
UNIVERSITY OF CALIFORNIA

Los Angeles

Buffering and Flow Control in Communication Switches

for Scalable Multicomputers

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Gregory Lee Frazier

1995

© Copyright by

Gregory Lee Frazier

1995

The dissertation of Gregory Lee Frazier is approved.

���������������������������������������
Kirby A. Baker

���������������������������������������
Henry Samueli

���������������������������������������
Milos D. Ercegovac

���������������������������������������
David Rennels

���������������������������������������
Yuval Tamir, Committee Chair

University of California, Los Angeles

1995

ii

This dissertation is dedicated to Verra Morgan, the oil that

keeps the wheels of the U.C.L.A. Computer Science Department turning,

to my daughters, Mikaela and Joanna, whose love has redefined my world,

and my wife, Tiffany, whose excellence sets the mark I try to match.

iii

Table of Contents

Chapter One - Introduction .. 1

1.1. Latency and Output Port Contention .. 3

1.2. The Dynamically Allocated, Multi-Queue Buffer 6

1.3. The Scope of this Work .. 8

Chapter Two - Previous Work .. 13

2.1. The Optimal Number of Ports .. 14

2.2. Buffer Size and Location .. 15

2.3. Network Contention and Flow Control .. 21

2.4. Switch Architectures ... 26

2.4.1. The Post Office Switch .. 26

2.4.2. The Torus Routing Chip ... 27

2.4.3. The McMillen Switch Architectures 29

2.5. Buffer Organization via Linked Lists ... 30

Chapter Three - The DAMQ Buffer Architecture 31

3.1. Switch Size .. 32

3.2. Buffer Location ... 33

3.3. Buffer Size and Structure .. 36

3.4. Buffer Features .. 41

3.5. Supporting Multiple Classes of Packets ... 43

iv

Chapter Four - Buffer Performance Evaluation with

Synchronous Networks ... 45

4.1. Synchronous and Asynchronous Networks 47

4.2. Evaluation of 2×2 Discarding Switches Using Markov Models

... 48

4.3. The Simulator ... 53

4.4. Evaluation of Discarding Switches via Event-Driven

Simulation ... 56

4.5. Evaluation of Blocking Switches via Event-Driven Simulation

... 58

4.6. Non-Uniform (Hot Spot) Traffic .. 63

4.7. Summary and Conclusions ... 66

Chapter Five - Supporting High-Priority Traffic 67

5.1. Arbiter Support for High-Priority Packets 71

5.2. Dedicated Queues for High-Priority Traffic 72

5.3. Multiple Dedicated Queues for High-Priority Traffic 81

5.4. Dedicated Buffers for High-Priority Traffic 85

5.5. Summary: Support for High-Priority Traffic 89

Chapter Six - Buffer Performance Evaluation with

Asynchronous Networks .. 92

6.1. Simulating an Asynchronous System ... 93

6.1.1. Network Architecture ... 93

v

6.1.2. Packet Injection Parameters ... 96

6.1.3. Sender Grouping .. 98

6.2. DAMQ Buffer Performance: Asynchronous MIN 99

6.2.1. Constant-Length Packets, Asynchronous Network 99

6.2.2. Self-Synchronizing Networks .. 103

6.2.3. Variable-Length Packets, Asynchronous Network 107

6.2.4. Network Throughput with Increased Buffer Memory

... 109

6.2.5. Summary: Asynchronous MIN Performance 111

6.3. Network Performance, Torus Topology ... 112

6.3.1. Dimensional Routing with the Multi-Queue Buffers

... 113

6.3.2. Performance Evaluation: Dimensional Routing 117

6.3.3. Summary — Dimensional Routing 124

6.4. Summary ... 125

Chapter Seven - The DAMQ Buffer Chip .. 129

7.1. The Architecture and Microarchitecture of the DAMQ Buffer

Chip .. 131

7.1.1. The Basic Organization of the DAMQ Buffer Chip 133

7.1.2. The DAMQ Buffer Chip Control Logic 135

7.1.3. Minimizing Virtual Cut-Through Latency 139

7.1.4. Summary — DAMQ Buffer Architecture 145

vi

7.2. Floorplan and Circuit Performance ... 145

7.2.1. The Memory Array ... 147

7.2.2. The Buffer Control Data Path .. 150

7.2.3. The Finite State Machines .. 157

7.2.3.1. The FSM Circuit ... 157

7.2.3.2. Demand Multiplexing ... 159

7.2.4. The Floorplan ... 165

7.3. Summary and Conclusions ... 166

Chapter Eight - Flow Control ... 168

8.1. Flow Control Mechanism Taxonomy ... 173

8.2. Selected Existing Flow Control Mechanisms 174

8.2.1. Hop-Level, Blocking Flow Control 175

8.2.2. End-to-End Flow Control ... 176

8.2.3. Global Flow Control ... 180

8.2.4. Discarding, Hop-Level Flow Control 183

8.3. Flow Control Schemes for Tightly-Coupled Interconnection

Networks ... 185

8.4. Hop-Level Flow Control ... 188

8.4.1. Blocking Flow Control ... 189

8.4.2. Maximum Usage Flow Control .. 190

8.4.3. Two-Counter Flow Control .. 192

8.4.4. Destination-Based Flow Control .. 195

vii

8.4.5. Path-Based Flow Control ... 197

8.5. Flow Control Performance Evaluation ... 198

8.5.1. The Simulator ... 198

8.5.2. Evaluation Methodology .. 200

8.5.3. Confidence Intervals .. 204

8.5.4. Benchmark I: Static Hot Spot, Serial Requests 206

8.5.5. Benchmark II: Static Hot Spot, Many Participants 216

8.5.6. Benchmark III: Static NUT Spot .. 225

8.5.7. Benchmark IV: Four Senders with Long Messages 233

8.5.8. Benchmark V: 128 Senders Transmitting Multi-Packet

Messages ... 241

8.5.9. Benchmark VI: Uniform Traffic .. 249

8.5.10. Combining Hop-Level Flow Control Mechanisms 252

8.6. Flow Control Mechanism Implementation 267

8.6.1. Blocking Flow Control ... 267

8.6.2. Queue-Based Flow Control .. 270

8.6.3. Destination- and Path-Based Flow Control 273

8.7. Flow Control: Summary and Conclusions 280

Chapter Nine - Summary and Conclusions ... 284

Bibliography ... 292

viii

List of Figures

1.1 Switches in Multiprocessors and Multicomputers 2

1.2 Output Port Contention .. 4

1.3 The ComCoBB Chip .. 6

3.1 Switch Types .. 37

4.1 Latency vs. Throughput ... 61

4.2 Blocking Switches, Varying Buffer Sizes 62

5.1 Variance of Latency, FIFO Switches ... 69

5.2 Priority Arbitration Performance ... 73

5.3 Priority Queue, Various Percentages of High-Priority Packets

.. 75

5.4 Increasing Levels of Support for High-Priority Packets 77

5.5 Priority Queue, DAMQ Buffer Efficiency 78

5.6 Impact of Varying Buffer Size, DAMQ Buffers 80

5.7 Five-Queue and Eight-Queue DAMQ Buffers 82

5.8 Varying Percentage of High-Priority Packets 84

5.9 Dedicated Buffers for High-Priority Packets 88

6.1 Synchronous vs. Asynchronous Protocols, Omega Network

.. 100

6.2 Self-Synchronizing DAMQ Switches .. 105

6.3 Lat. vs. Thpt., Variable-Length Packets .. 108

ix

6.4 Saturation Throughput vs. Buffer Size, Constant-Length Packets

.. 110

6.5 Saturation Throughput vs. Buffer Size, Variable-Length Packets

.. 111

6.6 Switch for Two-Dimensional Torus .. 114

6.7 Multi-Queue Buffer for Two-Dimensional Torus 115

6.8 Latency vs. Throughput, 121-Node 2-D Torus 118

6.9 Latency vs. Throughput, 441-Node 2-D Torus 119

6.10 Visualizing Buffer Utilization I ... 121

6.11 Visualizing Buffer Utilization II .. 122

6.12 Visualizing Buffer Utilization III .. 123

7.1 Linked Lists via Buffer Blocks .. 134

7.2 DAMQ Chip Control Logic ... 136

7.3 Addressing Phase ... 137

7.4 Data Movement Phase ... 138

7.5 The Header Register Array .. 142

7.6 Memory Cell .. 147

7.7 Memory Array Read Latency .. 149

7.8 Buses and Associated Logic for the Head/Tail Register Array

.. 150

7.9 Head / Tail Registers .. 151

7.10 Block Decoder ... 152

x

7.11 Null Register Read Latency ... 153

7.12 Pointer Register Array ... 154

7.13 Pointer Register to Tail Register Latency 155

7.14 Latency of Temporary Register to Pointer, Head and Tail

Register ... 156

7.15 Finite State Machine Circuit .. 158

7.16 Interface to Router and Arbiter .. 160

7.17 SYNC Signal Generator .. 161

7.18 DAMQ Buffer Floorplan ... 165

8.1 Network Congestion .. 169

8.2 Tree Saturation ... 170

8.3 Operation of Destination-Based Flow Control 184

8.4 Block Diagram, Two-Counter Flow Control 192

8.5 Throughput and Latency, Uniform Traffic Distribution 202

8.6 Benchmark I: Hot Spot, Serial Requests ... 206

8.7 Benchmark I: FIFO Buffers, Blocking Flow Control 208

8.8 Benchmark I: DAMQ Buffers, Blocking Flow Control 210

8.9 Benchmark I: Maximum-Usage Flow Control 212

8.10 Benchmark I: Two-Counter Flow Control 214

8.11 Benchmark I: Link-Based Flow Control 215

8.12 Benchmark II: Static Hot Spot, Barrier Traffic 217

8.13 Benchmark II: FIFO and DAMQ Buffers, Blocking Flow

xi

Control .. 219

8.14 Benchmark II: Maximum-Usage Flow Control, Group 0 220

8.15 Benchmark II: Two-Counter Flow Control, Group 0 222

8.16 Benchmark II: Link-Based Flow Control, Group 0 223

8.17 Benchmark III: Non-Uniform Traffic Spot 226

8.18 Benchmark III: FIFO and DAMQ Buffers, Blocking Flow

Control .. 227

8.19 Benchmark III: Maximum Usage Flow Control, Group 0 229

8.20 Benchmark III: Two-Counter Flow Control, Group 0 230

8.21 Benchmark III: Link-Based Flow Control, Group 0 231

8.22 Benchmark IV: Dynamic Serial Transmission 234

8.23 Benchmark IV: DAMQ Buffers, Blocking Flow Control 235

8.24 Benchmark IV: DAMQ Buffers, Maximum-Usage Flow

Control .. 237

8.25 Benchmark IV: DAMQ Buffers, Two-Counter Flow Control

.. 238

8.26 Benchmark IV: DAMQ Buffers, Link-Based Flow Control

.. 239

8.27 Benchmark V: Blocking Flow Control .. 242

8.28 Benchmark V: Maximum Usage Flow Control 244

8.29 Benchmark V: Two-Counter Flow Control 246

8.30 Benchmark V: Link-Based Flow Control 248

xii

8.31 Benchmark VI: Maximum Usage and Two-Counter Flow

Control .. 250

8.32 Benchmark VI: Link-Based Flow Control 252

8.33 Benchmark I: Group 0 Performance, Combined Flow Control

.. 256

8.34 Benchmark II: Combined Flow Control, Group 0 257

8.35 Benchmark III: Combined Flow Control, Group 0 258

8.36 Benchmark IV: Combined Flow Control, Group 0 259

8.37 Benchmark V: Combined Flow Control .. 260

8.38 Benchmark VI: Combined Flow Control 261

8.39 Benchmark VI: Destination-Based Flow Control with SAMQ

Buffers .. 263

8.40 Benchmark VI: Destination-Based Flow Control, Suppressed at

Destination .. 265

8.41 Crossbar Hardware for Blocking Flow Control 269

8.42 Crosspoint Controller Hardware for Queue-Based Flow

Control .. 272

8.43 Evaluating Link-Based Flow Control Enhancements:

Benchmark VI ... 277

8.44 Evaluating Link-Based Flow Control Enhancements:

Benchmark II .. 278

xiii

List of Tables

4.1 Results of Markov Analysis ... 51

4.2 Discarding Percentage vs. Throughput .. 57

4.3 Latency vs. Throughput, Blocking Switches 59

4.4 Blocking Switches with Hot Spot Traffic .. 64

5.1 Variance of Latency, All Switches .. 70

6.1 Parameters to the Asynchronous Simulator 95

7.1 Requirements Imposed by Minimizing Cut-Through Latency

.. 140

8.1 Two-Counter Flow Control Parameters ... 193

8.2 Parameter Settings for Two-Counter Flow Control 195

8.3 Confidence Interval Map ... 205

8.4 Group Definition, Benchmark I ... 207

xiv

ACKNOWLEDGMENTS

I must acknowledge the large number of people who helped make this

dissertation a reality. Primary among them is my advisor, Professor Yuval Tamir,

whose instruction and guidance were invaluable. Also important to my work was the

advise and support of my cohorts in the UCLA VLSI Systems Laboratory: Marc

Tremblay, Yoshio Turner, G Janakiraman, Sanjay Jain, Tiffany Frazier and Hsin-

Chou Chi. Whether the problem was coding, finding a reference, formatting a

document or simply moral support, these were the people I turned to. Not only my

own research, but the activities of the UCLA Computer Science Department as a

whole would have ground to a halt without the efforts of Verra, Roberta, Jackie, Judy

and the rest of the staff. Finally, I would like to acknowledge my family, whose love

powered me through the long years of graduate school: my wife Tiffany, my

daughters Mikaela and Joanna, my mother Sue Frazier and my sister Melissa (who has

graciously waited for me to finish my dissertation before completing hers).

xv

VITA

February 15, 1964 Born in Ann Arbor, MI

1986 B.S. Computer Science and Engineering
Massachusetts Institute of Technology
Cambridge, MA

1986-1987 Chancellor’s Fellow
University of California
Los Angeles, CA

1987-1990 Research Assistant, Research Associate
University of California
Los Angeles, CA

1991 M.S. Computer Science
University of California
Los Angeles, CA

1991-1993 NASA/DARPA Research Assistantship
in Parallel Processing

1993-1994 Teaching Associate
University of California
Los Angeles, CA

1994- Senior Software Engineer
SAIC
McLean, Virginia

xvi

PUBLICATIONS AND PRESENTATIONS

1. G. L. Frazier and Y. Tamir, ‘‘The Design and Implementation of a Multi-
Queue Buffer for VLSI Communication Switches,’’ International Confer-
ence on Computer Design, Cambridge, MA, pp. 466-471 (October, 1989).

2. Y. Tamir and G. L. Frazier, ‘‘Dynamically-Allocated Multi-Queue Buffers
for VLSI Communication Switches,’’ IEEE Transactions on Computers
41(6), pp. 725-737 (June 1992).

3. Y. Tamir and G. L. Frazier, ‘‘Hardware Support for High-Priority Traffic in
VLSI Communication Switches,’’ Journal of Parallel and Distributed Com-
puting 14(4), pp. 402-416 (April 1992).

4. Y. Tamir and G. L. Frazier, ‘‘Support for High-Priority Traffic in VLSI
Communication Switches,’’ 9th Real-Time Systems Symposium, Huntsville,
AL, pp. 191-200 (December 1988).

5. Y. Tamir and G. L. Frazier, ‘‘High-Performance Multi-Queue Buffers for
VLSI Communication Switches,’’ 15th Annual International Symposium on
Computer Architecture, Honolulu, Hawaii, pp. 343-354 (May 1988).

xvii

ABSTRACT OF THE DISSERTATION

Buffering and Flow Control in Communication Switches

for Scalable Multicomputers

by

Gregory Lee Frazier

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1995

Professor Yuval Tamir, Chair

Small n ×n switches are key components of the communication networks of

multicomputers. For fine-grained distributed tasks to efficiently execute on large

multicomputers, high throughput, low latency communication must be supported. The

architecture of these switches, particularly their internal buffers, is critical for

achieving high performance communication with cost-effective implementations.

The focus of the work in this dissertation is the design of a new buffer, the

dynamically allocated, multi-queue (DAMQ) buffer. This buffer maintains multiple

queues of packets and allows the queue heads to be accessed in any order rather than

restricting access to first in, first out (FIFO) order for the entire buffer. This reduces

the effect of output port contention, giving a network of switches with DAMQ buffers

(DAMQ switches) a significantly higher bandwidth and a lower average latency at

given throughputs than a network of FIFO switches.

The DAMQ buffer is easily enhanced to support low latency delivery of high-

priority packets even under heavy network load. This is important for distributed

xviii

real-time systems where a subset of the packet transmissions must happen within a

bounded time.

The implementation complexity and performance characteristics of several non-

FIFO buffer structures are evaluated. Extensive simulation and analysis are used in

the evaluation of the DAMQ buffer and alternative buffers. A VLSI implementation

of the DAMQ buffer as a component for communication switches is presented.

Detailed circuit simulations are used to demonstrate the clear superiority of the

DAMQ buffer over conventional FIFO buffers.

A methodology for evaluating flow control mechanisms is presented. A

congestion benchmark suite is used to ‘‘stress’’ selected flow control mechanisms

with a variety of congestion patterns. It is shown that hop-level flow control schemes

in conjunction with multi-queue buffers can be used to optimize network performance

under uniform and non-uniform traffic conditions.

xix

Chapter One

Introduction

A computer program can be viewed as a set of instructions or operations

which must be executed in order to complete a task. A primary goal of computer

architecture is to design computers which will execute programs in the shortest

time possible. Two possibilities for increasing the speed of a computer are to

increase the speed with which each instruction is executed or to increase the

number of instructions which can be executed simultaneously. Recent trends in

VLSI technology have shifted the focus of high performance computing from the

former possibility to the latter. A large scale distributed computer, consisting of

hundreds or thousands of independent processing nodes, has the potential to bring

many times the processing power of a supercomputer to bear upon the execution of

a program for a fraction of the supercomputer’s cost.

A distributed program is a program implemented as set of processes, where

each process can be executed in parallel on the separate nodes of a distributed

computer. For these processes to cooperate in the solution of a problem they must

communicate with each other, either by transmitting data from one processor to

another via messages or by accessing shared memory. Distributed systems which

use the former communication model are often referred to as multicomputers, while

shared memory machines are multiprocessors. The more processes a task can be

divided into, the more steps toward the task’s completion that can potentially be

executed simultaneously, and, in theory, the faster the task will complete.

However, as the process granularity becomes very fine, the latency of the process-

1

to-process or process-to-memory (depending upon the architecture) communication

begins to contribute significantly to the task’s execution time. In addition, the

available bandwidth of the communication network may be less than the desired

throughput of communication. These two issues — high communication latencies

and finite network bandwidth — limit the degree to which a task can be profitably

distributed. Implementing high bandwidth, low latency communication networks

is thus critical to the ability of multiprocessors and multicomputers to achieve high

performance by exploiting parallelism.

local node

Butterfly Hypercube

Crossbar Crossbar

Figure 1.1: Switches in Multiprocessors and Multicomputers. Small
n ×n switches are the central component of the communication net-
works of both multiprocessors and multicomputers.

Multiprocessors with a large number of nodes (e.g. greater than 64) use

multistage interconnection networks to connect processors to memory [Crow85,

2

Gott83, Rett90, Pfis85b]. These networks are typically composed of a large

number of small n ×n switches (typically, 2 ≤ n ≤ 10) (Fig. 1.1). Memory

references are formed into packets to be transmitted across these networks.

Multicomputers, on the other hand, use point-to-point links dedicated to nearest

neighbor communication [Seit85, Whit85, Dall87b]. If a process wishes to send a

message to a node which is not an immediate neighbor, the packet(s) which

constitute the message must pass through intermediate nodes to reach their

destination. To accelerate its performance, each computing node relies on a

communication coprocessor with a small number of ports [Dall86, Stev86] that

function as a small n ×n switches with n −1 ports connected to other nodes, and one

bidirectional port connected to the local application processor (Fig. 1.1). The

design of high performance small n ×n switches is thus of critical importance to the

development of multiprocessor and multicomputer systems. Since many of these

n ×n switches are needed in a large system, there is strong motivation to implement

each switch as a single VLSI chip.

1.1. Latency and Output Port Contention

A switch’s job is to take packets arriving at its input ports and route them to

its output ports. As long as only one packet at a time arrives for a given output

port, there will be no conflict, and the packets are routed with a minimum latency.

Unfortunately, as the throughput goes up, so does the probability of conflict. When

two packets destined for the same output port arrive at different input ports of a

switch at approximately the same time, they cannot both be forwarded

immediately. Only one packet can be transmitted from an output port at a time,

3

and hence one of the two packets must be stored at the node for later transmission.

The maximum throughput at which the switch can operate depends directly on how

efficiently the switch can store the conflicting packets and forward them when the

appropriate output port is no longer busy.

D

C

B

A

D

C

B

A

D

C

B

A

D

C

B

A

4×4 FIFO Switch 4×4 Non −FIFO Switch

a a

a

aa

a

b

bb

c

c

d d

ac

aabd

ac

abba

d

dd

Figure 1.2: Output port contention. In the FIFO switch, packets destined
for output port A block packets destined for the other output ports. In
the other switch, non-FIFO buffer access improves buffer and output
port utilization.

Communication switches which use first in, first out (FIFO) buffers located at

the input ports to store packets [Rimo87] do so because it is a simple scheme to

implement. Space allocation in a FIFO buffer is simple, even for variable size

packets, and only two registers are required to maintain buffer organization

(pointers to the front and rear of the queue, with a ‘‘circular’’ memory array). This

simplicity, however, has a price — FIFO buffers are very inefficient. Their

inefficiency stems from the fact that, in a FIFO buffer, only the ‘‘oldest’’ packet in

the buffer is available for transmission at any given point in time. This makes the

switch susceptible to output port contention. Output port contention is the situation

in which two or more buffers have packets destined for the same output port

4

(Figure 1.2). Since each output port can only transmit one packet at a time, one or

more of the buffers cannot transmit its packet, and because in a FIFO buffer only

the first packet in the queue is available for transmission, those buffers must remain

idle while the other transmits its packet. In addition, the buffers which are idle

may have within them packets destined for other output ports, which may also be

idle. In this situation, the FIFO property of the buffers is limiting the throughput of

the switch; available bandwidth could potentially be better utilized by using non-

FIFO buffers.

The significance of this is magnified when dealing with real-time systems.

Multiprocessor and multicomputer systems that are connected to input / output

devices which interact with the outside world occasionally require particularly fast

communication with different parts of the system. The broadcasting of certain

types of system-wide events, such as the initiation of global system rollback, may

also require preferential handling by the network. Real-time requirements due to

interaction with I / O devices and system-wide exception handling thus lead to the

need to support special purpose high-priority traffic whose maximum latency is

significantly lower than the maximum latency for general traffic. In a switch

composed of FIFO buffers it is likely that, upon entering a switch, a high-priority

packet will be trapped behind a ‘‘normal’’ packet, and will thus be delayed. A

switch composed of non-FIFO buffers, on the other hand, would be able to transmit

the high-priority packet as soon as its destination output port is free, allowing the

high-priority packet to bypass the normal packets.

5

ComCoBB

Processor

Local Bus

Memory

Figure 1.3: The ComCoBB Chip. The ComCoBB Chip is a communica-
tion coprocessor whose intent is to ‘‘hide’’ the communication net-
work from the processing nodes of a multicomputer.

1.2. The Dynamically Allocated, Multi-Queue Buffer

The results reported in this dissertation were produced as part of the UCLA

ComCoBB project. The goal of the ComCoBB (Communication Coprocessor

Building-Block) project is to design and implement a single-chip high-performance

communication coprocessor for use in VLSI multicomputer systems. In a

multicomputer node consisting of a CPU, local memory and various co-processors,

the ComCoBB chip handles forwarding all packets which do not originate from or

are not destined to the node, as well as handling the network interface for all

packets / messages which are to or from the node (Figure 1.3). Thus, the

ComCoBB chip is, in part, a small n ×n switch. It quickly became evident that one

of the keys to designing a high performance packet switch was to design an

efficient buffering scheme for the switch. The focus of this dissertation is the

6

design and implementation of the dynamically allocated, multi-queue (DAMQ)

buffer, the internal buffer of a small n ×n VLSI communication switch.

The key to the high performance of the DAMQ buffer is its non-FIFO

behavior. The DAMQ buffer maintains an internal organization of packets via

linked lists. The lists correspond to the destination ports of the packets and the

priority with which the packets are forwarded. This allows the buffer to be

accessed ‘‘randomly’’, based upon the destination and priority of the packets

within it. The use of linked lists, however, maintains the FIFO ordering of the

packets of the same priority between each input port / output port pair, thus

supporting routing schemes such as virtual circuits which depend upon packet

ordering.

The DAMQ buffer supports features other than non-FIFO switching which

contribute to its high performance. With shift register addressing, [Tami88a] the

DAMQ buffer can transfer data into and out of a large buffer memory at very high

bandwidths. This addressing scheme also efficiently supports implementation of a

dual ported buffer memory, which is in turn needed to support virtual cut-

through [Kerm79]. Virtual cut-through is the ability to begin to forward a packet

as soon as it has been routed, i.e. before it has been completely received. This has

the potential to significantly reduce the latency of packets traveling across a lightly

loaded network. Finally, the DAMQ buffer can support variable size packets; the

design discussed in this thesis supports packets of one to thirty-two bytes in length.

Supporting variable length packets reduces the average packet latency, increases

the system throughput and is essential in a high-performance system running fine-

grained distributed tasks.

7

1.3. The Scope of this Work

In this dissertation we present the architecture of new buffer, the dynamically

allocated multi-queue buffer. We demonstrate how the effect of output port

contention on switch throughput is reduced by organizing the packets within a

buffer into multiple queues and associating the queues with each of the switch’s

output ports, thus allowing the packets to be accessed based upon where they are

routed. This scheme is extended by associating the queues not only with output

ports but also with packet priority levels. This extension allows the DAMQ buffer

to support distributed real-time computing by providing ‘‘special’’ service to high-

priority packets.

A comprehensive analysis of the DAMQ buffer is provided by (a) exploring

the implementation considerations of the DAMQ buffer versus both FIFO buffers

and alternate non-FIFO buffer architectures and (b) by extensively analyzing and

simulating switches implemented with these buffers. The simulations are in the

context of a multistage interconnection network, and demonstrate the efficacy of

the DAMQ buffer for both a general purpose multicomputer, where the average

latency per throughput and the maximum network throughput are the key

performance measurements, and for a distributed real-time system, where the

maximum latency of high-priority (real-time) packets for a given network

throughput is the key measurement.

An implementation of a DAMQ buffer is presented, and it is shown that the

complex control required for a DAMQ buffer does not reduce its raw bandwidth

relative to a simpler FIFO buffer. Further, the implementation reveals that the

DAMQ buffer control logic does not require significantly more silicon area to

8

implement than the FIFO buffer control logic.

Finally, this dissertation explores communication flow control mechanisms

for scalable multicomputers. We argue the necessity of implementing hop-level

flow control for large scale multicomputers. Several hop-level flow control

mechanisms are evaluated, both on the basis of their cost of implementation and on

the basis of the degree to which they impact communication network performance

under a variety of data traffic conditions. We found that no single hop-level flow

control mechanism that we explored out-performed all of the other mechanisms in

every traffic pattern that we evaluated. However, it is demonstrated that, due to the

fact that it dynamically allocates its buffer space on a per-packet basis and

maintains its internal organization via linked lists, the DAMQ buffer can support a

wide variety of flow control mechanisms.

In the next chapter, we review previously published work in the areas of

communication buffer design, switch design, flow control and support for real-time

multicomputer / multiprocessor communication. In Ch. 3, the architecture of the

DAMQ buffer is presented. The body of the chapter examines switch and buffer

architecture tradeoffs, evaluating them on the basis of their ability to promote high

performance communication. The tradeoff evaluations result in the specification of

several non-FIFO buffer architectures, including the DAMQ buffer. Finally,

details of the DAMQ buffer architecture such as the implementation of multiple

queues of packets within the buffer as linked lists and support for variable length

packets are presented.

In Ch. 4, the DAMQ switch is evaluated in the context of a multi-stage

interconnection network by comparing it to alternative switch architectures,

9

including a switch composed of FIFO buffers. The comparisons are made with the

assumption that the ‘‘raw bandwidth’’ (the instantaneous bandwidth for each input

and output port) is limited by the rate at which the link can be driven, as opposed to

the rate at which a buffer can be accessed, and thus the raw bandwidth is equal for

switches using the different buffer architectures. The comparisons were performed

using Markov analysis and event-driven simulations of a synchronous

communication network. These evaluations demonstrate the performance gains

achievable by using the DAMQ buffer.

Chapter 5 examines the idea of utilizing the non-FIFO property of the DAMQ

buffer to support multiple classes of packets. By dedicating a packet queue to

‘‘high-priority’’ packets, a network can guarantee a low maximum latency for

critical network traffic. The simulator presented in Ch. 4 is used to evaluate the

high-priority queue.

Chapter 6 evaluates the performance of the DAMQ buffer in the context of an

asynchronous communication network. Since the DAMQ buffer design discussed

in this dissertation has features which cannot be used in a synchronous protocol —

support for variable-length packets and virtual cut-through — it is important to

evaluate the performance in an asynchronous environment. The omega network

simulation results in this chapter support the results and conclusions of Ch. 4. Also

in this chapter, it is shown that the DAMQ buffer can be used to implement

deadlock-free dimensional routing for the torus network topology, similar to that

presented in [Dall86]. An enhancement to this routing mechanism is proposed and

evaluated via simulation of a two-dimensional square torus network.

A VLSI implementation of the DAMQ buffer is described in Ch. 7. The

10

DAMQ buffer is implemented as a functional unit independent of any single switch

architecture. This single-chip DAMQ buffer (the DAMQ Chip) is designed for use

as the communication interface for a multicomputer node. A comparison of the

silicon area required to implement the DAMQ buffer versus a comparable FIFO

buffer is presented, and circuit analysis demonstrates that the complex control logic

of the DAMQ buffer does not limit the clock frequency or reduce the buffer’s raw

bandwidth.

The evaluations of communication network performance presented in Chs. 4-

6 focus on a buffer’s ability to forward packets as the key to network performance,

keeping other network features constant. Yet, there are other communication

network features which not only affect network performance, but also interact with

the buffers in such a way as to enhance the performance of some buffer

architectures over others. Of particular interest is the flow control mechanism

employed by the network. Ch. 8 discusses previous work in the area of flow

control for packet switching communication networks. It establishes hop-level

flow control as an integral component of a communication network for a scalable

distributed computer, and presents some alternative hop-level flow control

mechanisms. The relationship between the flow control mechanisms and the buffer

architecture is discussed, and their impact upon communication network

performance is measured via simulation. Then the complexity / cost of

implementing these mechanisms is examined, and the chapter ends with a

summary of hop-level flow control.

Chapter 9 summarizes the dissertation. It reprises the contributions claimed

by this dissertation and reviews the analyses and conclusions of each chapter. It is

11

argued that the DAMQ buffer is an appropriate choice when implementing a

communication switch intended for large scale multicomputer and multiprocessor

packet switching networks. The chapter concludes by presenting potential topics

of future research.

12

13

Chapter Two

Previous Work

This chapter examines the work of previous researchers upon which our

research is based. This dissertation examines buffer architectures and flow control

mechanisms intended to support high throughput, low latency communication in

scalable multicomputers. The current trend is to implement high-performance

computer systems as large-scale multicomputers. While a bus-oriented shared

memory systems can support the communication needs of systems comprising a

small number (tens) of processors, large distributed systems must use messages to

transmit data from processor to processor [Ston87]. Sharing information via

messages eliminates the dependence upon a single bus for inter-processor

communication, removing the limitation the shared bus imposes upon the size of a

distributed system.

A multicomputer or multiprocessor whose size is not restricted by an

architectural feature is said to be scalable. There have been a large number of

computer systems built in recent years which are intended to be scalable: the Intel

Delta and Paragon computers [Lill91], MIT’s J-Machine [Dall87b], * T [Nikh92],

and Alewife computers [Agar90], the Cray T3D [Oed], Thinking Machine’s CM-

5 [Leis92], the BBN Butterfly [Crow85] and Monarch [Rett90] multiprocessors,

and others. While these networks utilize a variety of communication topologies

and switching techniques, they have one feature in common; a switching network

composed of small n ×n switches. Sec. 2.1 presents research which indicates that

switches with a small number of input and output ports result in higher throughput,

13

lower latency networks than switches with a large number of ports. We then

discuss work relating to the size and location of the packet buffers on a switch.

Sec. 2.3 presents work relating to congestion in communication networks. Sec. 2.4

presents a number of switch architectures which have been proposed, and discusses

their strong and weak points. Finally, Sec. 2.5 discusses previous work relating to

the use of linked lists to implement packet queues (a key architectural feature of

the DAMQ buffer — see Ch. 3).

2.1. The Optimal Number of Ports

In ‘‘Performance of Buffered Delta Networks’’ [Kuma84], Kumar and Jump

describe experiments modifying the structure of the switches of a delta

(interconnection) network. One aspect they examined was the optimal size

(number of ports) of a switch. They determined that there is a crossover point

between the performance of networks of 4×4 and 2×2 switches as the total buffer

space of the interconnection network is varied. They found that networks of 4×4

switches perform better than networks of 2×2 switches when the total buffer space

is kept small. This result reflects the fact that a network of 4×4 switches has fewer

switch-input-ports than a 2×2 network. With a smaller total buffer space, the 4×4

switch network concentrates that buffer space into fewer buffers and thus has

longer queues. Since additional queue space provides diminishing returns, the

greater length of the 4×4 switches’ queues is only of value when when the buffers

are small. As one increases the total buffer space, eventually the fact that the

network of 2×2 switches reduce the amount of output port contention at each

switch becomes the dominating factor in network performance.

14

In his dissertation, Fujimoto [Fuji83] also explored the relationship between

switch size and network performance. He used queueing network analysis to

demonstrate that, given a fixed amount of bandwidth per switch, a small number of

wide ports is preferable over a large number of narrow ports. This result was also

reached by Dally [Dall90b], Agarwal [Agar91], and Goodman [Scot94].

2.2. Buffer Size and Location

The functional unit which to a great extent determines the structure of an n ×n

switch is the packet buffer. Dias and Jump [Dias81] were among the first

investigate design tradeoffs for packet buffers in communication switches. They

considered multi-stage Delta networks with first-in, first-out (FIFO) buffers at their

input ports. They simulated and analyzed the networks and conclude that the

buffers need only be large enough to store a small number of packets (four or less)

for near-optimal network performance. Their results indicate that the saturation

throughput of a network increases with the amount of buffering on each switch, but

that most of the benefit of buffering can be achieved with small buffers (buffers

that can store on the order of four packets located at each switch input port), and

that the average packet latency increases linearly with buffer size. This result has

been confirmed in a number of other researchers’ works, including our

own [Tami88b].

There is a significant body of work dealing with the physical location of

buffers on a switch. As was mentioned above, Dias and Jump proposed placing

FIFO packet buffers at the input ports of switches. Switches of this type have a

fundamental problem with respect to performance; as was discussed in Ch. 1,

15

output port contention can significantly reduce the performance of switches with

FIFO buffers at their input ports. An alternative to input port buffering is to

implement a central buffer pool. In this switch architecture the buffer pool

replaces the crossbar; packets arriving at the switch are all stored into the pool, and

output ports transmitting packets read them from the buffer pool.

To explore the dynamics of a central buffer pool, Irland, in [Irla78], developed

an analytical model of a packet switch with a finite buffer space. The goal of his

work was to find an optimal buffer sharing policy (flow control) for a switch with a

central buffer pool (as opposed to examining the optimal implementation of a

central buffer pool). For his model Irland assumed a packet switch with N ports,

and a Poisson total arrival rate λ which was the sum of the Poisson arrival rates λn

of packets destined for each of the output ports. The switch had space in it for K

packets, K <∞, and the number of packets in the buffer destined for any single

output was limited to M , M ≤K . The packets’ service time μ varied exponentially.

Finally, the switch modeled was a discarding switch, i.e. if a packet arrives and the

buffer is full, or if there are already M packets destined for the same output port

that the arriving packet is destined for, the arriving packet is discarded. Thus,

finding the optimal buffer sharing strategy entailed finding a value of M such that

the number of packets discarded by the switch is minimized.

Irland considered four flow control policies. In the first of these, the

Unrestricted Buffer Sharing policy, the buffer is allocated on a first-come, first-

serve basis until the buffer is completely full (i.e. M =K). The second of these,

No-sharing (or fixed-partitioning), sets M =K /N . The third buffer sharing policy

considered was Square-root Sharing. In this scheme M =K /√��N . This figure was

16

derived from modeling a two-ported switch and determining the optimal value of

M when λ1=λ2=1 (i.e. at the maximum arrival rate). The idea behind this is that

packet loses at low throughputs are trivial; the high throughputs are what the

buffering scheme should be optimized for. Finally, there was the Optimal Buffer

Sharing policy. In this scheme, the value of M is adjusted to the optimal value

based upon the current packet arrival rates. Actually implementing a buffer policy

such as this is virtually impossible to do, but it is valuable as a measuring stick for

the other three buffer policies.

Irland’s analyses of the four buffer sharing policies were performed using a

three-ported switch with buffer spaces of ten, twenty and thirty packet slots. In

addition, he used two different types of traffic: balanced and unbalanced. For

balanced traffic, the switch received traffic for each of the output ports at the same

rate (λ1 = λ2 =λ3), which was varied. For unbalanced traffic, λ2 was held at 0.5, λ3

was held at 0.7, and λ1 was varied.

As was expected, Optimal Sharing had the lowest discarding rate and the

highest throughput for every buffer size, traffic type and arrival rate (applied load).

In addition, the throughput of the switch was an increasing function of the load,

using the Optimal Sharing strategy. Of greater interest was the performance of

Unrestricted Sharing, which performed marginally better than the other two sharing

policies with balanced traffic, but whose performance fell off drastically when the

traffic was unbalanced. Specifically, the Unrestricted Sharing policy displayed a

higher mean delay and a lower throughput than either of the other two policies

(No-sharing and Square-root Sharing) under unbalanced traffic whose arrival rate

(as the sum of the rates for each of the output ports) was ∼∼ 1 and over.

17

The reason for this, as Irland explains, is that the output port which is

receiving the majority of the packets cannot operate at greater than 100% of its

capacity. Thus, if it is receiving packets faster than it can transmit them, in the

Unrestricted Sharing scheme the buffer will fill up with packets destined for the

congested output port. This in turn prevents packets destined for the less congested

ports from arriving, causing those ports to be idle. This is a phenomena

Fujimoto [Fuji83] refers to as buffer hogging — it is the root cause of tree

saturation [Pfis85a].

Other results of interest are that the Square-root Sharing policy significantly

outperforms the No-sharing policy in terms of the packet discarding probability,

and the the No-sharing policy displays the lowest mean packet delay (latency).

The fact that the No-sharing policy does better in terms of latency comes as no

surprise; in a single-switch analysis, the latency of a packet corresponds to how

many packets destined for the same output port were in the buffer when the packet

arrived. Since the No-sharing policy causes the switch to discard many more

packets than the Square-root Sharing policy, it stands to reason that the No-sharing

policy will display a lower latency. If the analysis were extended to a full

communications network and, upon being discarded, packets were re-transmitted

from their source, the mean latency of the network using the Square-root Sharing

policy might be lower than that of the No-sharing policy.

Irland’s work focused on buffer utilization. The relevance of this in

evaluating the buffering scheme of a packet switch is significant. Irland’s results

indicated that optimal performance is achieved when a switch is implemented with

a central buffer pool simultaneously accessible by all of the input and output ports.

18

In addition, use of the buffer pool by each output port should be limited to less than

a fixed percentage of the total buffer space (Irland suggests 1/ √��N as an appropriate

fraction).

Karol, et. al., in [Karo87], discuss the relative merits of locating the buffers at

the input ports versus the output ports. Their switch model consisted of a switch

with N input and output ports connected internally by a crossbar. The packet

buffers were located at either the input or the output ports; when located at the

output ports, packets from multiple input ports could be written into the buffers

simultaneously. Packets arrived at each input port with inter-arrival times

governed by Bernoulli processes, with an equal probability of being destined for

any of the output ports. The buffers themselves were infinitely large, so flow

control was not considered.

Their results showed that buffering packets at the output ports significantly

shortened the average queue length. In addition, as the number of I/O ports

approached infinity, the maximum throughput of a switch with buffers at its output

ports approached 95%, while that of a switch with buffers at the input ports never

reached 60% throughput, according to their analytical model. The reason for the

superior performance of output port buffering is that it reduces the effect of output

port contention. For each output port, if there are any packets on the switch

destined for it, they will be located in the buffer associated with that output port

and will thus never be blocked by packets destined for other output ports.

Thus, queueing packets at the output ports is preferable over queueing at the

inputs ports if packets from all of the input ports can be queued simultaneously. To

do this, Karol et. al. say that the switch must run ‘‘N times as fast as the input and

19

output trunks.’’ In other words, the internal bandwidth of the switch must be as

great or greater than the sum of the bandwidths of the input ports for it to be

possible to move packets from each input port to the same output port buffer at the

same time. The simplest way to do this would be to operate the switch N times

faster than the links. However, communication links can operate at the same clock

speeds as the silicon components [Scot94]. To be able to support a bandwidth

which is the sum of the bandwidths of the input ports, then, the switch must have

an internal data path which is N times wider than the input ports.

There are significant difficulties with the implementation of both central

buffer pools and output port buffering in single-chip VLSI switches (as is discussed

in Sec. 3.2). Thus, we found only a single switch in the literature that uses central

or output port buffering on its own (McMillen’s centrally-buffered

switch [McMi86a] — see Sec. 2.4.3). IBM’s Vulcan Switch [Stun94] uses a central

buffer pool, but also incorporates buffers at the input ports which can store

incoming packets. Similarly, the Post Office Chip [Stev86, Davi92] combines an

off-chip central buffer pool with input port buffers. Dias and Jump, in [Dias81],

looked at placing buffers at the crosspoints of a switch crossbar, creating a separate

buffer for each input port × output port pair. This switch is identical to the SAFC

switch discussed in Ch. 3 and in[Tami88b]; placing buffers at the crossbar’s

crosspoints is logically identical to placing n buffers at each the n input ports,

associating each buffer with an output port. McMillen patented two switch

implementations whose buffers are located other than at the input port:

in [McMi86b] he describes a switch similar to the SAFC switch, and in [McMi86a]

he describes a centrally-buffered switch.

20

2.3. Network Contention and Flow Control

In the previous subsections we have alluded to flow control. Flow control is a

method used to regulate traffic in the network. It prevents packets from running

over each other and controls how fast each advances through the

network [Dall90a]. Flow control often involves throttling the flow of data through

one or more communication links. Flow control mechanisms are usually included

with a network implementation in order to prevent the loss of data due to

overflowing packet buffers. This subsection gives a brief overview of some of the

previous work in the area of flow control; a more thorough treatment is presented

in Ch. 8.

The BBN Butterfly [Crow85] and Monarch [Rett90] multiprocessor systems

use discarding flow control: when multiple packets contend for the output port of a

switch, all but one of the packets is discarded. If buffer memory is provided,

packets are discarded only after all of the buffer memory has been utilized.

Discarded packets are not permanently lost; the transmitting node retains a copy of

all packets it transmits, and will retransmit a packet if it fails to receive an

acknowledgement (or does receive a negative acknowledgement, depending upon

the implementation). This is an undesirable mechanism in many communication

networks because it wastes network bandwidth by requiring packets to traverse

links multiple times when they encounter congestion. The vast majority of the

tightly-coupled distributed systems in existence today utilize blocking flow control:

the Intel Paragon [Lill91], the TMC CM-5 [Leis92], the IBM SP-1 [Stun94],

Dally’s J-Machine [Dall87b], Seitz’s Mosaic [Lutz84], the DASH multicomputer at

Stanford [Leno92], the Cray T3D [Oed], and others. Under blocking flow control,

21

when multiple packets contend for a single output port, all but one of the packets

are stored in a local buffer. When this buffer becomes full, instead of allowing

packets to arrive and then dropping them, the buffer blocks transmissions —

neighboring switches connected to the full buffer are prevented from transmitting

to that buffer. With blocking flow control, packets do not traverse the same link

multiple times, but they can experience high network latencies if they encounter

congestion in the network. Blocking and discarding flow control mechanisms both

prevent the loss of data in the network, but neither promotes high performance in

the presence of non-uniform traffic.

A specific form of non-uniform traffic which designers of multistage

interconnection networks have explored is a hot spot [Pfis85a]. A hot spot is a

particular destination node (memory bank) which receives a greater fraction of the

packets than the other destination nodes. When the applied load of packets to this

hot spot is greater than the bandwidth of the link connecting the network to the hot

spot, then congestion will occur.

Pfistor and Norton discovered hot spots in their examination of the behavior

of multistage interconnection networks in which the processes are competing for

access to global locks or semaphores [Pfis85a]. They discovered that not only are

accesses to hot spots particularly slow, but the existence of a hot spot will increase

the latency of all of the memory accesses in the system. The reason for this is a

phenomena which they dubbed tree saturation. Tree saturation is the result of the

applied load to a hot spot being greater than the bandwidth to that memory bank.

When this occurs, the buffers of the switch immediately preceding the memory

bank become full. This in turn prevents the switches preceding the now full switch

22

from transmitting packets to that switch, and their buffers become full. This

eventually forms a tree of saturated switches leading from the hot spot back to all

of the processors. When the congestion reaches the senders, then the senders

experience a dramatic reduction in the throughput at which they can insert packets

into the network.

Along with the discovery of tree saturation, Pfister and Norton developed an

algorithm for determining the point at which tree saturation will occur in a given

system. Given that

R is the maximum network throughput, per processor (0 ≤ R ≤ 1),

h is the fraction of memory references directed at the hot spot, and

p is the total number of processors, with an equal number of memory banks,

then

R =
1+h (p −1)

1���������

Note that, as either the hot spot percentage or the number of processors increases,

the throughput per processor decreases. This is a serious limiting factor in the

scalability of multiprocessors.

Pfister and Norton claim that hot spot contention is a major drawback to any

multiple-memory bank shared-memory system. It can also be a problem in a

message passing multicomputer, where an inordinate number of messages are

being sent to a single processor. Thus, finding a solution to this problem will

significantly improve the performance and scalability of multiple processor

systems. The solution that Pfister and Norton examine is implementing the

network with combining switches. When two packets containing references to the

23

same memory location are queued in the same buffer at the same time, a combining

switch will merge the two packets into a single packet to be forwarded to the

memory bank. When the reply from the memory reaches the switch, it is split back

into two separate packets to be sent to each of the processors which generated the

requests. Unfortunately, Pfister and Norton’s research indicated that combining

switches cost from six to thirty-two times as much to implement as non-combining

switches. Of course, simply replicating the interconnection network six times will

not necessarily increase the system’s performance, because the memory bank

bandwidth is still the limiting factor, but if the memory accesses were segregated

according to whether or not they were to semaphores, it is possible that the

improvement in performance would be greater than that exhibited by combining

switches. Phister and Norton discuss this option, but without quantitatively

analyzing it concluded that combining switches were a more efficient solution.

Given their extreme expense, and the fact that they are only effective in situations

where a single memory location is being contested for, we disagree with this

assessment.

In [Scot90], Scott and Sohi describe a different approach to preventing hot

spots from degrading network performance. A global feedback flow control

scheme is proposed for multistage interconnection networks (MINs) operating with

a synchronous communication protocol (see Ch. 4). In their scheme, the buffers

which feed destination nodes (i.e., the packet buffers in the last switching stage) are

monitored. Since the authors assume that the buffers are located at the output ports

of the switches, each buffer in the last switching stage is associated with a single

destination. When the number of packets in a monitored buffer reaches a hot

24

threshold, the destination associated with that buffer is ‘‘hot’’. Similarly, when the

queue length falls below a not hot threshold the destination becomes ‘‘cold’’.

These changes in destination state are transmitted to all senders over a dedicated

flow control feedback network. Congestion is controlled by preventing senders

from transmitting packets to hot modules. In Ch. 8, this flow control mechanism is

analyzed in detail; we conclude that, while it is effective in addressing hot spots in

medium-scale networks (networks consisting of fifty to two hundred and fifty

processing nodes), it is not scalable and is thus inappropriate for the systems we

envision.

