CONTRA: Contrarian statistics for controlled variable selection

Mukund Sudarshan† Aahlad Puli† Sriram Sankararaman* Rajesh Ranganath†‡
†Courant Institute, ‡Center for Data Science
New York University

Abstract

The holdout randomization test (HRT) discovers a set of covariates most predictive of a response. Given the covariate distribution, HRTs can explicitly control the false discovery rate (FDR). However, if this distribution is unknown and must be estimated from data, HRTs can inflate the FDR. To alleviate the inflation of FDR, we propose the contrarian randomization test (CONTRA), which is designed explicitly for scenarios where the covariate distribution must be estimated from data and may even be misspecified. Our key insight is to use an equal mixture of two “contrarian” probabilistic models in determining the importance of a covariate. One model is fit with the real data, while the other is fit using the same data, but with the covariate being tested replaced with samples from an estimate of the covariate distribution. CONTRA is flexible enough to achieve a power of 1 asymptotically, can reduce the FDR compared to state-of-the-art cvs methods when the covariate distribution is misspecified, and is computationally efficient in high dimensions and large sample sizes. We further demonstrate the effectiveness of CONTRA on numerous synthetic benchmarks, and highlight its capabilities on a genetic dataset.

1 INTRODUCTION

Scientific discovery often relies on identifying a subset of covariates that are most important to a response, while controlling the number of false discoveries. These selection procedures, termed controlled variable selection (CVS) (Candes et al., 2018), pose hypothesis tests for the conditional independence of each covariate \(x_j \) with the response \(y \) given the remaining covariates \(x_{-j} \):

\[
H_0 : x_j \perp y \mid x_{-j} \text{ vs } H_1 : x_j \not\perp y \mid x_{-j}
\] (1)

The advantage of performing CVS over other variable selection methods is the explicit control of the false discovery rate (FDR). Since a ground truth set of covariates is usually unknown, scientists can specify a nominal error rate \(\tau \) for selecting important covariates, and can expect no more than \(\tau\% \) of their discoveries to be false.

Many widely used methods to perform CVS, however, rely on strong assumptions about the population conditional distribution \(q(y \mid x) \) to provide guarantees for FDR control (Benjamini et al., 2009; Bunea et al., 2006) in finite samples. To relax these assumptions, Candes et al. (2018) introduce the conditional randomization test (CRT) framework, which facilitates FDR control assuming access to the covariate distribution. Tansey et al. (2018a) extend CRTs with holdout randomization tests (HRTs): easy to compute and powerful CVS test statistics that use black-box models \(\hat{q}_{\text{model}}(y \mid x) \).

Given a training set \((X, Y)\) and a test set \((X', Y')\), the HRT first fits model \(\hat{q}_{\text{model}}(y \mid x) \) using \((X, Y)\), then generates a dataset \(X' \) of “null” variables. The \(j \) coordinate of the \(i \)th sample of \(X' \), \(x_{j}^{(i)} \), is drawn from the population conditional distribution \(q(x_j \mid x_{-j}) \). The HRT then compares the loss \(\mathcal{L} \) of \(\hat{q}_{\text{model}} \) between two datasets: (a) \((X', Y')\), and (b) \((U_{j}^{(m)} \mid Y')\): a set identical to \((X', Y')\), but with samples of the \(j \)th covariate replaced with those from \(X' \). To assess the importance of covariate \(x_j \), a p-value is computed by repeating this comparison \(M \) times with a resampled \(U_{j}^{(m)} \):

\[
\frac{1}{M+1} \left(1 + \sum_{m=1}^{M} \mathbb{1}\{ \mathcal{L}(X', Y') \geq \mathcal{L}(U_{j}^{(m)}, Y') \} \right).
\] (2)

If this p-value is below a user-specified significance threshold, the \(j \)th covariate is deemed important for
The issues discussed so far suggest a set of desiderata will be closer to where values and ultimately fails to control the number of dimensions and large sample sizes. \[\hat{y} \text{ satisfies the swap property (3): for any coordinate } j, \]

\[[\hat{x}_j, \hat{x}_{-j}] \overset{d}{=} [x_j, x_{-j}], \]

where \(d \) indicates equality in distribution.

In practice, a few challenges exist with the HRT. First, the choice of performance metric can affect the power of the test to select important covariates. Second, the population distribution \(q(x_j | x_{-j}) \) is likely unknown and must be estimated from data. If null variables are sampled from estimated distributions, they may not satisfy the swap property (3) exactly. As a result, \(L(X', Y') \) may be consistently lower than \(L(U_j^{(m)}, Y') \), especially if \(\hat{q}_{model} \) exhibits spurious dependence on a null covariate: a likely occurrence as shown by \(\hat{e} \). As a result, the HRT tends to deflate null \(p \)-values and ultimately fails to control the number of false discoveries.

In attempt to circumvent this issue, Tansey et al. (2018a) introduce calibrated HRTs, which reweight terms in the \(p \)-value computation. These weights are learned by fitting \(B \) conditional distribution estimators \(\{q_{cc}(x_j | x_{-j})\}_{B=1}^B \), each using a different bootstrap of the data. Using these estimators, the authors weight the \(m \)th term in the \(p \)-value computation

\[
w^{(m)}(m) = \begin{cases} \hat{q}_{cc}^{(l)}(x_j | x_{-j}) & \text{if } L(x, y) < L(\hat{x}_j^{(m)}, x_{-j}, y) \\ \hat{q}_{cc}^{(u)}(x_j | x_{-j}) & \text{otherwise} \end{cases}
\]

where \(\hat{q}_{cc}^{(l)} \) and \(\hat{q}_{cc}^{(u)} \) are the lower and upper quantiles of the \(B \) estimators respectively. Intuitively, this reweighting of the \(p \)-value computation aims to make null \(p \)-values larger and the non-null \(p \)-values smaller. However, the effectiveness of this method is diminished as the sample size increases. This is because the bootstrapped interval shrinks as sample size increases, and the lower and upper quantile estimators \(\hat{q}_{cc}^{(l)} \) and \(\hat{q}_{cc}^{(u)} \) will be closer to \(\hat{q}_{cc}^{(1)} \), meaning \(w^{(m)} \) is close to 1 and has no impact on eq. (2). So, if the \(\hat{q}_{cc} \) models are misspecified, the ability of this technique to sufficiently calibrate \(p \)-values is reduced. Further, the number of estimators \(B \) is often large: Tansey et al. (2018b) set \(B = 100 \) in their experiments. This makes calibrated HRTs computationally expensive in high dimensions.

