500 kb  
Swordtail population 1 

(Totonicapa) 
 

ρ = 0.12 
p = 10-8 

ρ = 0.14 
p = 10-6 

ρ = 0.18 
p = 10-10 

Swordtail population 2 
(Aguazarca) 

 

ρ = 0.11 
p = 10-5 

ρ = 0.10 
p = 0.001 

ρ = 0.09 
p = 0.001 

Swordtail population 3 
(Tlatemaco) 

 

ρ = 0.09 
p = 10-4 

ρ = 0.09 
p = 0.001 

ρ = 0.11 
p = 10-4 
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Table S4. Spearman’s correlations between average Neanderthal ancestry and 
recombination rate, using different human recombination maps. Maps were downloaded 
from http://www.well.ox.ac.uk/~anjali/AAmap/. Correlations listed here are based on 
Neanderthal ancestry estimates from diCal-admix (79-80). P-values are obtained after 
thinning windows, to minimize correlations among nearby windows (see Materials and 
Methods 1.4). 
 

Size scale deCode map YRI LD map African-American map 
50 kb ρ = 0.06 

p = 10-9 
ρ = 0.08 
p = 10-12 

ρ = 0.07 
p = 10-12 

250 kb ρ = 0.13 
p = 10-21 

ρ = 0.17 
p = 10-36 

ρ = 0.16 
p = 10-32 

500 kb ρ = 0.15 
p = 10-28 

ρ = 0.19 
p = 10-44 

ρ = 0.18 
p = 10-50 
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Table S5. Spearman’s correlation between average minor parent ancestry in 50 kb 
windows and linked coding (or conserved bps) within 0.1 cM upstream and downstream 
of that window in swordtail hybrid populations. Note that analyses shown here are for all 
windows (i.e., not thinned); relationships become weaker and in some cases non-
significant with thinning. See Materials and Methods 1.4 for details. 

Population Minor parent ancestry and 
linked coding base pairs  

Minor parent ancestry and 
linked conserved base pairs  

Swordtail population 1 
(Totonicapa) 

 

ρ = -0.1 
p = 10-24 

ρ = -0.12 
p = 10-36 

Swordtail population 2 
(Aguazarca) 

 

ρ = -0.05 
p = 10-6 

ρ = -0.09 
p = 10-16 

Swordtail population 3 
(Tlatemaco) 

 

ρ = -0.05 
p = 10-6 

ρ = -0.1 
p = 10-24 
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Table S6. Spearman’s correlation between average minor parent ancestry and 
recombination rate excluding 50 kb windows in the lowest 25% quantile of 
recombination rate and windows in the highest 25% quantile of recombination rate. Note 
that analyses shown here are for unthinned windows (see Materials and Methods 1.4 for 
details). 

Population Exclude lowest 25% rate 
quantile  

Exclude highest 25% rate 
quantile 

Swordtail population 1 
(Totonicapa) 

 

ρ = 0.08 
p = 10-13 

ρ = 0.09 
p = 10-18 

Swordtail population 2 
(Aguazarca) 

 

ρ = 0.07 
p = 10-8 

ρ = 0.06 
p = 10-6 

Swordtail population 3 
(Tlatemaco) 

 

ρ = 0.06 
p = 10-8 

ρ = 0.07 
p = 10-11 
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Table S7.  Relationship between average minor parent ancestry and recombination rate in 
simulations, as assessed by a partial correlation analysis including the number of coding 
bps in a window. Shown are the median Spearman’s ρ from the 200 simulations (100 in 
the case of hybridization load) and the fraction of simulations that were significant at the 
5% level. In these simulations, which are described in Materials and Methods 1.5, 
selected sites were placed only in exons. P-values are obtained after thinning windows, to 
minimize correlations among nearby windows (see Materials and Methods 1.4). 

 
 
 
  

 
Simulation scenario 

 

 

Spearman’s partial correlation 
between minor ancestry and rate 

including coding base pairs 
 

 50 kb  100 kb  250 kb  
BDMI simulation 

 
 

median ρrate = 0.08 
84% significant 

 
median ρcoding = -0.05 

43% significant 
 

median ρrate = 0.08 
89% significant 

 
median ρcoding = -0.06 

74% significant 

median ρrate = 0.08 
82% significant 

 
median ρcoding = -0.09 

83% significant 

Hybridization load simulation 
 
 

median ρrate = 0.10 
87% significant 

 
median ρcoding = -0.07 

94% significant 

median ρrate = 0.12 
100% significant 

 
median ρcoding = -0.08 

97% significant 

median ρrate = 0.17 
99% significant 

 
median ρcoding = -0.15 

100% significant 
 

Ecological selection simulation 
 
 

median ρrate = 0.11 
95% significant 

 
median ρcoding = -0.07 

90% significant 

median ρrate = 0.12 
99% significant 

 
median ρcoding = -0.09 

97% significant 

median ρrate = 0.13 
99% significant 

 
median ρcoding = -0.16 

99% significant 
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Table S8. Relationships between average minor parent ancestry and the number of 
coding (or conserved) bps in physical windows and the local recombination rate. Shown 
for three swordtail fish hybrid populations is the Spearman’s partial correlation of the 
average minor parent ancestry and the number of coding or conserved bps at several size 
scales, including the recombination rate as a covariate (for details, see Materials and 
Methods 1.4). Analogous analyses of the effect of recombination rates are reported in 
Table S2 and Table S3; correlations between average minor parent ancestry and the 
number of coding bps in a genetic window are shown in Table S5. P-values shown here 
are based on all windows (i.e., not thinned; see Materials and Methods 1.4). 
 

 
Population 

 

Spearman’s correlation 
between minor ancestry and coding (conserved) 

bps including recombination rate 
 

 50 kb 250 kb 500 kb 
Population 1 

 
Coding bps 

 
 

Conserved bps 

 
 

ρ = -0.01 
p = 0.3 

 

ρ = -0.02 
p= 0.03 

 
 

ρ = -0.03 
p = 0.2 

 

ρ = -0.03 
p= 0.12 

 
 

ρ = -0.03 
p = 0.3 

 

ρ = -0.03 
p= 0.25 

Population 2 
 

Coding bps 
 
 

Conserved bps 

 
 

ρ = -0.017 
p= 0.08 

 

ρ = -0.02 
p = 0.04 

 
 

ρ = -0.03 
p = 0.2 

 

ρ = -0.05 
p = 0.02 

 
 

ρ = -0.001 
p = 0.9 

 

ρ = -0.07 
p= 0.02 

Population 3 
 

Coding bps 
 
 

Conserved bps 

 
 

ρ = 0.02 
p = 0.03 

 

ρ = -0.04 
p = 0.0003 

 
 

ρ = 0.01 
p = 0.63 

 

ρ = -0.04 
p = 0.08 

 
 

ρ = 0.001 
p = 0.9 

 

ρ = -0.06 
p = 0.08 
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