Dias and Kumar [Dias89] have proposed a packet switching flow control

mechanism which our evaluations indicate is effective under a number of non-

uniform traffic conditions, including hot spots. Their scheme, which we call

destination-based flow control (Dias and Kumar did not name it) allows only a

single packet to any single destination within a buffer at any point time. If a packet

arrives at a buffer that is already holding a packet destined for the same address,

the packet is discarded, and the previous switch (as opposed to the original source

of the packet) re-queues the packet at the tail of the FIFO buffer from which it

came. Ch. 8 presents this scheme in detail, discusses the simulation model of the

scheme which was used in our evaluations, and provides detailed analysis of why

this flow control mechanism performs as it does.

25

2.4. Switch Architectures

The earlier sections of this chapter present previous work in the context of the

individual functional units which comprise a communication switch architecture.

This section discusses work which presents switch, network, or multicomputer

architectures in toto. In the discussions below we attempt to analyze the impact the

buffer and flow control architectures have on the performance of the systems

presented.

2.4.1. The Post Office Switch

The Post Office [Stev86, Davi92] is a single-chip communication coprocessor

(communications controller) designed to operate in a hexagonal-torus

multicomputer. The chip performs topology-dependent dynamic routing. It

depends upon virtual cut-through to achieve low-latency communication. There is

only enough memory at the six input ports of the switch to receive a packet while it

is routed and the switch is arbitrated — when packets cannot be cut through the

switch, they are stored in off-chip memory until an output port is available.

Off-chip buffering has a single advantage over on-chip buffering; the input

ports occupy less silicon area. This allows the Post Office chip to contain six input

and output ports on a single chip, as well as a processor interface (the equivalent of

a seventh input and output port) and hardware to handle the packetization and

depacketization of messages. The disadvantages of off-chip buffering are

associated with the fact that the port to the buffer memory can potentially be a

bandwidth bottleneck. Packets have a high probability of being cut through a

switch only when the network is lightly utilized. Under conditions of high packet

26

throughput, packets have a low probability of experiencing virtual cut-through.

This means that, when the system is attempting to utilize most or all of the ports of

a switch (which is necessary to achieve high system throughput), every input port

will be attempting to write packets to and every output port will be attempting to

read packets from the off chip packet buffer — simultaneously. If the bandwidth

of the port to the buffer memory is not greater than the sum of the bandwidths of

the switch ports attempting to access it, then the network throughput will be

reduced.

2.4.2. The Torus Routing Chip

The Torus Routing Chip [Dall86] employs a routing scheme in which almost

no buffering is performed at all. It uses wormhole routing to forward packets.

Wormhole routing is a technique whereby packets are forwarded through a switch

in which there is not enough buffer space to store the packet in its entirety. The

packet is cut through the switch in the manner of virtual cut-through [Kerm79], but

if the packet is blocked, then only a fraction of the packet is stored on any one

switch. In the case of the Torus Routing Chip, only four bytes of a packet can be

stored on any one switch. Thus, the packet is strung through the network as though

it were a worm crawling from the source to the destination node.

The Torus Routing Chip is a 3×3 switch intended for use in multi-dimensional

torus networks. One pair of ports is the processor interface, the other two transport

packets in two dimensions of the torus. If a torus of dimension greater than two is

desired, multiple Torus Routing Chips are linked by connecting the host output

port of one to the host input port of the next to form a higher-dimension switch.

27

A major contribution of this work is the introduction of a class of deadlock-

free routing algorithms for torus networks termed dimensional routing [Dall87a].

The cause of deadlock is cyclical resource dependencies. To prevent inter-

dimensional cycles, packets are routed in strict dimensional order. E.g. for an n -

dimension network, packets are routed in dimension n −1 first, then n −2, etc. To

prevent dependency cycles within the rings which comprise the dimensions of a

torus, two virtual channels are defined within each link — V 0 and V 1. When a

packet is introduced to a dimension, it travels on the V 0 channels. If the packet

traverses the wrap-around link (the link connected node r −1 to node 0 in radix r

torus), the packet is moved to the V 1 channels. By multiplexing each

communication link between the two virtual channels and by providing separate

buffers at each input port and each output port for them, there are no intra-

dimensional cycles either, and deadlock is prevented.

There are four major advantages to using a buffering scheme like that of the

Torus Routing Chip. First, it is extremely simple, which means that it is easy and

inexpensive to implement. Second, it is small — the buffer requires very little

silicon to implement. In the case of the Message Driven Processor [Dall87b], this

allows the packet buffers and switching hardware to be placed on the same chip as

the host processor. Third, it can operate at high frequencies, allowing it to support

high-bandwidth communications. Finally, a system implemented with wormhole

routing does not have a hardwired maximum packet length.

A disadvantage of the Torus Routing Chip is the fact that a single packet can

occupy many channels simultaneously. This results in a positive-feedback

situation; the available bandwidth of the system is inversely proportional to the

28

relative throughput of traffic traveling upon it. Since having buffers which can

store multiple packets does not preclude the use of wormhole routing, and since it

is known that the use of packet buffers which can store a small number of packets

significantly enhances the performance of communication networks, there appears

to be little point in having buffers as small as those of the Torus Routing Chip.

2.4.3. The McMillen Switch Architectures

McMillen patented two switch architectures [McMi86a, McMi86b]. The first

of these is an N ×M switch using a central buffer. The buffer is a multiport

memory with N +M ports. When they arrive at the switch’s input ports, packets are

routed and placed into the central buffer. The routing tag for the packet is stored in

an arbitration memory. The arbitration logic randomly selects routing tags from

this memory and forwards the selected packet out the appropriate output port.

Central buffering schemes have several problems. These are discussed in detail in

Section 3.2, but we will mention the primary disadvantage, which is the size and

performance of multiported memories. For a switch with four input and output

ports, a central buffering scheme as described by McMillen would require eight-

ported memories. Memory cells of this size require large amounts of silicon and

operate much more slowly than do one- or two-ported memories. These factors

negate any performance benefits which might be gained from the use of a central

buffer, and, as discussed in Section 3.2, is is not entirely clear that there are any

performance benefits to negate.

McMillen’s second patent deals with a buffering scheme similar to the SAFC

buffer described in Section 3.2. Each input port has M queues, where each queue

29

is associated with one of M output ports. Packets arriving at an input port are

routed and then stored in the queue associated with the output port to which they

are destined. The ramifications of this architecture are discussed in Section 3.2.

McMillen also presents an SAFC-style buffer architecture in [McMi80] (the buffer

is not given a name in this paper).

2.5. Buffer Organization via Linked Lists

As will be discussed in Chs. 3 and 7, the DAMQ buffer uses linked lists to

maintain the queues of packets stored within the buffer. Other researchers and

engineers have also implemented linked lists to maintain packet queues. As was

mentioned previously in this chapter, Fujimoto discusses the implementation of a

centralized buffer pool [Fuji83]. Fujimoto organized the packets stored in the

central buffer pool into packet queues for each of the output ports by using linked

lists of buffer locations. Linked lists are also used by the Intel 82596 LAN

coprocessor for efficient flexible storage utilization [Inte89]. However, with the

82596, the pointers are stored with the data in main memory and the linked list data

structure is prepared and managed by the general-purpose host processor. The

coprocessor simply follows the prepared linked list to obtain the data for

transmission or to store an arriving packet (frame). While this organization is

sufficient for interfacing to local-area networks, it does not support the high

throughput and low latency required for multiprocessor and multicomputer

interconnection networks.

30

31

Chapter Three

The DAMQ Buffer Architecture

When designing a switch, the goal is to enhance the performance of the

communication network. A network’s performance is measured by its saturation

throughput and the average latency of packets traversing the network at a given

throughput. Translating the network performance goals into the design of an n ×n

communication switch is not trivial. There are a number of fundamental tradeoffs

to evaluate, including how many ports the switch should have, whether or not to

buffer packets in their entirety at intermediate nodes, and where to buffer the

packets if one is doing so.

This chapter describes the process by which we arrived at the DAMQ buffer

architecture. The following sections evaluate the features a communication switch

should have to support high performance packet switching. The first sections focus

on the basic structure of a switch. This includes the location, size, and fundamental

organization of the packet buffers. Then, having arrived at a basic architecture, the

additional characteristics that a switch should have to support high-performance

communication are enumerated. The result is a specification of the DAMQ buffer

architecture, as well as the architectures of feasible alternative buffers —

succeeding chapters compare the performance of networks implemented with

DAMQ buffered switches to the performance of networks implemented with these

alternate buffer architectures.

31

3.1. Switch Size

An issue fundamental to the architecture of a switch (and to the architecture

of the communication network that the switch will implement) is the number of

input and output ports the switch will have. Different internal switch organizations

may be preferable depending on the number of ports. For example, as discussed

below, packet buffering may be done in a central buffer pool. In order for the

switch to be able to utilize all of its ports simultaneously, the bandwidth of a

central buffer pool must be greater than or equal to 2n times the bandwidth of a

port, where n is the number of input / output port pairs on the switch. While this

may be feasible on a 2×2 switch, and may even result in an efficient

implementation, it is far less reasonable on a 6×6 switch. Further, the complexity

of arbitrating between up to 2n simultaneous requests to the buffer grows

significantly as n increases. Finally, the relative performance of various buffer

architectures changes with the number of ports. For example, the bandwidth of a

switch with infinite FIFO buffers at its input ports drops from 0.75 to 0.65524 as

the number of ports increases from two to four.

As was discussed in Ch. 2, many researchers have independently concluded

that switches with a small number of input and output ports (3 ≤ n ≤ 6) result in

better network performance than do switches with a large number of ports. Kumar

and Jump, comparing the performance of multistage interconnection networks

in [Kuma84], showed that networks of 4×4 switches outperform networks of 2×2

switches when the total network buffer space is restricted.

32

3.2. Buffer Location

Packet buffers can be located at the input ports (i.e. the buffer space can be

statically partitioned among the input ports), it can be centrally located (complete

sharing), the buffers can be placed at the output ports of the switch, or a

combination of the above may be used.

Complete sharing of available storage by all communication ports results in

more efficient storage utilization than a static partitioning of the buffer storage

between the ports. This suggests that the optimal switch organization is a central

buffer pool, where all free memory is available for allocation to any packet arriving

at any input port. In fact, in Ch. 4, switches with central buffer pools are used as

‘‘pseudo-ideal’’ switches (these are referred to as CBDA switches — centrally-

buffered, dynamically allocated). However, there are fundamental difficulties with

producing efficient high-performance implementations of a switch with shared

central buffers.

A major difficult is that, in order to achieve high performance, multiple high-

bandwidth communication ports must be able to access packet buffers

simultaneously. In the worst case, the bandwidth of the interconnection between

the buffer pool and the ports must be equal to the sum of the bandwidths of all of

the input and output ports. There are three ways to implement such a buffer. First,

it can have a single read and a single write port whose widths are equal to the width

of the input and output ports, but which operate n times faster than the

communication links. Given the high rates which are achievable for inter-chip

communication [Rett90], this is not a realistic option. A second possibility is to

keep the buffer ports’ width the same as that of the communication ports, but to

33

implement multiple read and write ports to the buffer. For an n ×n switch, the

buffer must have 2×n ports in order to support n simultaneous reads with n

simultaneous writes. Multiport memory is undesirable in a VLSI implementation

because its implementation is expensive (in silicon area) and leads to poor

performance (long access times). The third method to support 2×n simultaneous

accesses is to implement one write port and one read port, each n times wider than

the communication ports, and multiplex these among the input and output

ports [Stev86, Stun94]. Since the output ports must wait their turn to access the

central buffer pool, the use of a central buffer with a single, wide, multiplexed read

port can result in lost bandwidth and increased transmission latencies —

particularly for switches with many ports and when transmitting variable-length

packets (or packets whose length in flits is not a multiple of the number of ports).

To ameliorate the problem of access to a central buffer pool, switches which

utilize central buffer pools implement them in combination with buffers at the

input ports [Stev86, Davi92, Stun94]. Incoming packets are initially stored in the

buffer located at the input port while the switch attempts to cut the packet through.

The idea is to utilize virtual cut-through to avoid incurring the latency associated

with storing packets to and retrieving packets from the central buffer pool. If cut-

through is not possible, the input port buffer acts as a staging buffer, concatenating

the incoming data into wide words to store into the multiplexed central buffer pool.

Unfortunately, virtual cut-through is achieved at low network throughputs —

conditions under which the buffers of a switch are not heavily utilized. Under

conditions of high throughput where efficient buffer utilization is desired, virtual

cut-through will not be possible, and packets passing through the switch will most

34

likely be stored into and retrieved from the central buffer pool.

In addition to implementation difficulties and switch-local performance

problems, shared central buffers can also cause global performance problems.

Previous studies have shown that, with complete sharing, a single congested output

port may ‘‘hog’’ the available storage in a centralized buffer pool, impeding all

other communication through the switch [Irla78, Fuji83, Reed87]. This, in turn,

can cause neighboring switches, which cannot transmit packets to the full switch,

to have their buffer fill up, converting a single ‘‘hogged’’ buffer into a system-wide

problem.

The above considerations limit the choice for efficient practical switch

implementations to independent buffers at each output port or independent buffers

at each input port. If FIFO buffers are used, it has been shown that the mean queue

length of systems with output port buffering is shorter than the mean queue length

of equivalent systems with input port buffering [Karo86], due to the elimination of

head-of-queue blocking. This implies that a switch with input buffering requires

larger buffers in order to achieve the same probability of buffer overflow. The

problem with implementing output port buffering is that, in order to be able to

handle simultaneous packet arrivals, the buffers must have as many write ports as

there are input ports to the switch. Implementing buffers with multiple write ports

increases their size and reduces their performance. Further, as was the case with

central buffers, there is the need for staging buffers at the input ports; incoming

packets must be stored some place while they are being routed, and the incoming

flits must be concatenated into wide words for storage in the output port buffers.

The remaining option is to implement buffering at the input ports. A primary

35

advantage of input port buffering is that at most one packet will be being written to

it at any given point in time. Furthermore, if the buffer is managed as a FIFO

queue, it is very easy to deal with variable length packets. For these reasons most

current multicomputer communication switches include buffers associated with the

input ports [Dall86, Rimo87, Stev86, Davi92, Oed, Stun94, Leis92, Dall87b,

Lill91].

3.3. Buffer Size and Structure

The amount of buffer space to include on a communication switch depends

upon a number of factors, not the least of which is the switching paradigm being

used — specifically, whether one is supporting packet switching vs. wormhole

switching [Dall86].

The Torus Routing Chip [Dall86] takes an extreme position with regards to

the amount of buffer space to include on a switch — each input port has two four-

byte buffers associated with it, which is not enough storage for a packet. When a

packet is blocked (cannot be cut through a switch), its data is stored in the buffers

of multiple switches, and occupies those buffers (and communication channels)

until the packet can be forwarded. The Cray T3D takes a more moderate approach.

While [Oed] does not specify the amount of buffer space available on each switch,

it does say that the buffers can hold small packets while larger packets must be

wormhole routed. It has been shown that providing buffering for approximately

four packets at each input port dramatically improves network

throughput [Tami92a, Kuma84, Ahma89]. This dissertation does not evaluate

wormhole routing, but rather evaluates buffers which can store a small number of

36

packets in their entirety.

N

N

Output PortsOutput Ports

Output PortsOutput Ports

Ports
Input

Ports
Input

Ports
Input

Ports
Input

bufferbuffer

bufferbuffer

4×1
4×14×1

4×1

Crossbar

N/4

Crossbar

Crossbar

N/4

b) SAFC buffersa) FIFO buffers

c) SAMQ buffers d) DAMQ buffers
Figure 3.1: Alternative designs of switches with input port buffers.

A buffer which can store multiple packets requires a structure to order these

packets. A FIFO buffer with a single write port and a single read port offers the

most simple structure, by storing consecutive flits in consecutive buffer memory

locations. A communication switch with four input and four output ports using

FIFO input buffers is shown in Fig. 3.1a. The buffers are connected to the output

ports by a 4×4 crossbar. It should be noted that the dual-ported storage cells used

37

in the FIFO buffer are needed for virtual cut-through and must be used for all of the

buffer types we examined.

As mentioned in Ch. 1, with FIFO input buffers, output ports may be idle

even though there are packets in the switch waiting to be transmitted through those

ports. In order to utilize the output ports more efficiently, and thus increase the

switch’s throughput, packets must be segregated according to the output port to

which they have been routed. This can be done using separate FIFO buffers for

each of the output ports at each of the input ports [Kuma84, McMi80]. In the case

of a four-port switch, this amounts to sixteen separate buffers. We refer to this

type of buffer as being statically allocated, as the buffer space associated with each

input port is statically allocated to the output ports. We explored two statically

allocated buffer architectures: statically allocated, multi-queue (SAMQ) and

statically allocated, fully-connected (SAFC). The difference between these

architectures is that the SAMQ buffer has a single read port shared by all of the

queues at an input port, where as the SAFC buffer has separate read ports for each

queue. Since multiple packets can be read at the same time from an SAFC buffer,

a 4×4 crossbar will not accommodate all of the possible ways in which packets can

be transmitted from an SAFC switch. Instead, this scheme requires a 16×4

crossbar or, as we have shown in Fig. 3.1b, four 4×1 crossbars.

There are several problems with static buffer allocation. First, SAMQ and

SAFC buffers do not utilize their storage as efficiently as does the FIFO buffer.

Since the available buffer space at each input port is statically partitioned, in a 4×4

switch, only one quarter of the input buffer space is available to a given packet.

Thus, with static buffer allocation, packets may be rejected by an input port due to

38

a lack of buffer space, even if there is storage at that input port. This is in contrast

to the FIFO buffer, where the entire storage at the input port is available for any

arriving packet.

Another problem with statically allocated buffers is the difficulty of

efficiently implementing blocking flow control. In blocking switches [Gott83], the

output port of a switch is allowed to transmit only if there is space in the buffer of

the destination switch to store the packet. When the buffer of a switch fills up, the

output port of the neighboring switch must be blocked from transmitting to avoid

data loss due to buffer overflow. In this case, the switch whose buffer is full

notifies the neighboring switch that it cannot transmit any more messages until

some buffer space is freed up. A 4×4 switch with four queues implemented as

separate buffers at each input port must convey information about each of these

queues to the corresponding neighbor. This is four times the amount of

information that is necessary for a 4×4 switch implemented with FIFO buffers.

More importantly, if a neighboring switch is notified that there is a full queue

in the next switch, it must pre-route packets to determine which queue of the

destination buffer packets are to be stored in before transmitting them. Performing

pre-routing means that each switch makes the routing decision for the next switch

in the path of the packet instead of keeping routing decisions local to the switch.

While pre-routing is possible, it increases the complexity of the routing hardware

and makes dynamic routing problematic. An alternative flow control mechanism is

to forward the packet to the next stage regardless of the state of its buffers and

discard the packet if it turns out that there is no space for it. Such a scheme avoids

pre-routing but requires that buffers not delete packets as they transmit them, but

39

instead wait until an acknowledgement is received before reusing the buffer

memory. The acknowledgement and retransmission can be done either on a stage

by stage basis or end-to-end between sender and receiver. In both cases additional

hardware is required to store and manage unacknowledged packets. Ch. 8 presents

a detailed discussion of flow control mechanisms.

It should be noted that pre-routing is necessary not only for flow control but

also in order to determine where to store the packet as it arrives at the input port. If

incoming packets do not have the identity of the queue to which they are to be

appended already associated with them as they arrive at the input port, they have to

be stored in a staging buffer while the routing decision is made.

What is desired is a buffer which can access the packets destined for each of

the output ports separately (i.e. a non-FIFO buffer), but which can apply its free

space to any incoming packet, thus avoiding the poor buffer utilization and the

pre-routing associated with static buffer allocation. This is the buffer which we

have designed, and which we call the dynamically allocated, multi-queue (DAMQ)

buffer. Dynamically allocated, because the space within the buffer is not statically

partitioned among the output ports, but is allocated on the basis of each packet

received. Multi-queue, because within each buffer there are separate FIFO queues

holding packets destined for each output port (Fig. 3.1d). This buffer does not

require pre-routing, because whether or not a packet can be received does not

depend upon the direction of its future hops.

40

3.4. Buffer Features

In the previous sections we determined that a buffer should reside at the input

ports of a switch, maintain FIFO queues of packets for each of the output ports, and

dynamically allocate its buffer space on a per-packet basis. This provides a basic

structure for the DAMQ buffer but does not cover some important issues in

designing a communication buffer for a multicomputer.

An n ×n switch should be able to accept simultaneous arrival of packets from

all of the input ports, while at the same time transmitting packets through all of the

output ports (i.e. full utilization of all ports). This implies that the buffer must be

dual ported to allow a read and a write to occur simultaneously. Also, a switch

should only buffer a packet as long as necessary, i.e. it should not wait for the

entire packet to arrive before transmitting it — virtual cut-through [Kerm79] must

be supported. The DAMQ buffer has a dual-ported buffer memory and logically

separate reception and forwarding control circuitry so that it can simultaneously

receive and transmit packets (or perform virtual cut-through).

Since the DAMQ buffer allows multiple queues to share a single physical

memory, it requires a mechanism to maintain packet order. The DAMQ Buffer

Chip uses linked lists to implement the packet queues — each packet in the buffer

is pointed to by the previous packet in its queue and points to the next. In our

implementation of the DAMQ buffer (Ch. 7), the links lists are implemented by

dividing the buffer memory into fixed size buffer blocks. Each block has a pointer

register associated with it which points to the next block in the linked list. Each

packet queue has a head and a tail register which point to the first and last block of

the queue.

41

Buffer blocks are also key to supporting variable-length packets in the DAMQ

buffer (supporting variable-length packets can dramatically improve the efficiency

of a multicomputer communication network [Dall88]). A buffer supports variable-

length packets by providing fast memory allocation and minimizing the memory

wasted due to internal and / or external fragmentation. FIFO buffers implemented

as circular memory arrays ‘‘automatically’’ minimize fragmentation — the free

memory is always contiguous within the buffer. If the queues of a statically

allocated non-FIFO buffer are implemented as individual FIFO buffers, the queues

minimize fragmentation within themselves, but fragmentation in the buffer as a

whole is exacerbated by the static buffer allocation. Since the DAMQ buffer

dynamically allocates its buffer space, it requires a more sophisticated mechanism

to manage memory allocation and to minimize fragmentation. The buffer blocks

used to implement the DAMQ buffer’s linked lists also support variable-length

packets. Fixed sized buffer blocks eliminate external fragmentation, and internal

fragmentation is minimized by having the buffer blocks (eight bytes) be smaller

than the maximum packet size (thirty-two bytes). Thus, the linked lists not only

link together the packets which comprise a queue, but also the multiple buffer

blocks which comprise a single packet.

Technically, the buffer blocks and linked list structure of the DAMQ buffer

are artifacts of our implementation (Ch. 7); there are other ways to implement

dynamically allocated multi-queue buffers. However, in the following chapters (4,

5, 6 and 8), the testbed used to evaluate network features includes eight-byte buffer

blocks in its behavioral model of the DAMQ buffer. The buffer blocks were

included because they impact the behavior of the DAMQ buffer with respect to

42

memory fragmentation when forwarding variable-length packets.

3.5. Supporting Multiple Classes of Packets

Section 1.1 discussed the desirability of supporting real-time communication.

The idea is to allow a subset of the packets generated by the system to be

designated ‘‘high priority’’, and to provide preferential treatment for these packets

within the network, reducing both the average and the variance of the high-priority

packet latencies. In Ch. 5, it is demonstrated that non-FIFO handling of packets is

not sufficient to significantly reduce the ratio of worst-case to average latencies.

The DAMQ buffer achieves low average latencies by employing multiple

packet queues to prevent packets which are destined for different output ports from

blocking each other. An extension of this idea is to use an additional queue at each

input port dedicated to high-priority packets. This allows high-priority packets to

be routed through the switch as soon as they arrive in preference to any normal

packets waiting to be transmitted out of the same output port.

This scheme requires that there be a means to identify critical data packets.

We assume that the sender of a packet can mark it ‘‘high-priority’’ by setting a

dedicated bit in the packet’s header byte. The goal of implementing a

communication network with DAMQ buffers which have the high-priority packet

queue is to continue to provide low average latency for all traffic while also

providing relatively low worst-case latencies to a small percentage of high-priority

packets [Tami88c].

Since the DAMQ buffer implements its packet queues as linked lists, adding

an additional queue to the buffer requires little more than another head and tail

43

register. Since adding a single queue to store the high-priority packets in a buffer

means that a queue may hold packets to different output ports, this scheme also

requires that the header registers (the registers associated with each buffer block

which store the packet headers) have two extra bits to store a output port identifier

for the packet. Thus, support for multiple packet classes can be easily incorporated

into the DAMQ buffer architecture.

44

45

Chapter Four

Buffer Performance Evaluation
with Synchronous Networks

This chapter presents evaluations of the performance of communication

networks composed of switches implemented with the DAMQ buffer. The goal is

to determine the performance characteristics of the DAMQ buffer and evaluate

various design parameters associated with this buffer. In order to make this

evaluation, the DAMQ buffer’s performance is compared to the performance of

several other buffer types: FIFO buffers, two statically allocated non-FIFO buffer

architectures (SAMQ and SAFC buffers), and a central buffer pool whose space is

dynamically allocated to incoming packets.

Chapter 3 argued that the use of FIFO buffers reduces network performance

due to the susceptibility of FIFO buffers to output port contention and that non-

FIFO buffer architectures which utilize static buffer allocation inefficiently utilize

their available buffer space. Further, a strong case as made for the difficulty of

implementing statically allocated non-FIFO buffers (the need for pre-routing

packets, etc.) and of implementing central buffer pools. Nevertheless, there are a

number of reasons for comparing the performance of these particular buffers to the

performance of DAMQ buffers. First, they facilitate the evaluation of specific

architectural features of the DAMQ buffer. For instance, by including the SAMQ

buffer in the comparisons, the impact of dynamic buffer allocation on the

performance of the DAMQ buffer can be isolated. Second, some of thse buffer

organizations (specifically, SAFC) may be worthy of consideration in their own

45

right. Finally, while the CBDA buffer presents impossible implementation

requirements (as it is simulated in this chapter — see Sec. 4.1), it serves as a

‘‘pseudo-optimal’’ buffer architecture under uniform traffic conditions, providing

an estimate of the available communication network performance which the other

buffer architectures fail to tap.

The next section discusses the difference between synchronous and

asynchronous communication networks and discusses why we present results from

evaluations of synchronous networks in this chapter. Sec. 4.2 describes the

Markov model used to evaluate single 2×2 switches, presents the results obtained

from the model and examines these results. The following section describes the

event-driven simulator used to measure the performance of synchronous multistage

interconnection networks. This section describes the switch behavioral model used

in the simulator, including the algorithms for discarding and blocking flow control

and for arbitrating the crossbar of each switch. Secs. 4.4 and 4.5 present and

discuss the results obtained by simulating networks of discarding and blocking

switches, respectively, which are transmitting uniformly distributed traffic.

Sec. 4.6 examines the performance of networks of blocking switches when

communication traffic is not uniform. The chapter concludes with a summary of

the results and analyses presented in this chapter.

46

4.1. Synchronous and Asynchronous Networks

This chapter and the following use analysis and simulations of a synchronous

communication network in order to compare the performance of different buffer

architectures. However, Chs. 6 and 8 perform their evaluations in the context of an

asynchronous network. In the context of a multicomputer communication network,

the terms synchronous and asynchronous do not refer to the presence or absence of

a clock, but rather to the synchrony (or lack thereof) with which packets are

transmitted.

In a synchronous network, time is globally divided into stage

cycles [Yoon90]. A stage cycle is the time required for a packet to travel one hop

in the network. Each switch of a synchronous network may transmit packets at

each stage cycle boundary, with at most one packet traversing a link each stage

cycle. In an asynchronous network, on the other hand, each switch operates

independently of its neighbors and is capable of transmitting or receiving a packet

during any clock cycle that an output or input port is available. Packets require

multiple clock cycles to be transmitted received (as opposed to a single stage

cycle), and the number of cycles is dependent upon the size of the packet.

The use of a synchronous network has several implications. First, virtual cut-

through [Kerm79] is not supported. As was discussed in previous chapters, virtual

cut-through can dramatically reduce communication latency in lightly-utilized

communication networks. However, in a synchronous network, packets can only

travel one hop in a stage cycle. Using a synchronous network also eliminates the

possibility of transmitting variable length packets; since transmission service time

is constant (one link per stage cycle per packet), it is not meaningful to consider

47

variable-length packets.

Asynchronous networks are used by most of the academic and commercial

multicomputers built in recent years: the Intel Delta and Paragon [Lill91], MIT’s

J-Machine [Dall87b], * T [Nikh92], Alewife [Agar90], the Cray T3D [Oed], and

others. Exceptions include the BBN Butterfly [Crow85] and Monarch [Rett90]

machines, which use a synchronous networks. Further, the DAMQ buffer

architecture was intended for use in an asynchronous network, with features

specifically designed to support virtual cut-through and variable-length packets.

However, simulations of synchronous communication networks have been widely

used in research on packet switching networks [Dias81, Kuri89, Lang88, Dias89,

Yoon90, Kuma84, Pfis85b, Lee86, Yew86, Kuma86, Knig89, Scot90, Tami88b,

Tami92a, Tami92b]. For this reason and because a synchronous switch is simpler

to model, this chapter evaluates the DAMQ buffer in the context of a synchronous

network (as does Ch. 5, which examines the ability of various buffer architectures

including the DAMQ buffer to support real-time communication).

4.2. Evaluation of 2×2 Discarding Switches Using Markov Models

We have evaluated the performance of individual 2×2 discarding switches

using Markov models. An entire network was not modeled due to the intractable

number of states which would result. Several simplifying assumptions were made:

(1) fixed length packets, (2) uniform distribution of packet destinations, (3) when

there is contention for an output port, the input port that is allowed to transmit is

chosen randomly, and (4) synchronous store-and-forward operation of the switch

so that during each stage cycle [Yoon90] packets either completely arrive or

48

completely depart. Since we assume a uniform packet size, the amount of buffer

memory occupied by each packet is a constant. Therefore, the packet slot (the

amount of memory occupied by a packet) is used as the unit of buffer storage in

this analysis.

The model used to generate the Markov state transition graph for each switch

allows the switch to simultaneously receive and transmit messages during each

stage cycle. A packet is discarded if and only if it arrives at a full buffer which is

not currently transmitting a packet. This corresponds to the architecture described

in Ch. 3, where the buffer supports simultaneous read and write operations. The

operation of the switch is equivalent to a switch that alternately sends and receives

packets, where the state of the switch is defined by the packets in its buffers after

packet transmission but before packet reception. With this model, a packet is

discarded when it arrives at a full buffer. Thus, when a packet arrives at the

switch, the probability that it will be discarded is:

P (discard) =
i ∈I
Σ P (i) + 0.5

j ∈J
Σ P (j)

where I is the set of states in which both input ports are full, J is the set of states in

which one of the input ports is full, and P (k) is the probability of being in state k

after any given stage cycle. Packets arrive at each input port of the switch with a

probability equal to the applied traffic rate and with equal probability of being

destined for either output port. The transition probabilities between states is

calculated in two stages: packet arrival puts the switch into an intermediate state,

and then arbitration and transmission moves the switch to the next state. The

product of these probabilities is the probability of transferring from one state to the

49

next via a particular intermediate state. The sum of all such transfers is the total

probability of that state transition.

All four practical switches as well as the CBDA switch were evaluated at

varying applied traffic rates and different buffer sizes. The applied traffic rate

corresponds directly to the probability of a packet arriving at an input port, i.e., for

a switch operating with 70% applied input traffic rate each input port has a

probability of 0.70 of having a packet arrive at each long clock cycle. From our

model we could determine the probability that a given packet arriving at a switch

will be discarded for a given level of traffic. The results are presented in Tab. 4.1.

Since the SAMQ and SAFC switches statically allocate buffer space to each of the

output ports, they can only have an even number of packet slots in each buffer.

As shown in Tab. 4.1, the switch with DAMQ buffers performs better (lower

probability of discarding) than any of the other practical switches with the same

amount of storage at any rate of traffic. The single exception to this is the SAFC

switch with six packet slots per buffer, operating with a 0.99 applied input traffic

rate. This result demonstrates that, as the size of the buffer grows, the ability to

dynamically allocate buffer space becomes less important. When large buffers

make dynamic buffer allocation less relevant, the additional connectivity of the

SAFC switch gives it the performance edge over the DAMQ buffer.

It should be noted that a DAMQ switch with space for three packets per input

buffer discards as few or fewer packets than the FIFO switch with space for up to

six packets for all traffic rates. Further, the DAMQ switch performs significantly

better than the FIFO switch for high traffic rates. The savings in chip area due to

this dramatic decrease in storage requirements is several times greater than the area

50

���
Percentage of discarded packets
vs. applied input traffic rate��

0.25 0.50 0.75 0.80 0.85 0.90 0.95 0.99

Buffer
Type

Pkts
per
Port��

1 1.7 7.1 15.5 17.4 19.3 21.2 23.1 24.6��
2 0+ 1.2 8.7 11.4 14.5 17.8 21.3 24.2��
3 0+ 0.2 6.1 9.2 13.0 17.0 21.0 24.2��
4 0+ 0+ 4.7 8.1 12.3 16.7 21.0 24.2��
5 0+ 0+ 3.8 7.5 12.0 16.7 21.0 24.2��

FIFO

6 0+ 0+ 3.2 7.1 11.9 16.6 21.0 24.2��
2 0.9 4.7 11.3 12.9 14.5 16.1 17.8 19.1��
4 0+ 0.3 3.0 4.2 5.5 7.1 8.9 10.5��SAMQ

6 0+ 0+ 0.9 1.5 2.4 3.7 5.4 7.1��
2 0.8 3.8 9.1 10.5 11.9 13.4 15.0 16.3��
4 0+ 0.2 2.0 2.8 3.8 5.1 6.6 8.1��SAFC

6 0+ 0+ 0.5 0.9 1.5 2.4 3.8 5.2��
2 0+ 0.6 4.8 6.4 8.3 10.5 12.9 15.0��
3 0+ 0+ 1.4 2.4 3.9 5.8 8.3 10.6��
4 0+ 0+ 0.4 0.9 1.8 3.3 5.6 8.1��
5 0+ 0+ 0.1 0.4 0.9 2.0 3.9 6.5��

DAMQ

6 0+ 0+ 0+ 0.1 0.4 1.2 2.8 5.4��
2 0+ 0+ 1.8 3.0 4.6 6.7 9.3 11.8��
3 0+ 0+ 0.2 0.5 1.2 2.6 4.9 7.5��
4 0+ 0+ 0+ 0.1 0.3 1.1 2.9 5.4��
5 0+ 0+ 0+ 0+ 0.1 0.4 1.8 4.1��

CBDA

6 0+ 0+ 0+ 0+ 0+ 0.2 1.1 3.3��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.1: Results of Markov Analysis. A single 2×2 discarding switch.
The percentage of discarded packets for a variety of buffer sizes
(given as packets per input port) for various applied input traffic
rates (the fraction of the raw input port capacity).

for the extra control circuitry needed for the DAMQ buffer [Fraz89] (Ch. 7).

For light traffic and only two slots per buffer, the FIFO switch performs better

51

than the SAMQ and SAFC switches. Under these conditions the probability of

discarding is determined by available storage and the FIFO buffer, having a single

pool of slots instead of statically partitioned storage, delivers better performance.

This effect is overshadowed by the unnecessary blocking of packets due to FIFO

handling when the traffic rate is high or when there are more than four packet slots

per buffer. In general, the SAMQ buffer performs almost as well as the SAFC

buffer, indicating that the additional throughput provided by fully connecting the

inputs with the outputs does not provide a significant boost in performance for 2×2

switches.

The benefits of non-FIFO access to the buffers are demonstrated by the fact

that the FIFO buffers perform significantly worse than the three other buffer types

for traffic rates above 80% and a wide range of buffer sizes. Furthermore, the

performance of the FIFO buffers cannot be improved by simply increasing the

buffer size — for example, with a traffic rate of 90%, increasing the FIFO buffer

size from three to six slots does not significantly reduce the discarding rate. This is

due to there being a theoretical limit to the throughput obtainable from FIFO

buffers [Irla78]. Under uniform traffic conditions, a 2×2 switch implemented with

FIFO buffers cannot support throughputs over 0.75 (consider that there are only

two packets available for transmission on any given stage cycle, and each packet is

equally likely to be destined for either output port). Thus, it is not always possible

to trade off implementation and control complexity for increased storage. FIFO

switches perform poorly at high traffic rates regardless of their buffer size.

We have previously described the benefits of the DAMQ buffer over the

SAMQ and SAFC buffers in the areas of implementation, flow control, and

52

routing. The performance advantage of the DAMQ compared with the SAMQ and

SAFC buffers is based on more efficient use of storage. As shown in Tab. 4.1, the

DAMQ switch performs significantly better (lower discarding rate) than a SAMQ

or SAFC switch with small buffers.

This relatively simple analysis of a single discarding switch has exposed two

buffering fundamentals. The first is the impact of the performance restriction

imposed by FIFO buffering. Even with a small number of packet slots, switches

implemented with multi-queue buffers can exceed the theoretical maximum

throughput of switches implemented with FIFO buffers — and the maximum

throughput FIFO switches under uniformly distributed traffic decreases as the

number of ports increases (0.65542 for a 4×4 FIFO). The second is the importance

of dynamic buffer allocation when there are a small number of packet slots per

input port.

4.3. The Simulator

We used a general purpose simulation tool written in Modula2 called

SIMON [Swop86] to construct the simulator. SIMON provides facilities for the

creation of objects (co-routines) and an event queue which allows the objects to

pass messages to each other. The simulator uses three types of objects to create a

communication network: senders, switches and receivers. We simulate a clocked

system; each object in the system is synchronous, and the clock is global. As

explained in Sec. 4.1, the network being synchronous is independent of the fact that

the individual objects with the network are synchronous — the asynchronous

network simulator described in Sec. 6.1 also uses a global clock.

53

Network traffic is stochastically generated. Each sender injects packets into

the network using geometrically distributed inter-message delays. The destination

address of each message is chosen randomly — in Secs. 4.4 and 4.5, a uniform

distribution of the possible destination addresses is used. For Sec. 4.6, which

explores network performance in the presence of a hot spot, each packet generated

has probability h of being addressed to the hot spot, probability 1 − h of having its

address chosen from the uniform distribution. The simulator follows a set structure

in performing the simulations. First, the simulations are run until x packets (in

total) are received (reach their destinations). This number must be set high enough

that, by the end of the x packets, the system is stabilized. At this point, the

statistics-gathering variables are reset and the simulations continue to execute until

n more packets are received. Finally, the simulation ends and the statistics are

printed to a file. This chapter presents the results of simulating 64×64 omega

networks [Lawr75] constructed from three stages of 4×4 switches. The network

connects sixty-four processors (message generators) to sixty-four memory modules

(message receivers).

The next section discusses results obtained using discarding flow control,

while the two sections after it present the results of simulations of networks which

perform blocking flow control. Under discarding flow control, decisions as to

whether or not to transmit a packet are made without consideration of the state of

the destination buffer. If there is not buffer space available to receive an incoming

packet, then the packet is discarded. In this simulator, a switch discards a packet

by transmitting it back to its original sender. Each sender object has a queue for

packets which have been discarded — while a sender can generate a new packet

54

while this queue is not empty, it cannot transmit a new packet while there are

packets in the discarded queue (i.e. senders give priority to packets which have

been discarded).

Under blocking flow control, when a buffer becomes filled with packets, it

signals this state to the neighboring switch(es) which transmit to that buffer.

Senders / switches do not transmit packets to a switch which has asserted the

blocking signal. Only after the signal is dropped can transmissions recommence.

In the network simulated for this dissertation, if a full buffer transmits a packet on

stage cycle i (and thus becomes unfull), the neighboring switch will be able to

transmit to the once-full buffer on stage cycle i +1.

An important issue in the design of communication switches is the scheme

used to arbitrate between multiple packets which require conflicting resources in

order to be forwarded. The switches have to arbitrate between multiple buffers

with packets destined for the same output port. The SAMQ and DAMQ switches

also need to arbitrate between packets from the same buffer which were routed to

different output ports (they are multi-queue buffers which can only read queue at a

time). The arbitration scheme used in the evaluation involved examining the

buffers of a switch one at a time, transmitting packets from the longest unblocked

queue in the buffer. To support fairness, the order in which buffers are examined is

not fixed — a modified round-robin priority scheme is used. In successive

arbitration ‘‘rounds’’ each buffer in turn is the first buffer to be examined. If a

non-empty buffer has the top priority but is unable to transmit (for example, due to

a full buffer at the destination node), the buffer retains its top priority for the next

round. To maintain fairness within the buffers, a stale count is used on the

55

queues [Stev86] to determine which queues within a buffer have held packets for a

long period of time and should therefore get top priority. This is not an arbitration

scheme which one could efficiently implement in a communication switch. Tamir

and Chi present a detailed discussion of arbitration schemes for small n ×n

switches [Tami93].

Network performance is measured by the maximum throughput achieved and

by the average packet latency at a given throughput. In a synchronous network,

throughput is measured as the fraction of the network bandwidth utilized, which is

equal to the average number of packets reaching the destination nodes per stage

cycle divided by the number of destination nodes (i.e. 0 ≤ thpt ≤1). Latency is

calculated in stage cycles and is measured from the time of a packet’s creation until

it reaches its destination.

4.4. Evaluation of Discarding Switches via Event-Driven Simulation

Section 4.2 discussed results obtained from an analytical model of a single

discarding 2×2 switch. This section extends the evaluation by simulating a

network of discarding switches.

The results of simulating a network of discarding switches under uniform

traffic are presented in Table 4.2. The table shows the percentage of packets which

are discarded for various rates of introducing packets to the network. The applied

input traffic rates are expressed as the fraction of the network’s raw input port

capacity. For each applied input traffic rate R , with a resulting discarding rate D ,

the throughput of the network is R . (1−D).

The results in Tab. 4.2 show that, for a given buffer size and wide range of

56

��
Percentage of Packets Discarded
vs. Applied Input Traffic Rate���

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Buffer
Type

Pkts
per
Port

Max.
Thpt.

��
1 1.5 5.8 12.1 19.6 27.0 33.9 40.3 45.8 0.45���
2 0+ 0.2 1.5 4.9 11.2 19.6 28.0 35.7 0.52���
3 0 0+ 0.2 1.3 5.2 13.4 22.3 31.1 0.55���
4 0 0+ 0+ 0.4 2.5 10.3 18.6 27.2 0.57���

FIFO

8 0 0 0 0+ 0.2 5.3 13.6 24.0 0.61��
4 0.4 1.9 4.6 8.4 13.2 18.6 23.9 29.1 0.61���SAMQ
8 0+ 0+ 0.1 0.4 1.2 3.1 6.2 10.5 0.78��
4 0.4 1.5 3.6 6.4 9.9 14.2 18.6 23.2 0.67���SAFC
8 0 0+ 0.1 0.3 0.8 2.0 3.9 6.9 0.84��
2 0+ 0.1 0.4 1.8 5.0 10.7 17.3 24.5 0.63���
3 0 0+ 0+ 0.1 0.7 3.0 7.2 13.3 0.72���
4 0 0 0+ 0+ 0.1 0.7 3.9 9.6 0.78���

DAMQ

8 0 0 0 0 0 0+ 0+ 0.7 0.88��
1 0+ 0.2 1.1 4.4 10.5 18.7 26.8 34.5 0.53���
2 0 0 0 0+ 0.1 1.3 4.7 10.9 0.73���
3 0 0 0 0 0+ 0.1 0.8 3.5 0.82���
4 0 0 0 0 0 0+ 0.1 1.1 0.86���

CBDA

8 0 0 0 0 0 0 0 0+ 0.93��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.2: Discarding Percentage vs. Throughput. The performance of a
64×64 omega network composed of 4×4 discarding switches.
Results obtained from simulation. Uniform traffic. Shown is the
percentage of packets discarded for various applied input traffic rates
(the fraction of the network’s raw input port capacity).

applied input traffic rates, the DAMQ switch network has significantly lower

discarding rates than networks with FIFO, SAMQ, and SAFC switches.

Furthermore, the maximum achievable throughput is significantly higher with the

DAMQ switch, for the buffer sizes examined. At low applied input traffic rates,

the FIFO switch performed better than the SAMQ and SAFC switches, due to the

57

four-way static partitioning of the buffer space in the SAMQ and SAFC buffers.

However, non-FIFO handling of packets allows the switches implemented with

SAMQ and SAFC buffers to operate at throughputs above the FIFO switch’s

theoretical maximum. In all cases, the hypothetical CBDA switch performs better

than the other switches, thus demonstrating the value of complete sharing of

storage and arbitrary random access to any packet buffered in the switch when

dealing with uniformly-distributed traffic.

4.5. Evaluation of Blocking Switches via Event-Driven Simulation

The previous section described the results of simulating networks of

discarding switches. This section explores the performance of networks using

blocking flow control. The performance of a multistage interconnection network

composed of blocking switches can be characterized by the relationship between

packet latency and throughput. In general, as throughput increases, so does the

latency. For low throughputs (i.e. before the network approaches saturation),

latency grows very slowly with increasing throughput. As the throughput

approaches saturation, the latency increases rapidly. Near saturation, small

increases in throughput are accompanied by large changes in latency. This

relationship between latency and throughput is shown in Fig. 4.1 and

elsewhere [Dias81, Pfis85a].

We have simulated 64×64 omega networks of blocking switches using all five

switch types and several buffer sizes under uniform traffic with a wide range of

traffic loads. The results of our simulations are shown in Tab. 4.3. The throughput

is reported as the fraction of the aggregate raw link bandwidth. This is the fraction

58

��
Average latency vs. network throughput��

0.10 0.20 0.30 0.40 0.50 sat.
Buffer
Type

Pkts
per
Port

Sat.
Thpt

��
1 3.67 5.51 Sat. Sat. Sat. 8.89 0.24���
2 3.14 3.39 3.88 5.41 Sat. 7.95 0.44���
4 3.14 3.38 3.79 4.65 9.34 13.14 0.51���
6 3.15 3.34 3.79 4.63 7.78 17.87 0.55���
8 3.14 3.38 3.79 4.60 6.90 23.03 0.57���

FIFO

12 3.15 3.38 3.79 4.61 6.78 33.00 0.59��
4 3.24 3.58 4.09 4.90 6.57 6.68 0.50���
8 3.14 3.36 3.68 4.07 4.95 9.39 0.71���SAMQ

12 3.15 3.36 3.68 4.16 4.91 13.00 0.78��
4 3.22 3.50 3.88 4.42 5.28 5.88 0.54���
8 3.13 3.29 3.51 3.80 4.21 7.53 0.75���SAFC

12 3.13 3.29 3.50 3.79 4.20 9.80 0.82��
2 3.14 3.36 3.74 4.48 Sat. 7.19 0.50���
4 3.14 3.36 3.68 4.16 4.91 10.66 0.71���
6 3.14 3.36 3.68 4.16 4.90 14.85 0.80���
8 3.14 3.36 3.68 4.17 4.89 19.10 0.84���

DAMQ

12 3.14 3.36 3.68 4.16 4.92 29.15 0.90��
1 3.24 3.53 4.64 Sat. Sat. 6.63 0.33���
2 3.13 3.30 3.50 3.81 4.35 6.31 0.59���
4 3.13 3.29 3.50 3.80 4.19 9.71 0.80���
6 3.13 3.29 3.51 3.79 4.20 13.84 0.86���
8 3.13 3.29 3.51 3.79 4.20 18.07 0.90���

CBDA

12 3.13 3.29 3.51 3.79 4.21 26.07 0.94���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.3: Latency vs. Throughput, Blocking Switches. The performance
of a 64×64 omega network composed of 4×4 blocking switches.
Results obtained from simulation. Uniform traffic. Shown are the
latencies of packets through the network for various network
throughputs.

59

of the maximum network throughput that would be achieved if all the network

links were transmitting at all times (this would be possible if there were no

conflicts in any of the switches). The latency is the number of stage cycles from

the moment the packet is created to its delivery at the destination. The minimum

latency through the omega network is three stage cycles. At each sender, the

interval to the next packet creation is calculated from the time the current packet

enters the network.