The issues discussed so far suggest a set of desiderata for any new CVS procedure. (1) It must be flexible enough to achieve a power of 1 asymptotically. (2) It must yield higher \(p \)-values than an HRT when the swap property in eq. (3) is violated. (3) It must be computationally efficient when performing CVS in high dimensions and large sample sizes.

Related Work. CVS methods have been in the literature for a while, but have traditionally made strong assumptions about the \(q(y | x) \) distribution to control FDR in finite samples (Benjamini et al., 2009; Bunea, 2006). To relax some of these assumptions, Candes et al. (2018) introduced the CRT. The CRT can control FDR in finite samples, but requires the generation of null variables that satisfy the swap property (3) exactly. Katsevich and Ramdas (2020) show that using the population distribution \(q(y | x) \) to evaluate \(L(X', Y') \) is the uniformly most powerful statistic for a CRT. In practice, they suggest fitting estimators \(\hat{q}_{model}(y | x) \) to compute this statistic. However, running CRTs with such statistics would be computationally infeasible as new models need to be fit to each null dataset sampled.

To address the generation of null variables, Bellot and van der Schaar (2019) demonstrate the utility of generative adversarial networks (GANS) in modeling each \(\hat{q}_{cc}(x_j | x_{-j}) \). Barber et al. (2020) provide a theoretical analysis of knockoff methods that use \(\hat{q}_{cc} \) models and show that a sufficient condition for FDR control is if \(\hat{q}_{cc} \) is \(\epsilon \)-close in KL to \(q(x_j | x_{-j}) \). However, the authors do not provide guidance on CRTs.

Liu and Janson (2020) introduce a faster version of the CRT: the distilled conditional randomization test (DCRT). The DCRT distills the information \(x_{-j} \) contains about \(y \) in a low dimensional representation to create model-based test statistics that depend only on this distilled information. This reduces the computational cost of fitting \(\hat{q}_{model} \) on each null dataset sampled. However, the DCRT algorithm implicitly assumes that there are either no interactions between \(x_j \) and \(x_{-j} \) in the generating process for \(y \), or that the distillation process can itself be used as a heuristic measure of variable importance. The latter assumption may be problematic since the goal of CVS is to identify important covariates. Further, it relies on access to each \(q(x_j | x_{-j}) \), which as discussed earlier can be an issue.

Tansey et al. (2018a) propose the HRT, which uses the performance of \(\hat{q}_{model} \) on held-out data as a CRT test statistic. This procedure places no assumptions on the distribution of \(y | x \), and is highly computationally efficient. Unfortunately, the performance of the HRT is severely impacted by the quality of the null variables. If null variables are estimated from finite data and do not satisfy the swap property eq. (3) exactly, HRTs deflate \(p \)-values and violate FDR control. To combat this issue, Tansey et al. (2018a) propose an HRT calibration procedure. However, the effectiveness of the method decreases with sample size as discussed earlier.

Our contribution. To address the challenges faced by CRTs and HRTs, we present the contrarian random-
ization test (CONTRA): a cvs procedure based on CRTs that uses the log probability of a mixture of two “contrarian” models as a cvs test statistic. This mixture consists of a model fit to the true data and a model fit to the same data, but with the jth covariate swapped out for null data. Our contributions can be summarized as follows. (1) We explore the theoretical properties of CONTRA and prove that it can control the FDR in finite samples, and that despite using “contrarian” models CONTRA achieves an asymptotic power of 1. (2) We discuss how CONTRA can yield higher p-values than the HRT when the swap property in eq. (3) is violated, improving FDR control. (3) We show that CONTRA is computationally efficient compared to calibrated HRTs and requires far fewer model evaluations. (4) We study CONTRA on several synthetic and real datasets. Across each study, CONTRA exhibits superior FDR control over multiple baselines even when the swap property is violated.

2 BACKGROUND

In this section we review holdout randomization tests (HRTs), then discuss their pitfalls in detail. Let $x \in \mathbb{R}^d$ be a vector of covariates, $y \in \mathbb{R}$ be a response, and $q(x, y)$ be the generating distribution over x and y. Let $(X, Y) := \{(x^{(i)}, y^{(i)})\}_{i=1}^{n_{\text{train}}}$ be a training set of size n_{train}, and (X', Y') be a test set of size n_{test}. Each sample $(x^{(i)}, y^{(i)})$ in these datasets is drawn iid from $q(x, y)$. Briefly, the HRT tests the hypothesis in eq. (1) for each covariate: the conditional independence of each x_j with y having observed all other covariates x_{-j}. Using a user-specific FDR threshold τ, it selects a set of covariates \hat{S}, where FDR is defined with respect to the set of null covariates S_{null}:

$$\text{FDR} := \mathbb{E}_{X, Y} \left[\frac{|\hat{S} \cap S_{\text{null}}|}{|S|} \right].$$

HRT procedure. First, the HRT fits a model $\hat{q}_{\text{model}}(y \mid x)$ using (X, Y), and computes a statistic that uses \hat{q}_{model}’s empirical loss L on test set (X', Y'). Conditioned on the test set, the HRT samples M “null” datasets $(X'^{(m)})_{m=1}^{M}$. Each dataset $X'^{(m)}$ consists of n_{test} samples where the jth component of a sample $x'^{(m)}_j$ is drawn from the conditional $q(x_j \mid x_{-j})$. A set of M statistics $\{L(U'^{(m)}_j, Y')\}_{m=1}^{M}$ is computed where $U'^{(m)}_j$ is a copy of X', but with the jth column swapped with that of $X'^{(m)}$. Finally, the importance of each x_j is assessed using the p-value computation in eq. (2).