Table 4.3 shows that for low throughput rates all the switches achieve nearly

the same latencies. Furthermore, for particular buffer type, as long as the

throughput is well below saturation, the buffer size does not have a significant

impact on the latency. For the buffer sizes shown in the table, the DAMQ switch

network can achieve significantly higher maximum throughput than networks with

FIFO, SAMQ, or SAFC switches. For example, with a buffer size of four packet

slots per input, the maximum throughput of a network composed of DAMQ

switches is at least 30% higher than a network composed of any of the other three

practical switches. If one were to increase the buffer sizes, as one approaches

infinity, the performance of switches implemented with SAMQ and DAMQ buffers

would be equal, and SAFC buffers better; static versus dynamic buffer allocation is

irrelevant in extremely large buffers.

As shown in Tab. 4.3 and in Fig. 4.1, for these same switches, at a throughput

of 0.50, the DAMQ network results in lower latency than with the other three

practical networks. This difference in latency is due to the fact that the other

switches are at or near their saturation throughputs. At lower throughputs (below

0.40) the average latencies with all the networks are very close to each other.

60

Latency

Throughput
0.1 0.3 0.5 0.7

5

10

15

........................
................

..........
........

.....
......

....
....
...
....
...
...
...
....
...
....
...
...
...
....
...
...
....
....
....
....
.....
......
...�

.
..

. �

�

Δ

�

..............�

.�

�

Δ

�

FIFO

SAMQ

SAFC

DAMQ

CBDA

Figure 4.1: Latency vs. Throughput. The performance of a 64×64
omega network composed of 4×4 blocking switches with four packet
slots per input port buffer. Results obtained from simulation.
Uniform traffic.

Hence, the major advantages of the DAMQ buffer are (a) its ability to support high

throughput communication and (b) its ability to provide low-latency

communication at throughput rates which are approaching saturation.

As shown in Fig. 4.1, the latency of the network of SAMQ and SAFC

switches with four packet slots per input buffer does not increase significantly near

saturation as it does with the other switches. The reason for this is that with four

packet slots per buffer allocated to four queues per buffer, each queue has only one

buffer slot. Hence, once a packet enters a switch, it is forwarded the next time its

61

queue gets priority from the arbiter (if not sooner). With the other buffer types,

and with larger SAMQ and SAFC buffers, the packet may be queued behind

several other packets waiting for the same output port.

Latency

Throughput
0.2 0.4 0.6 .80 1.0

5

10

15

20

25

.
.

...
....
...
2

.
. . ..

. .
...

...
...
..
...
...
....
...
4

.
.

. . ..
..
..
..
..
...
..
..
..
...
..
...
..
...
..
6

.
..

...
..
...
..
..
..
..
..
..
..
...
..
..
...
..
..
...
..
...
8

2
3

4

6

8

.FIFO

DAMQ

Figure 4.2: Blocking Switches with Varying Buffer Sizes. The
performance of a 64×64 omega network composed of 4×4 FIFO or
DAMQ blocking switches with several sizes of input buffers.
Results obtained from simulation. Uniform traffic.

The results in Tab. 4.3 are similar to the results of the Markov model and the

simulations of discarding switches — in all cases the benefit derived from non-

FIFO handling of packets is the improved network performance under high

network loads. At low throughputs, the FIFO switches perform as well as the

SAMQ, SAFC, and DAMQ switches. However, multi-queue buffers can provide

higher maximum throughput as well as lower latency at ‘‘moderate’’ throughputs.

62

This problem cannot be resolved by increasing the size of the FIFO buffers —

increases beyond three or four slots results in very small increases in the maximum

network throughput (as the work of ourselves and others [Dias81] has shown).

Multi-queue buffers, on the other hand, increase the maximum throughput far

beyond what is achievable with FIFO buffers. This result is seen in Fig. 4.2, which

shows the diminishing returns obtained from increasing the size of FIFO buffers.

This figure also shows that implementing DAMQ buffers with only three packets

slots results in significantly better performance than a FIFO buffer with eight slots.

Hence, beyond minimal buffer space (two or three packet slots), it is more

beneficial to allocate hardware resources to the more complex control of the

DAMQ buffer than to additional buffer memory.

4.6. Non-Uniform (Hot Spot) Traffic

For some applications, the handling of non-uniform traffic by the network

may be a critical factor in determining system performance [Pfis85a]. Of particular

interest is ‘‘hot-spot’’ traffic, where a particular (‘‘hot’’) destination receives a

higher percentage of the packets than any other destination. Tab. 4.4 presents the

results of simulating networks composed of the various switches with hot-spot

traffic [Pfis85a]. Five percent of the packets from all senders are sent to the ‘‘hot’’

destination, while the destinations of the rest of the packets are uniformly

distributed among all the receivers. The results demonstrate that with hot-spot

traffic, the buffer type does not matter. Below saturation, the switches display

almost equal latencies, just as with uniform traffic. However, unlike the situation

with uniform traffic, the switches all reach saturation at the same throughput

63

(∼∼ 0.24).

���
Average latency vs. network throughput������������������������������������
0.05 0.10 0.15 0.20 saturated

Buffer
Type

Saturation
Throughput���

FIFO 3.07 3.17 3.32 3.81 23.58 0.24���
SAMQ 3.12 3.27 3.48 3.88 10.92 0.24���
SAFC 3.11 3.25 3.43 3.78 10.53 0.24���
DAMQ 3.07 3.16 3.30 3.67 25.20 0.24���
CBDA 3.10 3.15 3.25 3.55 16.96 0.24��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table 4.4: Blocking Switches with Hot Spot Traffic. A 64×64 omega
network composed of 4×4 blocking switches. Four packet slots per
input port. Five percent hot-spot traffic. Shown are the latencies of
packets through the network for various network throughputs.
Results obtained from simulation.

With hot-spot traffic (Table 4.4), the saturation throughput for all switches is

significantly lower than with uniform traffic (Table 4.3). This is caused by the

increased probability of contention within each switch for the output port on the

path to the hot-spot. With FIFO buffers, when there is contention for an output

port only one packet from one of the contending input ports is forwarded. All the

other contending input ports are idle. Thus, within a short period of time, all of the

switches which are on the path to the hot-spot have a high probability of having

packets destined for the hot-spot at the head of their buffers and of having their

buffers completely full. Pfister and Norton [Pfis85a] call this effect ‘‘tree

saturation.’’ Since there is a path from every sender (processor) to each receiver

(memory bank), when a hot-spot tree saturates, the traffic backs up to block every

single sender. For all buffer types the network saturates at a throughput t that

satisfies the equation t (1−h) + thp = 1, where h is the fraction of packets destined

for the hot-spot and p is the number of inputs/outputs of the network [Pfis85a].

64

Tree saturation occurs with DAMQ switches just as with FIFO switches. The

DAMQ switches forward all of the non hot-spot traffic, but cannot forward hot-

spot traffic since the bottleneck is bandwidth of the single link connecting the

network to the hot destination. This causes the buffers to fill up with hot-spot

traffic. Once that happens, each DAMQ buffer is dominated by the queue to the

output port on the path to the hot-spot and the network becomes saturated just like

a network with FIFO switches. With the SAMQ and SAFC switches buffer space

cannot become completely occupied by hot-spot traffic since it is statically

partitioned. However, the blocked hot-spot traffic at the inputs to the network

quickly block all non hot-spot traffic attempting to enter the network, thus leading

to saturation at the same levels as the other switches.

Since the buffer organization does not help in reducing the impact of tree

saturation, other solutions must be found. One possibility is to follow the design of

the IBM RP3 multiprocessor [Pfis85b] and use two separate networks: one for

general traffic and the second, a combining network [Gott83], for hot-spot traffic

caused by synchronization traffic, such as accesses to semaphores. In a system

such as this, the hot-spot traffic would not interfere with the uniform memory

accesses, so significant performance gains would be made by using the DAMQ

buffer instead of the FIFO buffer in the general traffic network. If the hot-spot

traffic originates from only a subset of the nodes, an alternative scheme for limiting

tree saturation is the use of feedback flow control to ‘‘throttle’’ the hot-spot traffic

and the source [Scot90, Dias89]. In Ch. 8, we discuss the possibility of a flow

control scheme to minimize the impact on the rest of the communication traffic in

the network caused by hot spots and other forms of congestion.

65

4.7. Summary and Conclusions

We have evaluated the DAMQ buffer by comparing its performance with that

of three alternative practical buffers in the context of a synchronous store-and-

forward multistage interconnection network. Both discarding and blocking

switches were considered. The DAMQ buffer provides two key features: non-

FIFO handling of packets and dynamic partitioning of buffer storage. We have

shown that both of these features are critical for supporting high throughput, low

latency communication.

Also, we examined buffer performance in communication networks

experiencing hot spot contention. We have shown that with hot-spot traffic that

involves all the senders in the network, multi-queue buffering and dynamic buffer

allocation do not improve performance, since they do not prevent tree saturation.

For uniform traffic, our modeling and simulations show that these features result in

large performance improvements over conventional FIFO buffers and/or static

storage partitioning. The DAMQ buffer provides significantly lower latencies and

higher maximum throughput than other practical buffer organizations with the

same total buffer storage capacity.

66

67

Chapter Five

Supporting High-Priority Traffic

In Sec. 3.5, we discuss uses for the queues of a multiqueue buffer other than

simply increasing the saturation throughput of the network or reducing the average

latency. There are situations where one may desire ‘‘especially good’’ service for

packets of a particular class. Examples given in Sec. 3.5 include messages between

kernel processes whose latency impacts a large number of user processes, messages

controlling remote i / o devices which may have particular timing constraints (real-

time communication), and flow control messages which must be able to bypass the

network congestion which it is attempting to resolve. This chapter evaluates the

ability of the DAMQ buffer to provide support for ‘‘high-priority packets’’ which

require ‘‘especially good service’’.

There are two aspects to the ‘‘especially good’’ service needed by high-

priority packets. First, the latency of packets in this class must be low —

significantly lower than the latency of ‘‘normal’’ packets. Second, the latency of

packets in this class must be predictable (especially when being used for real-time

applications). To be predictable, packet in this class must be oblivious to the

throughput of ‘‘normal’’ packets in the network and have a low variance in

latency. In other words, given a percentage of packets being marked high-priority,

the average latency of these packets should remain relatively constant as the

throughput of normal packets is varied, and the worst-case latency of the high-

priority packets should remain near the average latency as the throughput of

normal packets is varied.

67

In Sec. 4.5, we presented figures showing average latency vs. throughput for

multistage interconnection networks. This performance metric does not present the

information necessary in order to evaluate the effectiveness of multi-queue support

for high-priority packets. Presenting the average and maximum latencies of high-

priority packets for a simulation, however, is inconclusive. The maximum latency

experienced by a given simulation is an increasing random variable; the longer the

simulation runs, the closer the maximum latency will approach its theoretical

bound (if such a bound exists).

This chapter utilizes the same simulator that was used in Ch. 4, but the 99 th

percentile latency is used as the metric of a network’s support for high-priority

traffic (in contrast to average latency). The 99th percentile latency of packets for a

given simulation is the lowest latency of the slowest one percent of the packets.

While the maximum packet latency of a simulation continues to climb long after

the simulation has reached steady state, the 99th percentile latency of the

simulation remains relatively constant.

The problem of high worst-case latency through a network is demonstrated by

the results of simulations of a 64×64 Omega network composed of switches with

FIFO input port buffers. As shown in Fig. 5.1, the maximum latency through the

network may be many times larger than the average latency. Furthermore, if the

buffer size is increased from four packets slots to eight packet slots, the ratio of

maximum latency to average latency is not improved, nor is the ration of 99th

percentile latency to average latency. Hence, increasing the size of the FIFO

buffers is not a solution to the problem of very large worst-case latency through the

network.

68

L
a
t
e
n
c
y

Throughput

4 Packet Slots per Buffer

0.2 0.4 0.6

10

20

30

40

50

60

70

.
...�

�

×

�

×

.�

Max

>99%

Avg

L
a
t
e
n
c
y

Throughput

8 Packet Slots per Buffer

0.2 0.4 0.6

10

20

30

40

50

60

70
�

.
. .

. ..
...
...�
×

�

×

.�

Max

>99%

Avg

Figure 5.1: Variance of Latency, FIFO Switches. Maximum, 99th and
Average Latency vs. Throughput. Four packet slots per buffer.

We have previously shown that networks composed of DAMQ, SAMQ, or

SAFC switches perform significantly better than networks composed of FIFO

switches (Figure 4.1). As shown in Table 5.1, these three practical switches as well

as the CBDA switch perform better than FIFO switches in terms of worst-case

69

��
Throughput���

0.10 0.20 0.30 0.40 0.50

Buffer
Type��

4.75 �� 8.10 5.95 �� 11.11 7.78 �� 15.03 10.97 �� 23.77 23.48 �� 45.08���FIFO
3.14 3.38 3.79 4.65 9.34��

5.76 �� 9.80 6.75 �� 13.88 9.00 �� 19.79 12.00 �� 26.74 17.88 �� 39.25���SAMQ
3.24 3.58 4.09 4.90 6.57��

5.38 �� 10.10 6.73 �� 13.78 8.16 �� 20.06 11.00 �� 21.60 14.38 �� 32.83���SAFC
3.22 3.50 3.88 4.42 5.28��

4.76 �� 7.76 5.67 �� 10.24 7.00 �� 13.74 8.88 �� 16.87 11.11 �� 22.27���DAMQ
3.14 3.36 3.68 4.16 4.91��

4.39 �� 6.43 5.00 �� 8.11 6.00 �� 9.60 7.00 �� 11.75 8.00 �� 14.40���CBDA
2.76 3.29 3.50 3.80 4.19

>
9 m
9 a
% ��

�
�
�
�

x�������
avg

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 5.1: Variance of Latency, All Switches. Maximum, 99th Percentile
and Average Latencies vs. Throughput. Four slots per input port (a
total of sixteen slots in the CBDA switch). Uniformly distributed
traffic, 100% of packets normal.

packet latency under heavy load (throughput). However, even for these ‘‘better’’

switches the maximum (and 99th percentile) latencies are several times larger than

their average latency. Even for the CBDA switch, which attempts to achieve

fairness by arbitrating between incoming packets based upon the amount of time

spent in the previous switch, the 99th percentile latency is double the average

latency at 50% throughput, and the maximum latency is double that. These results

indicate that the problem of large variations in the latency of packets, some of

which may be ‘‘high priority,’’ cannot be solved by using different buffer

organizations without special support for the high-priority packets.

In the remainder of Ch. 5 we investigate switch designs that provide support

for high-priority packets. Alternatives designs are presented in the order of

70

increasing complexity and hardware cost. For each switch organization we

describe specific design considerations, simulations results, and a brief summary of

the major conclusions from the simulation results. The next subsection describes

priority arbitration, in which the arbiter gives priority to queues which have high-

priority packets at their head. Section 5.2 introduces the use of dedicated queues

for high-priority packets (the support mechanism discussed in Ch. 3). Multiple

dedicated queues for high-priority packets, one queue per output port, are discussed

in Section 5.3. Finally, Sec. 5.4 evaluates the use of dedicated buffers for the

high-priority packets (i.e. two physically distinct buffers per input port, one

dedicated to high-priority packets).

5.1. Arbiter Support for High-Priority Packets

One way to support high-priority packets is to modify the crossbar arbiter —

the controller that determines which input buffer is connected to which output port.

The purpose of such a modification is to provide preferential arbitration to high-

priority packets. Specifically, when determining the crossbar configuration, the

modified arbiter will give priority to those queues which have a high-priority

packet at their head. At each cycle, the arbiter first attempts to connect queues

with high-priority packets at their heads to output ports, and then connects queues

with normal packets at their heads to any remaining available output ports. For the

CBDA switch, support for high-priority traffic in the arbiter means that if multiple

packets destined for the same output port arrive simultaneously, the high-priority

packets will be placed in the queue for that output port ahead of any normal

packets. Furthermore, if the number of available slots in the buffer of the CBDA

71

switch is less than the number of senders to the switch, senders with high-priority

packets at the head of their queue will be given priority.

In order to evaluate the effectiveness of the above scheme we ran simulations

of the 64×64 omega network where a randomly selected 5% of all the packets

generated were marked as high priority. Figure 5.2.a compares the 99th percentile

latency to the average latency of the high-priority packets only in networks using

priority arbitration. Figure 5.2.b compares the 99th percentile latency of high-

priority packets for networks where the switches provide preferential arbitration for

high-priority traffic to the 99th percentile latency of packets in a network with no

support for multiple packet classes. The results in Fig. 5.2.b indicate that,

especially for networks with non-FIFO buffers, the modified switches improve

high-priority performance over a system with no special support. However, as

shown in Fig. 5.2.a, the 99th percentile latencies are still much worse than the

average latencies, especially under high network load. Supporting for high-priority

packets in the arbiter alone is not sufficient; since the high-priority packets often

wait in queues behind low-priority packets and receive preferential treatment for

only the brief time they spend at the heads of queues. There must be a mechanism

for the high-priority packets to bypass the normal packets.

5.2. Dedicated Queues for High-Priority Traffic

The SAMQ, SAFC, DAMQ, and CBDA switches achieve low average

latencies by employing multiple queues of packets, one queue associated with each

output port, to prevent packets which are destined for different output ports from

blocking each other. A possible extension of this idea is to implement an

72

L
a
t
e
n
c
y

Throughput
0.2 0.5 0.8

5

10

15

20

25

.
. . .

. . .
...
..
..
..
...
...
..
.�

.
. .

...
...
...�

Δ

Δ

�

�
..........................

..............
.................

......................
.............

...........
.........

.....
.....

.....
.....

......
...
...
...
...
...
...
...
...×

...
..................

................
.....

.....
....×

.�

�

Δ
.................×

FIFO

SAMQ

SAFC

DAMQ

CBDA

Average Latency

99th Percentile Latency

a) Priority arbitration, comparing 99th percentile and average latencies.
���

Throughput����������������������������������
0.10 0.20 0.30 0.40 0.50

Buffer
Type���

4.00 5.00 5.89 9.34 21.08����������������������������������FIFO
4.75 5.95 7.78 10.97 23.46��
4.55 5.13 7.05 8.65 12.25����������������������������������SAMQ
5.76 6.75 9.00 12.00 17.88��
4.27 5.15 6.06 7.78 10.21����������������������������������SAFC
5.38 6.73 8.16 11.00 14.38��
3.59 4.00 4.89 6.09 7.63����������������������������������DAMQ
4.76 5.67 7.00 8.88 11.11��
3.81 4.13 5.00 6.00 7.37����������������������������������CBDA
4.37 5.00 6.00 7.00 8.00

>99%
Latency

switch
normal
arbit.
prior.
�������

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

b) Priority arbitration and no support for priority, comparing 99th percentile la-
tencies between the two.

Figure 5.2: Priority Arbitration Performance. Preferential arbitration for
high priority packets. Four slots per input port. 5% high-priority
packets. Throughputs shown are total network throughputs.

73

additional queue at each input port dedicated to high-priority packets. This should

allow high-priority packets to be routed through the switch as soon as they arrive in

preference to any normal packets waiting to be transmitted out of the same output

port. This idea cannot be applied to a FIFO buffer since it has only a single queue;

FIFO switches with the priority arbitration scheme discussed above are used in the

following comparisons.

Implementing a dedicated queue for high-priority packets in the SAMQ and

SAFC buffers involves adding additional storage (at least one packet slot) as well

as a slight increase in the complexity of the arbitration circuitry. Since each queue

in a SAMQ or SAFC buffer has at least one packet slot, the minimum size SAMQ

or SAFC buffer in a 4×4 switch with support for high-priority traffic is five packet

slots. On the other hand, adding the dedicated queue to the DAMQ buffer does not

require any additional buffer storage — the available storage is dynamically shared

between queues. A few (two or three) more control registers are needed to manage

an additional linked list. In order to present a fair comparison of the performance

of networks with the different buffer types, many of the results presented in this

section were obtained using a total buffer size of five packet slots per input port.

For the CBDA switch, special queues for high-priority traffic mean that the switch

maintains, in its central buffer, a separate FIFO queue for each priority level at

each output port. For each output port, packets are sent from the queue of normal

packets only if the high-priority queue is empty. Furthermore, if the number of

available slots in the buffer of the CBDA switch is less than the number of senders

to the switch, senders with a non-empty high-priority queue are given priority.

We have simulated 64×64 omega networks constructed out of switches which

74

99th%
Lat.

Throughputa) 1% Packets High-Priority
0.2 0.4 0.6 0.8

10

20

.
.

.. . .
.

. . ..
. .

. .
. ..

..

∗�

�
Δ

.
. .

. .

.∗DAMQ
No Support

�

�

FIFO
SAMQ
SAFC}

Δ
..............

DAMQ

CBDA

99th%
Lat.

Throughputb) 5% Packets High-Priority
0.2 0.4 0.6 0.8

10

20

.
.

.. . .
.

. . ..
. .

. .
. ..

..

∗�

� Δ
.

...
.

99th%
Lat.

Throughputc) 10% Packets High-Priority
0.2 0.4 0.6 0.8

10

20

.
.

.. . .
.

. . ..
. .

. .
. ..

..

∗�

� Δ
..

...........
.....
...
.

Figure 5.3: Priority Queue, Various Percentages of High-Priority Pack-
ets. The impact of a dedicated queue for high-priority packets at
each input port. Shown are the 99th percentile latencies of high-
priority packets vs. total throughput. Five slots per input port (a total
of twenty packet slots in the CBDA switch).

75

include a dedicated queue for the high-priority packets at each input port. The 99th

percentile latencies of the high-priority packets for networks with 1%, 5% and 10%

high-priority traffic are shown in Fig. 5.3. For comparison, the figure also shows

the 99th percentile latencies of a network with five-slot DAMQ buffers with no

support for high-priority packets. The DAMQ buffer was chosen since, as shown

in Tab. 5.1, this buffer results lower 99th percentile latencies than the other

practical switches. These simulation results demonstrate the benefits of dedicated

high-priority queues. Networks composed of the three practical switches which

can support a separate high-priority queue achieved significantly lower 99th

percentile latencies compared to those networks without separate high-priority

queues. Furthermore, the 99th percentile latencies for high-priority packets are

lower than the average latencies with switches that do not have support for high

priority traffic (Figure 4.1).

Switches with DAMQ buffers outperform the SAMQ and SAFC switches by

achieving lower 99th percentile latencies for high-priority traffic. The DAMQ

switch is better at handling high-priority packets for the same reason it provides

lower average latency for normal traffic — while only a fraction of the buffer

space of the SAMQ and SAFC buffers is available to any single packet arriving at

an input port (one fifth, in this case), the entire buffer is available to packets

arriving at the DAMQ switch. Thus, the DAMQ switch better utilizes the available

space, blocks incoming packets less often, is capable of handling higher

throughputs, and delivers packets with lower latencies.

Figure 5.4 shows the 99th percentile latency of high-priority packets in a

DAMQ network with high-priority queues, with priority arbitration, and with no

76

99th%
P
e
r
c
e
n
t
i
l
e

L
a
t
e
n
c
y

Throughput
0.2 0.4 0.6 0.8

10

20

30

...............................
..

...........
...
...Δ

.
. .

..
...

..
..

...
..
..
...

. .

�

�

�

.

..........Δ

�

>99%, no support

>99% priority arb.

>99% priority queue

Avg, no support

Figure 5.4: Increasing Levels of Support for High-Priority Packets. The
average latency for normal traffic and the 99th percentile latency for
high-priority traffic without support, with priority arbitration and
with priority queues vs. total network throughput. DAMQ buffers
with five slots per input port. 5% high-priority traffic.

support for high-priority traffic. The average latency in a DAMQ network with no

high-priority support is also shown. In all cases the buffers have five packet slots

and 5% of the packets are high priority. With dedicated queues for high-priority

traffic, the 99th percentile latency for this traffic is stable at near the minimum

network latency for a wide range of throughputs. With the dedicated queues, at

medium and high throughputs, the 99th percentile latency of the high-priority

traffic is actually less than the average latency for normal traffic. An

interconnection network with switches using DAMQ buffers with a high-priority

queue can thus provide low worst-case latencies for high priority packets even

77

under network loads approaching saturation.

99th%
P
e
r
c
e
n
t
i
l
e

L
a
t
e
n
c
y

Throughput
0.2 0.4 0.6 0.8

10

20

30

�

Δ

.
.. ..

.. ...

..................
.............................

......................
....

........
...... ..

...
.....

......
.�

∗

�

∗
Δ

.

............�

FIFO: 5 slots

SAMQ: 5 slots
SAFC: 5 slots

DAMQ: 4 slots

DAMQ: 3 slots

DAMQ: 2 slots

}

Figure 5.5: Priority Queue, DAMQ Buffer Efficiency. The 99th percen-
tile latency of high-priority traffic vs. total network throughput.
FIFO, SAMQ, and SAFC buffers with five packet slots per input
port, DAMQ buffers with four, three and two packet slots per input
port. 5% high-priority traffic. Dedicated queues for high-priority
packets.

The advantages of the DAMQ buffer are further demonstrated by the results

shown in Figure 5.5. The 99th percentile latencies of a network composed of

DAMQ switches with two, three, and four slots are compared with the 99th

percentile latencies for networks composed of FIFO, SAMQ, and SAFC switches

with five slots. The DAMQ switch with only two slots significantly outperforms

the FIFO switch with five slots. The DAMQ switch with three slots outperforms

the SAMQ and SAFC switches with five buffer slots.

78

Figure 5.6 shows the impact of buffer size on the effectiveness of using

dedicated queues for high-priority traffic with DAMQ buffers. For all buffer sizes,

the dedicated queues result in significantly better performance for the high-priority

packets than in a network where there is no special support for such packets. With

very small buffers (two packet slots), even with dedicated queues, the 99th

percentile latency of the high-priority packets increase significantly as the total

network throughput increases above 0.3. Furthermore, this 99th percentile latency

of the high-priority traffic is always higher than the average latency in a network

without the dedicated queues. The reason for this rather poor performance with

two slot buffers is that at most two queues can exist in the buffer at any stage cycle.

The maximum total throughput of the network increases significantly as the

buffer size is increased from two to four slots and then six slots (Figure 5.6). With

the larger buffers, more queues can exist in the buffer simultaneously and, at any

point in time, the probability of a full buffer is lower than with two slot buffers.

Hence, with dedicated queues for high-priority packets, it is much less likely that

such a packet will be blocked due to a full buffer in the next stage. As a result,

with four slot and six slot buffers with dedicated queues for high-priority traffic,

the 99th percentile latency of the high-priority packets remains very low (4 stage

cycles) even as the network throughput increases up to 0.6. Furthermore, this 99th

percentile latency of the high-priority traffic is always lower than the average

latency in a network without the dedicated queues.

This subsection has demonstrated the benefits of using dedicated queues for

high-priority packets. DAMQ buffers were shown to be a particularly effective

mechanism for exploiting such dedicated queues. We have now shown that

79

L
a
t
e
n
c
y

Throughputa) 2 Slots per Buffer
0.2 0.4 0.6 0.8

5

10

15

20

...................
................................

...............
.........

.......
.......

.....

�.
. ..

...
.. ..
.�

�

..........................
�

.�
�

No Support
99th%
Avg.

Priority Queue
99th%
Avg.

L
a
t
e
n
c
y

Throughputb) 4 Slots per Buffer
0.2 0.4 0.6 0.8

5

10

15

20

...................................
...

............
.......

�.
. .

.. .
. .

.. .

�

�

L
a
t
e
n
c
y

Throughputc) 6 Slots per Buffer
0.2 0.4 0.6 0.8

5

10

15

20

....................................
...

....
...

�
.

. . .
.. .

. .
. .

. .
.

�
�

Figure 5.6: Impact of Varying Buffer Size, DAMQ Buffers. The average
and 99th percentile latencies for the 5% high priority traffic. Net-
work with no support for high-priority packets and network with
dedicated queues.

80

DAMQ buffers achieve higher performance than other practical buffers for high-

priority traffic and for normal traffic (Sec. 4.5). Thus, for the rest of this chapter,

DAMQ buffers with dedicated queues for high-priority traffic, will serve as a

benchmark against which alternative designs will be compared.

5.3. Multiple Dedicated Queues for High-Priority Traffic

The previous subsection proposes support for high-priority traffic using, at

each input port, a DAMQ buffer with a separate queue for high-priority packets.

For normal traffic, DAMQ buffers achieve superior performance to FIFO buffers

by, at each input port, providing a separate queue for each output port [Tami88b].

Hence, it should be possible to achieve better performance for high-priority traffic

by providing, at each input port, a dedicated queue for high-priority traffic for each

output port, in addition to the separate queues for normal traffic. With this scheme,

for a 4×4 switch, each buffer will contain eight queues, instead of the five queues

proposed in the previous subsection. The additional hardware required by this

scheme may be worthwhile for applications where minimizing worst-case latency

is particularly critical. SAMQ and SAFC switches with multiple dedicated queues

for high-priority traffic require even more hardware since additional buffer storage

is needed for each additional queue. Since, in addition, DAMQ switches with

high-priority queues have already been shown to achieve superior performance

compared to SAMQ and SAFC switches, only DAMQ switches are considered in

this subsection.

Figure 5.7 compares the 99th percentile latencies of the high-priority traffic

with eight-queue and five-queue DAMQ switches, varying the total throughput and

81

99th

Percentile
Latency

Throughput
0.5 1.0

2

4

6

8

.
. .

.
..
..
..

..
...
....Δ
�

×

.Δ

�

×

5-queue DAMQ

8-queue DAMQ

CBDA

Figure 5.7: Five-Queue and Eight-Queue DAMQ Buffers. The 99th per-
centile latency of high-priority traffic vs. the total network
throughput. Four packet slots per input port. 5% high-priority traff-
ic.

keeping the percentage of high-priority packets constant at 5%. The performance

of a network with CBDA switches is shown as a reference point for the level of

performance that can be achieved. Under these conditions, the two DAMQ

switches behave almost identically. The reason for this is that multiple queues are

beneficial only when there are more than one packet in the buffer simultaneously.

With only 5% high-priority packets it is rare that more than one high-priority

packet is in a buffer at any instant.

In a network constructed from switches that support high-priority traffic, it is

useful to know up to what level (proportion) of high-priority traffic will the

separate queues be able to maintain good worst-case performance, i.e., low 99th

percentile latency, for the high priority packets. To answer this question we have

82

simulated the 64×64 omega network of four-slot DAMQ buffers under a constant

total network throughput of 50% with varying proportions of high-priority traffic.

It should be noted that without support for high-priority traffic, a network of

DAMQ switches operating at this throughput achieves an average latency of 4.9

stage cycles and a 99th percentile latency of 11.1 stage cycles (Table 5.1).

Figure 5.8 shows the 99th percentile and average latencies of both the high-

priority and low-priority (normal) traffic for a varying percentage of high-priority

traffic. For a low percentage of high-priority packets, the five-queue DAMQ

buffers perform well, i.e., result in low 99th percentile latency for the high priority

traffic. With up to 18% high priority packets, the 99th percentile latency for such

packets is below the overall average latency for a standard network using switches

with DAMQ buffers (Table 5.1).

The average latencies and 99th percentile latencies of the low priority

(normal) packets (Figure 5.8) indicate that, for low percentages of high-priority

packets, the support for high-priority traffic has little impact on network

performance with respect to normal traffic. Specifically, as the percentage of

high-priority traffic varies from 0% to 10%, the change in average latency of the

low priority traffic is negligible.

As the proportion of high-priority packets increases beyond 75%, the 99th

percentile latency of a network with the five-queue DAMQ buffers is larger than

11.1 stage cycles, i.e., larger than the 99th percentile latency for the network

composed of switches without support for high-priority traffic (Table 5.1). The

reason for this behavior is that the DAMQ switch has four queues at each input port

for normal traffic, but only a single queue for high-priority traffic. Hence, with

83

L
a
t
e
n
c
y

Percentage of Packets Marked ‘‘High-Priority’’a) 99th Percentile Latency
0 50 100

5

15

25

.
.

..
.

..
..

.. . . .
.

. .. .
. . .

.. . .
. . .

.. . .
. . ..

. ...
..Δ

.
.

.
.

.
.

.
.

. . .
..

.. . . .
.

.
.

..
..Δ

×

×

.Δ

×

5 Queue DAMQ
8 Queue DAMQ

CBDA

High-Priority Traffic

Low-Priority Traffic

L
a
t
e
n
c
y

Percentage of Packets Marked ‘‘High-Priority’’b) Average Latency
0 50 100

5

15

25

.
.

.
.

. .Δ
.

.
.

.
.

.
.

.. . .Δ

×
×

.Δ

×

5 Queue DAMQ
8 Queue DAMQ

CBDA

High-Priority Traffic

Low-Priority Traffic

Figure 5.8: Varying Percentage of High-Priority Packets. Shown are
99th percentile latencies and average latencies of high-priority and
low-priority traffic for a fixed total network throughput of 50%.
Four packet slots per input port. Five-queue DAMQ switches,
eight-queue DAMQ and CBDA switches.

respect to high-priority traffic, the DAMQ switch with a high-priority queue

performs as a FIFO switch. As shown in Fig. 5.1.a, at a throughput of 0.37, the

99th percentile latency of a network with FIFO switches is 10 stage cycles. With

the network of DAMQ switches with high priority queues, 0.50 network

84

throughput with 75% high priority traffic, the absolute throughput of high priority

traffic is 0.375. Since part of each input buffer is occupied by normal packets, it is

not surprising that the high priority traffic receives worse ‘‘service’’ (higher 99th

percentile latency) than the packets in the FIFO network with a throughput of 0.37.

Figure 5.8 shows that when more than 50% of the packets are high-priority,

the eight-queue DAMQ switch performs significantly better than the five-queue

DAMQ buffer, maintaining a relatively low 99th percentile latency for the high-

priority traffic. Furthermore, the improved performance with respect to high-

priority packets does not come at the expense of the performance for low-priority

packets. If the high-priority traffic is less than 50% of the total network load, there

are no benefits to using the eight-queue DAMQ buffers. Eight-queue DAMQ

buffers should be considered only if the majority of the packets are high priority.

In this latter case, a better solution might be to use five-queue DAMQ buffers with

a single queue dedicated to the low-priority traffic and four queues dedicated to

high-priority traffic.

5.4. Dedicated Buffers for High-Priority Traffic

In the previous two subsections we have considered the use of one or more

dedicated queues for high-priority packets and demonstrated the advantages of

using DAMQ buffers that include such queues. With the DAMQ buffers, the

normal packets and high-priority packets share the available buffer storage, even

though they are organized in separate queues. Another design option for

supporting high-priority traffic is the use of two independent buffers at each input

port — one for normal packets and one for high-priority packets. Examples of

85

such a scheme include the use of an n slot DAMQ buffer for normal packets

together with an m slot FIFO buffer for high-priority packets, or an n slot DAMQ

buffer for normal packets with an m slot DAMQ buffer for high-priority packets.

The motivation for such a scheme is to isolate the high-priority buffering from the

normal packet buffering. This would prevent a situation in where a high-priority

packet could not be forwarded to the next stage due to a full buffer containing

normal packets. As with high-priority queues, for a synchronous network, the

high-priority traffic does not compete for link bandwidth with the low-priority

traffic since, whenever there is a conflict, the high-priority traffic is always given

priority over the low-priority traffic. Thus, with dedicated buffers for high-priority

traffic, network performance with respect to such traffic will be independent of low

priority traffic.

We have evaluated schemes for using dedicated buffers for high-priority

packets by comparing their performance, with respect to high-priority traffic, to the

performance of a network of DAMQ switches where the buffer storage is shared

between the high-priority traffic and the normal traffic (Sec. 5.2). For a varying

percentage of high-priority traffic, the comparisons were done for a fixed total

network throughput of 50% (at which, as shown in Fig. 4.1, a network of switches

with four-slot FIFO buffers is already in saturation). We have previously shown

that the five-queue DAMQ buffer with the dedicated high-priority queue provides

good support at a low implementation cost for high-priority traffic. At 50% total

network throughput, the network composed of switches using these buffers is quite

heavily loaded, so contention for buffer storage between the high-priority and low-

priority traffic might be expected. Hence, this network serves as a good

86

benchmark, relative to which dedicated buffer schemes can be compared.

We have considered several input port organizations based on a four-slot

four-queue DAMQ buffer for normal packets and a dedicated buffer for high-

priority packets. DAMQ buffers for normal packets are assumed since they have

been shown to have significant performance benefits for normal traffic [Tami88b].

In choosing the buffer for high-priority traffic, we must consider the hardware cost

for additional storage and control, as well as performance. Single-slot FIFO

buffers are a low-cost choice for the dedicated high-priority buffers. Multi-slot

high-priority buffers can improve the performance of dedicated high-priority buffer

schemes, but require more hardware. In particular, we have considered the use of

dedicated two-slot FIFO buffers and two-slot DAMQ buffers for high-priority

traffic.

Figure 5.9 shows the performance of networks with the dedicated high-

priority buffer schemes described above as well as the performance of networks

with DAMQ buffers which include dedicated queues for high-priority traffic but

where storage is shared by all traffic. The simulation results presented are for a

fixed total network throughput of 50%. For varying percentage of high-priority

traffic, Figure 5.9.a shows the 99th percentile latency of high-priority packets,

while Fig. 5.9.b shows the 99th percentile latency of normal packets. Since none of

the three shared DAMQ buffers is in its saturation region, they all result in

identical performance. With a one slot dedicated buffer, handling of high-priority

packets is poor, despite using more total buffer space than the shared four-slot

DAMQ buffers. Performance with respect to the normal packets is identical with

all the schemes for the proportion of high-priority packets of interest (under 30%).

87

99th

P
e
r
c
e
n
t
i
l
e

L
a
t
e
n
c
y

Percentage of Packets Marked ‘‘High-Priority’’a) High Priority Packets
0 50 100

5

15

25

. .
. .

..
..

.. . . .
.

. . ..
. . .

. . ..
. . .

. . ..
..

..
..

.∗

�

�

.
.

..
.

..
..

.. . . .
.

. .. .
. . .

.. . .
. . .

.. . .
. . ..

. ...
..Δ�

.∗
�

�

.Δ

�

DAMQ + 1 slot FIFO

DAMQ + 2 slot FIFO

DAMQ + 2 slot DAMQ

4 slot DAMQ

5 slot DAMQ

6 slot DAMQ

99th

P
e
r
c
e
n
t
i
l
e

L
a
t
e
n
c
y

Percentage of Packets Marked ‘‘High-Priority’’b) Normal Packets
0 50 100

5

15

25

.
.

.
.

.. . .
. . .∗

� �

.
.

.
.

.
.

.
.

. . .
..

.. . . .
.

.
.

..
..Δ�

.∗
�

�

.Δ

�

DAMQ + 1 slot FIFO

DAMQ + 2 slot FIFO

DAMQ + 2 slot DAMQ

4 slot DAMQ

5 slot DAMQ

6 slot DAMQ

Figure 5.9: Dedicated Buffers for High-Priority Packets. The 99th per-
centile latency of high-priority and of normal packets vs. the percen-
tage of high-priority traffic. The total network throughput is 0.5.
Comparing dedicated buffer (4-slot, 4-queue DAMQ plus another) to
dedicated queue (5-queue DAMQ) support.

At a low percentage of high-priority traffic (under 30%), the shared DAMQ

buffers deliver equal performance to the performance of the two slot dedicated

buffer schemes, despite the fact that the shared buffers are also supporting the total

network throughput of 0.5. Since DAMQ buffers are already used to achieve high

88

performance for normal traffic, very little additional hardware is required to

support dedicated queues. Dedicated two-slot buffers require significantly more

hardware for both storage and control. In addition, the two buffers schemes are

less likely to adapt well to a variety of conditions (such as very high throughput

with no high-priority packets) due to the static partitioning of the available storage.

Thus, dedicated buffers for high-priority traffic should be considered only if there

is some reason why DAMQ buffers cannot be used. Under these conditions, it is

useful to know that similar performance, with respect to high-priority traffic, can

be achieved using this alternative approach.

5.5. Summary: Support for High-Priority Traffic

In order to use large multiprocessors and multicomputers for real-time

applications, it must be possible to guarantee, with a high degree of confidence,

that high-priority traffic can be transmitted through the network with low specified

latency. With conventional interconnection networks used in multiprocessors and

multicomputers, the worst-case latency of traffic through the network can increase

dramatically as the load on the network increases. This may prevent the use of

these interconnection networks for critical real-time applications or force their use

with very low utilization (and thus high cost/performance ratio) in order to

guarantee low maximum latency.

For interconnection networks composed of small n ×n switches, we have

shown that simply increasing the size of conventional buffers in the switches does

not result in improved performance for high priority packets. There is thus a

fundamental need for new buffer organizations which support high-priority

89

packets. We have developed a technique for efficiently supporting high-priority

traffic, while maintaining good performance for normal traffic. Our scheme is

based on a small modification of the dynamically allocated multi-queue (DAMQ)

buffer. The modifications to the DAMQ buffer in order to support high-priority

traffic involve a few additional control registers and somewhat more complex

arbitration of the crossbar switch. Overall these modifications are expected to

require only a small percentage increase in total buffer area.

We have evaluated alternative approaches to providing support for high-

priority packets in n ×n switches. This evaluation was based on implementation

complexity and simulation studies of a multistage interconnection network

transmitting packets with two levels of priority. Our simulations have

demonstrated five key points. (1) In a conventional network with a single priority

level for all packets, worst-case latency for packets can be several times higher

than average latency. Hence, there is a need to identify and provide preferential

treatment to those packets for which fast service is particularly important.

(2) Using the priority of packets as the determining factor in arbitrating contention

within each switch does not, on its own, provide sufficient support for high-priority

traffic. Such arbitration does not reduce the 99th percentile latency of the high-

priority packets to the level of average normal packet latency, even under moderate

network load. (3) As long as the proportion of high-priority traffic is low,

dedicated queues for high priority traffic reduce the 99th percentile latency of the

high-priority packets to the level of the average latency for normal traffic under a

wide range of network throughputs. (4) When the proportion of high-priority

traffic is large and the network is heavily loaded, multiple dedicated queues for

90

high-priority traffic can reduce the 99th percentile latency relative to the single

dedicated queue approach. However, this performance advantage is marginal and

the associated implementation cost is relatively high. (5) Dedicated buffers for the

high-priority traffic can provide the same performance advantage as dedicated

queues in shared DAMQ buffers. However, since DAMQ buffers are needed to

maximize performance for normal traffic, the implementation cost for dedicated

buffers is much higher than the cost of adding dedicated queues to DAMQ buffers.

Hence, there is no reason to use dedicated buffers.

Our results indicate that the DAMQ buffer with a single dedicated queue for

high-priority packets provides support for high-priority traffic which is superior to

the support provided by alternate switch designs based on a dedicated high-priority

queue. This resulting network performance, with respect to high-priority traffic, is

very close to the performance of a network based on ‘‘ideal’’ switches for which a

practical implementation is not feasible. Hence, given the low hardware overhead

of the scheme based on a DAMQ buffer with a single high-priority queue, it is

clearly the preferable option.

91

92

Chapter Six

Buffer Performance Evaluation
with Asynchronous Networks

Chapter 4 presented an evaluation of the system-level performance of the

DAMQ buffer. A Markov analysis and an event-driven simulator were used to

measure the performance of the DAMQ buffer relative to other buffer

architectures, in the context of a synchronous multistage interconnection network.

As was discussed there, the synchronous network was used because it is easier to

reason about switch behavior in a synchronous network, and there exists a large

amount research which evaluates switch and buffer architectures using

synchronous networks.

However, the DAMQ buffer was not designed with a synchronous network in

mind. There are several features which we claim to be important for high

performance switching (Ch. 3) which are not utilized in a synchronous network.

Specifically, transmitting variable length packets does not make sense in a network

which defines a constant period of time for the transmission / reception of each

packet, and virtual cut-through does not exist in a network which requires packet

transmissions to occur on stage cycle boundaries (Ch. 4).

This chapter evaluates the performance of the DAMQ buffer in an

asynchronous network. In the next section, the simulator which generated the

performance numbers discussed in this chapter is described. In Sec. 6.2, the

performance of the DAMQ buffer in an asynchronous multistage interconnection

network (omega topology) is evaluated. We compare the latency and throughput

92

of traffic in networks composed of DAMQ switches to that of networks with other

buffer architectures. Also, the performance of the asynchronous omega networks

are compared to the synchronous network results reported in Ch. 4. Finally, in

Sec. 6.3, the simulator is used to demonstrate the ability of the DAMQ buffer to

implement deadlock-free dimensional routing and support high communication

throughput for a two-dimension torus network.

6.1. Simulating an Asynchronous System

The simulator which was used to generate the results presented in Chs. 4

and 5 was modified to perform the network performance measurements presented

in this chapter and in Ch. 8. In addition to modifying the simulator such that it

simulated an asynchronous network, the abilities of the simulator were greatly

expanded. The capabilities of the simulator are presented by discussing the

parameters with which the simulator’s behavior is controlled. In the following

discussion, the parameters are placed into three groups according to the aspect of

the simulator they control: the network architecture, packet injection, and system

behavior / data collection. Tab. 6.1 summarizes the simulator’s parameters.

6.1.1. Network Architecture

The simulator was modified to allow topologies other than an omega network.

Currently, topT can be set to omega, two-dimensional torus, two-dimensional

mesh or hypercube (results from the first two topologies are presented in this

dissertation). Networks of various sizes in these four topologies can be established

by setting the sys_size parameter. The size of the switches (the number of input

93

and output ports per switch) can be set via the variable switch_size . These

variables are not independent: for tori and meshes, which are two-dimensional and

square, switch_size = 5; for an omega network, size of the network (the number of

senders and receivers) is a power of the size of the switches

(sys_size = switch_size n) and, for hypercubes, sys_size = 2switch_size .

A fundamental parameter to the simulator is the hop_delay. This parameter

defines the time from when a packet wins an arbitration and is transmitted to when

the packet is able to participate in an arbitration on the next switch. The hop delay

is actually an agglomeration of the delays which constitute the minimum switch

cut-through time: the time to arbitrate the switch crossbar, the latency of the packet

traversing the crossbar, the link and the synchronizer, and the time to route the

packet on the next switch. A packet’s latency through the network equals the hop

delay times the number of hops plus the total amount of time the packet spends in

buffers. A packet spends zero time in buffers (latency = hop_count × #hops) if its

sender transmits the packet as soon as it is created and every switch cuts the packet

through immediately upon receipt. For all of the simulation results presented in

this and following chapters, a hop delay of five clock cycles was used. This figure

reflects the four cycles required to cut through the DAMQ buffer (see Ch. 7) plus

one cycle to traverse the wires connecting two switches.

Link utilization is limited by the link_rest_time parameter. The

link_rest_time is the number of clock cycles a link must remain idle between

packets to allow the synchronization logic within the input port to which the link is

connected to be reset. Thus, if the link rest time is link_rest_time, and if a buffer

transmits the last byte of a packet on clock cycle t 0, then the buffer can transmit the

94

���
System-wide parameters��
switch_size number of input and output ports���
sys_size number of switching elements in the system���
buffer the buffer architecture���
blen the size of the buffer���
max_pkt_length the maximum packet length���
topT the topology���
arb heuristic for crossbar arbitration���
flowctl hop-level flow control���
hop_delay the time for a packet header to make one hop���
link_rest_time the minimum time a link must be idle between packets���
#msgs the number of messages to receive before terminating the simulation���
#ignore the number of messages to receive before starting statistic-gathering���
statint ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

the number of messages to receive in each confidence interval���
Per group (n) parameters��
bit_mask parameter for sender group specification���
val parameter for sender group specification���
msgint inter-message delay distribution���
intpar1 parameter for inter-message delay���
intpar2 �

�
�
�
�
�
�
�

parameter for inter-message delay���
Per traffic type (n ×t) parameters��
perc probability of message being of traffic type t���
selDst message destination distribution���
dpar1 parameter for packet destinations���
dpar2 parameter for packet destinations���
msglen message length distribution���
LenPar1 parameter for message length���
LenPar2 parameter for message length���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 6.1: Parameters to the Asynchronous Simulator.

first byte of a packet on cycle t 1, but the output port through which the first packet

was transmitted cannot transmit another packet until cycle tx ,

95

x = link_rest_time + 1. The synchronization logic is assumed to be that described

in [Tami88a]. That being the case, the input port can be reset on the clock cycle

immediately following a packet transmission. The link_rest_time is set to two

cycles in the simulations, however, to ensure that clock slippage between

neighboring switches will not cause data to be lost.

The purpose of this simulator is to explore the relative performance of various

communication network architectures. As such, the size of the buffers and their

architecture can be specified. To date, FIFO, DAMQ, SAMQ and SAFC buffer

architectures have been implemented (see Ch. 3 for discussion of these buffer

architectures). Also, a large number of hop-level flow control mechanisms have

been implemented — Ch. 8 presents an evaluation of their performance. The

multistage interconnection network simulations whose results are presented in this

chapter use blocking flow control. Packet transmissions are blocked when there is

less than max_pkt_length bytes available for packet reception. Thus, if a packet

transmission begins, it is guaranteed to complete (i.e. this simulator does not

simulate wormhole routing).

6.1.2. Packet Injection Parameters

Packets can be injected into the simulated network either stochastically or

deterministically (i.e. trace-driven simulations). Deterministic packet injections

are controlled by a file which specifies the size, source, destination and time of

creation for each packet which traverses the network. To date, this feature has only

been used for debugging the simulator. For stochastic packet creation there are a

number of parameters. First, there is the inter-message delay (msgint) — the time

96

from when one packet is transmitted to when the next message is created. Three

delay distributions are supported by the simulator: constant (each message is

created a fixed number of clock cycles after the previous is injected into the

network), uniform (the delay varies uniformly over a specified range) and

geometric. All of the results presented in this dissertation use the geometric inter-

message delay distribution.

Second, there is the message length. Three message length distributions

(msglen) are implemented: constant length, length which varies uniformly over a

range, and geometrically-distributed length. The maximum packet size

(max_pkt_length) must also be specified; if a message is longer than the maximum

packet size, it is broken into multiple packets; each packet of the message is

created after the previous packet of the message is injected into the network. The

simulations presented in this dissertation use a maximum packet length of thirty-

two bytes, which is also the maximum packet length supported by the DAMQ

Buffer Chip (Ch. 7).

The third set of parameters for stochastic message generation control the

assignment of destinations to messages. There are a wide variety of random

destination distributions implemented, but only three which are used in this

dissertation. First, the uniform distribution over all destinations — each packet

created under this distribution has equal probability of being addressed to any

destination in the network (for point-to-point topologies, nodes cannot send

messages to themselves). Second, there is the hot spot distribution, in which a

node or nodes address all messages to a single destination. Finally, there is the

uniform distribution over a subset of the destinations.

97

In order to increase the flexibility of the stochastic message generation, each

sender in the network is allowed multiple sets of the parameters for message length

and destination selection. These sets are referred to as traffic types; each time a

sender generates a message, the first function performed is determining which type

of traffic the message will be. For example, if a sender is transmitting three

percent of its packets to a hot spot, with the other ninety-seven percent of its

packets being uniformly distributed, then it will have two traffic types. Three

percent of the messages created will be of the first traffic type — hot spot — and

ninety-seven percent will be of the second type — uniformly distributed.

6.1.3. Sender Grouping

The model we developed for congestion within communication networks (see

Ch. 8) involves a group or groups of processors which create the congestion, and

‘‘innocent’’ groups of processors which must be protected from the effects of this

congestion. In order to support this concept, the simulator is able to place the

senders into groups. This is done by establishing a bit mask and a value for each

group. If senderID & bit_maskn = valn , and the sender has not been assigned to a

group i , i < n , then the sender is in group n . This mechanism for grouping works

well for simple, regular topologies such as the four currently supported by the

asynchronous network simulator.

98

6.2. DAMQ Buffer Performance: Asynchronous MIN

In this subsection, the asynchronous network simulator is used to explore the

performance of a multistage interconnection network (omega topology)

transmitting packets in a uniform distribution. First, we present and evaluate the

results of networks transmitting constant-length (32-byte) messages. Using

constant-length packets allows us to compare these results to the results obtained

from the synchronous network which were presented in Ch. 4. Following this

comparison, the results for networks transmitting variable-length message are

presented and the results are evaluated.

6.2.1. Constant-Length Packets, Asynchronous Network

Figure 6.1 shows results for the synchronous 64×64 omega network which

were previously presented in Fig. 4.1 and results for asynchronous 64×64 and

256×256 omega networks. These graphs show the average latency of packets

traversing the network vs. the network throughput. The simulations are of

networks of 4×4 switches with buffers which can store up to four packets at each

input port.

The first difference to note between the synchronous and asynchronous results

are the units of throughput and latency used. The synchronous network measures

latency in terms of stage cycles. Since the 64×64 network is constructed from

three switching stages, the minimum network latency is three stage cycles†. The
���������������
† It actually requires four hops to traverse a three-stage omega network. Historically, the
output ports of the last switching stage have been treated as sinks. Thus the time to actually
perform the last hop is not included in the latency, although time spent in the last switching
stage’s queues is included.

99

Lat.

stage cycles

Throughput

Sync
64×64

0 0.2 0.4 0.6 0.8

5

10

15

.
..
.
..
...

................................
..

..................
............

.

..............

FIFO

SAMQ

SAFC

DAMQ

Lat.

clock cycles (c)

Throughput

Async
64×64

0 0.2 0.4 0.6 0.8

200

400
..............

.FIFO

SAMQ

SAFC

DAMQ

.
.

.
.

.
..
.
.
..
..
.

...
...........................

...............
.........

..... .

Lat.

clock cycles (c)

Throughput

Async
256×256

0 0.2 0.4 0.6 0.8

200

400
..............

.FIFO

SAMQ

SAFC

DAMQ

.
.
.
.
.
.
..
.
..
..
.

..
.........................

...............
..........

.......
........

Figure 6.1: Synchronous vs. Asynchronous Protocols, Omega Network.
Average latency vs. throughput results for 64×64 omega network
with synchronous protocol (also in Fig. 4.1) and 64×64 and
256×256 omega networks with asynchonous protocol. 4×4
switches, thirty-two-byte packets, storage for four packets at each in-
put port.

100

asynchronous network measures latency in terms of clock cycles (c). Since the

minimum hop time is five clock cycles, the minimum latency across the 64×64

network is 15 c, and the minimum latency across the 256×256 network is 20 c.

While the curves from the synchronous and asynchronous networks are of

similar shape, one sees that, in the asynchronous network results, the average

network latency at saturation throughputs is an order of magnitude or more higher

than the latencies at low throughputs. In contrast, the average latency at saturation

throughputs for synchronous networks is only three to five times higher than it is at

low throughputs. This difference is due to virtual cut-through — the asynchronous

network supports virtual cut-through, which dramatically reduces packet latencies

in networks operating at low throughputs [Kerm79, Ngai89].

Perhaps the most interesting point of comparison between the results of the

two network types is the saturation throughput of the different switches. The

saturation throughput of the networks of FIFO and DAMQ switches is unchanged

between the two networks. SAMQ and SAFC switches, on the other hand, achieve

higher throughputs with the asynchronous network than they do with the

synchronous. We will first explore why the throughputs of the SAMQ and SAFC

networks changed, and then why those of the DAMQ and FIFO networks did not

change.

The reason for the increase in the saturation throughput of the SAMQ and

SAFC networks has to do with a reduction in the back pressure experienced by the

switches in the first stage of the network. As was seen in Tab. 4.1, small statically

allocated buffers discard or block packets (depending upon the flow control

mechanism) even at low applied loads; their buffer utilization is inefficient relative

101

to dynamic buffer allocation. Virtual cut-through increases the effective buffer

size by reducing the amount of time packets spend in buffers. At saturation

throughput, a relatively small percentage of the packets traversing the network

experience virtual cut-through. The virtual cut-through that does occur, occurs in

the latter stages of the network, which experience a lower applied load, shorter

packet queues and less back pressure than does the first switching stage. FIFO-

and DAMQ-buffered networks, on the other hand, experience little or no reduction

of first-stage back-pressure in going to an asynchronous network. Referring again

to Tab. 4.1, these buffers discard (or block) packets with a much lower probability

at low throughputs, and so receive little benefit from virtual cut-through when

operating at saturation throughput.

To understand the behavior of the DAMQ buffer network, we examined the

behavior of a single 4×4 switch with DAMQ buffers operating at saturation

throughput. Our hypothesis was that the asynchronous network throughput equals

that of the synchronous network because the switches self-synchronize — the

network behaves synchronously in the presence of packets of constant length which

are being transmitted at saturation throughput, even though the network is

asynchronous. The next subsection explains the reasoning behind this hypothesis

and then provides evidence that this is the explanation for the asynchronous

network transmitting constant-length packets achieving the same saturation

throughput as the synchronous network.

102

6.2.2. Self-Synchronizing Networks

On a 4×4 switch, each time a buffer completes a packet transmission, it

requests a connection to an output port for which it has packets. For a switch in an

asynchronous network, this can occur on any given clock cycle; one would expect

that the probability would be low that multiple buffers would complete their

transmissions on the same clock cycle. Assume that the four buffers Ba , Bb , Bc

and Bd of a 4×4 switch are currently connected to and transmitting through the four

output ports Ow , Ox , Oy and Oz . When buffer Ba completes its transmission to

Ow , if the other three buffers are in the middle of transmitting packets, Ba will be

re-connected to Ow or, if it has no more packets destined for that output port, Ba

will remain idle. When the latter occurs, Ba will remain idle until another buffer

(Bb) completes its transmission. At this point, the arbiter will consider the two

buffers (Ba , Bb) and the two output ports (Ow , Ox) simultaneously. The fact that

Ba contains no packets destined for Ow increases the probability that Ba does have

packet(s) for Ox , and that the arbiter will swap the buffer / output port pairing. If

the swap does occur (Ba → Ox , Bb → Ow), then these two buffers are synchronized

— and as long as they experience saturation throughput, neither output port is

blocked, and they have packets for the two output ports, the two buffers will

remain synchronized (i.e. they will continue to complete transmissions and

arbitrate on the same clock cycle). As the other two buffers run out of packets for

the output ports they are associated with, they will join the first two, and eventually

all four buffers will operate in synchrony (all four participating in every crossbar

arbitration).

This phenomena is illustrated by the solid line of the graph in Fig. 6.2. This

103

graph shows the number of packets transmitted per crossbar arbitration vs. time, for

a network consisting of a single switch forwarding thirty-two byte packets at

saturation throughput with link_rest_time = 0. Initially (at time 0), the network is

asynchronous; the time each buffer completes a transmission is independent of the

other three, and each arbitration results in a single packet being transmitted.

However, as time passes, the buffers synchronize, until by time 320, crossbar

arbitrations occur every thirty-two clock cycles, and every arbitration considers all

four buffers and output ports. While there is no guarantee that all four buffers will

transmit after every arbitration, three or four packets were transmitted per

arbitration for ninety of the ninety-four arbitrations which occurred between times

320 and 3296 (two packets were transmitted for the other four arbitrations which

occurred in that time period).

This scenario for switch self-synchronization ignores an important aspect of

our switch design; the link idle time between packets. In the scenario for buffer

synchronization just described, the synchrony begins when an idle buffer joins

another buffer in a two-way arbitration. However, in our model, when Bb

completes a transmission while Ba is idle, Bb ’s output port (Ox) cannot receive

data for another two clock cycles (assuming link_rest_time = 2). Bb can, however,

transmit another packet immediately; if Bb has packets destined for Ow (the output

port that Ba was previously transmitting to), it will immediately grab that output

port and begin to transmit. If, in turn, the Ba has packets destined for Ox , it will be

connected to that output port in a crossbar arbitration two clock cycles later.

The two-cycle link rest time thus causes the switch to achieve a ‘‘loose’’

synchrony, in which the buffers contend for output ports over a span of clock

104

pkts sent
per arb

Time

c
1000 2000 3000

1

2

3

4

××××××××××××××

××

××××××

××

××

××

××

××××××

××

××

××××××

××××××

××

××××

××

××××××

××××××××××

××××××××

××

××××××

××

××××

××××

××

××

××××××

××

××××××

××××××××××

××

××××

××

××××

××××

××

××××××

××××××××

××

××

××

××

××××

××

××××

××

××××

××××

××××

××

××

××

××××

××××××

××××

××

××

××

××××

××××

××××××××××××..××.
..
..
..
..
.××..........××××××.
..
..
..
..
.××..........××.
..
..
..
..
.××..........××.
..
..
..
..
.××..××××..........××.

..

..

..

..

.××..××..........××.
..
..
..
..
..
..
..
..
..××...................××.
..
..
..
..
..
..
..
..
..××.
..
..
..
..
.××. .××..........××. .××. .××..........××..........××.

..

..

..

..

..

..

..

..

..××.
..
..
..
..
.××..........××..........××..........××.

..

..

..

..

..

..

..

..

..××...................××..××.
..
..
..
..
..
..
..
..
..××.
..
..
..
..
.××..........××..........××..........××.

..

..

..

..

..

..

..

..

..××.
..
..
..
..
.××. .××..........××. .××.

..
..
..
..
.××. .××..........××. .××.

..
..
..
..
.××..........××.
..
..
..
..
.××..........××.
..
..
..
..
.××..........××. .××..........××.

..
..
..
..
.××.
..
..
..
..
.××. .××...................××.

..
..
..
..
.××. .××.
..
..
..
..
.××..........××.
..
..
..
..
.××..........××.
..
..
..
..
.××...........................××.
..
..
..
..
..
..
..
..
..××. .××.
..
..
..
..
.××..........××.
..
..
..
..
.××..××. .××...........................××××.

..

..

..

..

..

..

..

..

..

..

..

..

..××...........................××.
..
..
..
..
..
..
..
..
..××. .××. .××. .××.

..
..
..
..
.××..........××. .××...................××.

..

..

..

..

.××..××..........××.
..
..
..
..
.××..........××.
..
..
..
..
.××××..........××.
..
..
..
..
..
..
..
..
..××...................××.
..
..
..
..
..
..
..
..
..××.
..
..
..
..
.××..........××.
..
..
..
..
.××. .××. .××..........××.

..
..
..
..
.××..........××. .××. .××. .××. .××.

..
..
..
..
.××..........××.
..
..
..
..
.××. .××. .××. .××..........××.

..
..
..
..
.××

Figure 6.2: Self-Synchronizing DAMQ Switches. Results of a 4×4 net-
work (a single DAMQ switch), transmitting thirty-two byte packets
at saturation throughput. Shown is the number of packets transmit-
ted per arbitration vs. time (clock cycles) for networks with zero cy-
cles of link idle time between packets (solid line) and with two cy-
cles of link idle time between packets (dotted line).

cycles, as opposed to all participating in a crossbar arbitration on the same clock

cycle. This is a more dynamic situation than the ‘‘true’’ synchrony which

produced the solid line in Fig. 6.2. For a single buffer transmitting a sequence of

packets, the interval between two succeeding transmissions of a single buffer may

be as low as thirty-two clock cycles or as high as forty without losing synchrony.

In order to visualize this loose synchrony, we defined a logical arbitration

arbitration L to be a set of crossbar arbitrations such that each arbitration occurs on

the same cycle as another member of arbitrationL or link_rest_time clock cycles

from another member of arbitrationL. Thus, if link_rest_time = 2, and if buffer Ba

begins a transmission on cycle tx , and buffer Bb begins a transmission on cycle

tx +2, then Ba and Bb have achieved loose synchrony, the arbitrations which

occurred on tx and tx +2 are members of the same arbitrationL, and the number of

105

packets transmitted on this arbitrationL is two. Further, if Bc begins a transmission

on cycle tx +4, and Bd begins one on cycle tx +6, then four packets where transmitted

on this arbitrationL. On the other hand, if the transmission from Bb were to occur

on tx +1, then Ba and Bb are not operating in synchrony, even though the times in

which their transmissions begin are even closer together, and the arbitrations for

Ba and Bb are members of different arbitrationLs.

The dotted line in Fig. 6.2 shows the DAMQ switch forwarding thirty-two

byte packets at saturation throughput with link_rest_time = 2. Each arbitrationL for

the loose synchrony case is marked with two ×-s — one marks the time of the first

arbitration in the set, the second marks the time of the last. There are clear

differences between this loose synchrony and the tight synchrony achieved when

the link rest time was zero. There is a higher probability of transmitting only one

or two packets for an arbitrationL under loose synchrony. Also, the interval

between arbitrationLs is irregular; the switch even appears to lose synchrony for a

series of arbitrations between 2400 c and 2600 c. However, these differences are

the exception — for the majority of the 3300 cycles of simulation displayed in 6.2,

the loosely-synchronized DAMQ chip behaves very similarly to the tightly-

synchronized case. Further, as the throughput figures attest, the loosely-

synchronized DAMQ network behaves similarly to the synchronous DAMQ

network evaluated in Ch. 4.

One could prevent a circuit from self-synchronizing in the presence of

constant-length packets by not using the same link rest time after every packet.

This would be detrimental to the network performance, however. When the

network synchronizes, it gives the arbitration logic more buffer / output port

106

pairings to choose from, which improves port utilization. Evidence of this is

provided simply by the fact that, when buffers become synchronized, they go from

being idle to transmitting, and buffers lose synchrony when they go from

transmitting to being idle.

Switches with the FIFO and SAMQ buffer architectures also self-synchronize.

Switches composed of FIFO buffers synchronize more quickly than do DAMQ

switches because of their susceptibility to output port contention. SAMQ buffered

switches will also synchronize in a shorter time span that do DAMQ buffered

switches. Although their behavior is the same as DAMQ buffers with respect to

crossbar arbitration, SAMQ buffers utilize their buffer space more poorly than do

DAMQ buffers. Thus, SAMQ buffers are more likely to become idle, which is

when loose synchronization occurs. SAFC switches, on the other hand, can

transmit uniformly-distributed constant-length packets at saturation throughput

indefinitely without synchronizing. This is due to the fact that the queues within a

single SAFC buffer operate independently of one another, so each buffer can

participate in every arbitration without being in synchrony.

6.2.3. Variable-Length Packets, Asynchronous Network

In this section, the performance of multistage interconnection networks

transmitting variable-length packets is examined. Given the conclusion of the

previous section — that switches with DAMQ buffers maintain their high

performance in asynchronous networks by achieving a loose synchrony — one

might expect the SAFC switch performance to improve relative to the other buffers

in the presence of variable-length packets. The SAFC switch is the only

107

architecture examined which is not synchronized by forwarding constant-length

packets at saturation throughput; all four input ports participate in every output port

arbitration, and this is unaffected by the asynchrony caused by variable-length

packets.

Lat.

Throughput

c

0 0.2 0.4 0.6 0.8

0

200

400

................

.FIFO

SAMQ

SAFC

DAMQ

.
.
.
.
.
.
..
.
.
.
.
.
..
.
..
...

. ..
..........................

.................
.........

.........
.......

Figure 6.3: Lat. vs. Thpt., Variable-Length Packets. 256×256 omega
network composed of 4×4 switches. Packets vary in length uniform-
ly from six to thirty-two bytes. Packet destinations randomly
chosen, uniform distribution.

Figure 6.3 indicates that this is not the case. On the contrary, the reduction in

the saturation throughput of networks of DAMQ and FIFO buffers (0.71 to 0.68 for

the 256×256 DAMQ buffer network) is much less than the reduction in the

throughputs of the networks with SAMQ and SAFC buffers (0.64 to 0.57 for the

256×256 SAFC buffer network). The reason for this is buffer memory

fragmentation; with packets of varying length, statically allocated buffers lose

more of their buffer memory to fragmentation than does the DAMQ buffer. With

108

128-byte statically allocated buffers, each queue is limited to thirty-two bytes in

length. Since the flow control mechanism blocks packets destined for a queue

when there are less than thirty-two bytes available in the queue, a single byte of

data stored in a queue will cause that queue to block. With a dynamically allocated

buffer, however, there only need be thirty-two bytes available in the entire buffer

memory in order for any queue to to receive a packet.

Thus, while variable-length packets eliminate any form of synchrony (which

reduces the throughput of switches implemented with DAMQ buffers), it increases

the average number of packets stored within the DAMQ buffer, which in turn

increases the switch’s ability to utilize its output ports. For SAFC switches, on the

other hand, variable-length packets cause buffer memory to be lost to

fragmentation. This strongly impacts the SAFC switch throughput, as inefficient

buffer utilization is what limits the performance of statically allocated buffers.

6.2.4. Network Throughput with Increased Buffer Memory

Figures 6.4 and 6.5 present network saturation throughput vs. buffer size for

4×4 and 64×64 networks composed of 4×4 switches with DAMQ, SAMQ and

SAFC buffering. Fig. 6.4 presents the constant-length packet results. For small

buffer memories, the DAMQ buffer provides the highest saturation throughput of

the three buffer types, since it more efficiently uses the small buffer memory. As

the buffers grow in size, static vs. dynamic buffer allocation becomes less of an

issue, but the saturation throughput of the 4×4 network approaches its asymptote

(0.941 for thirty-two byte packets with two cycles link idle time between packets)

before the SAFC buffer performance overtakes the DAMQ buffer performance.

109

Thpt.

Buffer Size (bytes)
4×4 Network 512 1024 1536 2048

0.5

0.7

0.9

DAMQ

.SAFC

SAMQ

×
× × × × × ×

×. .
. . .

. .×.×.×.×. .×. .×

×
×

×
× × × ×

64×64 Network

Thpt.

Buffer Size (bytes)
512 1024 1536 2048

0.5

0.7

0.9

DAMQ

.SAFC

SAMQ

×

×
× × × × ×

×.
. .×.×.×.×. .×. .×

×
×

×
× × × ×

Figure 6.4: Saturation Throughput vs. Buffer Size, Constant-Length
Packets. Shown is the maximum netork throughput as a function of
the amount of buffer memory at each input port for a 4×4 network (a
single chip) and a 64×64 network.

Fig. 6.5 shows the same thing occurring with variable-length packets. While the

higher connectivity of the SAFC switch will support a higher throughput than a

DAMQ switch as buffer sizes increase, the fact is that at the buffer sizes where

static allocation is no longer a handicap, switch throughputs are so close to the their

maximum that the additional connectivity of the SAFC buffer provides little in the

way of throughput enhancement.

110

Thpt.

Buffer Size (bytes)
4×4 Network 512 1024 1536 2048

0.5

0.7

0.9

DAMQ

.SAFC

SAMQ

×
×

×
× × × × × ×

×. .
. . .

. . .×. .
.×. .×. .×

×

×

×
× × ×

64×64 Network

Thpt.

Buffer Size (bytes)
512 1024 1536 2048

0.5

0.7

0.9

DAMQ

.SAFC

SAMQ×

×
×

×
×

× × × ×

×. .
. .

. .
. .×. .

.×. .×. .×

×

×

×
×

× ×

Figure 6.5: Saturation Throughput vs. Buffer Size, Variable-Length Pack-
ets. Shown is the maximum netork throughput as a function of the
amount of buffer memory at each input port for a 4×4 network (a
single chip) and a 64×64 network.

6.2.5. Summary: Asynchronous MIN Performance

Our investigations into asynchronous multistage interconnection performance

described in Sec. 6.2 had three goals: (1) evaluate the performance of the DAMQ

buffer in the context of an asynchronous network, (2) confirm the simulation

results which were presented in Ch. 4 and (3) gain new insight into the behavior of

communication switches.

The simulation results presented in this section demonstrate the performance

of the DAMQ buffer in an asynchronous network. Multi-queue buffering continues

111

to provide a significant performance advantage over FIFO buffering — dynamic

buffer allocation is as significant an advantage for asynchronous networks as it was

for synchronous. The performance difference between dynamic and static buffer

allocation is diminished under a traffic load of constant-length packets, where

statically allocated buffers benefit from an increased effective buffer size due to

virtual cut-through. However, statically allocated buffers are more susceptible to

fragmentation that is the DAMQ buffer when forwarding packets of varying length;

with variable-length packets, the DAMQ buffer performance improves relative to

both SAMQ and SAFC buffers.

6.3. Network Performance, Torus Topology

Chapter 4 demonstrated the DAMQ buffer’s performance for synchronous

multistage interconnection networks (MIN). The previous section of this chapter

demonstrated that the DAMQ buffer operates equally well in asynchronous MINs.

This section examines the suitability of multi-queue buffers for the torus topology.

The results of simulating torus networks constructed from switches implemented

with DAMQ and SAFC buffers are presented; the performance of these buffer

architectures are compared to each other and to the results of wormhole routing

presented in [Dall90b].

112

6.3.1. Dimensional Routing with Multi-Queue Buffers

In [Dall87a], Dally and Seitz present a deadlock-free routing algorithm for

k -ary n -cubes (cube-connected networks consisting of n dimensions and a radix of

k). The algorithm has two components to prevent resource dependency cycles (the

cause of deadlock in communication networks). To prevent inter-dimensional

cyclical dependencies, packets traverse the dimensions in a fixed order. That is to

say, a packet being sent from processor Pa to Pb is first routed in dimension dn −1,

then dn −2, etc. Thus, a packet traversing di can never be blocked by a packet

traveling in dj , j > i , and in a network of dimension n (dn −1
. . . d 0), packets

traveling in d 0 will never be blocked by packets traversing a different dimension.

To prevent intra-dimensional cyclical dependencies, packets traverse a

dimension on one of two virtual circuits. All packets entering the dimension are

injected into circuit V 0. If the packet passes through the wrap-around link (the link

connecting nodes Nk −1 and N 0, for a network of radix k), then the packet is moved

to V 1. All communication links are multiplexed between V 0 and V 1, and there are

separate buffers for the virtual circuits at every input port. There cannot be a

cyclical dependency within V 0 or V 1 (since neither virtual circuit forms a complete

loop in a dimension), and while packets in V 1 are able to block packets in V 0 via

the wrap-around link, packets in V 0 cannot block packets in V 1. Thus, cyclical

dependencies are prevented. While the proof of deadlock-freedom for dimensional

routing presented in [Dall87a] is for a torus network with unidirectional links, it is

easily extended to tori implemented with bidirectional links, with the caveat that a

packet, having taken a hop within a dimension, may not change direction (double

back upon itself) within that dimension.

113

host

d 1
−

d 1
+ d 0

+

d 0
−

d 1

d 0

crossbar

Host CPU

Figure 6.6: Switch for Two-Dimensional Torus.

A two-dimension torus with bidirectional links can be constructed from 5×5

switches. Each dimension is allocated two input / output port pairs (one pair for the

positive direction, one for the negative), and the switch has an input / output port

pair to communicate with the local (host) processor (Fig. 6.6). To support

dimensional routing, a multi-queue buffer is placed at each input port. We will

examine the internal structure of the buffers residing at the d 1 input port.

In this torus, packets first traverse d 1, and then d 0. Packets arriving at a d 1

input port are in one of five classes, and are appended to the packet queue

associated with that class (Fig. 6.7). First, the packet could be destined for the

local (host) CPU; if so, it is appended to Qh . Second, the packet can have

completed its traversal of this dimension (d 1), and be destined for one of the two

114

multi-queue buffer

host

d 1
−

Ql Qn Qw QhQr

d 0
−d 0

+

d 1
+

Figure 6.7: Multi-Queue Buffer for Two-Dimensional Torus.

d 0 output ports. In this case, the packet is appended to Ql or Qr (the queues for

packets making a left or a right turn into the next dimension). Finally, if the packet

is continuing in d 1, it may be a wrapped packet (one which has traversed the

Nk −1 → N 0 or the N 0 → Nk −1 links, depending upon the direction in which it is

traveling) or not-wrapped. Qw or Qn are, respectively, the queues to which the

wrapped and not-wrapped packets are appended.

Given the buffer organization above, deadlock-freedom can be guaranteed if

Qn is not allowed to occupy the entire buffer memory. The packets in Qh are

assured to eventually make progress, as the local node is assumed to be a packet

sink. The packets in Ql , r will eventually move forward, since, if the current

dimension is guaranteed make progress, then the succeeding dimensions are. Thus,

115

the only concern is to prevent the packets in Qn , w from creating a cyclical

dependency, and this is accomplished by preventing Qn from occupying the entire

buffer memory at an input port.

Statically allocating the buffer memory amongst the queues in the manner of

SAMQ or SAFC buffers prevents a single queue from occupying the entire buffer

memory. For the DAMQ buffer, maximum usage flow control prevents this from

occurring. This is a flow control mechanism which blocks the transmission of

packets which will be appended to a queue whose length is beyond a given

threshold. Its operation is identical to the flow control performed for statically

allocated buffer architectures, except that the fraction of buffer memory which a

single queue is allowed to occupy is not necessarily 1/n for an n ×n switch. The

details of maximum usage flow control’s operation are presented in Sec. 8.4.2.

The 5×5 switch architecture described above can be used to construct tori of

any dimension n . Each processing node has �n /2 � switches associated with it.

Each switch forwards packets in two consecutive dimensions. The switch

communicating in di and di −1 has its host input port connected to the host output

port of the switch handling di +2, i +1, and its host output port is connected to the host

input port of the switch handling di −2, i −3. Thus, the switches associated with a

node form a ring with their host input and output ports; the host processor injects

packets into the switch handling dimension dn −1, n −2 and receives packets from the

switch which handles d 1, 0 (if there are an odd number of dimensions, the last

switch in the ring may only handle d 0, leaving two of five ports unused). This

technique for handling high-dimensional tori is described in [Dall86].

116

6.3.2. Performance Evaluation: Dimensional Routing

Figure 6.8 presents results obtained from simulations of a 121-node, two-

dimensional (radix equals eleven) torus with bidirectional communication links.

For these simulations each node generates thirty-two-byte packets with a uniform

distribution (every node is equally likely to be the destination of each packet

transmitted), and the time between the creation of packets is random with a

geometric distribution. The graphs in Fig. 6.8 show the average latency of packets

traversing the network vs. the network throughput. For all torus network results in

this chapter, network throughput is presented as the fraction of the bisection

bandwidth utilized [Dall90b]. To determine the utilized bisection bandwidth, the

simulator measures the throughput (bytes per cycle) per receiver and the number of

hops packets traverse before reaching their destinations. The average number of

bytes traversing links in the network in each cycle is the product of three terms: the

average throughput per receiver, the number of receivers (nodes), and the average

number of hops each packet traverses. Dividing this product by the total number of

links in the system, yields the average throughput (bytes per cycle) per link. For a

symmetric network, such as the torus, this number is also the fraction of the

bisection bandwidth being utilized.

In the first graph in Fig. 6.8, results for switches with DAMQ and SAFC

buffers are presented, with storage for five packets per input port (160 bytes). For

the DAMQ buffer, a each queue within a buffer was limited to at most four thirty-

two-byte packets. The second graph presents results for larger DAMQ and SAFC

buffers; DAMQ buffers with storage for eight thirty-two-byte packets and SAFC

buffers with storage for ten. In the case of the DAMQ buffer, results are presented

117

Lat.

Throughput

c

0 0.2 0.4 0.6

0

800

1600

MU - 14

SAFC

.
.. . ..
......................

Lat.

Throughput

c

0 0.2 0.4 0.6

0

800

1600

MU - 26

MU - 10
SAFC

.
...

..
...

..
..

..
....

.............
....

Figure 6.8: Latency vs. Throughput, 121-Node 2-D Torus. 11×11 torus
network composed of 5×5 switches. Thirty-two byte packets.
DAMQ buffers (maximum-usage flow control) and SAFC buffers.
Packet destinations randomly chosen, uniform distribution. The top
graph is the performance of 160-byte buffers (‘‘MU-14’’ is DAMQ
buffers using maximum-usage flow control with a threshold of four-
teen blocks for the DAMQ buffers). The bottom graph is the perfor-
mance of 256-byte DAMQ buffers (thresholds of ten and twenty-six
blocks) and 320-byte SAFC buffers.

for limiting each packet queue to three packets and to seven packets. In Fig. 6.9,

results are given for the larger DAMQ and SAFC buffers in a 441-node torus (a

21×21 two-dimensional torus).

The graphs in Figs. 6.8 and 6.9 demonstrate the performance advantage of

dynamic buffer allocation over static. Particularly for the smaller-sized buffers,

118

Lat.

Throughput

c

0 0.2 0.4 0.6

0

400

800

1200

1600

MU - 26

MU - 10

SAFC

.
. . .

. . .
. . .

...
..

..
..

..
..

..
..

..
..

..
..

..
...

..
..

..
..

..
.

Figure 6.9: Latency vs. Throughput, 441-Node 2-D Torus. 21×21 torus
network, composed of 5×5 switches. Thirty-two byte packets.
Packet destinations randomly chosen, uniform distribution. 256-byte
DAMQ buffers with maximum usage flow control (‘‘MU-10’’ and
‘‘MU-26’’ indicate maximum usage flow control using ten block and
twenty-six block thresholds, respectively) and 320-byte SAFC
buffers.

having the ability to dynamically allocate the buffer space allows a higher fraction

of the available bandwidth to be utilized than does static allocation. This is not a

surprising result — dimensional routing and the fact that the switches have a

processor interface as one of their five ports both cause the switches to experience

non-uniform traffic distributions, even under uniformly-distributed traffic

conditions. The performance of a statically allocated buffer could be improved by

providing an unequal distribution of buffer space to the queues (favoring those

queues / ports which receive large amounts of traffic), but with small buffers this is

not a viable option.

119

Two performance characteristics of torus networks are of interest. The first is

that, the larger the network, the lower the bandwidth available to each processor.

In Fig. 6.8, DAMQ buffers with 256 bytes per input port achieve a maximum

throughput of 0.72. The radix twenty-one torus, with the same buffers, achieves a

throughput of 0.73. The fraction of the bisection bandwidth utilized remains

approximately the same as the network size increases, but there is a reduction in

the bisection bandwidth per node. The reduction in bisection bandwidth per node

is due to the fact that, for a two dimensional torus with n nodes, as the number of

nodes in increased the bisection bandwidth grows as O (n 0.5).

The second performance characteristic of interest is that torus networks are

reactive. That is to say, there is an applied load which results in a maximum

throughput for the network. When that applied load is exceeded, then throughput

is reduced, even though latency continues to increase. The reason that torus

networks are reactive whereas omega networks are not is that the torus contains

rings of switches — each dimension consists of switches connected in bidirectional

rings. The ring topology causes congestion to experience positive feedback. When

a link of the ring blocks due to congestion on the next switch, the back-pressure

traverses the ring until it increases the degree of congestion at the original point of

congestion. While implementing two virtual circuits per dimension breaks the

cyclical resource dependency, it does not prevent congestion feedback from

occurring.

Evidence for the existence of this positive feedback is provided in

Figs. 6.10, 6.11, and 6.12. These figures are a visualization of the buffer utilization

on each of the switches of a 121-node torus (256-byte DAMQ buffers at each input

120

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� �� ��

���� �� ��
���� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Figure 6.10: Visualizing Buffer Utilization I. Torus network operating
just below saturation throughput. Differences in the average queue
lengths in buffer at the host-interface input port. ‘=’ indicates queues
of ∼∼ equal length, ‘p’ indicates that Q 1

+ averages at least one block
more than Q 1

− , ‘P’ indicates that the difference is eight or more
blocks, and ‘n’ and ‘N’ indicate that Q 1

− has the greater average
length.

port) operating just below, just in and well into the reactive range. The figures

display the average number of blocks in each queue over the course of the

simulation for the buffer which receives packets from the host processor on each

switch. Since ten of every eleven packets entering an 11×11 torus make at least

one hop in d 1, the majority of the host buffer is occupied by the queues Q 1
+ and

Q 1
− (packets routed in dimension d 1 in the positive and negative directions).

Under uniform traffic conditions, these queues should have the same average

length over the course of a simulation. In the figures, the 11×11 matrix represents

the torus, with each square of the matrix being a switch in the network. A switch is

121

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� N �� ��

���� �� �� n �� �� N �� �� p �� �� N �� �� N �� �� N �� �� N �� �� N �� �� p ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� N �� �� p �� �� n �� �� N �� �� p �� �� N �� �� N �� �� N �� �� N �� �� N �� �� p ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� N �� �� p �� �� N �� �� N �� �� p �� �� n � � �� N �� �� N �� �� n �� �� N �� �� p ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� N �� �� p �� �� n �� �� N �� �� p �� �� n �� �� n �� �� n �� �� n �� �� N �� � � p ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� N �� �� P �� �� n �� �� n �� �� P �� ��

���� �� �� n �� �� n �� �� n �� �� N �� �� p ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� n �� �� P �� ��

���� �� �� n �� �� P �� �� p �� �� n �� �� n �� ��
���� �� �� n �� �� P ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� n �� �� P �� ��

���� �� �� n �� �� P �� �� p �� �� n �� ��
���� �� �� p �� �� n �� �� P ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� n �� �� P �� �� p �� �� n �� �� P �� �� p �� ��

���� �� �� p �� �� p �� �� n �� �� P ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
���� �� �� P �� �� p �� ��

���� �� �� P �� �� P �� �� p �� � � p �� �� p �� ��
���� �� �� P ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� p �� �� P �� �� P �� ��

���� �� �� P �� �� P �� �� p �� �� p �� �� P �� �� p �� �� P ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� p �� �� P �� �� P �� ��

���� �� �� P �� �� P �� �� p �� �� p �� �� P �� �� p �� �� P ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Figure 6.11: Visualizing Buffer Utilization II. Torus network operating at
saturation throughput.

marked with a ‘p’ if the average length of Q 1
+ is one buffer block or more greater

than the average length of Q 1
− , and a ‘P’ if the difference is eight or more buffer

blocks. Similarly, if Q 1
− is greater by one block or more, the switch is marked

with an ‘n’, and if the difference is eight blocks or more, the switch is marked with

an ‘N’. If the difference between the average queue lengths is less than one block,

the switch is marked with an ‘=’.

Figure 6.10 shows the state of the host buffers for the network operating at

just below saturation. As can be seen, the average queue lengths (averaged over

the duration of the simulation) of Q 1
+ and Q 1

− are within one block of each other

on every switch in the network. Fig. 6.11 presents the same data for the network

operating just beyond saturation. As can be seen, the average queue lengths have

begun to diverge as the applied load is increased. More significantly, the non-

122

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� N �� ��

���� �� �� P �� �� N �� �� P �� �� P �� �� N �� �� p �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� p �� �� N �� �� N �� �� P �� �� N �� �� P �� �� P �� �� N �� ��

���� �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� N �� �� N �� �� P �� �� N �� � � P �� �� P �� �� N �� �� p �� �� p �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� N �� �� p �� �� P �� �� N �� �� P �� �� P �� �� N �� �� p �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� P �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� P �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� P �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� P �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� P �� �� P �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N �� �� P �� �� P �� �� N ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Figure 6.12: Visualizing Buffer Utilization III. Torus network operating
in the reactive region.

uniformity has begun to align itself within each ring in dimension d 1. Finally,

Fig. 6.12 visualizes host buffer queue lengths when the network is operating well

into the reactive region. It shows that, for most of the rings, every switch in the

ring is dominated by packets attempting to traverse d 1 in the same direction. This

bistable pattern of congestion strongly suggests the existence of positive feedback

in the congestion of a ring of the torus.

In [Dall90b], Dally derives equations which model the performance of k -ary

n -cubes which use wormhole routing. The switches in his model are buffer-less;

the storage of packets within the network is not modeled. He determined that the

maximum throughputs of 1K-node and 4K-node torus networks were 0.36 and

0.35, respectively (throughput measured as the fraction of capacity utilized). This

is significantly lower than the throughput results presented in this dissertation for

123

either the DAMQ or SAFC buffers — Dally acknowledges that buffering can and

will improve network throughput. A more significant difference between the

results presented in [Dall90b] and here is that Dally reported negligible reactivity,

stating that the throughput of the network is proportional to the applied load until

saturation, at which point it remains constant or drops slightly. This is in direct

contrast to our results, where networks can lose 20%-50% of their available

throughput due to reactivity. Dally states that the networks he modeled were non-

reactive ‘‘because 1) the network is source queued, and 2) messages that encounter

contention are blocked rather than aborted.’’ [Dall90b] We believe that the

networks he modeled were only marginally reactive either because of the lack of

buffering in the network or because his model did not incorporate back-pressure

(since Dally’s model is intrinsically buffer-less, it is impossible to distinguish

between the two possibilities).

6.3.3. Summary — Dimensional Routing

We have presented simulation results comparing the performance of torus

networks (k -ary 2-cubes) constructed of switches implemented with DAMQ and

SAFC buffers. These are store-and-forward buffers capable of virtual cut-through.

Deadlock-free dimensional routing is implemented via multi-queue buffers. The

DAMQ buffer dynamically allocates its buffer space among its multiple queues,

and thus can only read from one queue at a time. The SAFC buffer statically

allocates its buffer space. Static buffer allocation has two major impacts on the

buffer architecture. First, this facilitates reading multiple packets from a single

input port buffer simultaneously (see Sec. 3.3), and, second, it reduces the

124

efficiency with which the memory is utilized. Our simulation results indicate that

the superior buffer utilization provided by the DAMQ buffer has a greater impact

upon network throughput than does the multiple simultaneous reads supported by

the SAFC buffer, for the sizes of buffer memory examined.

Previous analyses of the performance of k -ary n -cubes [Dall90b, Agar91,

Scot94] focused on modeling networks which use the wormhole routing

protocol [Dall86]. Wormhole routing is identical to virtual cut-through, except that

packets can be transmitted to switches which do not have enough buffer memory to

store the entire packet. Typically, switches implemented to support wormhole

routing have very little buffer space — the Torus Routing Chip [Dall86] is

implemented with two four-byte buffers per input port. Our evaluation has shown

that, as has been suggested [Dall90b], providing switches with buffers large enough

to fully contain multiple packets (supporting virtual cut through, as opposed to

wormhole routing) can significantly boost the saturation throughput of a network.

Also, Dally claimed that, in a source-buffered torus network in which packets are

blocked rather than discarded, reactivity is minimal or non-existent [Dall90b]. We

found that torus networks with buffering for multiple packets at each switch are

highly reactive.

6.4. Summary

This chapter presented an asynchronous communication network simulator.

This simulator provides more functionality than does the simulator presented in

Ch. 4. First, the switches being simulated can be connected in topologies other

than an omega network; torus, mesh and hypercube topologies are currently

125

implemented. Second, since asynchronous communication allows variable-length

packets, parameters were added to the simulation to allow message length

distributions and a maximum packet length to be specified. The third significant

feature of this simulator not present in the synchronous network simulator is the

ability to segregate the senders (packet sources) into groups, giving each group its

own packet creation and destination assignment distributions and keeping separate

performance statistics for each group.

The first issue which was addressed with this simulator was the performance

of the DAMQ buffer in an asynchronous multistage interconnection network.

Ch. 4 provided a thorough evaluation of the DAMQ buffer in a synchronous

network, but the DAMQ buffer contains features which are only applicable to

asynchronous networks. To this end we simulated multistage interconnection

networks of various sizes connected in the omega topology, with both constant-

and variable-length packets.

Under a uniform load of constant-length packets, the saturation throughput of

the statically allocated buffer architectures (SAMQ and SAFC) improves relative to

that of the dynamically allocated buffers (FIFO and DAMQ). This is due to the

improved buffer utilization provided by virtual cut-through, which partially counter

acts the poor buffer utilization caused by static buffer allocation. While the

performance of the statically allocated buffers improves, it is still less than that of

the DAMQ buffer for small buffer sizes — the SAFC buffer performance does not

exceed that of the DAMQ buffer until the buffer memory is increased to one

kilobyte.

The performance of statically allocated buffers decreases in the presence of

126

variable-length packets. Statically allocated buffers lose a significant amount of

their available buffer space to fragmentation when storing variable-length packets.

The DAMQ buffer, on the other hand, minimizes the amount of buffer memory lost

to fragmentation, and thus suffers a lesser reduction in its saturation throughput.

Our simulations not only demonstrate the efficacy of the DAMQ buffer for

asynchronous networks, they also show why the results of simulating synchronous

networks provide an accurate prediction of the throughputs achievable by an

asynchronous network transmitting constant-length packets.

We also made use of the asynchronous network simulator to examine the

performance of the DAMQ buffer in the switches of a two-dimensional torus. We

discuss how a multi-queue buffer can support the deadlock-free dimensional

routing algorithm presented in [Dall87a] by associating packet queues with the

virtual circuits in each dimension and using maximum usage flow control to

prevent any one queue from occupying the entire buffer memory. This solution is

analogous to the deadlock-free routing mechanism implemented on the Torus

Routing Chip [Dall86], which placed two FIFO buffers at each input port to receive

packets on the two virtual circuits in each dimension.

Having demonstrated that deadlock-freedom can be provided in a packet-

switched network by using multi-queue buffers, the performances of SAFC and

DAMQ buffers were compared. SAMQ buffers were not evaluated, since their

performance will be no better than that of SAFC buffers. We examined 121-node

and 441-node two-dimensional tori with a variety of buffer sizes and, for the

DAMQ buffers, a variety of maximum usage flow control blocking thresholds. It

was determined that switches with DAMQ buffers provide a significantly higher

127

saturation throughput than do SAFC buffers — in fact, 256-byte DAMQ buffers

outperform 320-byte SAFC buffers in the networks we simulated.

Of greater concern than the performance of specific buffer architectures are

fundamental issues pertaining to the scalability of torus networks. Our simulations

showed (a) that torus networks are highly reactive and that (b) for a torus of given

dimensionality, when packet destinations are chosen from a uniform distribution of

the possible destinations, the individual processors have access to less network

bandwidth as the number of nodes in the network increases. The reactivity of the

torus topology can be addressed by implementing flow control mechanisms which

prevent the network from operating in the reactive region. The scalability

problems of the torus topology must be addressed through communication locality

and / or mechanisms such as express cubes [Dall91] which reduce the diameter of

the communication network.

In this chapter, the asynchronous network simulator is demonstrated to be a

powerful tool for exploring communication network performance. In Ch. 8, its

ability to group senders is utilized in the exploration of the performance of hop-

level flow control mechanisms.

128

129

Chapter Seven

The DAMQ Buffer Chip

The previous three chapters of this dissertation evaluated the DAMQ buffer

architecture in the context of a total communication network. This evaluation

involved simulation studies that compared the performance of networks whose

configurations are identical except for the type of buffers in the switches. The

validity of these simulations relies upon the accuracy of two assumptions. The first

is that the DAMQ buffer is capable of transmitting / receiving data at as high a rate

as a FIFO buffer. The second assumption is that it is capable of forwarding packets

with as low a latency (from when they were received) as a FIFO buffer. This

chapter examines an implementation of the DAMQ buffer with two goals in mind.

The first is to demonstrate the feasibility of the DAMQ buffer architecture. The

second goal is to show that the DAMQ buffer’s complexity does not reduce its raw

performance relative to the much simpler FIFO buffer architecture.

While the DAMQ buffer was designed to be a functional unit within a single-

chip communication switch, this chapter describes a ‘‘stand-alone’’ buffer, the

DAMQ Buffer Chip. Constructing a complete communication switch will require

combining multiple DAMQ Buffer Chips together with several other key building

blocks, such as a router and arbiter.

When considering a single packet buffer (as opposed to a switching network),

there are two key measures of performance. The first is the raw bandwidth of the

buffer — the amount of data which can be transmitted and / or received per unit

time. The second is the minimum cut-through latency of the buffer — the interval

129

between the time a packet begins to arrive at the input port of an empty, idle buffer

and the time said packet begins to depart. This chapter demonstrates that the

DAMQ Buffer Chip is the equal of a FIFO buffer in both of these measures.

The key to showing that the DAMQ buffer can sustain as high a raw

bandwidth as a FIFO buffer is the fact that the layout of the physical memory used

to store the packets is nearly identical for the two buffer architectures. If we

assume that the FIFO buffer’s control logic is infinitely fast, then it will be its

buffer memory which determines the rate at which the FIFO buffer communicates.

Thus, asserting that the DAMQ Buffer Chip has as high a raw bandwidth as a

comparable FIFO buffer is a two-step operation. First, we design the DAMQ

Buffer Chip with a buffer memory whose latency is as low as we are capable of

making it. Then, we implement the control logic such that it is the buffer memory

which determines the DAMQ Buffer Chip’s clock rate.

We take a different tack to demonstrate that the DAMQ Buffer Chip achieves

as low a cut-through latency as a FIFO buffer. The approach here is to find a chain

of serial dependencies that exist with both FIFO buffers and DAMQ buffers and

which combine to determine a theoretical minimum cross-switch latency. If the

DAMQ Buffer Chip can be implemented so that it achieves this minimum latency,

the implication would be that the cut-through latency with a DAMQ buffer can be

as short or shorter than the cut-through latency with a FIFO buffer.