Under the null hypothesis for x_j, the swap property eq. (3) is satisfied by definition. As a result, the sequence:

$$T := \{L(U'^{(1)}_j, Y'), \ldots, L(U'^{(M)}_j, Y'), L(X, Y')\}$$

is exchangeable, so p-values computed using eq. (2) stochastically will dominate a Uniform(0,1) distribution (Tansey et al., 2018a). Such p-values are sufficient to control the FDR at a nominal rate using standard multiple testing corrections like Benjamini and Yekutieli (2001) (these are summarized in appendix B).

Under the alternate hypothesis, if $L(X', Y')$ is typically smaller than $L(U'^{(m)}_j, Y')$, the HRT will yield low p-values. The advantage of this property is that the power (the probability of selecting non-null covariates) depends entirely on how well q_{model} models $q(y \mid x)$. Using a flexible model class can yield HRTs that have an asymptotic power of 1, meaning the important covariates are never missed.

Issues with HRTs in practice. While HRTs are theoretically sound, they are not without flaw in practice. The distributions $q(x_j \mid x_{-j})$ used to generate $U'^{(m)}_j$ are rarely known and must be estimated from data. If an estimated complete conditional $\hat{q}_{\text{ec}}(x_j \mid x_{-j})$ is not equal to the true conditional, the FDR of an HRT will likely be inflated.

This occurs for the following reason. Since \hat{q}_{model} is fit using a finite training set, it may exhibit spurious dependence on a null covariate x_j due to dependence with a non-null covariate x_k. When \hat{q}_{model} is evaluated on an out-of-distribution set $(U'^{(m)}_j, Y')$, it will likely exhibit higher loss, regardless of whether or not the null hypothesis is true. In these situations, the HRT will artificially deflate the p-values computed using eq. (2). So, the HRT procedure will inflate FDR unless either $\hat{q}_{\text{model}}(y \mid x) = q(y \mid x)$, or $\hat{q}_{\text{ec}}(x_j \mid x_{-j}) = q(x_j \mid x_{-j})$.

Tansey et al. (2018a) acknowledge this issue, and introduce a calibration procedure to correct for this behavior. However, as discussed earlier, this bootstrap-based calibration technique is ineffective in large sample sizes. Thus, it is still unclear how to leverage the HRT to yield an empirical procedure that retains the HRT’s high power, produces higher p-values than the HRT despite poor q_{ec} models, and is computationally efficient.

3 CONTRARIAN STATISTICS

The primary goal of this section is to detail a procedure that is able to achieve a power of 1 asymptotically, while better controlling the FDR than HRTs when null variables must be estimated from data. We motivate CONTRA with the following intuition. The fundamental issue with HRTs is that null covariates drawn from
estimated distributions can cause the loss $L(\mathbf{X}',\mathbf{Y}')$ to be lower than $L(\mathbf{U}_j^{(m)},\mathbf{Y}')$ even if the jth covariate is not important to y. This is because \hat{q}_{model} performs worse on the dataset $(\mathbf{U}_j^{(m)},\mathbf{Y}')$, which is not equal in distribution to $(\mathbf{X}',\mathbf{Y}')$. One solution to this problem is to bring the true and null losses closer together. By using a “contrarian” model \hat{q}_{null} – one that performs better than \hat{q}_{model} on $(\mathbf{U}_j^{(m)},\mathbf{Y}')$ but worse on $(\mathbf{X}',\mathbf{Y}')$ – p-values computed using eq. (2) can be made higher.

Multiple testing correction procedures will then select fewer covariates, thus lowering the FDR.

In the next few sections, we will introduce CONTRA, a procedure to build such contrarian models, then discuss its useful theoretical and empirical properties.

Building a contrarian test. Let (\mathbf{X},\mathbf{Y}) be a training set of size n_{train}, and $(\mathbf{X}',\mathbf{Y}')$ be a test set of size n_{test}. Each sample $(\mathbf{x}^{(i)},y^{(i)})$ in these datasets is drawn iid from $q(\mathbf{x},y)$. CONTRA first fits a probabilistic model $\hat{q}_{\text{model}}(y \mid x)$ to (\mathbf{X},\mathbf{Y}), and a set of conditional distribution estimators $\{\hat{q}_{\text{mix}}^{(j)}(x_j \mid x_{-j})\}_{j=1}^d$ using \mathbf{X}. Then, CONTRA generates $M+1$ null datasets. One to train models: \mathbf{X}, and M to compute p-values: $\{\mathbf{X}^{(m)}\}_{m=1}^M$. The jth coordinate of each element $\mathbf{x}^{(j)}$ in \mathbf{X} is drawn from the estimated $\hat{q}^{(j)}_{\text{mix}}(x_j \mid x_{-j})$ conditional on the ith training sample in \mathbf{X}. Each $\mathbf{X}^{(m)}$ is generated the same way, but conditioned on the test set \mathbf{X}' instead.

The next step in CONTRA is to fit a set of d probabilistic models $\{\hat{q}^{(j)}_{\text{null}}(y \mid \mathbf{x}_j, x_{-j})\}_{j=1}^d$. Each model $\hat{q}^{(j)}_{\text{null}}$ is fit using the data $(\mathbf{U}_j,\mathbf{Y})$, where \mathbf{U}_j is identical to \mathbf{X}, but with the jth column of \mathbf{X} replaced with the jth column of \mathbf{X}. These models will serve as the basis for our contrarian models $\{\hat{q}^{(j)}_{\text{mix}}\}_{j=1}^d$, where

$$
\hat{q}^{(j)}_{\text{mix}}(y \mid x) := \frac{1}{2}\left(\hat{q}_{\text{model}}(y \mid x) + \hat{q}^{(j)}_{\text{null}}(y \mid x)\right).
$$

Each $\hat{q}^{(j)}_{\text{mix}}$ is a mixture of the model fit to the true data \hat{q}_{model}, and the model fit to the null data \hat{q}_{null} for the jth covariate.

To test the conditional independence of each covariate x_j with y conditioned on x_{-j}, CONTRA first computes the following test statistic using the test set:

$$
\ell^{(j)}(\mathbf{X}',\mathbf{Y}') = \sum_{i=1}^{n_{\text{test}}} -\log \hat{q}^{(j)}_{\text{mix}}(y = y^{(i)} \mid x = x^{(i)}).
$$

Finally, a computation similar to eq. (2) is used to compute p-values for each covariate:

$$
\frac{1}{M+1} \left(1 + \sum_{m=1}^M 1\left\{\ell^{(j)}(\mathbf{X}',\mathbf{Y}') \geq \ell^{(j)}(\mathbf{U}_j^{(m)},\mathbf{Y}')\right\}\right)
$$

where $\mathbf{U}_j^{(m)}$ is a copy of \mathbf{X}', but with the jth column swapped with that of $\mathbf{X}_j^{(m)}$.

Intuitively, the use of $\hat{q}^{(j)}_{\text{null}}$ over \hat{q}_{model} will decrease the gap between $\ell^{(j)}(\mathbf{X}',\mathbf{Y}')$ and $\ell^{(j)}(\mathbf{U}_j^{(m)},\mathbf{Y}')$. This is because the mixture of \hat{q}_{model} and \hat{q}_{null} will perform worse on the set $(\mathbf{X}',\mathbf{Y}')$, but better on $(\mathbf{U}_j^{(m)},\mathbf{Y}')$. At first glance, this seems to mitigate the FDR control issue of HRTs but at the cost of power to select non-null covariates.

In the next few sections, we show that CONTRA retains the most important property of the HRT: finite sample FDR control when the null variables satisfy the swap property in eq. (3). Despite using contrarian models, CONTRA achieves power 1 asymptotically when the model distributions \hat{q}_{model} and $\hat{q}_{\text{null}}^{(j)}$ converge in probability to $q(y \mid x)$ and $q(y \mid x_{-j})$.

3.1 CONTRA controls FDR and achieves power 1

To prove properties about CONTRA’s FDR and power, we discuss the p-values produced by CONTRA.

Finite sample FDR. Procedures that control the FDR require null p-values to exhibit stochastic dominance over a Uniform$(0,1)$ random variable (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001).

Proposition 1. Null p-values p_j produced by CONTRA on a test dataset $(\mathbf{X}',\mathbf{Y}')$ will stochastically dominate $u \sim \text{Uniform}(0,1)$ for any covariate x_j that is independent of response y having observed the other covariates x_{-j}.

The proof of prop. 1 can be seen from the fact that CONTRA is a variant of the CRT. We show this formally in appendix A.1, but outline a sketch here. We note that for each null covariate x_j, the (\mathbf{X},\mathbf{Y}') is equal in distribution to any null dataset $(\mathbf{U}_j^{(m)},\mathbf{Y}')$. As a result, $\ell^{(j)}(\mathbf{X}',\mathbf{Y}')$ is equal in distribution to $\ell^{(j)}(\mathbf{U}_j^{(m)},\mathbf{Y}')$. Since the distribution functions of the test and null statistics are equal, they share the same cumulative distribution function (CDF). We can then show that the p-value computation in eq. (4) will yield a random variable whose CDF is always greater than or equal to the CDF of a uniform random variable: the definition of stochastic dominance.

Asymptotic power of 1. The power of a CVS procedure is the probability that an important covariate x_j is selected. An important covariate x_j is selected only when its p-value is below a certain threshold. Intuitively then, the lower the p-value, the more likely x_j is to be selected.
Proposition 2. If \(\hat{q}_{\text{model}}\) and \(\hat{q}_{\text{null}}^{(j)}\) converge in probability to distributions \(q(y | x)\) and \(q(y | x_j)\) respectively, the CONTRA \(p\)-value for an important covariate \(x_j\) will converge in probability to 0 in the limit of the sample size, thus yielding a method with power 1.

The proof sketch is as follows. We know that \(\hat{q}_{\text{null}}^{(j)}\) converges in probability to \(q(y | x_j)\) since \(\bar{x}_j\) is generated specifically to be independent of \(y | x_j\). We then analyze the difference of the two inner terms of the \(p\)-value computation in eq. (4) by showing that

\[
\ell^{(j)}(X', Y') - \ell^{(j)}(U_j^{(m)}, Y') < 0.
\]

We show that an upper bound for this difference is the sum of two negative \(KL\) terms, which will be strictly negative when the null hypothesis is not true. The proof is shown in appendix A.2.

Prop. 2 highlights a noteworthy property of CONTRA. Despite using \(\hat{q}_{\text{mix}}^{(j)}\), which is designed intentionally to exhibit higher loss than \(\hat{q}_{\text{model}}\) on the test set, the asymptotic guarantees of CONTRA are just as strong as those of any HRT. While it is theoretically possible for HRTs to enjoy higher power in small sample sizes, we will soon show empirically that this difference in power is negligible.