The next section describes the microarchitecture of the DAMQ Buffer Chip.

The hardware structures which organize the packets into multiple queues are

explained. A minimum virtual cut-through latency of four clock cycles is

established in this section. Having set this as a performance goal, the hardware

130

mechanisms capable of meeting this goal are presented. Sec. 7.2 discusses the

layout and circuit performance of the individual functional units. Results of SPICE

circuit simulations are presented. These results demonstrate that the DAMQ Buffer

Chip achieves a raw bandwidth equal to that of a FIFO buffer. Finally, Sec. 7.3

summarizes the contributions of this chapter.

7.1. The Architecture and Microarchitecture of the DAMQ Buffer Chip

The external interfaces and the context in which the DAMQ Buffer Chip is

intended to operate will be discussed, and then the internal microarchitecture

described. The DAMQ Buffer Chip is a packet buffer with a single byte-wide

input port and a single byte-wide output port. It is designed to receive packets

from and transmit packets to other DAMQ Buffer Chips. A communication switch

can be constructed by connecting the output ports of a number of DAMQ Buffer

Chips to the inputs of a crossbar — the input ports of the buffers become the input

ports of the switch, and the outputs of the crossbar are the switch’s output ports.

The packet format used by the DAMQ Buffer Chip is a single header byte

followed by one to thirty-two bytes of data. The header byte contains the routing

information for the packet plus a bit which indicates whether the packet is thirty-

two bytes in length or less. If it is less than thirty-two bytes, then the byte

following the header indicates the length of the packet. Packets arriving at an input

port have their data stored in the memory array of the buffer at that input port while

the header is sent to the router. The router determines the output port to which the

packet should be forwarded. With some routing schemes, such as virtual

circuits [Bert87], the router also returns a new header byte to be prepended to the

131

packet for its next ‘‘hop’’ through the network. In the DAMQ Buffer Chip, the

router returns a four-bit value specifying which of the four queues to append the

packet to, an eight-bit header to be associated with the packet, and a valid queue

signal which causes the routing information to be latched and processed.

In order to forward a packet, a connection must be established between the

DAMQ Buffer Chip and the appropriate switch output port. The crossbar arbiter

establishes connections based upon the state of all the input buffers and the switch

output ports. Each buffer has four request lines which indicate to the arbiter which

of the buffer’s packet queues are not empty. The arbiter responds to each buffer

with a four-bit value specifying which of the four queues is to transmit (i.e. to

which output port the buffer has been connected) and a valid output port signal

which causes the arbitration information to be latched and processed by the buffer.

Upon receiving a valid output port signal from the arbiter, the DAMQ Buffer Chip

commences transmission of the packet at the head of the queue specified by the

arbiter. The packet is transmitted at a rate of one byte per clock cycle, with the

first byte being the new header which was supplied by the router.

Since the intended application for the DAMQ Buffer Chip is in the

communication switch of a tightly-coupled multicomputer, it is assumed that all

switches operate at the same frequency. We avoid the difficulties of distributing a

global clock signal by allowing each switch to generate its own clock via a local

oscillator. Synchronizers are placed between the input port of the switch and the

DAMQ Buffer Chip’s input port. These determine for each packet whether to latch

incoming data on the rising or falling edge of the local clock [Tami88a]. The

probability of synchronization failure due to clock drift over the course of a

132

reception is reduced to insignificance by restricting the length of packets allowed

in the system. For this implementation, the maximum packet size is thirty-two

bytes [Tami88a].

Having described the external architecture and context of the DAMQ Buffer

Chip, the rest of this section will describe the design and implementation of its

internal features. Sec. 7.1.1 describes the basic organization of the DAMQ Buffer

Chip. Sec. 7.1.2 addresses the specific hardware units which implement this

organization. Minimizing the cut-through latency of the buffer is the driving force

behind the microarchitecture of the DAMQ Buffer Chip — Sec. 7.1.3 establishes a

‘‘minimum’’ virtual cut-through latency of four clock cycles and describes in detail

the hardware features which support this. Finally, Sec. 7.1.4 summarizes the

DAMQ Buffer Chip microarchitecture.

7.1.1. The Basic Organization of the DAMQ Buffer Chip

The DAMQ buffer is a single storage array in which memory is dynamically

allocated among multiple queues of packets, one queue for each output port. Such

dynamic partitioning of the buffer between the queues is significantly more

efficient than static partitioning, in terms of both implementation complexity

(Ch. 3) and buffer utilization (Chs. 4 and 6). While the order in which queues are

serviced is ‘‘random’’ (determined by the arbiter), it is desirable to transmit the

packets within each queue in FIFO order (some transmission protocols such as

virtual circuits require this).

With dynamic buffer allocation, a packet’s location within the buffer cannot

be determined by the location of the packet immediately ahead of it in its queue or

133

the location of the packet whose arrival preceded it. The DAMQ Chip thus

requires a mechanism to rapidly locate, access, and transmit the first packet in any

one of the queues. Further, in order to handle variable-length packets efficiently,

the DAMQ buffer must be able to quickly allocate memory for incoming packets

without wasting buffer space due to internal or external fragmentation.

HA TA

A1
1 A2

1 A3
1 A1

2 A2
2 NULL

A1
1 A2

1A3
1 A1

2 A2
2

1 2 3 4 5 6 7 8

7 13 9 0

9

4 9HA TA

Buffer Blocks

Pointer Registers

Figure 7.1: Linked Lists via Buffer Blocks. Pointer registers link the
blocks which comprise a packet (A 1, A 2, etc.) and the packets which
comprise a queue (A 1 and A 2 of queue A).

The problem of maintaining the queue organization is resolved via linked

lists. The memory array of the DAMQ buffer is partitioned into fixed-size buffer

blocks. Each queue is a linked list of these blocks (Fig. 7.1). Head registers and

tail registers, which point to the first and last block of each queue, are located

outside the array of buffer blocks, allowing access to any one of the queues. To

reduce internal fragmentation due to variable size packets, the buffer blocks (eight

134

bytes) are significantly smaller than the maximum packet size (thirty-two bytes in

this implementation). Each packet is stored in one or more buffer blocks. For each

queue, the linked list of buffer blocks defines the FIFO order between packets as

well as the order of blocks that make up each packet. A linked list of ‘‘free buffer

blocks’’ (the free list) is used to keep track of storage available for incoming

packets. For each buffer block there is a pointer register, stored outside the packet

memory array, which contains the address of the next buffer block of its list or a

NULL value signifying that it is the last block in the queue.

7.1.2. The DAMQ Buffer Chip Control Logic

The control logic of the DAMQ buffer is significantly more complex than that

of a FIFO buffer. The process of receiving a packet involves: (1) locating the

block at the head of the free list and directing incoming data to that block, and

(2) altering the linked list pointers, logically moving the block to the tail of the

appropriate queue. When a packet is transmitted, the block which is at the head of

the current queue is moved to the tail of the free list while its data is being read.

Whether receiving or transmitting, the primary function of the control logic of the

DAMQ buffer is to move a buffer block from the head of one queue to the tail of

another.

The control logic of the DAMQ buffer must be able to manipulate the linked

list pointers, moving buffer blocks from one linked list to another, in as few clock

cycles as possible. The control must also satisfy three additional requirements:

(1) minimize the silicon area required for the buffer control hardware, (2) support

the simultaneous reception and transmission of packets (both to maximize link

135

utilization and to support virtual cut-through), and (3) ensure that the control logic

is not on the DAMQ buffer’s critical path. The last requirement is key to allowing

the DAMQ buffer to realize its performance advantage [Tami88b, Tami88c] With

its simple control logic, other factors (e.g. reading from the memory array or the

raw bandwidth of the links) will determine the clock rate of a FIFO buffer.

Hdr Bypass Unit

Null

enable

enable

Write Shift Registers

Read Shift Registers

Header Registers

A

Pointer Registers

Buffers

Buffer Decoder

FL Q 0 Q 1 Q 2 Q 3

Head

Tail Arbiter

Queue

Router

Queue

Tmps

router router
fromto

from

Sync

to Output

Port

E P C E O P
E P CE O P

Figure 7.2: DAMQ Chip Control Logic. The circuitry in the rectangle
marked ‘A’ implements the five linked lists.

The data path and key control circuitry of the DAMQ buffer are shown in

Fig. 7.2. Logically moving a block from one queue to another requires three clock

cycles:

cycle 1: The value in the head register of the queue the block is being removed

from is copied to one of the two temporary registers. This value is also sent to the

decoder, where it is used to select the pointer register containing the address (block

number) of the next block in the queue. This pointer register is read and the

address is written into the head register, thus removing the block from the queue.

136

cycle 2: The tail register of the queue to which the block is being appended is

read; the value is sent to the decoder to select the pointer register of the block

currently at the tail of the queue (if the the queue is empty, the the null register will

prevent any pointer register from being addressed). The value in the temporary

register, which is the address of the block being ‘‘moved,’’ is copied to the

addressed pointer register. The value in the temporary register is also copied to the

tail register of the destination queue. The block is now pointed to both by the

pointer register of the block ahead of it in the new queue and the tail register of the

new queue.

cycle 3: The tail register is read (to address the pointer register of the buffer

block), and the NULL value is stored in the pointer register, marking this the last

block of the queue.

11

11

121121
FLQ3Q2Q1Q0

T

H

Figure 7.3: Addressing Phase.

The operations in each of the three clock cycles are divided into two phases:

addressing and data movement. In the addressing phase, a head or a tail register is

read, and its value is driven through the decoder to address a pointer register. This

value may also be stored in a temporary register. In the data movement phase, data

is either copied from a pointer register to a head or a tail register, or data is copied

from a temporary register to both a pointer and a head / tail register. Figs. 7.3 and

137

FLQ3Q2Q1Q0

T

H

Figure 7.4: Data Movement Phase.

7.4 show the actions in each phase of the functional units which implement the

linked lists.

Since the buffer must be able to simultaneously receive and transmit packets,

the buses and registers are multiplexed. The transmission reception state machines

control the data path on alternate clock cycles. Hence, a minimum of five clock

cycles are needed to complete the three linked list manipulations involved in

receiving or transmitting a packet. However, when a packet destined for an empty

queue arrives, there is no need to wait for all of these operations to complete before

beginning to forward it (Sec. 7.1.3).

The data path and buffer memory are controlled by three finite state machines

(FSMs). FSMsto stores incoming packets into buffer blocks. FSMrtr removes

blocks from the free list and appends them to the queue specified by the router. It

uses the data path on the same cycles that FSMsto does. FSMfwd forwards the

packets. This division of control allows concurrent packet reception, routing and

transmission. The queue to which FSMrtr appends packets is specified by the

router queue register (Fig. 7.2). Similarly, the queue from which FSMfwd transmits

packets is specified by the arbitration queue register — the finite state machines

only distinguish between ‘‘the queue’’ and the free list when specifying head / tail

138

registers for reading or writing.

7.1.3. Minimizing Virtual Cut-Through Latency

Supporting virtual cut-through is key to maintaining low latency

communication. With virtual cut-through [Kerm79] the switch can begin to

forward a packet before it has completely arrived. A packet can only be cut

through a switch if the buffer at which it is arriving is not already transmitting a

packet, the output port for which the packet is destined is not connected to another

buffer, and there are no packets already in the buffer waiting to be transmitted

through that same output port. Optimally, when these conditions exist, the packet

will be forwarded as soon as it is routed and the buffer is connected to the

appropriate output port. One of the concerns in designed a complex packet buffer

such as the DAMQ Buffer Chip is that the buffer will increase the virtual cut-

through latency. This section establishes a ‘‘minimum’’ virtual cut-through

latency, and then enumerates the hardware requirements for the DAMQ Buffer

Chip to achieve this minimum.

Thus, there are two keys to low latency virtual cut-through. First, the routing

of the packet and arbitration of the switch must be performed as quickly as possible

and in parallel with packet reception. Second, the packet must be available for

transmission as soon as the arbitration is complete, no matter how much of the

packet has been received at that point. The first condition is satisfied by keeping

the routing information at the head of each packet, and by keeping the router and

arbiter units independent of the buffer itself. These two measures allow the routing

to commence the cycle the packet begins to arrive, and the arbitration to commence

139

as soon as the routing is complete. The second condition is partially met by having

separate FSMs for reception and transmission, but some special-purpose hardware

is necessary to ensure that the arriving packet is available for transmission when

the arbitration is complete.

��
Cycle Action Implication��

1 Header is synchronized��
2 Header → Router, Router returns

valid queue + new header
completion of routing triggers
FSMrtr��

3 Arbiter receives new connection re-
quest, switches the X-bar, returns
valid output port. FSMrtr appends
the packet to the [empty] queue.

completing of arbitration
triggers FSMfwd

��
4 Packet header traverses the crossbar FSMfwd must cause header to

be read at beginning of this
cycle and access buffer
memory to send first data
byte on the following cycle.��

5 First byte of packet traverses the
crossbar

To transmit byte at beginning
of this cycle, the buffer
memory was accessed the
previous cycle.��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 7.1: Requirements Imposed by Minimizing Cut-Through Latency.
Assuming that routing cannot occur until the packet header is re-
ceived, arbitration cannot occur until the packet is routed, and
transmission cannot begin until the crossbar is arbitrated.

Table 7.1 displays the sequence of events imposed upon the DAMQ buffer by

the goal of minimizing virtual cut-through latency and our assumptions with

respect to the implementation. We assume that the packet cannot be routed until

the packet’s header passes through the synchronizer, that the crossbar cannot be

arbitrated until the router determines to which output port the packet is destined,

that transmission cannot commence until the crossbar arbitration is complete, and,

140

finally, that routing and arbitration will each take at least one clock cycle to

perform. Thus, our goal is to support a four-cycle virtual cut-through.

To support a four-cycle virtual cut-through latency, FSMrtr must have control

of the data path on the cycle following the completion of the routing. Similarly,

FSMfwd must control the data path on the cycle following a crossbar arbitration.

However, a packet may arrive on any given clock cycle. Thus, the data path must

be demand multiplexed between the reception and transmission control logic.

Further, the validqueue signal from the router may arrive as late as the end of a

clock cycle, but FSMrtr must react to the signal and take control of the data path at

the beginning of the next cycle. Sec. 7.2.3 details how the finite state machines

support virtual cut-through and demand multiplexing.

As can also be seen from Tab. 7.1, FSMfwd must be able to access both the

new packet header and the first byte of data on the clock cycle following the

arbitration in order to provide the minimum virtual cut-through latency (the buffer

memory read requires a full clock cycle). This presents two problems for the

hardware: how to support single-cycle access to a packet header, and how to set the

head-of-queue hardware (which previously held nonsense, for an empty queue) to

point to the new packet. The remainder of this section details our solution to these

problems.

Packet headers are stored in an array of header registers. Each header

register is associated with a buffer block. Under normal conditions, the DAMQ

buffer control addresses the header registers via the same mechanism it addresses

the buffer blocks. This addressing mechanism involves reading the block identifier

from the head register of the selected queue during the first phase of the clock

141

cycle. The block identifier is sent to the decoder, which asserts the select lines for

the header register array, pointer register array and the buffer blocks themselves.

However, if this indirect addressing mechanism is used to access the header byte of

the packet to be transmitted, the header will not traverse the crossbar until at least

two clock cycles after arbitration. What is needed is a mechanism to provide direct

access to the header of the packet to be transmitted.

rd_rtr ifc_rd
ifc_wt

arb 3arb 2arb 1arb 0

N 3N 2N 1N 0

New Header

Φ2

select lines from Decoder

Header Registers

from Router

to X-bar
EN
���

hdr

rd_rtr
wt_rtr

amp
sense

Φ
��

1

Figure 7.5: The Header Register Array. Header bypass registers can be
explicitly written (ifc_wt .arbx) or implicitly written (rd_rtr .Nx)
(arb is the four bits from the arbiter which select the queue to be
transmitted, N is the values of the four null registers associated with
the packet queues).

The header bypass registers in the header register array (Fig. 7.5) provide

direct access to the header byte of the packet at the front of each of the packet

queues. There are four bypass registers — each holds the header of the packet at

the head of a queue. When the arbiter returns a valid output port signal, FSMfwd

transmits the header which is in the bypass register associated with that

queue / output port. FSMfwd need only assert ifc_rd which, in combination with

arbx (the signals which indicate which queue was selected by the arbiter), cause

the header byte to be driven over the crossbar. At the end of each packet

142

transmission, FSMfwd accesses the header register array and loads the bypass

register with the header of the new front-of-queue packet.

Virtual cut-through occurs when a queue is empty, however. In the case

described in Tab. 7.1, FSMfwd will not have had time to copy the packet’s header

from the header register to the bypass register before that header is to be

transmitted over the crossbar. Since it is FSMrtr which controls moving the packet

header from the New Header register (Fig. 7.5) to the packet’s header register,

FSMrtr writes the packet’s header into the bypass register when the packet is

appended to an empty queue. This is accomplished by writing the header values to

the bypass register of every empty queue whenever the New Header register is

read. Thus, if the router returns a new header at the end of cycle 2 (referring to

Tab. 7.1), FSMrtr controls the data path on cycle 3 and reads the New Header

register on that cycle, causing the header to be written into the bypass registers of

all empty queues.

A similar situation exists with respect to the head register of the queue

to / from which the cut-through packet is being written / read. As was previously

mentioned, the internal organization of the DAMQ buffer is based upon linked

lists. Each queue is referenced by two registers; the head register points to the first

block in the queue, and the tail register points to the last. FSMrtr appends a block

to a queue by manipulating the tail register of the queue (TQ). FSMfwd locates the

first block of a queue by accessing the head register (HQ). When the queue is

empty, the head and tail registers hold nonsense values.

In clock cycle 4 of Tab. 7.1, FSMfwd reads the head register of the queue, and

uses this value to access the buffer block. This implies that, on cycle 3, FSMrtr

143

must write the identifier of the block which is at the head of the free list to the tail

register of the appropriate queue and that this value also be written to the the head

register. The first issue is making the write to TQ be the first function performed

by FSMrtr. Reading Hfl (the free list’s head register) can be performed ahead of

time because (a) it is known that any incoming packet will be stored in that buffer

block and (b) the lines connecting the decoder to the addressing shift registers of

the buffer blocks have latches that allow a buffer block to be selected an

indeterminate number of clock cycles ahead of when reception will begin. So, the

value in the head register of the free list can be stored in the temporary register

ahead of time, and FSMrtr’s action during cycle 3 (Tab. 7.1) can be

[read (TQ); ptr (TQ)←tmp ; TQ ←tmp] — read and decode the tail register of the

queue specified by the router; store the value from the temporary register (which is

the identifier of the block at the head of the free list) into the pointer register

associated with the last block of the queue; store the value from the temporary

register into the tail register of the queue.

In the case of an empty queue (potential for virtual cut-through), the null

register of the queue (NQ) will prevent any pointer register from being selected

when TQ is read. It will also cause any value written to TQ to also be written to

HQ . Thus, the state machine does not differentiate between appending a packet to

empty vs. non-empty queues; the null register automatically sets the head register

of an empty queue to point to the first block appended to the queue.

144

7.1.4. Summary — DAMQ Buffer Architecture

The DAMQ buffer design is driven by the goal of minimizing the latency of

virtual cut-through. A register latches the packet’s header as soon as it passes

through the synchronizer, and presents it to the router along with an enable signal,

allowing the routing to take place immediately. The same separation control and

addressing hardware which allows the DAMQ buffer to simultaneously receive and

transmit separate packets also allows it to cut a single packet through. Demand

multiplexing allows the finite state machines controlling packet reception and

transmission to access the data path on the clock cycles immediately following

routing or arbitration. A copy of the header for the packet at the head of each

queue is stored in a bypass register, allowing FSMfwd to begin a transmission

without the latency of decoding a block identifier. Finally, null registers

associated with each packet queue cause dual tail / head register writes to empty

queues. With an on-chip router utilizing simple algorithmic routing or small a

routing table, and an on-chip arbiter which operates in a single clock cycle, the

minimum latency across a single DAMQ switch is four clock cycles. Each

additional cycle required to route a packet or arbitrate the switch adds a cycle to

this latency.

7.2. Floorplan and Circuit Performance

In Ch. 4, it was shown that, given equal clock rates, a network made up of

DAMQ buffers outperforms a corresponding FIFO network. The

microarchitectures of the DAMQ and FIFO buffers must be compared, however, to

determine whether and to what degree the additional complexity of the DAMQ

145

buffer affects its performance. This complexity could cause the DAMQ buffer to

operate at a slower clock rate than the FIFO buffer. In addition, the control logic

could occupy silicon area which the FIFO buffer would use for additional storage.

Additional storage for incoming data increases the FIFO buffer’s performance.

In order to compare the performance of the DAMQ buffer to that of the FIFO,

the DAMQ Buffer Chip has been designed and layed out using MOSIS scalable

(2 μ) CMOS design rules. While the structure of the DAMQ buffer is significantly

different from that of a FIFO buffer, the two architectures share a common feature

— the buffer memory array. While the DAMQ buffer imposes a logical structure

upon the memory array (the buffer blocks), physically, it is identical to the memory

array that a FIFO buffer would use. Since the FIFO buffer’s control logic is so

simple, there is a strong probability that the latency of buffer reads would

determine the cycle time of a FIFO buffer (i.e. the memory array accesses would be

the critical path).

Thus, in order to assert that the DAMQ buffer can operate at as high a

bandwidth as a FIFO buffer, we implemented a high-performance static memory

array as the DAMQ Buffer Chip’s buffer memory and established that the DAMQ

buffer control logic is fast enough to operate within the clock cycle determined by

the buffer memory’s latency. The next section describes the implementation and

SPICE simulation of the buffer memory. Sec. 7.2.2 describes the operations that

the control logic must complete in a single clock cycle and demonstrates via SPICE

that the buffer memory remains the performance bottleneck. Sec. 7.2.3 presents

the circuitry of the finite state machines and a discussion of their operation within

the two-phase clock defined by the data path implementation. We conclude the

146

performance analysis by examining the silicon requirements of the DAMQ and

FIFO buffer control logic and summarizing the performance and implementation

issues addressed by these sections.

7.2.1. The Memory Array

The integrity of this performance analysis depends upon the implementation

of the memory array. If the memory array is slow, then the comparison of the

speed of the DAMQ buffer vs. the FIFO will not be valid. If the memory array

consumes more silicon area than is required, then our evaluation of the silicon

requirement of the DAMQ buffer control logic will be optimistic. These goals

were pursued without sacrificing the fundamental goal of a multicomputer switch

implementation — minimizing communication latency.

Dout

D
��

out

rd

wt
��

D
��

in

D in

Figure 7.6: Memory Cell. Two-ported static memory cell used to con-
struct the buffer memory. Read and write control are independent.
Both the read and the write buses are dual-rail.

The memory array is eight bits wide — the same width as the communication

links. The array has the capability to read and write a byte of data each clock

cycle. It is composed of standard eight-transistor dual-ported static memory cells

147

(Fig. 7.6). The memory is designed to operate with a two-phase clock. During the

first phase, the read bus is precharged and the value to be written is asserted onto

the write bus. On the rising edge of the second-phase clock (φ2), read and write

select lines (rd and wt
��

) are asserted on the words of memory to be read and

written. A sense amplifier on the read bus accelerates the buffer reads.

In order to increase the speed with which the memory array is accessed, we

divided it into two separate arrays (Fig. 7.18), halving the capacitance on the buses.

We also took advantage of the sequential nature of the accesses to the memory

array by replacing random access address decoding with shift-register addressing.

The memory array is divided into eight-byte buffer blocks. Each block has,

running along its sides, two eight-bit shift registers: one for reading the block, one

for writing. To write to a block of memory, an ‘‘on-bit’’ is injected into the write

shift register by addressing that block (SEL
����

wt) while signaling that a write is to

begin (ENwt). The bit is shifted during φ1, and the write enable line (wt
��

)

associated with the on-bit is driven low during φ2. When the on-bit reaches the end

of the shift register, a signal is generated (EOBwt — end-of-block) indicating that

the write to this block is finished.

Figure 7.7 presents the results of a SPICE simulation† of a read of the

memory array. At 0 ns, φ2 begins to fall and the precharge of D out and D
��

out

begins. At ∼∼ 10 ns, D out and D
��

out are equal and ∼∼ 5.0 v. φ2 rises at 11.0 ns, which

causes rd (the read enable signal) to rise. Since rd is in polysilicon (as is wt
��

), we

measured rd 7, which is the voltage of rd as seen by the memory cell on the
���������������
† All of the SPICE simulation results presented in this chapter were generated using
slow / slow technology files for 2 mu implementations supplied by MOSIS.

148

Volts

Time (ns)
0 5 10 15 20

0

5 . ..
.
.
..
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.
..
.
..
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
...............................

...
....
...
...
...
....
....
....
...
...
..
....
...
...
...
...
....
...
...
...
....
...
....
......

...................
....
...
...
....
...
...
....
...
...
....
...
...
....
...
...
.....
....
....
....
....
....

.....
......

........
................

...

φ2

D out

D
��

out

rd 7

sense

Figure 7.7: Memory Array Read Latency. The bus lines (D out and D
��

out)
must be precharged before the rising edge of φ2. The value on the
bus is latched on the falling edge of φ2.

opposite side of the memory array from the shift register. The enable signal for the

sense amplifier (sense) rises soon after rd 7. D out drops below 1.0v at 18 ns — at

20 ns, the value on D out is latched and the precharge for the next read begins. This

implementation of the memory array thus defines a 50 MHz two-phase clock in

which φ2 has a 45% duty cycle. For comparison, IBM’s Vulcan Switch [Stun94],

the communication switch of the SP1 multicomputer, is designed to operate at

50 MHz, and also communicates via byte-wide links [Stun94]. Thus, despite using

a 2 μ technology, we have successfully implemented a buffer memory which will

support the communication throughput demanded by current multicomputers.

149

7.2.2. The Buffer Control Data Path

The previous subsection established a target clock cycle for the DAMQ

Buffer Chip (50 MHz). The goal for the data path implementation is to operate

within this clock — i.e. to not be on the critical path. In this subsection, the

performance of the functional units which comprise the data path is measured.

to null regs
to head regs to tail regs

1

4

4

H Wt Sel T Wt Sel

H
��

Null Det.

Ptr Regs

from

φ
�

2φ1 φ
�

2φ1

H

H

φ
�

2φ1

H

φ
�

1
to Decoder

φ
�

1 1

2×4 2×4

2×4 2×4

Figure 7.8: Buses and Associated Logic for the Head/Tail Register Array.

The actions which occur during a clock cycle begin with the falling edge of

φ2. At that point, the finite state machines which control the circuit assert new

values on the control lines (Sec. 7.2.3). On the rising edge of φ1, the head / tail bus

(a dual-rail four-bit bus) is precharged (Figs. 7.8 and 7.10). The buses which are

directly driven by the head, tail and null registers are also precharged (Fig. 7.9). It

is important that the H and H
��

signals be settled before the falling edge of φ1 to

prevent charge sharing between the head / tail bus and the transistors gated by H

150

φ
�

1

reset

reset

W

R

φ2φ
�

1

WtRd

sel

W
R

DoutD in D
��in

W
R

NinN
��

inN
��

out

Nout

sel
φ2

Wt

Rd
R

W

Head TailNull

Null Register Cell Head / Tail Register Cell

D
��out

ctl

cbus
����

N cbusT cbus
����

T

Figure 7.9: Head / Tail Registers. The registers which comprise the head
and tail register array. A reset line initializes the null registers to ‘1’
(empty queues).

and H
��

. On the falling edge of φ1, the read signal may be asserted for a head / tail

register pair, which begins the addressing operations (Sec. 7.1.2). Both the head

and the tail registers of the selected queue are read — the H / H
��

signal controls

pass gates which choose which of their values discharges the bus. The decoder

(Fig. 7.10) decodes the block identifier during the underlap between φ1 and φ2, and

must complete the decoding of the value (the select lines must have settled to their

correct value) by the rising edge of φ2.

The critical path for the addressing occurs when the tail of an empty queue is

read. In this situation, there is a ‘1’ stored the null register of the queue, and on the

read, the N
��

line of the bus will be discharged. In the decoder unit (Fig. 7.10), the

decode logic for each of the select signals takes as input N
��

and four of the eight

lines which comprise the val bus. Thus, while no single bit of val is connected to

more than eight of the twelve select signal decoders (one decoder for each of

twelve buffer blocks), N
��

gates all twelve. When the tail register of an empty queue

151

N

φ
�

1

select line

D
��

3

D 3

D
��

2

D 2

D
��

1

D 1

D
��

0

D 0

φ1D
��

2

D 2

N
��

val

Figure 7.10: Block decoder. Decodes four-bit block addresses and asserts
a single select line for the addressed buffer block. Address lines are
precharged low during φ1, selectively pulled high by val on the fal-
ling edge of φ1. The select lines are precharged high; the select lines
of the unselected blocks must be fully discharged by the rising edge
of φ2. The decode cell detailed in the figure is for buffer block 10.

is read, all twelve select lines must be discharged in time to ensure that no pointer

register is selected when φ2 rises.

Figure 7.11 shows the results of simulating the reading of a tail register of an

empty queue. On the falling edge of φ1, the read enable line is asserted. The

selected null register pulls the columnbus (cbus
����

) down. The inverted value (cbus)

in turn pulls the N
��

line of the bus down. This line, along with the rest of the

head / tail register bus, is input for the decoder unit. When the null address line of

the decoder is pulled up (addrN), all of the block / pointer register / header register

select lines are discharged — no block is selected.

The latency for this operation is just less than 4 ns; for engineering integrity,

152

Volts

Time (ns)
t t+5

0

5

φ1 rd cbus

.
.. ..

..
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
..
.
.
..
..

N
��

...
...
....
...
...
....
...
...
....
...
...
....
...
...
....
...
...
....
...
....
...
....
.....

......
.............

adr

...

sel×

Figure 7.11: Null Register Read Latency. The latency from the falling
edge of φ1 to when the select lines generated by the decoder unit
(Fig. 7.10) drop below 1.0 v.

there must be 5 ns (or more) between the falling edge of φ1 and the rising edge of

φ2. If we allow 2 ns for the underlap between φ2 and φ1, and given the 20 ns clock

cycle described in Sec. 7.2.1, then the time φ1 is high plus the φ1-φ2 underlap must

be 9 ns (or less). If 5 ns are allocated to the underlap between φ1 and φ2, then φ1 is

high for 4 ns — which is enough time to settle control signals and precharge the

head / tail register buses.

Data movement occurs on the rising edge of φ2. The data movement

operations concern the moving of values between the temporary registers, the

pointer registers and the head / tail registers (Fig. 7.12). One of three possible

operations occurs in the data movement phase. (1) A selected pointer register is

read, and its value is written into a head register. The twelve pointer registers (one

153

null

to decoder

tail regs

to head &

tail regs

from head &

select lines (from decoder)

pchger
amp &
sense

pointer registers

en
��

ptr
tmpsto

tmpfwd

φ1 φ2

null gen.

φ
�

1

φ
�

2

Figure 7.12: Pointer Register Array. The pointer registers are accessed
via a dual rail bus. The bus is precharged when φ1 is high and
discharged during φ2. A sense amplifier accelerates register reads.
To move a value from a temporary register to a pointer register, the
temporary registers are read on the falling edge of φ1, fully discharg-
ing the bus before the rising edge of φ2.

per buffer block) are on a single dual-rail bus — the value is read from a selected

pointer register on the rising edge of φ2, and with the help of a sense amplifier and

a strong set of buffers is driven into a head or a tail register before the falling edge

of φ2. (2) One of the temporary registers is read, and its value is driven into both a

pointer register and into a tail register (or both a tail and a head register, if the

queue was empty). When a temporary register is read, the read occurs on the

falling edge of φ1. When φ2 rises, and a pointer register is selected, the pointer

register cannot significantly alter the value on the bus before the sense amplifier is

enabled, ensuring that the correct value is driven into the pointer register. (3) The

constant NULL (which is 0, in this implementation) is written into a selected

pointer register.

Figure 7.13 shows the latency of operation (a) — moving a value from a

pointer register to a head or a tail register. The rising edge of φ2 causes a pointer

register’s enable signal to go high. Approximately 2 ns after φ2 rises, the sense

154

Volts

Time (ns)
t t+9

0

5

φ2

sense

..

P

..

P
�

Vt

V
��

t

Figure 7.13: Pointer Register to Tail Register Latency. The pointer re-
gister read begins on the rising edge of φ2. The value read from the
selected pointer register is driven into the tail register well before the
falling edge of φ2.

amplifier enable (sense) rises, forcing the rails of the bus (P and P
��

) to opposite

values. The value on the bus is driven by a buffer through the pass-gates which

determine which register set is being written to (head vs. tail), finally flipping the

value in the tail register (Vt and V
��
t). The values Vt and V

��
t cross 6 ns after the

rising edge of φ2.

Figure 7.14 shows the performance of operation (2) (reading a temporary

register, driving the value into a pointer, a head and a tail register). The temporary

register is read on the falling edge of φ1, giving it an extended period of time to

assert its value on the bus. On the rising edge of φ2, a pointer register is enabled,

but it has little time to impact the voltage on the bus rails before the sense amplifier

is enabled. The sense amplifier cranks the temporary register value into the pointer

155

Volts

Time (ns)
t-6 t t+6

0

5

φ1 φ2

P

P
�

.
......
..
.
..
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
..

Vp

.

Vh

...................

Vt

Figure 7.14: Latency of Temporary Register to Pointer, Head and Tail
Register. The temporary register drives two rails of the bus (P and
P
��

) on the falling edge of φ1. On the rising edge of φ2, a pointer re-
gister is selected. Approximately 2 ns later, the sense amplifier is en-
abled, and the value from the temporary register is cranked into the
pointer register (Vp). The value is also written into both the head
and the tail register (Vh and Vt). All writes complete well before the
falling edge of φ2 (t +9).

register. In the mean time, the buffer has been driving the value into the head and

tail registers simultaneously; the write to all three registers completes less than 6 ns

after the rising edge of φ2 (more than 3 ns before the falling edge of φ2).

Combining the simulation results of the memory array presented in Sec. 7.2.1

with the results presented in this section, we have defined the two-phase non-

overlapping clock of the DAMQ Buffer Chip. It is a 50 MHz clock — φ1 has a

15% duty cycle, φ2 has a 45% duty cycle. There is a 5 ns underlap between φ1 and

φ2, and a 3 ns underlap between φ2 and φ1. Most significantly, the datapath

156

operations are not on the critical path; the clock frequency is defined solely by the

bandwidth of the memory array. Thus, the DAMQ buffer transmits data with the

same raw bandwidth that a (much more simple) FIFO buffer would.

7.2.3. The Finite State Machines

The DAMQ Buffer Chip is controlled by three finite state machines: FSMsto

(packet reception and storage), FSMrtr (interaction with the router, buffer block

enqueueing) and FSMfwd (packet transmission, buffer block dequeueing). The

implementation of these FSMs was performed under three constraints. First, the

FSM circuits must utilize the two-phase clock defined in the two previous

subsections. Second, the moving of a buffer block from the head of one queue to

the tail of another must be accomplished in eight clock cycles or less (each block is

eight bytes long and is transmitted / received a byte per clock cycle). The third and

most significant constraint is that the hardware and firmware must support demand

multiplexing.

7.2.3.1. The FSM Circuit

Figure 7.15 is a schematic of the finite state machine circuit. The FSMs are

constructed from NOR-NOR PLAs. On the rising edge of φ2, the output latches are

opened and the input latches close, causing the state of the FSM to change. On the

falling edge of φ2, the input latches open, latching the current values, and the

output latches close, driving the control lines with the signals for the next clock

cycle. The exception to this timing is the output lines which are the state bits for

the FSM. While driving the control lines on the falling edge of φ2 allows control of

157

OR-planeAND-plane

state feedback
outputs

enable

φ
�

2φ2

inputs

φ1

Figure 7.15: Finite State Machine Circuit.

actions which are to occur on the rising edge of φ1 (such as driving a header bypass

register over the crossbar), passing the state on the falling edge of φ2 would create a

race condition. So, the state outputs are passed on the rising edge of φ1.

The FSMs utilize a pseudo-NMOS layout style — both the product and the

sum lines are tied to Vcc via weak (resistive) P-transistors. If one or more of the

N-transistors in the AND- or OR-plane are closed, the resistance of the P-

transistors allows the lines to be quickly pulled down to less than 0.8v. If all of the

N-transistors on a line are open, the voltage rises to 5 v. The output signal drivers

are located between the OR-plane and the pass gates, rather than beyond the pass

gates, to avoid using the non-restored product line voltages (logical zero signals

whose level is above 0.5 v) as the capacitive source for the control line drivers

when the output pass gates are open. Placing the buffers before the output pass

gates necessitates the use of inverters between the state output and input signals.

158

As Fig. 7.15 indicates, the output drivers can be either inverters or NAND

gates. Using NAND gates to drive control signals allows those signals to be

masked by an enable signal. The use of an enable signal to mask outputs is

discussed in Sec. 7.2.3.2.

The speed at which an FSM operates depends directly upon the size of the

FSM, which is a function of the number of inputs and states, the number of product

lines, and the number of outputs. FSMfwd is the largest of the FSMs on the DAMQ

Buffer Chip — it provides the functionality for transmission which is divided

between two FSMs for packet reception. Combining the most heavily populated

input, product and sum lines of FSMfwd, the output signal settles ∼∼ 5 ns after the

inputs settle. With every input to the FSMs stabilizing on or before the rising edge

of φ2 and the FSMs completing their state transition in 5 ns, the FSM outputs are

stable well before the falling edge of φ2.

7.2.3.2. Demand Multiplexing

Under ‘‘normal’’ operation, FSMfwd and FSMrtr use the data path on alternate

clock cycles (FSMsto does not share resources with the other FSMs, and thus does

not participate in the multiplexing). The signal SYNC notifies the FSMs as to

which clock cycles they own the data path by alternating high and low each clock

cycle. When the SYNC input is low, FSMfwd will control the data path the

following clock cycle; when SYNC is high, FSMrtr asserts control the following

cycle. Unfortunately, strict time-division multiplexing will not satisfy our

performance goals. The need for demand multiplexing of the data path was

described in Sec. 7.1.3. Significant resources have been invested to implement

159

demand multiplexing for the DAMQ Buffer Chip. In this subsection, we present

the hardware interface between the DAMQ Buffer Chip and the external router and

arbiter (it is interactions with these external units which triggers the demand

multiplexing), then discuss the implementation of the SYNC signal (this is the

signal which indicates to the FSMs which of them controls the data path), and

finally we discuss how enable signals and control-signal masking were used to

implement ‘‘immediate’’ demand multiplexing.

φ
�

2

φ
�

2

V
��

x

V

φ2

Latch

V
��

in

φ1

off-chip

Signals from

Vclr

φ
�

2

φ2

Latch

V
��

in

datain

φ2

V
��

x

V

data

datain data

Figure 7.16: Interface to Router and Arbiter. Signals from the router or
arbiter must be held through the falling edge of φ2. The strobe signal
(V
��
x) is asserted for a full clock cycle after the data from the router or

arbiter is latched (falling edge of φ2 to falling edge of φ2). Once a
value is latched, it can only be cleared by the DAMQ buffer control
via V clr.

Figure 7.16 is a schematic of the interface register — the router and the

arbiter each have an interface register through which they interact with the DAMQ

Buffer Chip. The router / arbiter sets the valid signal (V
��
in) and the input data, and

then asserts Latch. These signals (V
��
in , Latch , and the input data) must be asserted

before the falling edge of φ2 and held until after the falling edge of φ2. Fig. 7.16

shows a timing diagram for input and output signals of the interface register. Data

160

is the data being returned by the router or arbiter: a new header and queue identifier

from the router, and a queue identifier from the arbiter. For their queue

manipulations, FSMfwd and FSMrtr only differentiate between the free list and ‘‘the

queue’’ when accessing head / tail registers — it is the router and arbiter interface

registers which specify which queue is being accessed. V is the valid signal —

when it is high, a valid queue is being presented by the interface register. V
��
x , a

‘‘strobe’’ signal which is asserted for a single clock cycle following the routing or

arbitration, is used by the FSMs and the SYNC signal generator to implement the

demand multiplexing.

φ2

SYNC

V
��

x
fwd V

��
x
rtrφ1

Figure 7.17: SYNC Signal Generator. The circuit which generates the signal which
specifies which FSMs have control of the data path (SYNC).

Figure 7.17 is the schematic for the SYNC signal generator. As long as V
��
x
rtr

and V
��
x
arb (the strobe signals from the the router and arbiter) remain high, SYNC is

alternates high and low every other clock cycle. On any cycle that V
��

x
arb is low,

SYNC will be high. Recall that FSMrtr controls the data path on the cycles

following SYNC being high (i.e. FSMfwd controls the data path on the cycle that

SYNC is high). Similarly, SYNC is forced low when V
��
x
rtr is low, unless V

��
x
arb is

also low. Since the SYNC signal is taken as input by FSMfwd and FSMrtr, the

alteration of SYNC’s value cannot be acted upon by the FSMs until the following

161

clock cycle. It was thus necessary to implement two additional mechanisms to

support the ‘‘immediate’’ demand multiplexing which was our goal.

The first problem is how to allow an FSM to commence the queue

manipulations associated with packet reception / transmission on the same clock

cycle that the valid queue identifier becomes available. This is accomplished by

masking the FSM output signals which control the data path. Fig. 7.15 shows

output signals being driven either by inverters or by NAND gates. The NAND

gates allow control signals to be masked by an enable signal. FSMrtr and FSMfwd

each have an enable signal associated with them (EN rtr and EN fwd). The enable

signal is asserted during the cycles that an FSM is controlling the

reception / transmission of packets. The V signal from the interface register is

asserted for the entire length of a packet reception / transmission. To allow the

FSMs to initiate packet reception or transmission on the same cycle that the

interface register asserts V (Fig. 7.16) (i.e. the cycle following a

routing / arbitration), the FSMs actually assert the control signals which will initiate

the queue manipulation while they are in the ‘‘ready’’ state, before V is asserted.

These signals do not interfere with the other finite state machine, nor do they

manipulate the data path prior to there being a valid queue identifier in the

interface register, because these signals are masked until V goes high. When V rtr

for FSMrtr or V arb for FSMfwd goes high, the enable signal goes high and the

control signals are passed through to the data path. The FSMs also take V as input,

notifying them that reception / transmission has begun.

The second problem is how to allow one FSM to ‘‘grab’’ the data path from

the other FSM without waiting for the FSMs to change state. The previous

162

paragraph described how the grabbing FSM will assert its control signals on the

clock cycle that V goes high; what is needed is the ability to mask the other FSMs

control signals on that cycle. Once again, the enable signals and control signal

masking are the key. In addition to generating a signal V indicating the presence

of a valid queue identifier, the interface registers generate a strobe signal V
��
x which

is asserted low for the first clock cycle that V is asserted (Fig. 7.16). Fig. 7.17

showed how these strobes are used to manipulate SYNC, which signals to the

FSMs which cycles they control the data path. These strobes are also used to mask

the FSM data path control signals for a single clock cycle —

EN rtr = V rtr . V
��
x
arb.

EN fwd = V arb . (V
��
x
rtr+V

��
x
arb

����
).

If both strobes are asserted on the same cycle, FSMfwd’s control signals are not

masked.

Having masked some of the outputs of one FSM so that the other can usurp its

control of the data path, we must ensure that the skipped operation will be

subsequently executed. This is accomplished by having both FSMrtr and FSMfwd

remain in every state for two consecutive clock cycles. The FSMs have control of

the data path for the first of these clock cycles, and relinquish control for the

second; the SYNC signal indicates when to move on to another state. If the data

path is usurped from an FSM, it will occur on the first of the two cycles in a given

state. When this happens, the SYNC signal will maintain the same value that it had

had the previous clock cycle. Since the FSM has remained in the same state and

SYNC has its same value, the FSM repeats the actions of the previous clock cycle

163

and ends up spending three consecutive cycles in that state before moving on. This

mechanism works because only the signals which control the data path are state

dependent; the remaining FSM outputs depend solely upon the inputs, and will thus

not be repeated when a state is repeated.

We have thus developed an FSM architecture which supports demand

multiplexing. Either FSMrtr or FSMfwd can usurp control of the data path from the

other on any given clock cycle, on the same clock cycle that a valid output port

becomes available. This ‘‘immediate’’ demand multiplexing is possible because

(a) the FSM which is grabbing control is idle the cycles prior to gaining control of

the data path and (b) the FSM which is losing control is simply delaying its queue

manipulations for a single clock cycle, which does not impair its operation.

The mechanism which is instrumental to this implementation of demand

multiplexing is the use of NAND-gate-masked outputs for the data path control

signals. This allows an idle FSM to be asserting the control signals associated with

the first queue manipulation operation on the cycles preceding the arrival of a valid

queue signal. These signals are passed through to the data path on the same clock

cycle that a new queue identifier becomes available. This also allows the control

signals from the other FSM to be masked for a single clock cycle. The FSM whose

outputs are thus masked is notified by the SYNC signal to re-assert the data path

control outputs the following clock cycle. Thus, FSMrtr and FSMfwd immediately

return to their pattern of utilizing the data path on alternating clock cycles.

164

7.2.4. The Floorplan

The previous sections have established that this implementation of the DAMQ

buffer can operate at 50 MHz, and that it is the bandwidth of the memory array that

defines this clock frequency. Thus, the DAMQ buffer operates at the same raw

bandwidth as a FIFO buffer would (i.e. the complex control logic of the DAMQ

buffer does not reduce its performance relative to the more simple FIFO buffer).

FSMrtr

End of

Packet

Cntr
FSMsto

FSMfwd

Head/Tail

Regs Tmps

Pointer Regs

Decoder

Header

Regs

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

Buffer

Block

to router

from router

from

Sync.
Output

Port

0 λ 500 λ 1000 λ 1500 λ 2000 λ 2500 λ

0 λ

500 λ

1000 λ

1500 λ

2000 λ
from from
Rtr. Arb.

OPort OPort

driver

driver amp

amp

3000 λ

Figure 7.18: The floorplan for the DAMQ buffer.

The remaining issue, then, is a comparison of the DAMQ and FIFO layouts to

evaluate their relative silicon usage. The floorplan for the DAMQ buffer is shown

in Fig. 7.18. The 96 bytes of storage (slots for three thirty-two byte packets) are

broken into two rows with separate read and write buses in order to reduce the

latency of reads and writes and to produce a rectangular layout suitable for use as a

building block in larger chips. This layout occupies approximately the same area

165

as a FIFO buffer with 128 bytes of storage (slots for four packets). Our simulations

indicate that a network of DAMQ buffers with three packet slots outperforms one

with FIFO buffers of four packet slots (Ch. 4), achieving throughputs 23% higher

than the maximum throughput of the FIFO network. Furthermore, even in

comparison with the maximum throughput of a network with eight-slot FIFO

buffers, a network with three-slot DAMQ buffers saturates at 10% higher

throughput and a network with four-slot DAMQ buffers saturates at 24% higher

throughput. We conclude that the DAMQ buffer architecture, as exemplified by

the DAMQ Buffer Chip, is a more efficient utilization of silicon than is a FIFO

buffer.

7.3. Summary and Conclusions

The DAMQ Buffer Chip is a VLSI implementation of a multi-queue buffer

for use in multiprocessor and multicomputer communication networks. As an

interface chip in the node of a multicomputer, it asynchronously receives packets

from and transmits packets to other DAMQ Buffer Chips. As an example

implementation of the DAMQ buffer, it demonstrates that a non-FIFO buffer can

be efficiently implemented in VLSI. In this chapter, we have presented the design

of the DAMQ Buffer Chip. Details of the implementation are given, including the

floorplan and critical path timing.

We have demonstrated that the DAMQ buffer can operate at high clock rates,

despite its complex control. Hence, other factors, such as the inter-chip links, are

more likely to limit the raw bandwidth. Further, the DAMQ Buffer Chip supports

a minimum switching latency of four clock cycles. This latency is determined by

166

the serial dependencies of receiving the packet header, routing the packet,

arbitrating the crossbar and then traversing the crossbar — the complexity of the

DAMQ buffer does not add to this latency.