3.2 CONTRA prevents FDR inflation

We have thus far seen that CONTRA preserves the useful attributes of HRTs: finite sample FDR control when \(\hat{q}_{\text{null}}^{(j)}(x_j | x_j) = q(x_j | x_j)\) and an asymptotic power of 1. In this section, we will discuss the primary advantages of CONTRA over the HRT that make it a useful empirical procedure: (a) its null \(p\)-values are higher than those of the HRT when the swap property is violated, and (b) it is still computationally efficient with respect to HRTs.

Higher null \(p\)-values. To highlight the main pitfall of HRTs in practice, consider the following scenario. Let \(x_k \neq x_j\) be two covariates that have high mutual information, but only \(x_k\) is in the Markov blanket of the response \(y\). In finite samples, \(\hat{q}_{\text{model}}\) can exhibit spurious dependence on \(x_j\) (Efron, 2012). As a result, if the estimated \(\hat{q}_{\text{null}}^{(j)} \neq q(x_j | x_j)\), the loss of \(\hat{q}_{\text{model}}\) on \((X', Y')\) will typically be less than its loss on \((U_j^{(m)}, Y')\), even when \(x_j\) is not important to \(y\). This is because the performance of \(\hat{q}_{\text{model}}\) will suffer when it is evaluated on a distribution other than the one being trained, as studied in the domain adaption literature (Crammer et al., 2008; Daumé III, 2009). In these situations, the resulting \(p\)-values will be deflated, leading to a violation of FDR control.

Contrarian models prevent deflated \(p\)-values. To understand how CONTRA does so, consider the loss of \(\hat{q}_{\text{mix}}^{(j)}\) on each of \((X', Y')\) and \((U_j^{(m)}, Y')\). The mixture \(\hat{q}_{\text{mix}}^{(j)}\) contains \(\hat{q}_{\text{null}}^{(j)}\), which is explicitly fit to data containing samples from \(\hat{q}_{\text{null}}^{(j)}\), and thus performs better than \(\hat{q}_{\text{model}}\) on \((U_j^{(m)}, Y')\). Additionally, the inclusion of \(\hat{q}_{\text{null}}^{(j)}\) in \(\hat{q}_{\text{mix}}^{(j)}\) will also result in worse performance than \(\hat{q}_{\text{model}}\) on \((X', Y')\). Consequently, the indicator function in the CONTRA \(p\)-value computation (4) will be 1 with greater probability than the inner term of the HRT \(p\)-value (2) across datasets \((X', Y'; U_j^{(m)})\).

A further advantage of using \(\hat{q}_{\text{mix}}^{(j)}\) over \(\hat{q}_{\text{model}}\) in practice is observed when the supports of \(\hat{q}_{\text{null}}^{(j)}\) and \(q(x_j | x_j)\) do not match. In such cases, the log-likelihood of \(\hat{q}_{\text{null}}^{(j)}\) is not well-defined, while the log-likelihood of \(\hat{q}_{\text{mix}}^{(j)}\) is well-defined. This relates to the theoretical analysis of Barber et al. (2020), who show that the empirical \(KL\) between \(q(x_j | x_j)\) and \(\hat{q}_{\text{null}}^{(j)}\) bounds the FDR in the case of knockoffs. See appendix D for a full discussion.

Computational efficiency. CONTRA requires an estimator \(\hat{q}_{\text{model}}(y | x)\) for \(q(y | x)\) fit using training data \((X, Y)\). For each covariate \(x_j\), it also requires a conditional model \(q_{\text{mix}}^{(j)}(x_j | x_j)\), and a single null model \(\hat{q}_{\text{null}}^{(j)}(y | \bar{x}_j, x_j)\) fit using \((U_j, Y)\), where \(U_j\) is a copy of \(X\) but with the \(j\)th column replaced with samples from \(q_{\text{null}}^{(j)}\). This means there are \(2d+1\) models fit in total.

To compute \(p\)-values using these models and a test set \((X', Y')\), \(M\) null datasets \(\{X_j^{(m)}\}_{m=1}^{M}\) must be sampled. For each covariate, \(\hat{q}_{\text{mix}}\) must be evaluated on the test sets to compute loss \(\ell^{(j)}\). This results in a total of \(2dM\) model evaluations, as there are \(M\) null replications for each of the \(d\) covariates, and \(\hat{q}_{\text{mix}}\) consists of both \(\hat{q}_{\text{model}}\) and \(\hat{q}_{\text{null}}^{(j)}\). It is worthy to note, in addition, that the computations required for the \(j\)th covariate are independent of those required for all other covariates, making CONTRA embarrassingly parallel.

In comparison to CONTRA, HRTs still need to fit \(d+1\) models (\(\hat{q}_{\text{model}}\) and \(\{q_{\text{null}}^{(j)}\}_{j=1}^{d}\)), and also sample \(M\) null datasets. However, since the HRT loss only involves \(\hat{q}_{\text{model}}\), a total of \(dM\) model evaluations on the test sets are required.

Thus, CONTRA is able to lessen the FDR compared to HRTs when \(q_{\text{null}}^{(j)} \neq q(x_j | x_j)\) at the cost of only a constant factor increase in the number of models fit and evaluated. This makes CONTRA a compelling method in practice.
4 EXPERIMENTS

We analyze the performance of CONTRA on several synthetic and real datasets and compare it to several well-studied CVS baselines.

Baselines. We compare CONTRA to popular CRT-based CVS methods. Recall that the \hat{q}_{model}-based CRT statistic discussed by Liu and Janson (2020) requires $O(M)$ models to be fit for every covariate (Tansey et al., 2018a). This makes it highly impractical to use with model-based test statistics as discussed in this paper. As a result, we use CRTs with the computationally efficient marginal correlation statistic, which involves a p-value computation (2) using

$$L(X', Y') = \sum_{i=1}^{n_{\text{test}}} (x_j^{(i)} - \bar{x}_j)(y^{(i)} - \bar{y}),$$

where \bar{x}_j and \bar{y} are the sample averages of x_j and y respectively computed from the training set (X, Y). We term this the CORR-CRT. For HRTs, we use two different model-based statistics:

$$L_1(X', Y') = \sum_{i=1}^{n_{\text{test}}} -\log \hat{q}_{\text{model}}(y = y^{(i)} | x = x^{(i)})$$

$$L_2(X', Y') = \frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} \mathbb{1}(\hat{y}(i) \neq y^{(i)})$$

The statistic L_1, termed the LL-HRT, is the negative log-likelihood of the test set using \hat{q}_{model}. The statistic L_2 termed the 01-HRT, measures the misclassification rate of \hat{q}_{model} on the test set when y is a discrete random variable. We exclude comparisons to calibrated HRTs, as they take many times as long to run. Fitting at least 100 \hat{q}_{model} models for every covariate, as suggested by code from Tansey et al. (2018b), proved to be significantly slower than other CVS methods for the synthetic experiments, and computationally infeasible for a high-dimensional genomics task.

4.1 Synthetic data experiments

Each experiment involving a synthetic dataset uses the following setup. First, we generate a training dataset (X, Y) of n_{train} samples and a held-out test set (X', Y') of n_{test} samples from data distribution $q(x, y)$. Each sample of covariates $x^{(i)} \in \mathbb{R}^d$, and the responses $y^{(i)} \in \{0, 1\}$.

Next, we create d conditional models: one $\hat{q}_{\text{cc}}^{(j)}(x_j | x_{-j})$ for each $j \in \{1, ..., d\}$. Since we need to be able to sample from each $\hat{q}_{\text{cc}}^{(j)}$, we implement neural histogram estimators (Miscouridou et al., 2018), which are flexible approximations to conditional densities. Each $\hat{q}_{\text{cc}}^{(j)}$ is a two-layer fully connected networks with 32 units in each layer, and a softmax output with K classes. To fit $\hat{q}_{\text{cc}}^{(j)}$, we first bin the jth column of X by value into K bins, then fit the neural network to predict the bin of $x_j^{(i)}$ given $x_{-j}^{(i)}$. Each neural network is trained with the cross-entropy loss using SGD. In our experiments, we use $K = 20$. 18 of the bins in $\hat{q}_{\text{cc}}^{(j)}$ are uniformly spaced between the 5th and 95th quantiles of each x_j. The remaining two bins represent any samples below the 5th quantile, or above the 95th quantile. To generate samples from $\hat{q}_{\text{cc}}^{(j)}$, we use the median value of training samples in the bin that corresponds to the network’s prediction given $x_j^{(i)}$.

For each of \hat{q}_{model} and \hat{q}_{null}, we use random forests with 100 trees fit to the training set. In general, we suggest using the model, parametric or nonparametric, that performs best on a validation split of (X, Y) for high power.

Finally, we compute p-values for each of CONTRA, CORR-CRT, LL-HRT, and 01-HRT. A p-value threshold is obtained using the Benjamini and Hochberg (1995) procedure to select important covariates at a pre-specified FDR. We run each experiment on a 16-core CPU with 64GB of memory.

Benchmark datasets. Our tests on four different synthetic datasets highlight differences between each CVS approach. Datasets in this section consists of $N = 2000$ samples, and $d = 20$ covariates, unless otherwise specified. We use 70% of the data as a training set to fit each $\hat{q}_{\text{cc}}^{(j)}$, \hat{q}_{model}, and \hat{q}_{null}. We use the remaining 30% to compute p-values.

[orgn, orgn-c]: As a first example, we test the case where y is a nonlinear function of x, we use the orgn and orgn-c datasets (Chen et al., 2018). The data is generated in the following manner:

$$x \sim \mathcal{N}(0, \Sigma)$$

$$y = \begin{cases}
1 & \text{if } \exp(\sum_{j=1}^{\ell} x_j^2 - \ell) > 0.5 \\
0 & \text{otherwise}
\end{cases}$$

where Σ is the 20-dimensional identity in the case of orgn. For orgn-c, we set all off-diagonals to 0.2, and set diagonal values to 1. The variable ℓ controls the number of important covariates, which we set to 4 for both of these experiments.

[xor, xor-c]: The choice of test statistic can impact power when covariates on their own are not informative
Table 1: CONTRA achieves highest FCAUC ratios on synthetic data benchmarks. (Scores closer to 1 are better). While both CONTRA and the HRTs achieve similar power, the HRTs achieve worse FDP, yielding lower FCAUC ratios.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>orng</th>
<th>orng-c</th>
<th>xor</th>
<th>xor-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRA</td>
<td>0.95</td>
<td>1.00</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>01-HRT</td>
<td>0.94</td>
<td>0.94</td>
<td>0.95</td>
<td>0.92</td>
</tr>
<tr>
<td>LL-HRT</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td>CORR-CRT</td>
<td>0.22</td>
<td>0.35</td>
<td>0.45</td>
<td>0.38</td>
</tr>
</tbody>
</table>

but together provide information. To explore this, we design the xor and xor-c datasets. For xor and xor-c, we first sample \(x \) in the same way as orng and orng-c respectively. An affine transformation is then applied to each sample, and \(y \) is generated in the following manner:

\[
\begin{align*}
 & s_1, s_2 \sim 4\text{-Rademacher}(0.5) \\
 & (x_1, x_2) \leftarrow (x_1 + s_1, x_2 + s_2) \\
 & y = \begin{cases}
 0 & \text{if } s_1 s_2 < 0 \\
 1 & \text{if } s_1 s_2 > 0
\end{cases}
\]

Only the first two covariates \(x_1 \) and \(x_2 \) are in the Markov blanket of \(y \).