For a DAMQ buffer with four queues and a packet size of 32 bytes, it was

shown that the DAMQ buffer will have one less packet slot available to it than a

FIFO buffer occupying approximately the same chip area. Previous work has

indicated that, with as few as two packet slots (64 bytes), a network with DAMQ

buffers can outperform a FIFO buffer network which has an additional packet slot

(Chs. 4 and 6). With three packet slots, the DAMQ buffer network will saturate at

a throughput approximately 23% higher than a FIFO buffer network with four

packet slots. The DAMQ buffer is thus shown to be a highly effective building

block for packet switches, thus demonstrating that for VLSI switches, increased

control complexity may lead to higher performance.

167

168

Chapter Eight

Flow Control

This dissertation addresses the design of high performance communication

switches for scalable multicomputers. Previous chapters focused on the buffer

architecture as being a critical functional unit for such a design. This chapter

focuses on flow control. Flow control is the method used to regulate traffic in the

network. It prevents packets from running over each other and controls how fast

each advances through the network [Dall90a].

The primary task of a flow control mechanism is to prevent uncontrolled

packet loss or corruption due to contention for network resources. Such contention

may be handled by blocking, rerouting, or discarding and retransmitting packets.

This chapter focuses on the potential of flow control mechanisms to optimize

network performance.

Previous chapters of this dissertation examined the behavior of multistage

interconnection networks transmitting uniformly-distributed traffic. However, a

uniform traffic distribution cannot be guaranteed in the communication network of

a multicomputer. The scalable computer system that we envision consists of

hundreds or thousands of computing nodes linked together by a high throughput,

low latency communication network. Multiple applications will execute on this

system in a dynamic fashion; applications and processes will be spawned

independently of one another, requiring system resources to be dynamically re-

allocated to accommodate them. Due to the applications which will execute on this

system exploiting fine-grained parallelism, and the computing nodes in the system

168

Pt. of Cong.

GNUT

Figure 8.1: Network Congestion. A group of one or more senders
(GNUT) overload link(s) in the network (the point(s) of congestion)
for some period of time.

being multitasking and / or multithreading, there will be a large number of packets

traversing the network at any given point in time. In a system such as this, one

cannot guarantee that communication traffic will remain evenly distributed or that

there will be no attempt to over-utilize a network resource. Even if a single

application can be analyzed to the extent that it is known to not overload any links

within the network, contention between it and other applications for system

resources cannot be predicted.

Figure 8.1 depicts such a situation. A group of nodes labeled GNUT (the non-

uniform traffic group) are transmitting packets with a non-uniform traffic pattern

and at a throughput such that a point of congestion is created within the

169

communication network (a point of congestion is a communication link whose

applied load is higher than its bandwidth).

GNUT

Pt. of Cong.

Figure 8.2: Tree Saturation. The senders in GNUT overload a link in the
network. The congestion propagates back to all senders (tree satura-
tion) — including those senders not in GNUT .

When a link is congested, the buffers of the switch which feeds the link

become filled with packets waiting to traverse the link. When the buffers become

full, the links which supply those buffers become congested, and the process may

recur. We term this phenomena congestion propagation. When this occurs in a

multistage interconnection network (MIN), and is due to the existence of a hot spot

(a destination address which receives a higher percentage of packets than the other

destinations in the network), then it is called tree saturation [Pfis85a]. In Fig. 8.2,

the group of senders GNUT has created a hot spot. As congestion propagates back

170

from the point of congestion (the terminal link which connects the network to the

hot destination), it forms a tree whose leaves include all of the senders attached to

the network. This includes those senders which are not members of GNUT . While

these senders may be transmitting no packets to the hot destination, the congestion

has propagated to links which are on the path from these senders to other

destinations.

Our focus in this chapter is on the ability of flow control to increase the

performance of communication networks in the presence of congestion by reducing

congestion propagation. In the example in Fig. 8.1, the point of congestion is the

bottleneck for the communication performance of the members of GNUT . Flow

control cannot increase the link’s bandwidth; without some mechanism for

eliminating the congested link as a heavily-used resource for the members of

GNUT , the bandwidth of the point of congestion is a ceiling for GNUT ’s

performance†. The key to improving network performance via flow control is to

identify the senders which are ‘‘causing’’ congestion, and to limit the rate at which

those senders can introduce packets to the network. This prevents the remaining

senders from having their performance impacted by the congestion propagation.

For a flow control mechanism to prevent congestion from propagating, it must

be able to react quickly to the creation of congestion. When a link becomes

congested, packets contesting for the link are blocked and must be stored in the
���������������
† There are mechanisms which do address contention prevention or resolution. Examples
of this are dynamic routing (packet mis-routing in MINs), hot spot detection and elimina-
tion at compile time, tree-structured barriers, etc. Some of these mechanisms may utilize
flow control in some way — dynamic routing, for example, may use flow control to deter-
mine when to use an alternate route for a packet. This interaction is beyond the scope of
this dissertation, but is possible future work.

171

switch’s buffers. Since the packet buffers of multicomputer communication

network switches will be small (Ch. 4), they will quickly become filled with

packets contesting for the congested link. Kumar and Pfister, examining hot spots

and tree saturation in MINs [Kuma86], determined not only that tree saturation

occurs quickly after the onset of a hot spot (i.e. congestion will propagate quickly),

but also that the tree saturation dissipates slowly once the hot spot has ended.

Their results indicate that a quick reaction by the flow control mechanism is

necessary to prevent congestion propagation and that failure to prevent the

propagation will result in network performance degradation that outlives the cause

of the congestion.

This chapter details our search for a flow control mechanism which (1) is

scalable, (2) reacts quickly to the onset of congestion, (3) protects the performance

of senders which are not ‘‘causing’’ congestion and (4) does not ‘‘starve’’ the point

of congestion. The rest of this chapter is structured as follows. In the next section,

a taxonomy for flow control mechanisms is established. Sec. 8.2 reviews some

previously published flow control mechanisms. In Sec. 8.3 we discuss the

characteristics of flow control mechanisms that are suitable for the interconnection

network of a scalable multicomputer. In Sec. 8.4, we present the specific flow

control mechanisms that are evaluated in this chapter. The evaluation is presented

in Sec. 8.5. The simulation methodology and metrics for measuring the

performance of the flow control mechanisms are described, and the simulation

results presented and evaluated. This section concludes with a summary of the

performance of the flow control mechanisms under consideration. Sec. 8.6

describes the hardware necessary to implement those flow control mechanisms

172

which promote high performance communication. This is all drawn together in

Sec. 8.7, in which the costs and benefits of the flow control mechanisms are

summarized and evaluated.

8.1. Flow Control Mechanism Taxonomy

In this section a taxonomy for flow control mechanisms is established. Three

classifications for flow control mechanisms are defined. Secs. 8.2 and 8.3 use this

taxonomy in their evaluation of flow control mechanisms.

One can classify flow control according to the action taken when a buffer

becomes full. Under discarding flow control mechanisms, packets are allowed to

be transmitted to full buffers, but these packets are then dropped from the network.

Discarding flow control mechanisms have the ability to determine when a packet

has not reached its destination and to retransmit the packet. Under blocking flow

control mechanisms, on the other hand, packets are prevented from being

transmitted to a full buffer. Unless an error occurs, every packet injected into a

network with blocking flow control will eventually reach its destination.

A second characteristic by which flow control mechanisms are classified is by

where in the network the flow control decisions are made. In [Zhan91], this

characteristic as used to divide flow control mechanisms into three categories:

end-to-end, global and local. End-to-end flow control schemes specify guidelines

regarding individual traffic flows from the senders to the final destinations. With

some end-to-end schemes, the destination nodes transmit flow control information

directly to nodes which are sending them packets. Other end-to-end schemes

restrict the senders without using any dynamic information from the destinations.

173

Global flow control mechanisms are those in which either flow control information

is globally distributed or a centralized server makes flow control decisions for the

entire network. Local flow control mechanisms are those in which each switch in

the network makes flow control decisions independently, using locally available

information. A similar categorization is made in [Gerl80]. In this work, end-to-

end flow control is called entry-to-exit flow control. Global flow control is called

network access level flow control, and defined as flow control in which some or all

of the network state is used to determine whether packets can enter the network.

Local flow control is referred to as hop-level.

The third characteristic by which flow control mechanisms are classified is

the trigger used to initiate flow control actions. Predictive flow control

mechanisms attempt to prevent congestion from occurring. They enforce

guidelines that attempt to eliminate traffic patterns that are likely to lead to

congestion. Flow control actions are triggered when such patterns are detected

(e.g., a particular sender has transmitted its ‘‘quota’’ of traffic for a given time

period). On the other hand, reactive flow control mechanisms are triggered by the

onset of congestion. Their goal is to minimize the impact of congestion once it has

been detected.

8.2. Selected Existing Flow Control Mechanisms

The previous section established a flow control taxonomy based upon three

classifications. This section examines a cross-section of existing flow control

mechanisms. The mechanisms are classified using the taxonomy of the previous

section, and their applicability to scalable multicomputers is evaluated. The

174

selection of mechanisms presented is not exhaustive for any category. Rather,

these mechanisms are just samples of a large, dense design space. They were

chosen to facilitate the rest of the discussion in this chapter.

8.2.1. Hop-Level, Blocking Flow Control

The most basic flow control mechanism is hop-level blocking flow control

(also called blocking flow control). Under this flow control, an input port will not

accept packets when there is no room to store them. This flow control mechanism

is widely used in scalable multicomputers: the Intel Paragon [Lill91], the TMC

CM-5 [Leis92], the IBM SP-1 [Stun94], Dally’s J-Machine [Dall87b], Seitz’s

Mosaic [Lutz84], the DASH multicomputer at Stanford [Leno92], the Cray

T3D [Oed], all use blocking flow control. This flow control mechanism’s sole

function is to prevent packet loss due to overflowing packet buffers; it does not

have a positive effect on performance. Indeed, due to the undirected nature of its

back-pressure, blocking flow control is a fundamental cause of congestion

propagation. However, this reactive, hop-level flow control can respond quickly to

the congestion, allowing small buffers to be used without fear of packet loss.

Hysteresis has been explored by several researchers [Reis83, Yum83] as a

hop-level flow control mechanism to improve network performance. In [Reis83],

hysteresis is applied to a buffer with a single class of packets (i.e. a FIFO buffer)

by implementing blocking flow control with a lower threshold value for restarting

traffic flow than for halting traffic flow. Reiser found that the only benefit derived

from using hysteresis in this context is a reduction in the number of times the flow

control state for a particular buffer changes. In a communication network with

175

dedicated flow control lines, the amount the flow control state changes is not an

issue (assuming that it changes at most twice per packet).

Yum and Yen [Yum83] implement hysteresis in a buffer with two classes of

packets: high-priority and low-priority. In a multi-queue buffer, hysteresis is

attached to a queue-oriented blocking flow control scheme similar to maximum

usage flow control (discussed in Sec. 8.4). Both the Reiser and the Yum and Yen

flow control mechanisms are hop-level blocking flow control mechanisms. Since

they use a hysteresis mechanism, it is not clear whether they are predictive or

reactive — they may throttle flow at times when there is no congestion, and not

throttle at times when there is congestion.

8.2.2. End-to-End Flow Control

Another commonly used flow control mechanism is windowing [Klei80,

Kerm80, Cerf74]. This scheme works by limiting the number of packets which can

be traversing the network between each source / destination pair at any given point

in time. It requires that a sender be notified when packets it has transmitted have

reached their destination. A sender may transmit packets to a destination at any

throughput until the number of unacknowledged packets equals the size of the

window. At that point, the sender may not transmit further packets to the

destination until an acknowledgment for previously transmitted packets is received.

The window limits the amount of congestion propagation which can occur in the

network by limiting the number of outstanding packets. The size of the window

can be set in a number of ways: a system-wide static window size, prior agreement

between source and destination (bandwidth reservation) and dynamic window

176

sizing based upon feedback from the destination [Kerm80].

Windowing is an end-to-end flow control mechanism. All flow control

decisions are based upon the interaction between source and destination nodes —

the network itself is treated as a black box. It is also a blocking, predictive flow

control mechanism. When the number of outstanding packets reaches a threshold,

further packets are blocked from entering the network. While the number of

outstanding packets may be indicative of the existence of congestion, there is no

direct detection of congestion. Windowing is used in conjunction with a hop-level

blocking or discarding flow control mechanism which prevents packet loss when

congestion occurs.

Leaky bucket [Turn86, Rath89] is an end-to-end flow control scheme based

upon bandwidth reservation, rather than network feedback. When a sender

reserves a path to a destination, it is assigned a maximum throughput. It is

guaranteed that, if the sender does not exceed its maximum throughput to any

destination, then the links in the network will not be over-utilized. If, however, this

limit were to be strictly enforced, then the network would be under-utilized due to

the bursty nature of computer communication. So, to increase the network

utilization, the instantaneous throughput of the senders’ communication is not

restricted. Rather, when the sender is not using all of the bandwidth it has reserved

it accumulates credits which allow it to use more than its reserved bandwidth at a

later time. When the sender sends data, it can transmit at saturation throughput

until it has used up all of its credit, at which point it becomes limited to the

allocated bandwidth. To prevent a sender from accumulating too much credit

(which would enable it to flood the network with packets), there is a maximum

177

number of credits which can be accumulated; credits accumulated beyond this are

discarded (the leak in the bucket).

Leaky-bucket flow control, like windowing, is a predictive, blocking, end-to-

end flow control mechanism. There are many such flow control mechanisms

described in the literature: [Rama91, Mukh86, Kalm90, Clar88, Cher89]. End-to-

end flow control mechanisms limit congestion by restricting the rate at which

individual senders can inject packets into the network or the total number of

packets from each sender which may be in the network at one time. The extent to

which such schemes reduce congestion depends on the severity of restrictions on

the senders. However, tight restrictions on the senders are likely to result in

under-utilization of the network. Under most practical end-to-end policies,

congestion internal to the network is still possible. Hence some other flow control

mechanism is needed in addition to the end-to-end scheme.

An additional problem with end-to-end schemes is that each sender must

maintain state information regarding its traffic to each of its destinations. This can

limit scalability. In practice, with multicomputers, end-to-end flow control is often

used at the application level. As stated earlier, this does not eliminate the need for

flow control at the interconnection network level, especially (but not exclusively) if

there are multiple independent applications running on the system.

VirtualClock [Zhan91] is an alternative to ‘‘straight’’ end-to-end flow control.

It is a hybrid flow control mechanism, operating at both the end-to-end and the hop

levels. This gives it the functionality of an end-to-end flow control mechanism

with the ability to detect and prevent internal network congestion.

VirtualClock is implemented at the switch level; it determines whether or not

178

packets can proceed toward their destinations on a hop-by-hop basis. In order to

perform end-to-end flow control, VirtualClock is built on top of virtual circuits.

Each circuit has associated with it the maximum bandwidth that it will support.

Every switch in the network maintains a separate virtual clock for every virtual

circuit crossing the switch. The circuit’s virtual clock is incremented each time a

packet arrives at the switch on that circuit. The amount the clock is incremented

depends upon the bandwidth assigned to the circuit — packets traversing circuits

which have been allocated large bandwidths cause smaller increments than packets

on low-bandwidth circuits. Flow is throttled if a circuit’s clock advances ahead of

a real-time clock. While flow control decisions are being made on a hop-by-hop

basis, based upon information locally available, this is a blocking, predictive flow

control mechanism operating on packet flows not unlike the end-to-end flow

control mechanisms discussed earlier.

While VirtualClock has demonstrable strengths as a flow control mechanism

for loosely-coupled systems [Zhan91], it has two drawbacks which make it

inappropriate for a scalable multicomputer. First, it requires that significant

computing resources exist at each switch, in order to maintain the virtual clock for

each circuit which traverses the switch. Second, VirtualClock is a predictive flow

control mechanism, and, as is described in Sec. 8.3, will potentially under-utilize a

communication network. Thus, while VirtualClock is very effective in loosely-

coupled distributed systems, there is reason to believe that it would be both

unreasonably expensive and significantly less effective for scalable

multicomputers.

179

8.2.3. Global Flow Control

In [Scot90], a global feedback flow control scheme is proposed for multistage

interconnection networks (MINs) operating with a synchronous communication

protocol (Ch. 4). In their scheme, the buffers which feed destination nodes (i.e.,

the packet buffers in the last switching stage) are monitored. Since the authors

assume that the buffers are located at the output ports of the switches, each buffer

in the last switching stage is associated with a single destination. When the

number of packets in a monitored buffer reaches a hot threshold, the destination

associated with that buffer is ‘‘hot’’. Similarly, when the queue length falls below

a not hot threshold the destination becomes ‘‘cold’’. These changes in destination

state are transmitted to all senders over a dedicated flow control feedback network.

Congestion is controlled by preventing senders from transmitting packets to hot

modules.

This is a blocking, global, reactive flow control mechanism. This

combination of characteristics imposes requirements on the system. First, because

reactive mechanisms take action after congestion has occurred, and because there

is a significant latency between detecting congestion and reacting to it, this

mechanism is implemented in conjunction with hop-level blocking flow control to

prevent packet loss. In addition, the last switching stage is equipped with large

buffers to prevent congestion from propagating during the period between

detection and reaction.

The global flow control mechanism proposed by Scott and Sohi has several

strengths. First, it is simple to understand and to implement. Second, the scheme

is effective for the size and type of system the authors simulated — multistage

180

interconnection networks with inputs and outputs numbering in the hundreds. The

scheme does have weaknesses, though, which make it less appropriate for scalable

multicomputer systems.

First, the feedback network itself is expensive. For a MIN, the feedback

network will have approximately half the number of links that the communication

network itself has. In addition, the scheme is oriented towards MINs. The problem

with implementing their scheme over commonly used topologies such as

hypercubes, fat trees, tori, and meshes is that these topologies have non-uniform

distances between source / destination pairs. Implementing the flow control

feedback network with these topologies presents significant technical difficulties.

The long feedback latency of the flow control mechanism would be tolerable for

nodes communicating over a great distance, but it would not work at all for nodes

whose packets traverse a small number of hops.

A third issue which makes this scheme untenable is that this flow control

mechanism is incapable of detecting NUT spots internal to the communication

network. It is similar to the end-to-end protocols discussed previously, in that only

the endpoints of the network are considered by the flow control mechanism.

However, unlike the end-to-end flow control mechanisms, if a point of congestion

was created on an internal link, the congestion would propagate indefinitely.

The crucial problem with MIN feedback flow control is that it is global, and

thus not scalable (Sec. 8.3).

A global (network access) flow control scheme which does not attempt to

broadcast data is isarithmetic flow control [Davi72]. The idea behind this scheme

is that there is a pool of tokens available to network. For a node to transmit a

181

packet, it must first grab a token. The token traverses the network with the packet

and is freed upon packet reception. Thus, the token pool limits the total number of

packets in the network in a distributed fashion; this is a blocking, predictive, global

flow control mechanism.

Kleinrock and Gerla [Gerl80] comment that isarithmetic flow control works

well when the traffic is uniformly distributed, but that it ‘‘may lead to unnecessary

throughput restrictions, and therefore, to poor performance in the case of

nonuniform, time-varying traffic patters.’’ The problem is partly attributed to the

fact that, when a source transmits a significant number of packets to a particular

destination, that destination will accumulate a large fraction of the token pool

which must then be redistributed. If the tokens are sent back to the source of the

flow, then that source will end up capturing a large percentage of the total available

network bandwidth. If they are not, then the sender will run out of tokens and will

be starved.

There are a number of additional problems with isarithmetic flow control.

First, if there are enough tokens in the pool to fully load the network under uniform

traffic conditions, then it will still be possible to congest the network under non-

uniform traffic conditions. Further, with a significant percentage of the tokens

associated with packets that are involved in congestion, the non-congested areas of

the communication network will be under-utilized (i.e. the negative feedback is not

directed to the nodes involved in the congestion). Finally, there is the increased

communication latency incurred by having to obtain a token for each packet

transmitted. All of these problems are exacerbated as the communication network

scales, making isarithmetic flow control inappropriate for a scalable

182

multicomputer.

8.2.4. Discarding, Hop-Level Flow Control

Dias and Kumar [Dias89] have proposed a packet switching flow control

mechanism that displays some of the characteristics of a virtual circuit flow control

mechanism (e.g. VirtualClock[Zhan91]). Their scheme, which we call

destination-based flow control (Dias and Kumar did not name it) allows only a

single packet to any single destination within a buffer at any point in time. If a

packet arrives at a buffer that is already holding a packet destined for the same

address, the packet is discarded, and the sending switch re-queues the packet at the

tail of the FIFO buffer from which it came (Fig. 8.3). Thus, destination-based flow

control is a discarding, hop-level, reactive flow control mechanism. It provides an

elegant two-pronged solution to tree saturation. By allowing only a single packet

per destination per buffer, a hot spot cannot cause a buffer to become filled, and by

requeueing rejected packets at the tail of the list, packets not addressed to the hot

spot can bypass those that are.

Destination-based flow control has two key positive features. First, it is

directed explicitly only towards packets addressed to hot destinations. Second, it is

selective and exerts back-pressure only on packets addressed to the hot destination.

Other packets are not restricted.

The ability to direct the back-pressure comes from the basis for flow control

decisions. By using a comparison of destination addresses to make flow control

determinations, this scheme assures that no matter how far from the point of

congestion the back-pressure is felt, it is only packets which will traverse the point

183

A

B

C

Figure 8.3: Operation of Destination-Based Flow Control. Only one
packet per destination per buffer is allowed. If the destination of the
incoming packet matches that of a packet already in buffer, the in-
coming packet is discarded (B) and requeued at the tail of the previ-
ous buffer (C).

of congestion which are throttled. The ability to avoid throttling those packets

which are not involved in the congestion comes from requeueing packets at the tail

of the buffer when they are rejected. Destination-based flow control can do this

and still maintain the FIFO ordering of packets between each source / destination

pair, because there will be at most one packet to a destination in a queue at any

184

point in time.

Due to its ability to direct back pressure, the behavior of destination-based

flow control is similar to the behavior of schemes based on virtual circuits, such as

VirtualClock. Functionally, however, destination-based flow control is entirely

different from VirtualClock; it is hop-level (not end-to-end), packet switching (not

based upon virtual circuits) and reactive (not predictive).

8.3. Flow Control Schemes for Tightly-Coupled Interconnection Networks

A large number of flow control mechanisms have been proposed in the

literature; Sec. 8.2 presents only a small subset. The choice of a ‘‘good’’ flow

control mechanism depends on the characteristics of the network. The focus of our

investigation of flow control is on schemes which are appropriate for the

interconnection networks of tightly-coupled multicomputers and multiprocessors.

In this section we describe the key characteristics of such tightly-coupled networks.

We then discuss the flow control mechanism design space (as described in Sec 8.1)

and identify the class of flow control schemes that are most appropriate for

tightly-coupled networks.

The property of being tightly-coupled indicates both support for and reliance

upon low communication latencies. Fine-grained distributed applications require

high bandwidth communication paths and communication latencies on the same

order as access latencies to local primary memory. These goals must be met in

conjunction with efficient support for small messages (tens of bytes). For example,

in [Dall87b], it is suggested that the processes of a fine-grained distributed

application will transmit a ten-byte packet every one hundred clock cycles. For the

185

system to be scalable, no single object or resource in the system can be a

performance bottleneck. A general purpose scalable multicomputer should support

multiple applications executing simultaneously, with new applications being

initiated on the system at any given point in time. With multiple applications

competing for shared resources, predicting resource utilization (including network

resources) is not feasible.

Very few large-scale multicomputers implement discarding flow

control [Crow85, Rett90]. The first problem with discarding flow control is that,

when a packet is discarded, it must be retransmitted by the sender and then re-

traverse all of the communication links that it had traveled prior to being discarded.

This is contrary to the goal of minimizing transmission latency. It also creates a

positive feedback for network congestion — when congestion occurs, packets are

discarded more frequently and thus require more network bandwidth than they did

at lower communication throughputs.

The second problem deals with returning acknowledgments to packet senders.

Since the regular packets are often small, if each packet is acknowledged

separately, the acknowledgement traffic will consume a significant fraction of

network bandwidth. The acknowledgement traffic can be reduced by only

acknowledging groups of packets (i.e., windowing). However, this increases the

average packet latency since there will be longer delays for the retransmission of

discarded packets. A third problem with discarding flow control is that it may fail

to maintain FIFO packet ordering between sender and destination. This requires

packet reordering by higher levels of the communication protocol.

Destination-based flow control is a discarding flow control scheme which

186

behaves similarly to blocking flow control — FIFO packet ordering is maintained

and communication latencies are kept low by performing

discarding / retransmission on a hop-by-hop basis. For these reasons, an evaluation

of destination-based flow control is included in this chapter, even though it is,

technically, a discarding flow control mechanism. Enhancements to the

destination-based flow control described in Sec. 8.4 minimize link re-traversals,

making it even more similar to blocking flow control.

Predictive flow control mechanisms attempt to prevent congestion by

throttling traffic which has the potential to cause congestion. In a general-purpose

multicomputer, traffic patterns may be highly irregular. If the predictive flow

control severely restricts traffic, it may unnecessarily reduce the available network

bandwidth. However, if the predictive flow control is less restrictive, it may fail to

significantly reduce the probability of congestion. Thus, in this case, the utility of

the predictive flow control is in doubt and a different ‘‘good’’ flow control

mechanism is needed in addition to the predictive scheme.

Section 8.2.2 discusses some of the problems of implementing end-to-end

flow control in a scalable multicomputer. The problems generally stem from the

conflict between low latency and scalability. As a system scales, destinations

move further away from sources, increasing the latency of end-to-end feedback.

Furthermore, most end-to-end flow control mechanisms are not capable of

explicitly detecting and reacting to congestion that occurs in the middle of the

network. There are end-to-end flow control schemes that operate without any

feedback of dynamic network activity. However, as discussed earlier, such

predictive schemes are not likely to perform well in the dynamic environment of a

187

general-purpose multicomputer.

Since they must either process all flow control information centrally or

broadcast changes in flow control state, global flow control mechanisms scale

poorly, as well.

Hop-level flow control displays the characteristics desired in a scalable

multicomputer. Since flow control decisions are made independently by each

switch, there is no increase in complexity as the system scales. Similarly, because

all decisions are based upon locally available information, scaling does not impact

the latency of the mechanism. A distributed flow control mechanism is also more

robust in the face of faults; the failure of a single link or switch will only impact

those nodes adjacent to the failure. Finally, there are the benefits of having the

same flow control hardware and algorithm repeated throughout the network — the

system is easier to design, build and maintain (e.g. MIT’s J-Machine[Dall90a]).

8.4. Hop-Level Flow Control

The previous section of this chapter discussed the reasons that end-to-end and

global flow control mechanisms are unsuitable candidates for implementation in a

scalable, tightly-coupled computer network. Hop-level flow control, on the other

hand, displays a number of features which mark it as appropriate for such a system.

With hop-level flow control, each sender and switch in the system makes flow

control decisions based upon information that is locally available. Thus, the

complexity, cost and / or requirements of each flow control calculation is

independent of the network size. Second, flow control information is propagated

through the network via back pressure [Gerl80]. This avoids the use of a broadcast

188

or a multicast flow control feedback, which, as was discussed in the previous

section, does not promote scalability. The remainder of this section describes the

hop-level flow control mechanisms evaluated in this chapter.

8.4.1. Blocking Flow Control

Being the flow control mechanism used in so many of the current

multicomputers, hop-level blocking flow control was an obvious choice for

evaluation. One of the key choices in the design of blocking flow control is

whether (1) to support blocking of transmissions after only part of a packet has

been transmitted or (2) to restrict blocking to occur only between packets. In the

former case, a buffer accepts packets right up to the point where the buffer is

completely filled. If the buffer is in the middle of receiving a packet at that point,

the reception / transmission is halted, and the packet is stored for some period of

time in two (or more) switch buffers. Wormhole routing [Dall86] requires this

form of blocking flow control since the buffers are too small to store an entire

packet in a single node. With wormhole routing the nodes must support virtual

cut-through [Kerm79], i.e., be able to begin forwarding a packet before all of it is

received.

In the second case — restricting blocking to between packets — buffers must

halt flow if there is not enough space in the buffer to store an entire packet. While

this style of blocking flow control restricts the maximum packet size in a network,

it also ensures that once a packet transmission begins, it will complete without

interruption. This form of blocking flow control can be used with nodes that

support virtual cut-through as well as with nodes that do not. We evaluated the

189

second type of blocking flow control with nodes that do support virtual cut-

through. Specifically, we assume a maximum packet size of thirty-two bytes so

flow is halted when there are less than thirty-two bytes available in a buffer.

8.4.2. Maximum Usage Flow Control

In their survey of flow control schemes, Kleinrock and Gerla [Gerl80] discuss

channel queue limits. This is a mechanism which limits the amount of buffer space

a particular class of packets can occupy in a buffer pool. In the case of hop-level

flow control, the packets are classified according to which output port they will be

leaving the switch on. There are a number of ways in which the buffer memory

usage can be limited: each output port can have a maximum memory allowance

(sharing with maximum queues — SMXQ), each can be guaranteed a minimum

availability (sharing with minimum availability — SMA), SMXQ and SMA can be

combined, or the buffer space an be strictly partitioned (see the SAMQ switch,

Ch. 3). In their discussion of channel queue limits, Kleinrock and Gerla refer

primarily to [Irla78].

In [Irla78], Irland found that, under non-uniform traffic, complete partitioning

(SAMQ buffers) performed slightly worse than the other channel queue limit

mechanisms, while at high offered loads (saturation), all channel queue limit

mechanisms supported approximately the same throughput. He also found that

switches with unrestricted sharing performed significantly worse than those with

some form of channel queue limits, even under uniformly distributed traffic.

This dissertation refers to channel queue limits as maximum usage flow

control (the networks we evaluated do not have channels). Under maximum usage

190

flow control, each queue of a buffer has a bit of flow control state associated with

it. When the length of the queue (the number of buffer blocks occupied by the

queue) exceeds a threshold (or fills the queue, in the case of static buffer

allocation), then that queue’s flow control signal is asserted. Similarly, when the

length is equal to or less than the threshold, the signal is dropped. If there are

fewer than thirty-two bytes (four blocks) available in the buffer, then all of the

queues’ flow control signals are asserted.

The use of maximum usage flow control implies a dynamically allocated

buffer (there is sharing of storage space between queues of packets destined to

different output ports). As discussed in Ch. 3, implementation issues direct one to

implement switch buffers at the input ports. Thus, maximum usage flow control is

evaluated using dynamically allocated, multi-queue buffers located at the input

ports — the DAMQ buffer.

We also simulated static buffer allocation; this is a form of maximum usage

flow control in which the buffer is strictly partitioned (statically allocated) among

the queues. Chs. 4 and 6 examine static buffer allocation as an implementation

option for non-FIFO buffers: the SAMQ and SAFC buffers. Their performance

under non-uniform traffic conditions is presented as part of the evaluation of

maximum usage flow control.

Maximum usage flow control requires that packets be pre-routed. Pre-routing

is the determination of which output port of the next switch a packet will traverse.

Thus, for each hop through a network using maximum usage flow control, each

packet must be routed twice: once to determine which output port the packet is

destined for, and once to determine which queue the packet will be appended to in

191

the next switch. If the packet at the head of a queue will be append to a queue on

the next switch which is currently blocked, then the crossbar arbiter will not

connect the buffer to that output port; the packet is blocked until the destination

queue unblocks. In our evaluation of maximum usage flow control, we looked at

blocking thresholds of six blocks and ten blocks and static buffer allocation (both

SAMQ and SAFC buffers), all with 128 byte buffers.

8.4.3. Two-Counter Flow Control

dec

inc

throttle
Xinc

Xdec

reset

resetΦσΦ

select

EOPen Y

Flow Ctl

from CTRbuf

Buffer Full —

inc / dec

CTRlen CTRblk

Ymax

Figure 8.4: Block Diagram, Two-Counter Flow Control. CTRlen indi-
cates how many blocks of the buffer are occupied by the queue.
CTRblk is incremented / decremented once every σ clock cycles,
depending on whether CTRlen is above Xinc or below Xdec . Flow to
the queue is throttled when the value of CTRblk is above Y, and is
throttled to all queues when the buffer is full. The maximum value
of CTRblk is Ymax.

Two-counter flow control is a general implementation of hysteresis flow

192

control (it subsumes the hysteresis flow control mechanisms discussed in Sec. 8.2).

It is similar to maximum usage flow control (channel queue limits), in that it limits

the amount of buffer space a single packet queue can occupy. Two-counter flow

control is more complicated than the hysteresis schemes mentioned above, in that it

provides three separately configurable mechanisms for hysteresis. A block

diagram of the flow control mechanism for a single queue is shown in Fig. 8.4.

Each queue has two counters associated with it. CTRlen keeps track of the current

length of the queue. CTRblk maintains the current flow-control state for the queue.

When the value of CTRblk reaches the threshold Y , the queue blocks (i.e. does not

accept packets). When its value drops below Y , the queue unblocks. CTRblk is

updated every σ clock cycles (φσ, shown in Fig. 8.4, is the system clock divided by

σ). Whether CTRblk is incremented, decremented or left unchanged on an update

cycle depends upon the number of buffer blocks occupied by the queue. When the

flow control state is updated, CTRblk is incremented if more than Xinc buffer blocks

are occupied by the queue, and decremented if less than Xdec are occupied.

���
σ Interval between CTRblk updates.���
Xinc CTRlen threshold, beyond which CTRblk is incremented.���
Xdec CTRlen threshold, below which CTRblk is decremented.���
Y CTRblk threshold, at which packets to the queue are blocked.���
Ymax Maximum value of CTRblk ; further increments have no effect.���
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 8.1: Two-Counter Flow Control Parameters. See Fig. 8.4 for a
block diagram of the two-counter flow control hardware.

The behavior of the two-counter flow control mechanism is controlled by the

values of the full and not full thresholds (Xinc and Xdec), the CTRblk threshold at

which the queue blocks (Y), the maximum CTRblk value and rate of φσ (see

193

Tab. 8.1). Being a flexible and fully parameterized flow control mechanism, two-

counter flow control is an ideal test-bed for hysteresis flow control. For example,

if the blocking threshold and maximum value of CTRblk are both set to one

(Y = YMAX =1), σ is set to one (φσ = φ — the system clock), and Xinc = Xdec −1, the

resulting flow control behaves like the maximum usage flow control described

above. If the above parameters are changed such that Xinc ≥ Xdec , then then the

flow control is identical to previously published hysteresis flow control schemes,

which depend strictly upon separate blocking and unblocking thresholds [Reis83,

Yum83].

Table 8.2 displays the two-counter flow control parameter configurations

which we evaluated, with an explanation of the intended behavior of each of the

parameter settings. The goal in choosing these five versions (H, T, tH, A and aH)

of two-counter flow control is to broadly explore the behavior-space of this flow

control mechanism. While this does not represent an exhaustive search of the

two-counter parameter space, it is expected that evaluating these five parameter

settings will broadly indicate which aspects of two-counter flow control improve

network performance. We found that assigning more ‘‘extreme’’ values to the

parameters reduced the performance of the resulting network under a variety of

traffic loads.

194

���
name settings explanation���

σ = 1
Xinc = 8
Xdec = 4
Y = 1

H

Ymax = 1

Hysteresis flow control, as presented in [Reis83,
Yum83]. The queue is throttled when there are
more than eight buffer blocks in the queue; flow
is restored when there are less than four blocks
in the queue.���

σ = 20
Xinc = 6
Xdec = 6
Y = 1

T

Ymax = 1

Infrequent sampling.
The queue is throttled when there are more than
six buffer blocks in the queue; flow is restored
when there are less than six buffer blocks in the
queue. CTRlen is sampled once every twenty
clock cycles.���

σ = 20
Xinc = 8
Xdec = 4
Y = 1

tH

Ymax = 1

Hysteresis with infrequent sampling.

���
σ = 20
Xinc = 8
Xdec = 8
Y = 2

A

Ymax = 4

Accumulator hysteresis.
CTRblk increments every 20 clock cycles that
CTRlen > 8, decrements every 20 cycles that
CTRlen < 8. CTRlen will be > 8 for at most 40
cycles before flow is halted, and < 8 for at most
40 cycles before flow is resumed.���

σ = 20
Xinc = 8
Xdec = 4
Y = 2

aH

Ymax = 4

‘‘Straight’’ and accumulator hysteresis
combined.

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 8.2: Parameter Settings for Two-Counter Flow Control. See
Tab. 8.1 and Fig. 8.4 for explanations of the function of each
parameter.

8.4.4. Destination-Based Flow Control

The destination-based flow control described by Dias and Kumar in [Dias89]

was implemented with FIFO buffers. Since the superiority of DAMQ buffering has

already been demonstrated (Chs. 4 and 6), we simulated destination-based flow

195

control with DAMQ buffers. One could also evaluate destination-based flow

control with SAMQ or SAFC buffers; in the context of this chapter, this represents

a combining of multiple flow control mechanisms (static buffer allocation and

destination-based flow control). Sec. 8.5.10 examines the performance of

combined flow control mechanisms.

In our simulator, every time a buffer using destination-based flow control

receives a packet, it responds to the sending switch with either a positive or a

negative acknowledgment (ACK / NACK). The sending buffer does not de-

allocate the buffer memory occupied by the packet until the ACK is received.

When a packet is rejected, the sending switch receives the NACK within six clock

cycles of the initiation of transmission, which is considerably less than the time

required to send the maximum-length packet (thirty-two bytes, in our simulator).

The packet is re-linked to the tail of the queue, the sending buffer is considered to

be ‘‘busy’’ for the time required to transmit the entire packet, and the

communication link is ‘‘busy’’ for the time required to transmit the entire packet

plus the inter-packet idle period (Sec. 6.1.1).

We enhanced our implementation of destination-based flow control by

aborting transmissions as soon as a NACK is received (since Dias and Kumar

worked with a synchronous network, this optimization was not applicable to their

work). This enhancement has the potential to reduce the amount of time spent by

buffers and output ports transmitting already-rejected packets. In the case of

simulating SAMQ and SAFC buffers using destination-based flow control with this

extension, we do not account for the overhead of moving the packet from the head

of the queue to the tail, nor do we consider the possible conflict of a packet arriving

196

while this movement is taking place. For the case of implementing the scheme on

a DAMQ buffer, the buffer cannot transmit for a period of time equal to two clock

cycles for each buffer block occupied by the packet, to account for the time

required to manipulate the linked lists. We refer to the enhancement of aborting

transmissions and requeueing as soon as a NACK is received as abortive

transmissions.

We also designed a second extension to destination-based flow control. This

extension operates on packets which have been rejected from a succeeding switch,

and requeued in a preceding switch. When the packet comes back to the head of its

queue, whether or not it is transmitted depends upon whether the succeeding switch

has indicated that the packet which blocked this packet on its previous transmission

attempt has been transmitted from the succeeding switch. If the BLOCKER packet

has not been transmitted, then the BLOCKEE packet is re-linked at the tail of its

queue without attempting to transmit it. The idea behind this second enhancement

is to not transmit packets which are known will be discarded by the next switch,

with the goal of reducing the number of times a packet is transmitted and rejected.

This extension is referred to as restricted retry.

8.4.5. Path-Based Flow Control

Path-based flow control is identical to destination-based flow control, except

for the basis it uses for throttling traffic. Instead of rejecting packets whose

destination matches the destination of a packet residing in the buffer, path-based

flow control rejects packets whose next n hops are identical to the next n hops of a

packet residing in the buffer. The idea behind path-based flow control is to achieve

197

the functionality of destination-based flow control, with the additional ability to

detect congestion which is not associated with a particular destination.

Path-based flow control can be implemented in an identical fashion to

destination-based flow control, including the enhancements. For the four stage

omega network of our simulator, setting n = 4 causes path-based flow control to

behave identically to destination-based flow control. Setting n = 1, on the other

hand, causes the buffers to behave like SAMQ buffers which can store one packet

per queue. The simulation results of path-based flow control presented in this

dissertation use n = 2.

8.5. Flow Control Performance Evaluation

This section presents an evaluation of the performance of the flow control

mechanisms which were discussed in the previous section. First, the network

simulator that was used for the evaluation is characterized. Then, the methodology

of the evaluation is described. Finally, the simulation results are presented and

used to evaluate the flow control mechanisms’ performance.

8.5.1. The Simulator

The flow control mechanisms were evaluated using the asynchronous network

simulator presented in Ch. 6. Thus, the flow control mechanisms were simulated in

a computer network supporting virtual cut-through, variable-length packets and

multi-packet messages. The simulator was configured as a 256×256 multistage

interconnection network in the omega topology. The network was composed of

four stages of sixty-four 4×4 switches. For the simulations, each switch was

198

implemented with a 128-byte buffer† at each input port (unless otherwise stated).

The senders generated messages with geometric interarrival times, as described in

Ch. 6. The maximum packet size allowed in the network was thirty-two bytes;

when senders generated messages longer than thirty-two bytes, the messages were

broken into multiple packets which are transmitted sequentially at maximum

throughput.

The applied load of the system is characterized by two components: the

distribution of message lengths and the distribution of message interarrival times.

As stated above, the message interarrival times are geometrically distributed, so for

each sender there is a fixed probability of a message being generated on each clock

cycle. We specify this probability as messages per sender per clock cycle (m/sc).

Throughput (thpt) is measured in bytes per link per clock cycle — since the links

are one byte wide, and can transmit one byte per clock cycle, throughput is

presented as the fraction of available bandwidth utilized (i.e. 0 ≤ thpt ≤ 1).

Average latency (lat) is the average number of clock cycles from packet creation

to the first byte of the packet reaching its destination. See Ch. 4 for a more detailed

discussion of the simulator.

���������������
† Flow control mechanism functionality improves with larger buffers. We restricted our
buffers to 128 bytes (storage for four thirty-two byte packets) because, in Ch. 6, we esta-
blished that larger buffers provided negligible performance improvement under conditions
of uniformly distributed traffic, and the cost of additional buffer memory is linear. The di-
minishing benefits of additional buffer space is a well-known result [Dias81].

199

8.5.2. Evaluation Methodology

In the introduction to this chapter, it was mentioned that network congestion

is caused by a group of senders (GNUT) attempting to over-utilize one or more links

within the network. Further, we asserted that, unless some mechanism such as

dynamic routing reduces the dependency of GNUT on the critical link(s), the

communication throughput of GNUT is determined by the bandwidth of the critical

link(s), and no flow control mechanism is capable of improving it. Flow control

can, however, improve the performance of the communication network as a whole

by preventing the congestion caused by GNUT from reducing the network

bandwidth available to the other nodes in the system. Thus, we evaluated the flow

control mechanisms by performing network simulations in which a set of senders

was designated to be GNUT . These senders were directed to transmit packets in a

manner that would create congestion in the network. Various aspects of the

performance of the network was measured under these conditions to determine the

degree with which each flow control mechanism could preserve network

performance.

Congestion within a network can display a range of characteristics which are

determined by (a) the relative locations of the senders which comprise GNUT and

(b) with what non-uniform traffic pattern does GNUT create congestion. We have

developed a suite of network benchmarks in order to explore the performance of

flow control mechanisms under a variety of congestion patterns. This suite is

intended to stress the communication network in a variety of ways, with the idea

that a flow control mechanism that can successfully handle a wide variety of

stochastically-generated congestion patterns in the simulator will be effective

200

against application-generated congestion when implemented in an actual

multicomputer.

The benchmarks specify the senders which will comprise GNUT and the

pattern with which they will transmit data. For each benchmark, GNUT creates a

point or points of congestion within the network by transmitting packets at

saturation throughput in the traffic pattern associated with that benchmark. The

remaining senders in the system are partitioned into groups according to their

interaction with GNUT . The applied load of the senders in these groups is varied

from 0.0 m/sc to saturation.

We used three performance metrics to evaluate the flow control mechanisms.

The first is the maximum throughput of the network. This statistic reflects the

ability of the flow control mechanisms to protect the performance of the

‘‘innocent’’ senders (the members of G 0, G 1, . . .) from the network congestion

caused by members of GNUT . The second metric is the average latency of GNUT

and Gi per throughput. Finally, the utilization of the critical network resources

was examined. Since the point(s) of congestion are the performance bottleneck for

GNUT , it is highly desirable that these links be fully utilized. For the benchmarks

with a static point of congestion, we measured the throughput of data through this

link. For the benchmarks with dynamic congestion patterns, we measured the total

network throughput to evaluate the critical resource utilization.

Ideally, a flow control mechanism ensures that the nodes which are not

members of GNUT are not negatively impacted by the congestion created by GNUT .

Thus, the performance of a blocking flow control under uniform traffic conditions

is the case against which the flow control mechanisms’ performances under the

201

Thpt

Applied load

m/sc
0 0.1

0

0.4

0.8

DAMQ �

FIFO

.....
...

..
.. .

. ..
. .

.. .
..

..
.. . . .

.

Avg
Lat

c

Throughput
0 0.3 0.6

0

200

400 DAMQ �

FIFO

.
..
..
..
..
..
...
..
...
...
...
.

Figure 8.5: Throughput and Latency, Uniform Traffic Distribution.
256×256 omega network, composed of 4×4 switches. DAMQ and
FIFO buffers. Thirty-two byte packets. Packet destinations
randomly chosen, uniform distribution. The rectangles associated
with the DAMQ buffer results are the confidence interval measures
— see Sec. 8.5.3.

benchmarks is compared. Figure 8.5 shows both throughput vs. applied load and

average latency vs. throughput for networks of FIFO and DAMQ switches. All

senders in these simulations generate thirty-two byte packets whose destinations

are randomly chosen from a uniform distribution. As can be seen from the

throughput vs. applied load graph, at lower applied loads the throughput is directly

proportional to the applied load, indicating that there is no congestion in the

202

network. For both FIFO and DAMQ switch networks, as saturation throughput is

approached, the lines quickly become horizontal (i.e. additional applied load results

in no additional throughput). Similarly, the average latency vs. throughput graph

shows only slight increase in the average latency until the saturation throughput is

approached, at which point the lines become vertical (i.e., additional applied load

results in additional latency, but no additional throughput).

These graphs demonstrate two desirable features which are present under

uniform traffic conditions and which a flow control should preserve in networks

with non-uniform traffic conditions. The first is that, until saturation throughput is

approached, the network is transparent to the senders. That is to say, from the

senders’ point of view, it appears that each sender is directly connected to all of the

destinations, with no network in between. The network is transparent when it

imposes no back pressure upon the senders and imparts a negligible latency upon

the packets traversing it. The second desirable trait is that, when the applied load

approaches and moves beyond the point of maximum throughput, the throughput of

the network does not drop. Networks which experience a reduction in throughput

when an excessive load is applied are termed reactive. Non-uniform traffic

conditions can cause a network to be reactive. Reactivity is an undesirable

characteristic, in that network throughput is reduced at exactly that point in time

when it is most needed — when communication bandwidth is the performance

bottleneck.

203

8.5.3. Confidence Intervals

The simulation results presented in this chapter required extensive CPU

cycles to generate. This prevented the generation of confidence intervals for every

point on every line in every graph presented. Instead, confidence intervals were

generated for three points in a representative subset of lines. The lines which have

confidence intervals are indicated in the graph legends by a rectangle across the

middle of the line in the legend, and the confidence intervals themselves are

presented as rectangles in the graph. The vertical dimension of the rectangle

represents the 95% confidence interval of the y-value of that point in the line, and

the horizontal dimension reflects the x-value. Tab. 8.3 presents the lines for which

confidence intervals exist.

The confidence figures were generated by running the simulator for a

‘‘warm-up period’’ and then executing it for five ‘‘intervals’’. Each interval was

of the same length as the simulation runs which generated the other points in the

graphs. After each interval, the performance statistics were recorded and then reset

for the next interval. The rectangles in the graphs provide quantitative information

as to the reliability of the results represented by that data point — there is a

probability of 0.95 that, if the results of an infinite number of intervals were

collected, the data point representing their average would fall within the rectangle.

The rectangles also provide qualitative information as to the reliability of the

remaining points in the graphs. All of our confidence intervals are ‘‘tight’’ —

there is little variance in the simulation results. Thus, while a confidence interval

cannot be generated for a single simulation result, we are confident in the accuracy

of the data points which were generated from single simulation runs.

204

��������������������������
Figure Line��
8.5 DAMQ��������������������������
8.8 DAMQ��������������������������
8.9 Blocking��������������������������
8.10 tH��������������������������
8.13 DAMQ��������������������������
8.14 Blocking��������������������������
8.16 Path-Based��������������������������
8.19 MU-6��������������������������
8.20 aH��������������������������
8.24 MU-6��������������������������
8.27 FIFO��������������������������
8.28 SAFC��������������������������
8.29 A��������������������������
8.33 Dst-Based, MU-22��������������������������
8.34 Dst-Based, SAFC��������������������������
8.36 Dst-Based��������������������������
8.37 Dst-Based, MU-22��������������������������
8.37 Dst-Based, SAFC���������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 8.3: Confidence Interval Map. The figures and results for which
confidence intervals have been generated.

It should be emphasized that there are three points for which a confidence

interval exists for each of the results specified in Tab. 8.3. For many of the points,

particularly those generated at lower network throughputs (for which there is less

variance in performance), the rectangles representing the confidence intervals are

too small to be seen.

205

8.5.4. Benchmark I: Static Hot Spot, Serial Requests

Hot Spot

Stage 4Stage 3Stage 2Stage 1

255

254

253

252

GNUT

G 0

G 1

G 2

Figure 8.6: Benchmark I: Hot Spot, Serial Requests. GNUT (<252>,
<253>, <254>, <255>), transmitting all packets to the ‘‘hot’’
destination, creating a point of congestion at output port #0 of
switch #0 of the fourth switching stage.

In this benchmark, the members of GNUT transmit thirty-two byte packets to a

single destination. There are four senders in GNUT — their addresses (senderIDs)

are <240>, <244>, <248> and <252>. These particular senders were chosen so that

the path from each member of GNUT to the hot spot would not intersect with that of

206

any other other member of GNUT until the final link to the hot destination; thus

there is no contention between the members of GNUT prior to the hot spot itself.

The senders of GNUT transmit 100% of their packets to the hot spot at saturation

throughput.

���
Name Function Explanation��
GNUT senderID & 0xFC = 0xFC Four senders whose paths intersect at

final switching stage.���
G 0 senderID & 0x3C = 0x3C Senders whose paths intersect GNUT

at first switching stage (i.e. they share
a first stage switch with a member of
GNUT).���

G 1 senderID & 0x0C = 0x0C Senders whose paths intersect GNUT
at the second switching stage.���

G 2 TRUE All remaining switches — their paths
intersect with the paths of a member
of GNUT at the third switching stage.���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 8.4: Group Definition, Benchmark I. The functions listed use the
routing characteristics of the omega network to determine which
senders are members of which sender groups. The parameter
senderID is the source address.

The remaining 252 sending nodes are divided into three groups, according to

the degree to which they interact with GNUT (Fig. 8.6). G 0 comprises the twelve

senders which share a first-stage switch with a member of GNUT . G 1 is the forty-

eight senders which can reach the same second-stage switches as GNUT (and G 0).

Finally, G 2 is the 192 senders (all remaining) which intersect GNUT (and G 0, 1) at

the third switching stage. Tab. 8.4 demonstrates how these groups were defined in

the simulator using bit operations on the senderIDs . These three groups generated

uniformly-distributed traffic with the same applied load as each other. This applied

207

load is graduated from 0.0 m/sc to saturation.

Thpt.

Network Throughput
0.0 0.1 0.2 0.3 0.4

0

0.2

0.4 GNUT

G 0

G 1
.............

G 2
.

........
........

........
.........

........
........

..........
.........

...........
...........

...........
...........

.........
.............

.

Lat.

Network Throughput

c

0.0 0.1 0.2 0.3 0.4

0

800

1600

2400
GNUT

G 0

G 1
.............

G 2
.

...
.......................

.....................
.........

........

.

Figure 8.7: Benchmark I: FIFO Buffers, Blocking Flow Control. Hot
spot traffic (GNUT) operating at saturation, graduating applied load
of uniform traffic (G 0−2). Switches with FIFO buffers, blocking
flow control. Throughput and average latency vs. total network
throughput, GNUT and G 0−2.

Figure 8.7 shows the throughput of each sender group vs. the total network

throughput and the average latency vs. total network throughput, for a network of

FIFO switches using blocking flow control. The throughput of a sender group is its

average per-sender throughput. The lowest network throughput occurs when the

applied load for groups G 0−2 is 0.0 m/sc, the highest when all groups are at

saturation throughput. The throughput of GNUT drops as the applied load of the

208

other three groups is increased because of the increasing contention in the network.

At low applied loads, the throughput of G 0−2 is proportional to the applied load.

As the applied load (and, hence, throughput) is increased, G 0 is the first group

impacted by the GNUT traffic; at saturation, its throughput barely exceeds 0.20.

The congestion caused by GNUT has only minor impact upon G 2 — a network of

FIFO switches under uniformly distributed traffic achieves 0.49, compared to 0.45

of G 2 in this benchmark.

This graph presents two of the performance objectives of interest. The first is

the throughput degradation experienced by the sender groups G 0−2. In particular,

G 0 achieves a saturation throughput which is a fraction of that achievable under

uniform traffic (Fig. 8.5, FIFO data). We are looking for a flow control mechanism

which will reduce the impact of congestion traffic on senders not participating in

the congestion. The second performance objective is to maintain the throughput of

data to the point of congestion (the hot spot, in this benchmark). When the applied

load of G 0−2 = 0.0 m/sc , GNUT operates a throughput of 0.235, which implies that

the throughput of data to the hot spot is 0.94; since our transmission protocol

requires that each link be idle for two clock cycles between each packet, with

thirty-two byte packets the maximum throughput across a link is 0.941. When

G 0−2 are also operating at saturation throughput, the total throughput of data to the

hot spot decreases to 0.893.

Figure 8.8 displays the same information as Fig. 8.7, but for DAMQ buffers

with blocking flow control. A quick comparison of the two shows that the addition

of non-FIFO buffering provides a significant boost in network performance. There

is still some reduction of the performance of G 0−2 due to the congestion caused by

209

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

GNUT �

G 0 �

G 1
............�

G 2
.�

........
.........

.......
........

.......
.......

........
........

............
............

............
..............

............
.........

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

800

1600

2400

3200

GNUT �
G 0 �
G 1

............�
G 2

.�

..
...........................

........................

.

Figure 8.8: Benchmark I: DAMQ Buffers, Blocking Flow Control. Hot
spot traffic (GNUT) operating at saturation, graduating applied load
of uniform traffic (G 0−2). Switches with DAMQ buffers, blocking
flow control. Throughput and average latency vs. total network
throughput, GNUT and G 0−2.

GNUT . Under uniform traffic conditions, a network of DAMQ switches with

blocking flow control can achieve a throughput of 0.71; in this benchmark, G 2 is

limited to 0.58, while G 0 only reaches 0.28. Further, the latency of G 0 is

extraordinarily high. Even at low throughputs, where average latency of G 2 is 39 c

(the minimum latency for four hops is 20 c), G 0 experiences an average latencies of

∼∼ 200 c for DAMQ buffered networks, 450 c with FIFO buffers. Transmission

latencies of this order could significantly degrade the performance of fine-grained

210

distributed programs.

While the saturation throughput of the network of DAMQ-buffered switches

is higher than that of the network of FIFO-buffered switches, G 0 does not achieve

significantly higher throughputs with DAMQ buffers than with FIFO. The

throughput of the members of G 0 is determined by the available bandwidth of the

output port of the switches in the first switching stage which leads to the hot spot,

and the ability of packets from G 0 to compete with the hot spot packets for that

bandwidth. DAMQ buffers do not and cannot help to resolve this — once the

buffers of the first-stage switches connected to the members of G 0 become filled

with packets destined for the congested output port, their throughput drops nearly

to that of switches with FIFO buffers. The average latency of packets in the

DAMQ buffer network is much lower, because packets routed to the other output

ports are not queued behind the packets in the hot output port queue. The

saturation throughput of the DAMQ buffer network is higher, because the back-

pressure from the succeeding switch stages is lower than it is in the FIFO buffer

network — the DAMQ buffer network maintains a throughput to the hot spot of

0.94.

Figure 8.9 shows the G 0 throughput vs. network throughput and G 0 latency

vs. network throughput for switches with DAMQ buffers with blocking flow

control, static partitioning (SAMQ and SAFC buffering), and maximum usage flow

control with blocking thresholds of six and ten buffer blocks. This graph shows a

significant improvement in G 0 throughput for both static allocation and maximum

usage flow control mechanisms over blocking flow control (0.46 vs. 0.28). The

throughput is still significantly lower than the throughput under uniform traffic,

211

Thpt.
G 0

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

Blocking �

MU-10�

MU-6

SAMQ

SAFC.� �

.

�. . . .
.�. .

.
.�.

.
.�. . .

.
. .�.

.
.

.
. .�. . . .

.
.�. . . .�..�...�

.
.

.
.

.
.

.
.

.
.

.
. . .

..... . .

Lat.
G 0

Network Throughput

c

0.0 0.2 0.4 0.6

0

400

800 Blocking �

MU-10�

MU-6

SAMQ

SAFC.� �

.

�.�.�.
.�.�.

. .�. . . .
.�. . .

.��..�

.
.

.
.

.....

Figure 8.9: Benchmark I: Maximum-Usage Flow Control. Hot spot
traffic (GNUT) operating at saturation, graduating applied load of
uniform traffic (G 0−2). Shown is the G 0 throughput vs. network
throughput and G 0 latency vs. network throughput for blocking flow
control, static buffer allocation and maximum-usage flow control
(blocking thresholds of six and ten buffer blocks).

however. The positive results achieved by maximum usage flow control under this

benchmark are due to the fact the packets transmitted by the senders of G 0

conflicted with those from GNUT at the output ports of the first switching stage.

The flow control prevents the buffers in the second switching stage from becoming

completely filled with packets destined to the hot spot, dramatically improving the

performance of the G 0 senders. The heightened activity of the G 0 senders, in turn,

212

increases the contention experienced by GNUT , reducing its throughput and the

network contention it causes. Thus, under this benchmark, the ‘‘hot’’ output port

of the first-stage switches which are connected to G 0 and GNUT senders are the

critical points for flow control decisions.

Static buffer partitioning provides a lower G 0 average latency than does

maximum usage flow control and a similar saturation throughput for G 0.

However, it does not achieve as high a network saturation throughput. G 0 benefits

not from the superior flow control properties of static buffer allocation, but from

the fact that it causes the buffer space to be used less efficiently than does

maximum usage flow control. The throughput of the G 1 and G 2 traffic is unduly

throttled by this inefficient buffer utilization; while the throughput of G 0 increases

due to the resulting reduction in network contention, the throughput of the network

as a whole is reduced.

Fig. 8.10 shows latency vs. throughput for networks using two-counter

(hysteresis) flow control, with a variety of parameter settings (these settings are

presented in Sec. 8.4.3 and Tab. 8.2). Comparing these results to each other and to

those in Fig. 8.9, it can be seen that (a) the parameter settings for two-counter flow

control make almost no difference in the performance of the network in this

benchmark and (b) the hysteresis in two-counter flow control provides no

improvement in performance over maximum usage flow control. This may be due

to the static nature of the congestion in this benchmark.

Figure 8.11 shows the throughput vs. network throughput and average latency

vs. network throughput results of G 0 for destination- and path-based flow control.

Destination- and path-based flow control both achieve a higher network throughput

213

Thpt.
G 0

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

A

H

aH

T

tH�

.

........
........

.........
........

.........
.........

..........
........

.............
.............

.............
...............

.........................
...

.

Lat.
G 0

Network Throughput

c

0.0 0.2 0.4 0.6

0

400

A

H

aH

T

tH�

.
.. ...

..................................
......................

.......................
..................

...................
..........

.........
......

........

.
.

Figure 8.10: Benchmark I: Two-Counter Flow Control. Hot spot traffic
(GNUT) operating at saturation, graduating applied load of uniform
traffic (G 0−2). Shown is the throughput vs. network throughput and
latency vs. network throughput of G 0 for two-counter flow control
with a variety of parameters (see Tab. 8.2 for details of the
parameters).

and a higher G 0 throughput than do the other flow control mechanisms.

Destination-based flow control achieves the best results for G 0, saturating at a

throughput of 0.80 for G 0. This throughput is higher than the saturation throughput

of a blocking DAMQ buffer network under uniform traffic conditions.

Destination-based flow control achieves this because the back-pressure from

congestion in this flow control scheme is strongly directed — the only packets

from G 0 which conflict with the GNUT traffic are those addressed to the hot

214

Thpt.
G 0

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

0.8

Path-Based

Dst-Based

.
..
.

Lat.
G 0

Network Throughput

c

0.0 0.2 0.4 0.6

0

400
Path-Based

Dst-Based

.
. . ..

.

Figure 8.11: Benchmark I: Link-Based Flow Control. Hot spot traffic
(GNUT) operating at saturation, graduating applied load of uniform
traffic (G 0−2). Shown is the G 0 throughput vs. network throughput
and G 0 latency vs. network throughput for destination-based and
path-based.

destination. Since destination-based flow control severely restricts the throughput

of GNUT , G 0 experiences a situation where the first stage switches have four output

ports but only three active input ports (the senders of GNUT do not contend in a

meaningful way for the output ports of the first stage switches). Thus, G 0

experiences less contention in this network than do the senders of a network

transmitting uniformly-distributed traffic.

Under destination-based flow control, when all senders are transmitting at

215

saturation throughput, GNUT is reduced to a throughput of only 0.06. This is as

compared to 0.10 for blocking flow control and 0.08 for maximum usage flow

control, threshold of ten blocks. Despite the tight reigns on GNUT , however, the

throughput to the hot spot from all senders, when all senders are operating at

saturation, is 0.93 for destination-based flow control, due to the high throughput of

the other sender groups.

Under this benchmark, the four senders which comprise GNUT create a point

of congestion associated with a terminal link in the network (a hot spot). This

congestion can be characterized as being static and associated with a destination

node. These are ideal conditions for destination-based flow control, which is

explicitly designed to handle hot spot conditions. Path-based flow control does

well, but by comparing the next two hops of the packets to determine collisions, it

mistakenly categorizes some ‘‘innocent’’ packets as contributing to the congestion,

and thus throttles G 0−3 traffic unnecessarily. The static nature of the congestion

completely negates the effects of hysteresis — its performance is similar to

maximum usage flow control. Maximum usage and static allocation flow controls

are both improvements over blocking flow control, due to their ability to moderate

the congestion in the first two switching stages of the network.

8.5.5. Benchmark II: Static Hot Spot, Many Participants

The previous benchmark examined network performance in the presence of a

static hot spot caused by a small number of senders (four of the 256) sending 100%

of their traffic to a single ‘‘hot’’ destination at saturation throughput. In this

benchmark, a static hot spot is caused by directing half of the senders (GNUT) to

216

Stage 4Stage 3Stage 2Stage 1

Network

GNUT

Hot Spot

G 0

Figure 8.12: Benchmark II: Static Hot Spot, Barrier Traffic. Half of
senders (GNUT) operating at saturation, assigning uniformly-
distributed destinations to 97% of packets generated, with the other
3% being sent to the hot spot. Other half of senders (G 0) transmit
uniformly distributed traffic with graduated applied load. GNUT and
G 0 ‘‘mix’’ in first stage of omega (perfect shuffle) network.

transmit 3% of their packets to the hot destination, with the destinations of the

other 97% being chosen from a uniform distribution of all possible destinations.

Senders <0-127> comprise GNUT , and senders <128-255> comprise G 0 (Fig. 8.12).

Due to the perfect shuffle topology of the omega network, these two groups of

217

senders ‘‘mix’’ at the first switching stage — every switch in the first switching

stage is connected to two members of GNUT and two members of G 0. All

messages are thirty-two bytes long, and GNUT transmits at saturation throughput.

Since there are 128 senders in GNUT , each sending 3% of their packets to the hot

spot, and the bandwidth to the hot spot is 0.94, an upper bound for the throughput

for GNUT (TNUT) can be found by the equation

0.94 ≥ 0.97 . (128/256) . TNUT + 0.03 . 128 . TNUT .

The saturation throughput of GNUT is less than or equal to 0.23.

There are three significant differences between the setup of this and the

previous benchmark. The first difference is that contention for the hot spot occurs

in all stages of the network in this benchmark. In the previous benchmark, G 0

absorbed the brunt of the performance penalty in the first switching stage. Second,

all senders which are not members of GNUT experience the same amount of

contention, hence the single group of senders transmitting uniformly-distributed

traffic (G 0). Third, GNUT transmits packets to destinations other than the hot spot,

and thus competes for some of the bandwidth of links not on the path to the hot

spot.

Figure 8.13 shows the GNUT and G 0 results for networks composed of FIFO

and DAMQ switches with blocking flow control. The fact that throughput results

for FIFO and DAMQ buffers are nearly identical highlights the fact that non-FIFO

buffering does not prevent congestion propagation. The G 0 average latency is

significantly lower for the network composed of DAMQ buffered switches than it

is for the FIFO network. Multi-queue buffers prevent packets which are not

218

Thpt.

Network Throughput
0.0 0.1 0.2 0.3

0

0.2

0.4 DAMQ
GNUT �

G 0 �

FIFO
GNUT

...............

G 0
.

...

.

Lat.

Network Throughput

c

0.0 0.1 0.2 0.3

0

400

800

1200 DAMQ
GNUT �

G 0 �

FIFO
GNUT

...............

G 0
.

...

.
..

Figure 8.13: Benchmark II: FIFO and DAMQ Buffers, Blocking Flow
Control. Hot spot traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0). FIFO and DAMQ Switches,
blocking flow control. Throughput and average latency vs. total
network throughput, GNUT and G 0.

contending for the hot output port of a switch from being queued behind packets

which are contending for the hot output port.

These results suggest three areas in which network performance could be

improved under the congestion pattern of this benchmark: (a) the maximum

throughput of G 0 can be increased (ideally to 0.71), (b) total network throughput

can be increased and (c) average latency for G 0 can be reduced. One area which

will not be significantly improved is hot spot utilization — if TNUT = T 0, then the

219

point of congestion is fully utilized when the throughput for GNUT and G 0 is 0.20,

which is achieved by blocking flow control.

Thpt
G 0

Network Throughput
0.0 0.1 0.2 0.3

0

0.3 Blocking �

MU-10

MU-6

SAMQ

SAFC� �

�. .
.�. .

. .�..
...

..�..
...

...�.
...

.�.. .
.. .�.

...�.
. . . .�.

.�. .�.
. .����. .�

.
.. ...

....
.....

....
... .

...
....

...
....

....
....

..
..

.........

Lat
G 0

Network Throughput

c

0.0 0.1 0.2 0.3

0

400

800
Blocking �

MU-10

MU-6
SAMQ

SAFC� � .
..

....

�. .
.�. . . .�.

.�.�. . . .�.�. . .�.�..�. .�. . .����. .�

Figure 8.14: Benchmark II: Maximum-Usage Flow Control, Group 0.
Hot spot traffic (GNUT) operating at saturation, graduating applied
load of uniform traffic (G 0). DAMQ switches with blocking flow
control, maximum usage flow control, and statically allocated
buffers. Throughput and average latency vs. total network
throughput, G 0.

Figure 8.14 shows the performance of the G 0 traffic for a network of DAMQ

switches with maximum usage flow control with thresholds of ten and six buffer

blocks, and for a network of multiqueue buffers with a static buffer allocation

(SAMQ and SAFC buffers). In the first benchmark, we noted that these flow

control mechanisms caused a measurable increase in the saturation throughput of

220

G 0 and significantly reduced its average latency. That is not the case for the

current traffic pattern; while these flow control mechanisms do still reduce the

latency, there is little improvement to the saturation throughput of G 0 or of the

network as a whole.

In Benchmark I, the packets transmitted by the senders of G 0 conflicted with

those from GNUT at the first switching stage. At this point, because there were

only four senders in GNUT , the congestion traffic was ‘‘diluted’’, making the first

switching stage the critical point for flow control decisions. In this benchmark, on

the other hand, half of the senders are members of GNUT , and there are points of

congestion throughout the network, including at the final switching stage. Since

the congestion is occurring at a distance from the senders and maximum usage

flow control directs its back-pressure for only two hops, this traffic pattern results

in tree saturation.

Figure 8.15 presents G 0 performance figures for two-counter (hysteresis) flow

control. Results are given for a variety of two-counter parameter values. The

behavior of each of the parameter assignments is presented in Tab. 8.2. As can be

seen from Fig. 8.15, these behaviors all result in the same network performance.

This stems from the fact that Benchmark II is a static congestion pattern.

Hysteresis is a mechanism for differentiating between short-term variance and

long-term changes in the value of a random function. Since this benchmark, like

Benchmark I, creates a static congestion pattern, there are few dynamics upon

which hysteresis can operate.

Figure 8.16† shows the G 0 throughput and latency vs. total network
���������������
† Note the change in scale between the graphs in Fig. 8.16 and the graphs in the previous
figures in this section.

221

Thpt
G 0

Network Throughput
0.0 0.1 0.2 0.3

0

0.2

0.4

A
H

aH
T

tH
.

......
......

.....
......

.....
......

......
......

......
.....

...............

.
.

Lat
G 0

Network Throughput

c

0.0 0.1 0.2 0.3

0

400

800

1200

A
H

aH
T

tH

...............
.......................................

.............

.
.

Figure 8.15: Benchmark II: Two-Counter Flow Control, Group 0. Hot
spot traffic (GNUT) operating at saturation, graduating applied load
of uniform traffic (G 0). Two-counter flow control, variety of
parameters (Tab. 8.2). Throughput and average latency vs. total
network throughput, G 0.

throughput for networks using destination-based flow control and path-based flow

control. In the group throughput vs. network throughput graph, the destination-

based and path-based flow control throughputs are identical up to a network

throughput of 0.26. At that point, the network using path-based flow control

saturates.

A result which surprised us is the degree to which destination-based flow

control out-performed path-based flow control. Not only did destination-based

222

Thpt

Network Throughput
0.0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6 G 0

Path-Based�

Dst-Based

GNUT
Dst-Based × × ×

×× × × × × × × × × × ×× ×× ×

... . ..
. . . .

.. . .
.

.
...

Lat

Network Throughput

c

0.0 0.1 0.2 0.3 0.4

0

400

800
Path-Based�

Dst-Based

... . ..
.

Figure 8.16: Benchmark II: Link-Based Flow Control, Group 0. Hot spot
traffic (GNUT) operating at saturation, graduating applied load of
uniform traffic (G 0). Shown is the G 0 throughput vs. network
throughput and G 0 latency vs. network throughput for destination-
based and path-based flow control. In the top graph, G 0 throughputs
for destination-based and path-based flow controls are equal up to a
network throughput of 0.26.

flow control support a G 0 saturation throughput two times greater than path-based

flow control, but the average latency of G 0 traffic under destination-based flow

control at saturation throughput (0.3 +) was lower than the average G 0 latency

under path-based flow control at throughputs approaching 0.2. Given such a

tremendous difference between the performance of G 0 traffic under destination-

based flow control and any other flow control mechanism, one must ascertain

223

(a) that the total network throughput was not sacrificed to provide this level of G 0

performance and (b) that the point of congestion was not under-utilized.

Figure 8.16 shows that the total network throughput under destination-based

flow control was also significantly higher than under the other flow control

mechanisms. The throughput through the point of congestion (TPC) when the

network is operating at its maximum throughput can be calculated from the

throughputs of G 0 and GNUT at that point (0.60 and 0.15, respectively).

TPC =
256
128���� . 0.60 +

256
128���� . 0.97 . 0.15 + 128 . 0.03 . 0.15

= 0.94.

Thus, for this benchmark, the hot link is fully utilized under destination-based flow

control.

Benchmark II presented markedly different results than did Benchmark I.

The most significant difference was the ineffectiveness of all of the flow control

mechanisms except destination-based flow control in this benchmark. Even path-

based flow control, which performed comparably to destination-based flow control

under Benchmark I, and which outperformed all other flow control mechanisms

under this benchmark, fell significantly short of destination-based flow control.

The reason for this was two-fold. First, the congestion was destination-oriented (a

hot spot). Since destination-based flow control keys on packets’ addresses to

detect congestion, it has a clear advantage in terms of being able to detect the

congestion in this benchmark. Second, the point of congestion was four hops away

from the senders. For flow control mechanisms such as maximum usage,

224

hysteresis and static buffer allocation, which only provide directed flow control for

a single hop, having the point of congestion be this far from the senders allows tree

saturation to occur.

The difference between the performances of destination-based and path-based

flow control stems from the fact that path-based flow control suffers from ‘‘false

blocking’’. Since it considers multiple packets traversing the same next n hops as

being congested (i.e. it does not allow two such packets in a single buffer memory),

and, for our simulations, n was set to two, all packets whose paths shared two or

more links with the hot spot traffic were blocked as through they were hot spot

traffic. This significantly reduced path-based flow control’s performance relative

to destination-based flow control.

8.5.6. Benchmark III: Static NUT Spot

The first two benchmarks explored the utility of flow control mechanisms in

situations where congestion was caused by contention for a terminal link of the

network (i.e. a hot spot). Under those conditions, packets which are ‘‘involved’’ in

the congestion can be identified by their destination address. Destination-based

flow control does exactly that, and thus achieves higher performance for senders

not participating in the hot spot (members of Gi). In this benchmark, GNUT creates

a non-uniform traffic spot internal to the network. This is done by directing

senders <207>, <223>, <239> and <255> (GNUT , for this benchmark) to transmit

thirty-two byte messages to destinations randomly chosen from the range

(0 . . . 15). The members of GNUT were chosen such that their paths to any

destination intersect at the second switching stage. By restricting the destinations

225

8

6

15
14
13
12

11
10
9

7

5
4

3
2
1
0

Stage 4Stage 3Stage 2Stage 1

255

239

223

207

Figure 8.17: Benchmark III: Non-Uniform Traffic Spot. GNUT (<207>,
<223>, <239>, <255>), transmitting all packets to destinations
(0 . . . 15), create a non-uniform traffic spot at output port #0 of
switch #0 of the second switching stage.

of packets transmitted by GNUT to the range (0 . . . 15), a non-uniform traffic spot

is created at output port #0 of switch #0 of the second switching stage (Fig. 8.17).

The NUT spot is traversed by packets addressed to destinations (0 . . . 15) from

twelve other senders; these senders comprise G 0. The remaining senders (G 1)

cannot reach the congested link, and are thus not negatively impacted by the

226

congestion (in fact, the performance of the remaining senders is improved, since

the existence of the congestion will limit the throughput of the senders in GNUT

and G 0).

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.2

0.4

0.6 DAMQ
GNUT

G 0

FIFO
GNUT

...........

G 0
. . . .

...

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

800

1600

2400

3200
DAMQ

GNUT

G 0

FIFO
GNUT

...........

G 0
. . . .

...............................
.......................

..............
............

............
........

.

.

Figure 8.18: Benchmark III: FIFO and DAMQ Buffers, Blocking Flow
Control. Congestion traffic (GNUT) operating at saturation,
graduating applied load of uniform traffic (G 0, 1). FIFO and DAMQ
Switches, blocking flow control. Throughput and average latency
vs. total network throughput, GNUT and G 0.

Fig. 8.18 shows the results for networks of FIFO and DAMQ switches with

blocking flow control (the results for G 1 are not shown, since G 1 does not interact

with the congestion). As with Benchmark I, the point of highest throughput for

GNUT is when the applied load for G 0, 1 is 0.0 m/sc — as the applied load for the

227

other groups is increased, GNUT loses network bandwidth and experiences higher

latencies. This graph shows G 0 severely impacted by the NUT spot; G 0’s

throughput saturates at 0.36 and experiences significant degradation as the applied

load is increased beyond that point (i.e. as the applied load is increased beyond the

point of maximum throughput for G 0, the throughput of G 0 drops). The

throughput degradation is due to contention between G 0 and G 1. Since G 1 is not

impacted by the NUT spot, it achieves a higher packet throughput, as evidenced by

the high total network throughputs achieved by both buffer types. Packets from G 0

do, however, interact with packets from G 1 at the third and fourth switching stages.

Thus, at top throughputs, G 1 uses significant fractions of the available bandwidth

at those stages, reducing the throughput of G 0.

Figure 8.19 shows the performance of networks using maximum usage flow

control mechanisms in comparison to blocking flow control. The graphs present

the throughput and latency of G 0 vs. total network throughput, as this provides the

key performance metrics (total network throughput and degree of protection

offered G 0). The figure shows maximum usage flow control significantly

improving the throughput of G 0. This degree of success is due to the proximity of

the point of congestion to the senders. The point of congestion is a link connecting

the second and third switching stages; it is thus two hops from the senders.

Maximum usage flow control, which determines whether or not to transmit packets

based upon the output port of the next switch that the packet will traverse, provides

directed back pressure (Sec. 8.4) for only a single hop. It is, thus, much more

effective in situations where the senders which are causing the congestion are a

small number of hops away from the point of congestion. Under this benchmark,

228

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.2

0.4

0.6
Blocking

MU-10

MU-6 �

SAMQ

SAFC� �

�.. . .
.�. .

.
.

.
.�. .

.
. . .�.

.
.

.
.�. . .

.
.

.�.
.�.
.�

..
.

.
.

.
.

.
.

.
.

.
.

.
.

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

400

800 Blocking

MU-10

MU-6 �

SAMQ

SAFC� �

�.�. .�.�. . .
. .�.

.�. .��
.

.
. .. .

.
.

Figure 8.19: Benchmark III: Maximum Usage Flow Control, Group 0.
Congestion traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0, 1). Maximum-usage flow
control with thresholds of ten and six buffer blocks and statically
allocated buffers. DAMQ buffers with blocking flow control
presented for comparison. Throughput and average latency vs. total
network throughput, G 0.

switches in the first switching stage can distinguish between packets which are

destined for the hot switch in the second stage and will traverse the congested link,

and those destined for the hot switch but will not contest for the congested link.

Static buffer allocation and maximum usage flow control with a threshold of

six buffer blocks, however, have significantly lower maximum network

throughputs than does blocking flow control. This reflects blocking flow control’s

229

superior performance under uniform traffic conditions (i.e. G 1 performance), as

will be seen in Sec. 8.5.9. Maximum usage flow control with a threshold of ten

blocks demonstrates clear performance advantages over the other mechanisms in

the figure; it achieves the highest network throughput, the highest G 0 throughput

and an average G 0 latency as low as any of the four flow control mechanisms

shown.

Thpt
G 0

Network Throughput
0.0 0.2 0.4 0.6

0

0.2

0.4

0.6
A
H

aH �

T

tH

.

.......
.........

........
........

........
.........

.........
...........

...........
...........

..........
............

...........
...........

.......

.

Lat
G 0

Network Throughput

c

0.0 0.2 0.4 0.6

0

400

800 A

H

aH �

T

tH

.

..
....................................

........................
..............

.........

.

Figure 8.20: Benchmark III: Two-Counter Flow Control, Group 0.
Congestion traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0, 1). Two-counter flow control
with a variety of parameters (Tab. 8.2) Throughput and average
latency vs. total network throughput, G 0.

Figure 8.20 shows the performance for two-counter flow control with a

230

variety of parameters (see Tab. 8.2). This being a static congestion pattern, we did

not expect hysteresis to positively impact the performance of the flow control

mechanisms. As the graphs show, the two-counter flow control mechanism

behavior is similar to maximum usage flow control behavior, with the maximum

network throughput falling short of that achieved by maximum usage, threshold of

ten blocks.

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.2

0.4

0.6

Path-Based

Dst-Based

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

400

800
Path-Based

Dst-Based

.

Figure 8.21: Benchmark III: Link-Based Flow Control, Group 0.
Congestion traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0, 1). Destination- and path-based
flow control. Throughput and average latency vs. total network
throughput, G 0.

Figure 8.21 shows the G 0 throughput and average latency vs. network

231

throughput curves for destination-based and path-based flow control. Destination-

based flow control performance is similar to that of blocking flow control; it

achieves a slightly higher throughput for G 0 and a slightly lower maximum

network throughput. This is due to the fact that destination-based flow control

bases its flow control decisions on the destination addresses of packets. Since the

congestion is not correlated to individual destinations, the flow control is ‘‘blind’’

to the congestion. Path-based flow control performs as well in this benchmark as

in Benchmarks I and II — that is to say, it provides good protection for G 0, but

does suffer some network throughput degradation relative to other flow control

mechanisms. This follows from the fact that path-based flow control detects link

contention, independently of where the link is located in the network. Thus, the

congestion occurring in this benchmark is indistinguishable from the congestion

experienced in the first two, from path-based flow control’s viewpoint.

This benchmark provided insights into the behavior of each of the flow

control mechanisms under investigation. It demonstrated the reliance of

destination-based flow control on there being a correlation between congestion and

a particular destination address. If such a correlation does not exist, then

destination-based flow control will be ineffective. Path-based flow control remains

effective, due to its use of packets’ paths as a basis for flow control decisions. It

suffers, however, from the same fault as static buffer allocation; it too often

throttles flow when throttling is unnecessary, which negatively impacts the total

network throughput. Buffer-based flow control schemes such as maximum usage

and two-counter flow control are effective in situations where the point of

congestion is physically close to the cause of the congestion, as is the case with this

232

benchmark.

8.5.7. Benchmark IV: Four Senders with Long Messages

In this benchmark, the members of GNUT transmit long (1024-byte) messages

to randomly chosen destinations. These messages are broken into a sequence of

thirty-two thirty-two byte packets — the packets which constitute a message are

transmitted back-to-back at saturation throughput, and in this benchmark the

messages themselves are generated with no idle time in between (saturation

throughput). By attempting to utilize 100% of the available bandwidth on the path

to their destination, each long message will cause congestion. There are four

members of GNUT : senders <240>, <244>, <248> and <252>. Due to the senders

which were chosen to constitute GNUT , two packets from GNUT senders will

contend for the output port of a switch only at the forth (final) switching stage. In

other words, intra-GNUT contention only occurs when two members of GNUT

transmit messages to the same destination in overlapping time periods. Thus, for

the majority of the simulation time, there will be four independent heavily used

paths through the network (one from each member of GNUT).

The remaining senders are divided into three groups based upon their

interaction with GNUT . The twelve senders whose traffic intersects GNUT ’s traffic

at the first switching stage are G 0, the forty-eight whose traffic intersects at the

second stage are G 1, and the remaining 192 senders, whose traffic intersects

GNUT ’s at the third switching stage, are G 2; this is identical to the sender grouping

for Benchmark I. This benchmark is intended to test the flow control mechanisms

in a dynamic environment, where the cause of congestion is transient. Also,

233

Stage 4Stage 3Stage 2Stage 1

Network

GNUT

Figure 8.22: Benchmark IV: Dynamic Serial Transmission. Four senders
(GNUT) operating at saturation, assigning uniformly-distributed
destinations to 1024 byte messages.

creating streams of packets from a source to a particular destination mimics events

which occur in multicomputers such as remote paging, cache flushing or file I / O.

Figure 8.23 shows the throughput and the average latency of traffic from each

of the four groups of senders for a network of DAMQ switches using blocking flow

control. The results suggest that the congestion caused by this benchmark degrades

the performance to the network as a whole far less than did the static hot or NUT

234

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

0.8
GNUT

G 0

G 1
...............

G 2
.

..........
...........

...........
.........

...........
...........

.........
..........

...........
..........

...........
...........

...................

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

1000

2000
GNUT

G 0

G 1
...............

G 2
.

...
..........................

.........
........

.

Figure 8.23: Benchmark IV: DAMQ Buffers, Blocking Flow Control.
Serial traffic (GNUT) operating at saturation, graduating applied load
of uniform traffic (G 0−2). Switches with DAMQ buffers, blocking
flow control. Throughput and average latency vs. total network
throughput, GNUT and G 0−2.

spots of the previous benchmarks. The graphs show G 0 suffers the greatest impact,

with its saturation throughput reduced to a maximum of 0.49, a forty percent

reduction compared to the throughput of a system with a uniform traffic

distribution. In addition, the point of maximum G 0 throughput does not

correspond to the maximum network throughput; beyond the point at which the G 0

throughput peaks, contention from G 2, 3 (which compete with G 0, 1 for network

resources only after the first switching stage) reduces the G 0 throughput.

235

G 1 is minimally impacted by GNUT , with its throughput dropped to 0.64, and

G 2 is not impacted at all, achieving a throughput of 0.71. The reason for this is

that, while GNUT reduces the throughput of G 0, G 0 does the same to GNUT .

Congestion at the first switching stage reduces the applied load of GNUT traffic on

the second switching stage, decreasing its impact on G 1. Similarly, contention

between GNUT and G 1 at the second switching stage reduces GNUT traffic to the

point that G 2’s throughput is not effected.

Figure 8.24 compares the G 0 results of blocking flow control to results for

maximum usage flow control (with thresholds of ten and six buffer blocks) and to

static buffer allocation (SAMQ and SAFC buffering). Static buffer allocation and

maximum usage flow control provide similar protection for the performance of G 0;

the maximum throughput of G 0 is increased to ∼∼ 0.58 (slightly higher for SAFC

buffers, slightly lower for SAMQ buffers and maximum usage flow control), and

the average latency of G 0 is cut to nearly half of what it is for blocking flow

control. By limiting the amount of buffer space which can be occupied by a single

queue, these forms of flow control prevent the buffers of the second-stage switches

from being filled with GNUT packets, thus allowing the G 0 traffic which will take a

different second-stage output port to bypass the congestion at that switching stage.

This improvement is not enough, however, to offset the performance degradation

caused by static buffer allocation under uniform traffic conditions; SAMQ and

SAFC buffering support significantly lower maximum network throughputs under

this benchmark than does DAMQ buffers with blocking flow control. Maximum

usage flow control, on the other hand, increases the maximum throughputs of both

G 0 and the network as a whole relative to blocking flow control; the impact of

236

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

0.8 Blocking

MU-10

MU-6 �

SAMQ

SAFC� �

.

.
..

.
.

..
.

.
.

.
.

.

�. . . .
. . . .�.

.�.
.

. . . .�.
.�. .

.
.

. .�.
.

. .�.
. . .�. . .

.�. . .��.
.�

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

250

500

750
Blocking

MU-10

MU-6 �

SAMQ

SAFC� �

.
.

.
.

.
.

.. .

�.�.�.�.
. . . .�.

. .�.�. .
.�.

. .�. ..���

Figure 8.24: Benchmark IV: DAMQ Buffers, Maximum-Usage Flow
Control. Serial traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0−2). Blocking, maximum-usage
flow control and statically allocated (SAMQ and SAFC) buffers.
Throughput and average latency vs. total network throughput, G 0.

maximum usage flow control on uniformly-distributed traffic is presented in

Sec. 8.5.9.

The performance of two-counter (hysteresis) flow control is shown in

Fig. 8.25. Simulations were run for this benchmark using a variety of parameter

values (Tab. 8.2). As was seen in the previous benchmarks, there is little

difference in the degree to which two-counter flow control with the different

parameter values promote the performance of the groups of senders transmitting

237

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

0.8 A

H

aH

T

tH

.

...........
...........

..........
...........

...........
.........

............
............

............
............

...............
...................

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

250

500

750
A
H

aH
T

tH

.

...
.........................

.....................
..............

.........
.........

.....
.....

.

Figure 8.25: Benchmark IV: DAMQ Buffers, Two-Counter Flow Control.
Serial traffic (GNUT) operating at saturation, graduating applied load
of uniform traffic (G 0−2). Shown is the throughput vs. network
throughput and latency vs. network throughput of G 0 for two-
counter flow control with a variety of parameters (see Tab. 8.2 for
details of the parameters).

uniformly-distributed traffic. In this benchmark, the best two-counter flow control

results are similar to that of maximum usage flow control with a threshold of six

buffer blocks. With the previous three benchmarks the lack of impact of hysteresis

on network performance was not surprising, due to the static nature of the

congestion in those benchmarks. Benchmark IV does create dynamic congestion

patterns. The lack of impact of hysteresis here indicates that, perhaps, the

congestion patterns or not ‘‘dynamic enough’’ for hysteresis to be helpful. This

238

possibility is examined further with Benchmark V, where the congestion patterns

are more dynamic.

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

0.8
G 0

Path-Based

Dst-Based

GNUT
Dst-Based × × ×

×
×

×
×

×

×
×

× ××××
.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

250

500

750

Path-Based

Dst-Based

.

Figure 8.26: Benchmark IV: DAMQ Buffers, Link-Based Flow Control.
Serial traffic (GNUT) operating at saturation, graduating applied load
of uniform traffic (G 0−2). Destination- and path-based flow control.
Throughput and average latency vs. total network throughput, G 0.

Figure 8.26 shows the performance of G 0 for networks implemented with

destination-based flow control and path-based flow control. Path-based flow

control allows G 0 to transmit data at a throughput of ∼∼ 0.69, and destination-based

flow control supports a G 0 saturation throughput of 0.79. These flow control

mechanisms achieve high throughputs for G 0 by throttling the throughput of GNUT .

As Fig. 8.26 shows, destination-based flow control throttles the GNUT traffic as low

239

as 0.11 in response to contention with traffic from the other sender groups.

Whether or not throttling GNUT to this degree creates a ‘‘fairness problem’’ is an

application-specific question; in the context of this evaluation, the total network

throughput must be the basis for comparing the flow control mechanisms. While

the high throughput achieved by G 0 under both destination- and path-based flow

control almost offsets the severe throttling of GNUT , the maximum total network

throughput is lower for these flow control mechanisms than it is for maximum

usage flow control with a threshold of ten buffer blocks.

This benchmark was a departure from the previous three benchmarks on two

fronts. First, it created only mild network congestion — DAMQ buffers with

blocking flow control achieve a network throughput of 0.68, only a bit shy of the

0.72 achieved under uniform traffic conditions. Benchmark III also minimally

impacted network throughput, but for a very different reason. In Benchmark III,

the point of congestion was unreachable by three fourths of the senders. Here, the

congestion impacts every sender; it simply does not impact them very much.

Second, the traffic pattern was dynamic. This caused points of congestion to be

created and destroyed over the course of the simulation. In theory, one of the flow

control characteristics this benchmark was to demonstrate was their ability to adapt

under dynamic conditions.

This benchmark exposed the tendency of destination-based and path-based

flow controls to over-throttle serial communication. This extreme throttling was a

positive feature in Benchmarks I and II, but under traffic conditions in which high-

throughput serial transmissions can coexist with the uniformly distributed traffic,

this can cause a drop in performance.

240

In contrast, maximum usage flow control with a threshold of ten buffer blocks

minimally throttles GNUT and achieves the highest maximum network throughput

of any of the flow control mechanisms for this benchmark. This mechanism

depends upon congestion between GNUT and G 0 at the first switching stage to

throttle GNUT , which allows GNUT to utilize as much network bandwidth as it can.

Further, by preventing any single packet queue from occupying an entire buffer,

G 0 is not severely impacted by the GNUT traffic (as it is under blocking flow

control).

8.5.8. Benchmark V: 128 Senders Transmitting Multi-Packet Messages

For the fifth benchmark, GNUT consisted of 128 (half) of the senders in the

network. These senders cause congestion by transmitting 256-byte messages to

uniformly distributed destinations at saturation throughput. Each message is split

into eight-packet sequences. The other half of the senders transmit thirty-two-byte

packets to uniformly-distributed destinations with a graduated applied load. As

with Benchmark II, the senders are chosen such that GNUT and G 0 ‘‘mix’’ in the

first switching stage; each switch in stage #1 receives input from two members of

GNUT and two members of G 0.

In this benchmark, there are two sources of congestion. The first is that the

256-byte messages generated by GNUT can completely fill a buffer if the packet

sequence encounters contention for a link. The second source is that the packet

sequences which constitute a 256-byte message heavily utilize individual links for

extended periods of time. This is similar to the congestion in Benchmark IV,

except that (1) the congestion pattern in this benchmark is more dynamic and

241

(2) messages from GNUT can collide with one another at any point in the network,

and do so more frequently in this benchmark than in the previous. As with the

previous benchmark, the three metrics used to evaluate the flow control

mechanism’s performance are the maximum total network throughput (the

throughput of GNUT and G 0 combined), average latency of the uniform traffic vs.

network throughput, and the saturation throughput of G 0.

Thpt.

Network Throughput
0.2 0.3 0.4 0.5

0

0.4

0.8
DAMQ

GNUT

G 0

FIFO

GNUT
.�

G 0
.�

.

.
....

....
... .

. . ..
.

. .. .
......

Lat.

Network Throughput

c

0.2 0.3 0.4 0.5

0

400

800
DAMQ

GNUT

G 0

FIFO

GNUT
.�

G 0
.�

.

.
... . .

.
.

... ..
.. ..

...
......
.

Figure 8.27: Benchmark V: Blocking Flow Control. Congestion traffic
(GNUT) operating at saturation, graduating applied load of uniform
traffic (G 0). Switches with FIFO and DAMQ buffer, blocking flow
control. Throughput and average latency vs. total network
throughput, G 0 and GNUT .

Fig. 8.27 shows the throughput and average latency vs. system throughput of

242

GNUT and G 0 for networks of FIFO and DAMQ switches with blocking flow

control. As previously mentioned, GNUT operates at saturation throughput while

the applied load of G 0 is graduated, GNUT achieves its highest throughput and

lowest latency when the applied load of G 0 is 0.0 m/sc (G 0 throughput equals

0.0 b/ls). As the applied load of G 0 is increased, the GNUT traffic encounters more

contention, and its throughput drops. Unlike the first four benchmarks, the GNUT

throughput remains higher than that of G 0 under blocking flow control, even when

G 0 is at saturation throughput.

As can be seen from the figure, DAMQ buffers provide superior performance

over FIFO buffers for both G 0 and GNUT senders. Since the network congestion is

highly dynamic, a buffering scheme which reduces the effect of output port

contention makes a significant impact on network performance. The network of

DAMQ buffers achieves a total network throughput of 0.48, compared to 0.36 for

the network of FIFO buffers. While the DAMQ buffered network improves the

throughput of both G 0 and GNUT traffic, it does not provide a significant

improvement in latency for the traffic of either group. Further, both the total

network throughput and the G 0 throughput fall well short of the 0.71 throughput

achievable under uniform traffic conditions.

Fig. 8.28 shows G 0 throughput vs. system throughput and G 0 latency vs.

system throughput for DAMQ switches with blocking flow control, maximum

usage flow control with thresholds of ten and six blocks, and static buffer

allocation (SAMQ and SAFC buffers).

SAMQ buffering provides a lower G 0 average latency and slightly higher G 0

throughput than DAMQ buffering with blocking flow control. The graph indicates,

243

Thpt.
G 0

Network Throughput
0.2 0.3 0.4 0.5

0

0.4

0.8 Blocking
MU-10

MU-6
SAMQ

SAFC� ��

�...�..
.�. . .

. . .�. .
. . . .

. .�. . .
. . . .

.�. . .
. . . .�.

. . . .
.

.�. . .
.. .. .�.

.....�.
. . .�. .

. .�. . . .�.
.���

.

.
.. . . .

.
.

.
.

. . . .
. . . .

.. ...
.... .

.
..

Lat.
G 0

Network Throughput

c

0.2 0.3 0.4 0.5

0

400

800 Blocking
MU-10

MU-6
SAMQ

SAFC� ��

�...�. .�.�.�.�.�. . .
.�.�.�. . . .�. . .

.�. . . .�..���.

.
.

.

Figure 8.28: Benchmark V: Maximum Usage Flow Control. Non-
uniform traffic (GNUT) operating at saturation, graduating applied
load of uniform traffic (G 0). Shown is the G 0 throughput vs. system
throughput and G 0 latency vs. system throughput for blocking, static
allocation and maximum usage flow control (six and ten buffer
maximums).

however, that the SAMQ switch network has a lower network throughput — it has

a much lower saturation throughput for GNUT , which lowers network maximum

throughput. The SAMQ switch network performs as well as the DAMQ switch

network on G 0 traffic only because it so strongly throttles the GNUT traffic,

reducing the contention that the G 0 traffic encounters from the GNUT messages.

While exhibiting better performance, the SAFC switch displays behavior

244

similar to that of the SAMQ switch. By over-throttling GNUT , the network of

SAFC switches achieves a maximum throughput for G 0 traffic equal to that for

maximum usage flow control, and the average latency is significantly lower

(Fig. 8.28). However, the total network throughput is lower for the SAFC switch

network (0.50 vs. 0.55 for maximum usage flow control). If one considers the

maximum network throughput to be the metric of interest, SAFC switch

performance falls measurably short of the mark. If the latency of G 0 traffic is the

primary concern, then SAFC buffering is preferable over maximum usage flow

control for this benchmark.