Selection results. For each synthetic benchmark and CVS method, we run 100 experiments as described earlier to obtain \(p \)-values for each covariate. In order to concisely summarize the performance of each CVS method, we compute the FCAUC (Yu, 2012), which computes the area under a receiver operating characteristic (ROC) curve, but only up to a realistic nominal FDR. For example, practitioners are unlikely to be interested in controlling FDR at rates greater than 50%. To compute an FCAUC score, we first measure the true positive rate (TPR) (also known as power) and false positive rate (FPR) at every \(p \)-value threshold to compute a ROC curve. We then identify a nominal \(p \)-value threshold \(\tau \) that corresponds to an FDR of 10% using the Benjamini and Hochberg (1995) procedure. Using the ROC curve, we compute two quantities: (A) the area under this curve from 0 to FPR(\(\tau \)) (the FCAUC), and (B) the area of the rectangle defined by (0,0) and (FPR(\(\tau \)),1), where FPR(\(\tau \)) is the FPR corresponding to threshold \(\tau \) (see fig. 1 for illustration). The score we assign to each CVS method is the ratio of (A) to (B): the FCAUC ratio. Intuitively, the closer this score is to 1, the higher the performance of a CVS method.

Table 1 shows the average of this score for every CVS method and dataset across each of the 100 runs. Standard errors are omitted from table 1 as they are each fewer than four decimal places.

CONTRA achieves a higher FCAUC ratio than competing baselines. At a nominal FDR rate of 10%, the HRT methods tend to exhibit false discovery proportions (FDPs)\(^1\) of 15% or more, while CONTRA maintains the FDP at or below 10%. It is worth noting that this difference in FDP is the main driver of CONTRA’s higher performance in table 1. Both the HRT methods achieve power equal to that of CONTRA.

We further observe that the CORR-CRT performs noticeably worse than the other methods. This is likely due to its inability to model interactions between covariates when computing the test statistic, resulting in low power.

Figure 1 shows promising results, as it suggests that despite using contrarian model \(q_{\text{mix}}^{(j)} \), CONTRA suffers no loss in power compared to the baselines on these four benchmarks. To understand the power lost due to contrarian models, we repeat the orng experiment at different sample sizes. These results are reported in appendix C. Having observed that the main difference between CONTRA and the baselines is primarily the control of FDR, we next explore questions that help further understand the useful FDR properties of CONTRA.

How does the choice of CVS method affect \(p \)-value calibration? The effectiveness of CVS methods to control the FDR is greatly reduced when null \(p \)-values are not super-uniform Benjamini and Hochberg (1995); Benjamini and Yekutieli (2001). For FDR to be controlled effectively, null \(p \)-values must stochastically dominate a Uniform(0,1) random variable. In this experiment, we specifically look at how well \(p \)-values produced by each CVS method satisfy this requirement for FDR control. We again use orng-c, but with one modification: we increase the number of null covariates from 16 to 100. We then perform a Kolmogorov-Smirnov hypothesis test using the set of null \(p \)-values from each CVS

\(^1\)Another term for empirical FDR.
method. This quantifies how uniform the null \(p \)-values are.

Figure 2 shows a quantile-quantile plot of the null \(p \)-values of each method. The closer the points match the dotted black diagonal, the closer the null \(p \)-values are to Uniform(0, 1). We first notice that both CONTRA and CORR-CRT are well calibrated with Kolmogorov-Smirnov \(p \)-values of 0.183 and 0.526 respectively. However, LL-HRT and 01-HRT yield Kolmogorov-Smirnov \(p \)-values of 0.009 and 0.005 respectively. At a type-I error threshold of 1%, both HRTs appear to yield significantly non-uniform \(p \)-values, suggesting that HRT procedures may not control the FDR well using standard multiple correction techniques. Upon closer inspection, we observe this issue as \(\hat{q}_{\text{model}} \) tends to exhibit dependence on null covariates, and each \(\hat{q}_{\text{cc}}^{(j)} \) is not exactly equal to the corresponding \(q(x_j \mid x_{-j}) \). As a result, HRT test statistics tend to overestimate the importance of the null covariates, and underestimate null \(p \)-values. This is seen in fig. 2, as the observed quantiles are below the theoretical quantiles, highlighting the deflationary behavior of the null \(p \)-values. Using contrarian models protects against this behavior, as does not using a model at all in the case of CORR-CRT.

What if I model \(\hat{q}_{\text{cc}} \) incorrectly? In this section, we investigate the effect of modeling the null variables incorrectly on null \(p \)-values. To generate covariates, we use a mixture of autoregressive Gaussians. This provides a more challenging benchmark as each covariate is multi-modal and highly correlated with several others, encouraging \(\hat{q}_{\text{model}} \) to learn spurious dependencies.

We sample \(x \sim \sum_{K}^{K} \pi_k N(\mu_k \cdot 1, \Sigma_k) \), where each \(\Sigma_k \) is a 104-dimensional covariance matrix whose \((i,j)\)th entry is \(\rho_k^{(i-j)} \), and \(1 \) is a 104-dimensional 1’s vector. We set \(K = 3 \), and \((p_1,p_2,p_3) = (0.6,0.4,0.2) \). Cluster centers are set to \((\mu_1,\mu_2,\mu_3) = (0.5,10) \), and mixture proportions are set to \((\pi_1,\pi_2,\pi_3) = (0.4,0.2,0.4) \). We model all \(\hat{q}_{\text{cc}}^{(j)} \) jointly with a multivariate normal (MVN) distribution. For visualization, we show two adjacent dimensions of the data and the maximum likelihood estimation (MLE) solution for the MVN in fig. 4.

We sample \(y \) in the same way as ORNG, using only the first four covariates as non-null. For this experiment, we set the number of null resamples \(M \) to 200.

We run each CVS method on the data, and perform Kolmogorov-Smirnov hypothesis tests on the null \(p \)-values. We do not discuss the power of each method in this section, as all CVS methods other than CORR-CRT exhibit power 1 for any nominal FDR threshold above 5%. Figure 3 visualizes the null \(p \)-values for each CVS method. We observe that CONTRA and CORR-CRT both produce null \(p \)-values that appear uniform (Kolmogorov-Smirnov \(p \)-values of 0.684 and 0.399 respectively). The LL-HRT and 01-HRT produce \(p \)-values that appear to be stochastically dominated by a Uniform(0,1) random variable (Kolmogorov-Smirnov \(p \)-values of \(1.059 \times 10^{-5} \) and \(9.342 \times 10^{-6} \) respectively).

We further notice that in the range \([0,0.15]\) on the x-axis, the HRT methods yield several \(p \)-values of 1/201, the minimum possible given our setup. Upon closer investigation, we report the following observations that explain why this \(p \)-value deflation occurs. First, \(\hat{q}_{\text{model}} \) is found to exhibit spurious dependence on null covariates that correlate highly with one of \(\{x_i\}_{i=1}^{4} \). Second, the mixture distribution has low support on covariates in the neighborhood around \((5,5)\), while the \(\hat{q}_{\text{cc}}^{(j)} \) models place considerable mass around this point. As a result, \(\hat{q}_{\text{model}} \) is evaluated on data out of its support, and consistently exhibits higher losses on the null data \((U_{i}^{(m)},Y)\) than on the test set \((X',Y')\), even when computing null \(p \)-values. Thus, the null \(p \)-values tend to be stochastically dominated by a Uniform(0,1) random variable and lead to the inflation of FDR.

4.2 Celiac disease experiment

Abnormalities in the genome of an individual have been found to associate with Celiac disease (Dubois et al., 2010). To understand how well CVS methods are able to replicate the results of biological studies in a purely computational procedure, we study a large genetics dataset. We apply each CVS method to a large (cases = 3.7K, controls = 8.2K) Celiac disease dataset (Dubois et al., 2010).
In our dataset, the covariates $x_j \in \{0,1,2\}$ represent single nucleotide polymorphisms (SNPs), which measure the genetic variance for each individual with respect to a reference genome. The response y is a binary label indicating the presence of Celiac disease. We preprocess the data as suggested by Bush and Moore (2012). First, the set of SNPs is preprocessed using linkage-disequilibrium pruning (Calus and Vandemans, 2018), a commonly used procedure in genomics to filter out redundant SNPs using pairwise correlation. The total number of SNPs after filtering is 1759. Then, genetic principal components are added as covariates q to \hat{q}_{model} (and \hat{q}_{null}) to correct for population biases (Price et al., 2006). To model \hat{q}_{cc}, we use the same approach as Candes et al. (2018), which uses $\hat{q}_{cc}^{(j)}$ models that condition only on a subset of SNPs in a neighborhood around x_j, rather than all other SNPs. For exact implementation details, we refer the reader to section 7 of Candes et al. (2018). Finally, we use L_1-penalized logistic regression for \hat{q}_{model} and \hat{q}_{null}, and set the number of null replicates M to 500.

Selection results

After running each CVS procedure on the data, we select important SNPs using a 5% FDR threshold. Using the list of SNPs returned by each method, we compare each one to the genetics literature. Specifically, we determine which SNPs have been shown to map to immunological pathways responsible for the development of Celiac disease Dubois et al. (2010); Sollid (2002); Adamovic et al. (2008); Hunt et al. (2008). If an identified SNP has been mentioned by one of these studies, we deem it important.

Table 2 shows that while CONTRA and the HRTs achieve the same recall, CONTRA achieves a higher precision (which is 1 - FDR). CORR-CRT fails to account for dependence between SNPs and tends to overestimate the variance of a single covariate, which leads to many false discoveries.

Finally, we time CONTRA and the HRTs and note that despite the high dimensionality of the problem and large M, CONTRA is only 5 minutes slower due to the fitting of \hat{q}_{null} models (shown in table 2).

<table>
<thead>
<tr>
<th></th>
<th># Selected</th>
<th>Precision</th>
<th>Recall</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRA</td>
<td>12</td>
<td>66.67%</td>
<td>20%</td>
<td>9207</td>
</tr>
<tr>
<td>01-HRT</td>
<td>15</td>
<td>53.33%</td>
<td>20%</td>
<td>8871</td>
</tr>
<tr>
<td>LL-HRT</td>
<td>14</td>
<td>57.14%</td>
<td>20%</td>
<td>8912</td>
</tr>
<tr>
<td>CORR-CRT</td>
<td>118</td>
<td>5.08%</td>
<td>15%</td>
<td>1512</td>
</tr>
</tbody>
</table>

Table 2: CONTRA achieves power on par with state-of-the-art CVS methods while achieving higher precision. Here we compare CVS methods on their ability to identify biologically relevant SNPs for Celiac disease.

DISCUSSION

CVS procedures like the HRT are popular for their ability to control the FDR. However, they can deflate p-values when the covariate distribution is unknown, thus violating FDR control. CONTRA is designed specifically for situations where the covariate distribution must be estimated from data. CONTRA is able to control FDR in finite samples, and remarkably, achieves power 1 in the limit of data despite the use of contrarian models that yield more conservative p-values than HRTs. CONTRA exhibits state-of-the-art power on several synthetic and real benchmarks, while maintaining FDR at levels closer to the nominal rate than competing baselines.

Acknowledgements

The authors would like to thank the reviewers for their thoughtful feedback. Mukund Sudarshan was partially supported by a PhRMA Foundation Predoctoral Fellowship. Mukund Sudarshan, Aahlad Puli, and Rajesh Ranganath were partly supported by NIH/NHLBI Award R01HL148248, and by NSF Award 1922658 NRT-HDR: FUTURE Foundations, Translation, and Responsibility for Data Science. Sriram Sankararaman was partially supported by NSF Award 1705121 III: Medium: Scalable Machine Learning for Genome-Wide Association Analyses.

References