Maximum usage flow control performance is superior to blocking flow

control for this benchmark; the average G 0 latency is lower, and the maximum

throughputs for both G 0 and the network as a whole are higher for maximum usage

than for blocking flow control. Comparing maximum usage blocking thresholds,

the ten-block congestion threshold supports higher total network throughput than a

threshold of six buffer blocks while they both achieve approximately the same

maximum G 0 throughput. Thus, it is the throughput of GNUT traffic which benefits

the most from the higher threshold. The higher threshold reduces the number of

switches that the packets which constitute a message occupies; this, in turn,

increases the probability that a GNUT sender will be able to inject a message into

the network in its entirety, without halting. The throughput and latency of G 0 seem

to be indifferent to whether the threshold is ten or six blocks.

If there is a condition under which hysteresis is beneficial to a hop-level flow

control mechanism, it is under dynamic congestion conditions such as this

benchmark. We found, however, that two-counter (hysteresis) flow control is less

245

Thpt.
G 0

Network Throughput
0.2 0.3 0.4 0.5

0

0.4

0.8
A �

H

aH

T

tH
.

Lat.
G 0

Network Throughput

c

0.2 0.3 0.4 0.5

0

400

800
A �

H

aH

T

tH

Figure 8.29: Benchmark V: Two-Counter Flow Control. Non-uniform
traffic (GNUT) operating at saturation, graduating applied load of
uniform traffic (G 0). Shown is the G 0 throughput vs. system
throughput and G 0 latency vs. system throughput for two-counter
flow control with a variety of parameters.

effective than maximum usage. Fig. 8.29 shows the results for networks using

two-counter flow control with a variety of parameters (see Tab. 8.2 for an

explanation of parameter settings). G 0 performance for two-counter flow control is

almost as good as that for maximum usage, but GNUT throughput falls short of the

throughputs achieved by maximum usage flow control (as can be seen by the

reduction in the total network throughput).

As has been previously discussed, the concept behind hysteresis flow control

246

is that one wants to change flow control states only when the network state

(specifically, the point of congestion) has ‘‘really’’ changed, and thus avoiding

both throttling flow unnecessarily and allowing flow when one should not. Since

these are situations which only arise under dynamic congestion conditions, we

expected this benchmark to be where hysteresis flow control demonstrated its

worth. Our results indicate that either (a) ‘‘false’’ throttles and releases do not

significantly effect performance, (b) adding hysteresis to the flow control does not

prevent ‘‘false’’ throttles and releases or (c) one must carefully match the

thresholds of the hysteresis mechanism to the dynamics of the traffic pattern, and

we did find the match. If any of those hypotheses are true, it suggests that

hysteresis is not a beneficial characteristic of a flow control mechanism for a

general purpose communication network.

Figure 8.30 shows simulator results for the link-based flow control

mechanisms (destination- and path-based flow control). The link-based flow

control mechanisms achieve very high throughputs for G 0 traffic — destination-

based flow control supports a G 0 throughput of 0.85. Further, at a network

throughput of 0.50, the average latency of G 0 packets is ∼∼ 150 c, markedly lower

than the average G 0 latency for maximum usage flow control operating at 0.50

(∼∼ 260 c).

The saturation throughput of G 0 under destination-based flow control in this

benchmark is significantly higher than the saturation network throughput

obtainable under uniform traffic conditions — how destination-based flow control

is able to achieve such a high throughput for G 0 is evident from the fact that the

maximum network throughput (which, under this benchmark, is the average of the

247

Thpt.
G 0

Network Throughput
0.2 0.3 0.4 0.5

0

0.4

0.8

Path Based

Dst Based

.
.

. . . .
.

Lat.
G 0

Network Throughput

c

0.2 0.3 0.4 0.5

0

400

800

Path Based

Dst Based

.

Figure 8.30: Benchmark V: Link-Based Flow Control. Non-uniform
traffic (GNUT) operating at saturation, graduating applied load of
uniform traffic (G 0). Shown is the G 0 throughput vs. system
throughput and G 0 latency vs. system throughput for destination-
and path-based flow control.

GNUT and G 0 maximum throughputs for this benchmark) is significantly lower

than the maximum G 0 throughput. Destination-based flow control heavily

penalizes the GNUT traffic in favor of the G 0 traffic. GNUT is restricted to 0.29

when G 0 is operating at saturation ([0.85 + 0.29]/2 = 0.57). Whether or not this

behavior is desirable depends upon the applications being executed; while this flow

control may seem to be ‘‘unfair’’ in the degree to which it is throttling GNUT traffic

in favor of G 0, the saturation throughput for the network as a whole is 0.57, which

248

is slightly higher than the total network saturation throughput for maximum usage

flow control with a ten-block threshold (0.55).

While path-based flow control throttles GNUT traffic as much or more than

does destination-based flow control, GNUT achieves a higher saturation throughput

under path-based flow control. This is due to the fact that path-based flow control

throttles G 0 more heavily than does destination-based (throttling on the basis of the

next two hops to be traversed as opposed to the destination address). Thus, GNUT

encounters less network contention from G 0 packets under path-based flow control

and achieves a higher throughput. The net result is that path-based flow control

has a lower total network throughput than either destination-based or maximum

usage flow control.

8.5.9. Benchmark VI: Uniform Traffic

Our final benchmark is to apply uniformly distributed traffic to networks

implemented with different flow control mechanisms. The purpose of this

benchmark is to measure the degree to which latency is increased and saturation

throughput is reduced by the flow control mechanisms when there are no NUT

spots in the network. For this benchmark, all senders transmit thirty-two byte

messages, and each message’s destination address is randomly selected from a

uniform distribution of all possible destinations. Since the senders are not divided

into separate groups, the performance metrics are the maximum (total) network

throughput and the average latency per throughput.

Figure 8.5, presented in Sec. 8.5.2, showed latency vs. throughput for

networks of FIFO and DAMQ switches with blocking flow control. The network

249

Lat

Throughput

c

0 0.2 0.4 0.6 0.8

0

200

400 MU-10

MU-6

SAMQ

SAFC� �

�. ..�. . .�.�.�.
.�.�.

.�.
.�.

. .. .�. . . .
.�.. .

.�..��.
.�..�

.
.

.
.

..
.

.. . ..
...

.
.
.
.
..
.

Lat.

Throughput

c

0 0.2 0.4 0.6 0.8

0

250

500
A

H

aH

T

tH

.

.. ..
.......................

................
...........

........
.......

......
.....

...
....
.....

.
..

.. .

Figure 8.31: Benchmark VI: Maximum Usage and Two-Counter Flow
Control. All senders transmitting 32-byte messages with uniformly
distributed destinations. The average latency vs. throughput is
presented; top graph shows static allocation and maximum-usage
flow control (six and ten buffer maximums), bottom graph shows
two-counter flow control with a variety of parameters (see Tab. 8.2
for explanation of parameters).

of FIFO switches saturates at a throughput of 0.49, while the network of DAMQ

switches saturates at 0.71. At 0.20, both networks display an average latency of

∼∼ 35 c (the minimum latency through the four-stage omega network is 20 c).

Fig. 8.31 presents two graphs. The top graph shows the average latency vs.

throughput for networks with static buffer allocation (SAMQ and SAFC buffers)

and maximum usage flow control (thresholds of six and ten buffer blocks). The

250

bottom graph shows the performance of networks with two-counter flow control

with a variety of parameter values (see Tab. 8.2 for explanation of parameter

settings). For networks operating below saturation throughput, under uniform

traffic conditions, these flow control mechanisms do not impact communication

latency. The results indicate that the more restrictive flow control policies do

reduce the saturation throughput. The flow control policy which significantly

reduces the saturation throughput is static buffer allocation; SAMQ buffering drops

the maximum throughput to 0.60, SAFC buffering drops it to 0.63.

Maximum usage flow control with a ten-block threshold actually improved

the saturation throughput of uniformly distributed traffic. This mechanism

achieved a network throughput of 0.72. An improvement of 0.01 is insignificant,

and is within the error margin of the simulator (97.5% confidence intervals for

simulation results of the two networks overlap), but one can understand why this

mechanism would perform as well or better than blocking flow control under

uniformly distributed traffic. The only time it throttles traffic is when a queue

already has three packets in it — it does not cause output ports to be under-utilized,

and it prevents a single queue from occupying the entire buffer, which eliminates

the multi-queueing function of the buffer.

Two-counter flow control and maximum usage flow control with a threshold

of six buffer blocks perform slightly worse than blocking flow control, saturating in

the region of 0.68 (with some variance among the two-counter parameterizations).

These mechanisms either throttle traffic more often then blocking flow control, or

unblock blocked queues more slowly, and thus reduce the network throughput

slightly.

251

Lat.

G 0

Throughput

c

0 0.2 0.4 0.6

0

250

500

Path-Based

Dst-Based

.
. . ..

. . .
...
..

Figure 8.32: Benchmark VI: Link-Based Flow Control. All senders
transmitting 32-byte messages with uniformly distributed
destinations. Shown is the latency vs. throughput for Destination-
and path-based flow control.

Figure 8.32 shows the performance of path-based and destination-based flow

control. Destination-based flow control achieves a saturation throughput just

slightly lower than that of blocking and maximum usage flow controls (0.69).

Path-based flow control is slightly worse (0.67) — this mechanism is more likely

to commit ‘‘false throttling’’ (throttling traffic when there is no congestion) than is

destination-based flow control.

8.5.10. Combining Hop-Level Flow Control Mechanisms

In Secs. 8.5.4 through 8.5.9, a set of hop-level flow control mechanisms were

evaluated. The results of this evaluation indicate that different flow control

mechanisms protect the performance of G 0−2 senders and the throughput of the

network as a whole under different congestion patterns. For Benchmarks I and II

(the hot spot benchmarks), destination-based flow control outperforms every other

252

flow control mechanism examined, both in terms of total network throughput and

in terms of protection provided for G 0. On Benchmarks IV and V, destination-

based flow control provides a greater degree of protection for the G 0 senders than

does maximum usage flow control, but destination-based flow control and

maximum usage flow control with a ten-buffer-block threshold achieve

approximately the same maximum network throughput.

In Benchmark III, a static non-uniform traffic spot not associated with a single

destination was generated in the network. Since only sixteen of the 256 senders

were impacted by this congestion, there was little difference between the maximum

total network throughput achieved by the different flow control mechanisms.

Under destination-based flow control, however, the G 0 traffic was severely

impacted by this congestion. As was discussed in Sec. 8.5.6, destination-based

flow control is ineffective against congestion which is not destination-oriented.

The buffer-based flow control mechanisms (maximum usage, hysteresis and static

buffer allocation) were all significantly more effective than destination-based flow

control in this case.

Benchmark VI addressed the performance of the flow control mechanisms

under uniform traffic conditions. Static buffer allocation was the only flow control

mechanism which significantly impacted network throughput under uniform traffic

conditions; the rest of the mechanisms we examined had little impact. SAMQ

buffers reduced throughput and had no redeeming features; SAFC buffers had a

lower maximum throughput than the other flow control mechanisms, but it also

supported a lower average latency at high throughputs.

The flow control mechanisms which we have examined are not all mutually

253

exclusive. That is to say, one can implement a flow control protocol which

combines two or more of the mechanisms which we have discussed. In this

section, we explore the results of combining destination-based flow control with

maximum usage flow control and with SAFC buffering. Destination-based flow

control is an obvious candidate for combining, as it provided the highest

performance on most of the benchmarks. Maximum usage flow control also did

well on many of the benchmarks, including Benchmark III — the benchmark that

destination-based flow control did so poorly on. Although the SAFC buffer failed

to achieve throughputs as high as the other flow control mechanisms, it was

consistently able to maintain low average latencies.

Combining destination-based flow control and maximum usage flow control

into a single flow control protocol is relatively straight forward. As with

destination-based flow control, if a packet attempts to enter a buffer in which there

is already a packet with the same destination, the incoming packet is rejected.

Rejected packets are moved to the tail of the queue from which they were

transmitted. Rejected packets are marked as BLOCKED, and packets which

‘‘cause’’ incoming packets to be rejected are marked as BLOCKER. When a

BLOCKED packet moves to the front of a packet queue, it is moved to the tail

without attempting to transmit it. When a BLOCKER packet is transmitted, this

information is sent to the previous switch which clears the BLOCKED mark from

all of the packets queued for the BLOCKER’s buffer. As with maximum usage

flow control, any of the individual queues within a buffer may block reception.

Full / not full signals for each of the queues within a buffer are fed back to the

neighboring switch which transmits to that buffer (as opposed to a single full / not

254

full signal for the entire buffer). Switches pre-route packets to determine which

queue they will be appended to in the next switch, and compare this information

with the per-queue flow control to determine whether or not packets can be

transmitted. Under this flow control combination, if the packet at the front of a

queue is destined for a full queue and so cannot be transmitted, the packet is moved

to the tail of the queue. This mechanism is called blocked-packet-requeueing. We

did not provide blocked-packet-requeueing for plain maximum usage flow control,

as (a) it requires additional hardware and firmware to support moving packets from

the head to the tail of their queues and (b) maximum usage flow control would no

longer support a FIFO packet ordering between source / destination pairs. Since

destination-based flow control requires the presence of this hardware / firmware

and preserves the FIFO ordering in the presence of re-queueing, it only makes

sense to evaluate the performance of this flow control protocol with this

optimization.

The implementation of destination-based flow control with SAFC buffers is

identical to the implementation with maximum usage flow control just described.

Combining destination-based flow control and SAFC buffering only makes sense,

however, if the buffers are large enough that more than one packet can be in a

single queue. For the network simulations presented previously in this chapter, the

switches each have 128 bytes of buffer memory at each input port. Statically

allocating a buffer memory of this size gives each queue within the buffer thirty-

two bytes — enough memory to store a single packet. Destination-based flow

control is not compatible with a buffer architecture in which the maximum queue

length is a single packet, so the results presented in this section are from network

255

Thpt.
G 0

Network Throughput
0.0 0.2 0.4 0.6 0.8

0

0.4

0.8 Dst-Based, SAFC

Dst-Based, MU-22�

Dst-Based

.
. . ..

.

Lat.
G 0

Network Throughput

c

0.0 0.2 0.4 0.6 0.8

0

400

DST-Based, SAFC

Dst-Based, MU-22�

Dst-Based

.
..

..
. .

. ..
..

Figure 8.33: Benchmark I: Group 0 Performance, Combined Flow
Control. Hot spot traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0−2). Switches with 256 bytes per
buffer. Shown is the G 0 throughput vs. network throughput and G 0
latency vs. network throughput for destination-based flow control
alone, combined with maximum-usage flow control (threshold of
twenty-two buffer blocks), and implemented with SAFC switches.

simulations in which each buffer has 256 bytes of storage.

Figures 8.33-8.37 present the throughput and average latency of G 0 vs. the

network throughput for destination-based flow control combined with maximum

usage flow control with a throttling threshold of twenty-two buffer blocks and

destination-based flow control implemented on SAFC buffered switches. In order

to compare the performance of these combined flow control protocols, results for

256

Thpt.

Network Throughput
0.0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6
Dst-Based, SAFC �

Dst-Based, MU-22

Dst-Based

.
.

. . . .
..

........

Lat.

Network Throughput

c

0.0 0.1 0.2 0.3 0.4

0

200

400
Dst-Based, SAFC �

Dst-Based, MU-22

Dst-Based

.

Figure 8.34: Benchmark II: Combined Flow Control, Group 0. Non-
uniform traffic (GNUT) operating at saturation, graduating applied
load of uniform traffic (G 0). 256-byte buffers. Shown is the G 0
throughput vs. network throughput and G 0 latency vs. network
throughput for destination-based flow control alone, combined with
maximum-usage flow control (threshold of twenty-two blocks), and
implemented with SAFC switches.

DAMQ switches with plain destination-based flow control are included in the

figures, and Fig. 8.35 (results for Benchmark III) also shows the results for DAMQ

switches with plain maximum usage flow control with a threshold of twenty-two

blocks. Finally, Fig. 8.38 compares the performance of the combined flow control

mechanisms to plain destination-based, maximum usage and blocking flow control

under uniformly distributed traffic (Benchmark VI).

257

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.2

0.4

0.6 Dst-Based, SAFC

Dst-Based, MU-22

Dst-Based

.
.

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

400

800 Dst-Based, SAFC

Dst-Based, MU-22

Dst-Based

.
. . .

. ...

Figure 8.35: Benchmark III: Combined Flow Control, Group 0.
Congestion traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0, 1). 256-byte buffers.
Destination-based flow control alone, combined with maximum-
usage flow control (threshold of twenty-two blocks), and
implemented with SAFC switches. Throughput and average latency
vs. total network throughput, G 0.

The results of our simulations of combined flow control mechanisms can be

succinctly summarized. Combining destination-based flow control with SAFC

buffering provides superior network performance under uniform traffic conditions

and in the presence of a wide variety of congestion patterns. The high performance

of this combination has two sources. The first is the fact that it combines flow

control mechanisms which make flow control decisions based upon different

258

Thpt.

Network Throughput
0.0 0.2 0.4 0.6

0

0.4

0.8
Dst-Based, SAFC

Dst-Based, MU-22

Dst-Based �

.

Lat.

Network Throughput

c

0.0 0.2 0.4 0.6

0

250

500

750

Dst-Based, SAFC
Dst-Based, MU-22

Dst-Based �

.
..

..
. .

. ..
...
.

Figure 8.36: Benchmark IV: Combined Flow Control, Group 0.
Congestion traffic (GNUT) operating at saturation, graduating
applied load of uniform traffic (G 0−2). 256-byte buffers.
Destination-based flow control alone, with maximum-usage flow
control (threshold of twenty-two buffer blocks), and with SAFC
switches. Throughput and average latency vs. total network
throughput, G 0.

aspects of communication traffic. Static buffer allocation provides feedback as to

the current buffer utilization; by limiting the number of packets in any one queue,

the number of queues per buffer that have packets in them is increased, which in

turn increases the link utilization. Destination-based flow control provides a

predictive mechanism which (a) detects potential congestion multiple hops before

the point of congestion and (b) provides highly directed back-pressure. The

259

Thpt.
G 0

Network Throughput
0.2 0.3 0.4 0.5 0.6

0

0.4

0.8
Dst-Based, SAFC. �

Dst-Based, MU-22�

Dst-Based

.
.

. . . .
..

.
.

...

Lat.
G 0

Network Throughput

c

0.2 0.3 0.4 0.5 0.6

0

400

800
Dst-Based, SAFC. �

Dst-Based, MU-22�

Dst-Based

.
...

Figure 8.37: Benchmark V: Combined Flow Control. Non-uniform
traffic (GNUT) operating at saturation, graduating applied load of
uniform traffic (G 0). 256-byte buffers. Shown is the G 0 throughput
vs. system throughput and G 0 latency vs. system throughput for
destination-based flow control alone, combined with maximum-
usage flow control (threshold of twenty-two blocks), and
implemented with SAFC switches.

combination of the two flow control mechanisms creates a congestion ‘‘firewall’’

which provides superior protection to the ‘‘well-behaved’’ senders in the system.

The second source of this combination’s high performance is shown in

Fig. 8.38 (Benchmark VI, uniform traffic). Under uniform traffic conditions,

destination-based flow control with SAFC buffers supports as high a saturation

throughput as any flow control mechanism / buffer architecture we have examined,

260

Lat.

Throughput

c

0 0.2 0.4 0.6 0.8

0

250

500

750
Dst-Based, SAFC

Dst-Based, MU-22

Dst-Based
SAFC� �

DAMQ × × ×

�...�. . .�.�.�.�.�.
.�.

. . .�.
. . .�.

..�. . .
. .�. . .�.

.��. .�

×× × × × × × × ×
×

×

×

××
××

....
.

.
.

.
. .. .

. ...
...

...
....
..
....
...

Figure 8.38: Benchmark VI: Combined Flow Control. All senders
transmitting 32-byte messages with uniformly distributed
destinations. 256-byte buffers. Shown is the latency vs. throughput
for destination-based flow control alone, combined with maximum-
usage flow control (blocking threshold of twenty-two blocks) and
implemented with SAFC switches. Also shown are DAMQ and
SAFC switches with blocking flow control.

and does so with a significantly lower average packet latency. Thus, even if it is

only equally effective as the other flow control mechanisms which we have

examined for preserving network performance in the presence of congestion, its

superior performance under uniform traffic conditions would result in superior

performance under congestion conditions.

Figure 8.38 suggests that destination-based flow control and SAFC buffers

have a synergistic relationship — the combination results in a network whose

performance is superior to that of either SAFC-buffered networks with blocking

flow control or destination-based flow control with DAMQ buffers. In Chs. 4

and 6, we presented simulation results which indicate that DAMQ buffers provide

performance superior to that of SAFC buffers under uniform traffic conditions. It

is clear that SAFC buffers provide a greater degree of connectivity between buffers

261

and output ports, which gives SAFC buffers the potential to achieve a higher

throughput than DAMQ buffers. However, they utilize their buffer memory less

efficiently than do DAMQ buffers, which results in SAFC-buffered networks

having a lower throughput under uniform traffic conditions than do networks with

DAMQ buffers, for buffers up to 1024 bytes in size (Fig. 6.4).

The inefficient buffer utilization of SAFC buffers (and other statically

allocated buffers) stems from the fact that queues can become full when there is

still free memory in the buffer. If the packet at the head of a queue in an SAFC

buffer (Q 0) is destined for a full queue in the next switch (Q 1), under blocking

flow control Q 0 cannot transmit until Q 1 transmits (frees some of its buffer

memory). With blocked-packet-requeueing, the packet at the head of Q 0 can be

moved to the tail of Q 0; while the next packet in the queue is destined for the same

buffer that the requeued packet was, it is not necessarily destined for Q 1, and thus

may be transmittable.

The resulting increase in the utilization of SAFC buffers is shown by the fact

that both the saturation throughput and the average latency at the saturation

throughput are higher for SAFC buffers with destination-based flow control than

for SAFC buffers with blocking flow control. Comparing the points of saturation

throughput for SAFC-buffered networks with blocking and with destination-based

flow control, we see that the average number of packets existing within the

network† increases from 1445 to 3154.
���������������
† The average number of packets stored in the network equals the throughput per link times
the number of links connected to destinations times the average latency divided by the
number of bytes per packet.

262

Lat.

Throughput

c

0 0.2 0.4 0.6 0.8

0

250

500

750 Dst-Based, SAFC
Dst-Based, SAMQ

SAFC� �

SAMQ

....
.

.
.

.
.

...

�...�. . .�.�.�.�.�.
.�.

. . .�.
. . .�.

..�. . .
. .�. . .�.

.��. .�

Figure 8.39: Benchmark VI: Destination-Based Flow Control with SAMQ
Buffers. All senders transmitting 32-byte messages with uniformly
distributed destinations. 256-byte buffers. Shown is the latency vs.
throughput for SAFC- and SAMQ-buffered networks with blocking
and destination-based flow control.

The phenomena of blocked-packet-requeueing does not totally explain the

superior performance of destination-based flow control with SAFC buffers,

however. Fig. 8.39 shows the average latency vs. throughput under uniform traffic

conditions for 256-byte SAMQ- and SAFC-buffered networks, with both blocking

and destination-based flow control. If the change in performance of the SAFC

buffers was solely driven by the ability to move blocked packets to the rear of

queues, then the network of switches with SAMQ buffers would also experience

higher buffer utilization with destination-based flow control. The figures for

average latency and saturation throughput suggest that SAMQ buffers received

little or no increase in buffer utilization or network throughput under destination-

based flow control. Thus, it requires more than blocked-packet-requeueing to

improve network throughput under static buffer allocation.

The difference between the impact of destination-based flow control on

263

SAMQ and SAFC buffers stems from the number of packets which are available

for transmission at any point in time. With SAMQ buffers, only the packets in

buffers which are currently idle are considered. With SAFC buffers, on the other

hand, every queue associated with a particular output port can be considered for

every crossbar arbitration that the output port is available, since multiple queues

within an SAFC buffer can transmit simultaneously. Since destination-based flow

control moves blocked packets to the tail of queues, under SAFC buffering, when

an output port becomes available, every packet currently on the chip destined for

that output port is a candidate for transmission. This both increases link utilization

relative to SAMQ buffers and reduces the average transmission latency.

In examining the results presented in Figs. 8.38 and 8.39, it is seen that, under

uniform traffic conditions, destination-based flow control (a) increases the

saturation throughput of SAFC buffers, (b) has little effect on SAMQ buffers and

(c) reduces the saturation throughput of DAMQ buffers. We have explained the

increased performance of the SAFC-buffered network, and the negligible impact

destination-based flow control has on SAMQ-buffered networks. What remains to

be explored is the negative impact destination-based flow control has on networks

of switches implemented with DAMQ buffers.

Destination-based flow control significantly reduces the throughput of the

DAMQ-buffer network transmitting uniformly-distributed traffic. While it impacts

performance throughout the network, the most significant effect of destination-

based flow control occurs in the final switching stage of the network. There, the

output ports of the switches are connected directly to the destination nodes. Since

destination-based flow control allows at most one packet per destination per buffer,

264

this means that there can be at most one packet per queue in the buffers of the last

switching stage. This causes the 256-byte DAMQ buffers in the last switching

stage of a network using destination-based flow control to operate as though they

were 128-byte SAMQ buffers. This phenomena occurs in SAMQ and SAFC

buffers, as well. It does not impact the SAMQ-buffered network, however, as the

applied load on the last switching stage is low enough that the reduction from 256-

byte SAMQ buffers to 128-byte SAMQ buffers does not reduce the throughput. It

does impact SAFC buffers, but to a lesser degree than DAMQ buffers. Since

SAFC buffers allow multiple packets to be transmitted from a single buffer, 128-

byte SAFC buffers support a higher packet throughput than do 128-byte SAMQ

buffers.

Lat.

Throughput

c

0 0.2 0.4 0.6 0.8

0

250

500

750
Dst-Based, SAFC

Dst-Based-X, SAFC

Dst-Based, DAMQ
Dst-Based-X, DAMQ

DAMQ × × ×

×× × × × × × × ×
×

×

×

××
××

.
. ..

...

...
.........................

................
..........

........
.......

....
....

....
.....

...
....
...

Figure 8.40: Benchmark VI: Destination-Based Flow Control,
Suppressed at Destination. All senders transmitting 32-byte
messages with uniformly distributed destinations. 256-byte buffers.
Average latency vs. throughput for blocking flow control with
DAMQ buffers, destination-based flow control, and destination-
based flow control with discarding suppressed at the destination
switches (‘‘Dst-Based-X’’ in the graph legend).

This hypothesis can be verified by simulating a multistage interconnection

265

network in which every switching stage except the final one implements

destination-based flow control. Fig. 8.40 shows the average packet latency vs.

network throughput for uniformly-distributed traffic in DAMQ- and SAFC-

buffered networks (a) with destination-based flow control throughout the network

and (b) with destination-based flow control operating in the first three switching

stages, and blocking flow control in the final switching stage (labeled Dst-Based-X

in Fig. 8.40).

As can be seen from Fig. 8.40, suppressing destination-based flow control in

the last switching stage improves the SAFC-buffered network only slightly but has

a significantly positive effect on the DAMQ-buffered network. Still, SAFC buffers

with destination-based flow control achieve a higher throughput than do DAMQ

buffers with destination-based flow control, even with discarding disabled for the

final switching stage. This is simply a matter of there being more bandwidth spent

transmitting packets which are subsequently discarded in the DAMQ-buffered

network than in the SAFC-buffered network.

The reason that the DAMQ-buffered network discards more packets is that

dynamic buffer allocation more efficiently utilizes the available buffer space than

does static buffer allocation. This is true even with blocked-packet-requeueing.

This can be seen from the fact that the product of the average latency at the

maximum network throughput and the maximum network throughput is higher for

the DAMQ-buffered network than the SAFC buffered network; there are more

packets in a DAMQ buffered network than there are in an SAFC buffered network

at a given throughput. Thus, in a DAMQ buffered network, when a packet arrives

at a buffer, there are (on average) more packets in the buffer and a higher chance

266

that the incoming packet will encounter a packet with the same destination and be

discarded.

8.6. Flow Control Mechanism Implementation

In the previous sections of this chapter, the performance of a number of hop-

level flow control mechanisms have been evaluated. This section describes their

implementation costs and discusses the implications this cost has on their

feasibility and effectiveness.

8.6.1. Blocking Flow Control

Blocking flow control is the simplest of the flow control mechanisms

examined in this dissertation. The function of blocking flow control is to halt

transmissions to a buffer when it cannot guarantee that there is enough free

memory to store the packet. The hardware to implement blocking flow control

consists of subunits to perform three separate functions: (1) track the amount of

free space in the buffer, (2) transmit flow control information to the neighboring

switch, and (3) use the flow control information received from a neighbor to

allow / prevent transmissions to that neighbor.

Under blocking flow control, the buffer cannot accept a new transmission if

there is not enough free memory to store a maximum-size packet (thirty-two bytes,

in our implementation of the DAMQ buffer — Ch. 7 and[Fraz89]). A counter is

used to track the amount of free space in the buffer memory (the DAMQ buffer

tracks buffer blocks, FIFO, SAMQ and SAFC buffers track bytes). When the value

in this counter indicates that there are fewer than thirty-two bytes available in the

267

buffer, the flow control mechanism signals that the buffer is full.

Our simulations assume that there is one wire for flow control which

accompanies each communication link. This wire transmits the flow control state

of the destination buffer to the neighboring switch. With unidirectional links such

as those of the multistage interconnection networks simulated for this dissertation,

this wire is necessary. In the general case, however, wires dedicated to flow

control represent bandwidth which is not being used to transmit data. It is possible

to avoid dedicating bandwidth to flow control in networks whose connections are

bidirectional (i.e. neighboring switches each having a link transmitting to the

other). In these networks, one can ‘‘piggyback’’ flow control information on

packets traversing the link. Hence, the flow control information competes for

network bandwidth with normal traffic. In this case, minimizing the bandwidth

required for flow control is desirable. As discussed earlier (Sec. 8.2), schemes with

hysteresis reduce the required bandwidth for flow control. Such schemes may thus

be desirable if there are no dedicated lines for flow control. Another consideration

when evaluating piggybacked flow control is the latency that this adds to the flow

control feedback; if the latency is too high, the link idle time between packets may

have to be increased in order to prevent buffer overflow.

Having received the flow control feedback from their neighbors, the switches’

crossbars must have a mechanism to prevent connecting buffers to output ports

whose destination buffer is full. How this is done depends directly upon the

implementation of the crossbar arbiter and the buffer / crossbar interface. An

example is shown in Fig. 8.41. For a 4×4 switch, each buffer has four request lines

to the crossbar indicating to which output ports the buffer has packets destined.

268

Buffers

Crosspoint Controllers

Output Ports and Flow Control Feedback

Figure 8.41: Crossbar Hardware for Blocking Flow Control. AND-gates
are used to suppress connection requests from buffers to output ports
whose destination input ports have blocked transmissions.

For FIFO buffers, at most one of the four lines can be asserted at any given point in

time (assuming static routing). For non-FIFO buffers, the request lines correspond

to non-empty packet queues within the buffer. In either case, the flow control

signal associated with an output port can be used to mask requests for that output

port (Fig. 8.41), preventing packets from being transmitted to that output port.

The total hardware overhead for blocking flow control is minimal. The most

significant hardware addition is the wire dedicated to transmitting flow control

information. Since one is only interested in changes in the flow control state, and

since these changes do not happen on the majority of the clock cycles, dedicating

the wire to flow control wastes some amount of bandwidth. The alternative

(piggy-backing flow control information) (a) is topology dependent (b) is

considerably more complex and (c) may lose bandwidth due to the added latency

269

of the feedback.

8.6.2. Queue-Based Flow Control

Our evaluation of hop-level flow control mechanisms included maximum

usage flow control, statically allocated buffers, and two-counter flow control.

These flow control mechanisms are similar to one another, in that they all block

packets on a per-queue basis. Thus, the functional units which implement these

mechanisms are very similar to one another. Each queue has its own counter to

track the amount of data in the queue. Maximum usage and two-counter flow

control also need a central counter to track free space in the DAMQ buffer. In the

simulations presented in this chapter, it was assumed that each communication link

was accompanied by an n -bit flow control channel, where n is the number of

packet queues in the buffer. If n = 4 and the links are eight bits wide, twelve wires

connect neighboring switches and flow control occupies 33% of the

communication bandwidth. In other words, going from blocking flow control to

queue-based flow control requires an increase in the link bandwidth of 33% (nine

wires to twelve wires). This is an excessive amount of overhead; none of the

queue-based flow control mechanisms increased the maximum network throughput

by 33% in any of the benchmarks presented in this chapter.

An alternative to dedicating a separate wire to each queue in the buffer is to

maintain a single wire for flow control feedback, and to sequentially transmit

separate bits of flow control information over this wire. While this does increase

the latency of the flow control feedback, it is an incremental increase, and would

have negligible impact on network performance. It does increase the complexity of

270

the flow control logic, in that there must be logic on the transmitting end of the

communication link that can parse incoming flow control information and decode

it for the rest of the switch, but this is simple logic.

The queue-based flow control mechanisms all require that packets be pre-

routed, and that the crossbar arbiter not connect buffers to output ports if the packet

at the head of the queue associated with that output port is destined to a blocked

queue. The complexity of pre-routing packets is dependent upon whether the

results of pre-routing are transmitted with a packet. If the pre-routing result is not

transmitted with the packet, two routing operations must be performed at each

switch. The tradeoff between these two options is the relative overhead of

dedicating log2(n) bits of bandwidth per packet to transmit port information vs. an

increase in the amount and complexity of the packet reception and routing

hardware.

The complexity of the pre-routing mechanism is also dependent upon the

routing protocol used by the network. It is at its worst for table-lookup routing.

For it, each switch must maintain routing tables for each of its neighbors; after the

output port and new header are determined for a packet, then the new header would

be used to access the table associated with the neighbor connected to the destined

output port to discover the destination queue. Even if the results of pre-routing are

attached to packets, a new packet header must be determined before the pre-routing

can take place. For topology-based routing algorithms, the hardware which

determines the output port of a packet can be enhanced to return the destined

output ports of both the current and the next switch without a major increase in

complexity. Pre-routing becomes a particularly complex operation when used in

271

conjunction with dynamic routing. In this case, a switch must make intelligent

routing decisions (or, at least, avoid bad routing decisions) one hop away from

where the switching will actually take place.

Blocking Flow Control Queue-Based Flow Control

Figure 8.42: Crosspoint Controller Hardware for Queue-Based Flow
Control. A single crosspoint controller from the crossbar of a switch
using blocking flow control (Fig. 8.41) and queue-based flow
control.

Figure 8.42 compares the complexity of the crosspoint controllers of the

crossbar of a switch using queue-based flow control to that of a switch using

blocking flow control. Pictured are single crosspoint controllers of a 4×4 switch

for both queue-based and blocking flow control systems. When requesting an

output port connection in a queue-based system, a buffer must choose one of four

wires to assert — the asserted wire indicates which queue in the next buffer the

packet is destined for. Combinatorial logic compares the request signal to the four

flow control lines associated with the output port. If the flow control signal does

272

not mask the request, then the arbiter may make the connection, whereupon the

buffer transmits the packet.

A difference between maximum usage and statically allocated buffer flow

control is that, with maximum usage flow control, an incoming packet can be

stored to any available buffer memory. This allows the buffer to determine where

a packet will be stored before it actually arrives. With a statically allocated

buffers, on the other hand, packets must arrive at an input port with the identifier of

the queue to which they are to be appended in their header, or there must be a

staging buffer at the input port to store the packet while it is being routed. The use

of a staging buffer may add to the minimum cut through latency of the switch (the

speed with which a packet can move through a switch). On the other hand,

including the queue identifier in the header increases bandwidth overhead per

packet.

8.6.3. Destination- and Path-Based Flow Control

Since the only difference between destination-based flow control and path-

based flow control is the hardware to determine whether or not to accept a packet,

this subsection focuses on destination-based flow control. Destination-based flow

control requires considerably more enhancements to the basic switching hardware

than do the other flow control mechanisms discussed in this chapter; their use alters

the fundamental operation of a switch. When a packet is transmitted, the buffer

space it occupies is not immediately deallocated under destination-based flow

control. Rather, the buffer waits for an ACK signal from the next buffer,

indicating that the packet is being accepted, before it deallocates its buffer space.

273

If it instead receives a NACK, the buffer must relink the packet at the tail of the

queue and not deallocate the buffer space. We will first examine the the hardware

required to determine whether a packet is to be ACK-ed or NACK-ed, then the

communication overhead of sending ACK / NACK signals to neighboring switches,

followed by the hardware required to handle requeueing NACK-ed packets, and

finally we will examine the hardware implications of our enhancements to

destination-based flow control (abortive transmissions and restricted retry).

Determining whether a packet is to be ACK-ed or NACK-ed requires

comparing the new header of an arriving packet (i.e. the header returned by the

router) to the headers of the packets currently stored in the buffer. This requires

storing packet headers in a content-addressable memory (CAM). Every time a new

header is read from the router interface, it is driven over the CAM — if a match is

made, the reception is aborted and a NACK is generated. Altering the header

register array to be content-addressable significantly increases the size of the array,

but since it is a relatively small functional unit to begin with (in our example

DAMQ buffer implementation — Ch. 7[Fraz89], — there are twelve header

registers for a ninety-size-byte buffer), then this is not a major issue.

With destination-based flow control, the entire address portion of the packet

headers is compared. For path-based flow control, however, only that part of the

header which relates to the next n hops is compared. This is the only difference

between the two, and for multistage interconnection networks, this simply means

that a smaller CAM is needed for path-based flow control.

Since destination-based flow control must be accompanied by some form of

blocking or queue-based flow control which will prevent buffer overflow, the

274

number of wires required to indicate ACK / NACK of a transmission is an open

question. If a queue-based flow control mechanism is using a single wire,

transmitting flow control information serially, then one option is to increase the

number of codes to include ACK and NACK signals. Another option is to modify

the accompanying flow control mechanism such that no pre-routing or blocking is

performed; the ACK / NACK signal would indicate not only whether the packet

collided with another destined to the same address, but also whether an attempt was

made to append the packet to a full queue. This allows a single wire to easily

transmit full / not-full information, as well as conveying the ACK (since the target

application of this flow control mechanism is a tightly-coupled multicomputer, the

NACK can be implemented as a fast timeout). This represents a different flow

control mechanism than was described in Sec. 8.5.10, where the combined flow

control mechanisms were evaluated. This would drop performance somewhat

relative to the simulation results presented in that section, since the crossbar

controller of a switch would not be able to distinguish between packets destined for

full vs. not-full queues, but it would substantially reduce the amount of hardware

required to implement the flow control, as well as eliminate the pre-routing (which,

as was previously mentioned, is problematic under certain circumstances).

For the DAMQ buffer to have the option of either re-linking a packet to the

tail of its queue or deallocating the memory blocks to the linked list, one would add

an additional head and tail register to the buffer. These registers define an

additional linked list of buffer blocks for the buffer — the currently-transmitting

list. When a packet is transmitted, instead of moving its buffer blocks directly

from the head of its queue to the tail of the free list, they are appended to the

275

currently-transmitting list. If an ACK is received, the block at the end of the

currently-transmitting list is appended to the free list, the value in the tail register

of the currently-transmitting list is copied to the tail register of the free list, the null

register for the currently-transmitting list is set (this empties the list), and the

memory is deallocated. If a NACK is received, the currently-transmitting list is

appended to the queue’s linked list by the same process. While this will add

considerable complexity to the firmware which controls the buffer, the addition of

a head / tail register pair is an insignificant increase in hardware.

We previously described two enhancements to the path-based flow control

schemes: abortive transmissions and restricted retry. Since these enhancements

measurably improve the performance of both destination-based and path-based

flow control, the link-based flow control simulation results presented in this

chapter were with both enhancements. As can be seen in Fig. 8.43, both abortive

transmissions and restricted retry contribute to the performance of DAMQ buffers

with destination-based flow control under uniformly distributed traffic conditions.

Further, when evaluating SAFC buffers with destination-based flow control, the

blocked-packet-requeueing mechanism was critical to the performance of the

combination (blocked-packet-requeueing and abortive transmissions use the same

hardware mechanisms).

The abortive transmissions enhances network performance to a significantly

greater extent than does restricted retry under uniform traffic conditions. This is

because restrictive retry only improves performance when a packet would, without

restrictive retry, make multiple attempts to traverse a link and be repeatedly

rejected due to collisions with the same packet. This is unlikely to occur in a

276

Lat.

Throughput

c

0 0.2 0.4 0.6

0

250

500 Neither

Abort. X

Rest. R.

Both

...
............................

............................
................

............
........

......
........

....
....

.....
...
....
.....
...

.
..

..
.
...

Figure 8.43: Evaluating Link-Based Flow Control Enhancements:
Benchmark VI. All senders transmitting 32-byte messages with
uniformly distributed destinations. Shown is the latency vs.
throughput for Destination-based flow control with no
enhancements, with abortive transmissions, with restricted retry, and
with both enhancements.

uniformly distributed traffic pattern.

Figure 8.44 shows the performance of abortive transmissions and restricted

retry for destination-based flow control under Benchmark II (a static hot spot

created by half of the senders transmitting at saturation throughput, 3% of the

packets to a hot spot, 97% of the packets uniformly distributed). Under this

congestion pattern there is a point of congestion (the hot spot) which exists for an

extended period of time. These are the circumstances in which individual packets

may attempt to traverse a single link multiple times before being accepted by the

next buffer. Restricted retry alone performs slightly better than does abortive retry

alone, and the performance of the two enhancements together is no better.

The functionality of abortive transmissions significantly overlaps that of

restricted retry. The sole purpose of restricted retry is to avoid ‘‘spending’’ link

277

Thpt
G 0

Network Throughput
0.0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6
Neither

Abort. X

Rest. R.

Both

.

.........
.....

.......
......

.......
......

.......
......

.......
......

......
......

.....
......

.......
.......

.......
.... .

Lat
G 0

Network Throughput

c

0.0 0.1 0.2 0.3 0.4

0

400

800 Neither

Abort. X

Rest. R.

Both

.

...
..................................

.................
...........

. .

Figure 8.44: Evaluating Link-Based Flow Control Enhancements:
Benchmark II. Hot spot traffic (GNUT) operating at saturation,
graduating applied load of uniform traffic (G 0). Shown is the G 0
throughput vs. network throughput and G 0 latency vs. network
throughput for destination-based flow control with neither
enhancement, abortive transmissions, restricted retry, and with both
enhancements.

bandwidth on packets for which it is known that the packet will be rejected by the

next buffer. Since abortive transmissions significantly reduce the amount of

bandwidth spent on all rejected packets, restricted retry can at best provide an

incremental improvement in performance.

Of the two enhancements we have proposed for link-based flow control,

abortive transmissions requires the least amount of additional hardware. Abortive

278

transmissions involves simply ceasing to transmit a packet once a NACK has been

received (the buffer must continue to requeue the packet — the simulations take

this into account). The amount of hardware required to implement this is

dependent upon the ‘‘strictness’’ desired of the mechanism — if one allows the

transmission to continue for some cycles after the NACK’s reception, the hardware

required to implement abortive transmissions is negligible. Given the significant

improvement resulting from its implementation, it is a clear positive tradeoff to

implement link-based flow control with abortive transmissions / blocked-packet-

requeueing.

Restricted retry associates two bits of status with each packet queued in a

buffer. One bit indicates whether or not a packet is a BLOCKER. BLOCKER-s

are packets which have caused incoming packets to be discarded, i.e. they blocked

a packet. The other bit indicates whether a packet is a BLOCKEE. BLOCKEE-s

are packets which have attempted a transmission and been rejected. These bits

should be both physically and logically located near the header registers, since their

access pattern is similar to that of the header registers. When a packet is

successfully received into a buffer, both its BLOCKER and BLOCKEE bits are

cleared. When a CAM lookup matches one of the headers in the header register

array, the BLOCKER bit of the matched packet is set. When a packet is rejected

and requeued, the buffer firmware must explicitly set the BLOCKEE bit associated

with the packet. This can be done when the head register of the currently-

transmitting list is read to requeue the packet. When a packet whose BLOCKEE

bit is set moves to the front of a queue, this must be detected and the packet moved

to the rear of the queue without attempting to transmit it. Finally, when

279

transmitting a packet whose BLOCKER bit is set, a flow control signal must be

sent to the neighboring switch to clear the BLOCKEE bits of all packets destined

for this buffer.

While no single aspect of restricted retry is overly complex, taken as a whole

this enhancement adds considerable hardware and complexity to the switch. One

of its most difficult aspects is the amount of concurrency required. A large number

of separate and sophisticated actions occur in parallel with the possibility of it

being interrupted in the middle of one activity in order to perform another. Much

of this complexity is eliminated if the queues are physically independent (i.e.

SAMQ and SAFC buffers). In this case, each queue has its own transmission

control logic and arbiter interface, which greatly simplifies the queue

manipulations. However, since abortive transmissions provides the majority of the

‘‘enhancement’’ of enhanced path-based flow control, one would be disinclined to

implement restricted retry.

8.7. Flow Control: Summary and Conclusions

This chapter presented an analysis of flow control mechanisms intended for

use in scalable multicomputers. Flow control regulates the flow of data through

the network by managing the allocation of resources (e.g., wires and buffers) to

information units (e.g., packets) [Dall90a]. In many systems, the flow control

mechanism exists solely to prevent the loss of data due to overflowing packet

buffers. In this chapter, we explored the ability of flow control to optimize the

performance of communication networks under uniform and non-uniform traffic

patterns.

280

A network link is a point of congestion when the applied load of traffic

attempting to traverse the link exceeds the bandwidth of the link. This usually

occurs due to non-uniform traffic patterns, where there is a group of senders that

are all transmitting packets that need to traverse the congested link. If packets are

forced to wait to use the critical resource (the congested link) for an extended

period of time, they will cause other packets to queue up waiting to use the network

resource that they are occupying (the packet buffer). It is in this way that

congestion spreads through a network. We termed this congestion propagation.

The bandwidth of the points of congestion directly limits the throughput of

the non-uniform traffic group (GNUT — the senders causing the point(s) of

congestion). A flow control mechanism cannot, on its own, improve this.

However, if congestion is allowed to propagate, other senders in the system which

are not members of GNUT may have their communication performance reduced by

the congestion caused by GNUT . A flow control mechanism can improve network

performance by preventing congestion propagation, protecting well-behaved

senders from those that cause congestion.

To support our analysis, a taxonomy for flow control mechanisms was

developed. It uses three characteristics to classify flow control mechanisms. The

first is the action taken to control traffic (blocking packets vs. discarding them).

Second, where in the network the flow control decisions are made (global vs. end-

to-end vs. hop-level flow control) was considered. The final characteristic used is

the trigger which activates the flow control mechanism (predictive flow control,

which is triggered by particular transmission patterns, vs. reactive flow control,

which responds to congestion). In most cases, tightly-coupled interconnection

281

networks for scalable multicomputers utilize flow control mechanisms which are

blocking, hop-level, and reactive.

In our evaluations of hop-level flow control mechanisms, we found the

queue-based flow control mechanisms (maximum usage, static buffer allocation

and hysteresis flow control) to be effective when the point of congestion is close to

the senders. These flow control mechanisms are less effective when the point of

congestion is more then two hops away from the senders because they do not

provide a means for directing back-pressure, and thus do not differentiate between

senders in GNUT and others.

Queue-based flow control is also effective when the congestion is highly

dynamic (i.e. bursty traffic, where the bursts are short-lived). Under these

circumstances, the congestion has little time to propagate; if the packets which

comprise the burst can be stored in the buffers of one or a few switches, the lack of

directed back-pressure is not an issue. Since a queue-based flow control

mechanism prevents the congestion-causing packets from entirely filling the

buffers, they support a higher throughput (under these conditions) than does

straight blocking flow control.

We found destination-based flow control [Dias89] to be highly effective

against congestion which is associated with a particular destination. Even when

the packets collide a large number of hops away from their destination, if they have

the same destination, this flow control mechanism identifies the non-uniform

traffic and prevents congestion propagation. This includes non-uniformities caused

by long messages or any burst of traffic to a single destination (a situation which

may be common in a scalable multicomputer with distributed secondary memory).

282

The situation in which destination-based flow control is ineffective is when the

traffic from multiple nodes collides at some point internal to the network, where

the packets do not share the same destination (an internal non-uniform traffic spot).

Under this circumstance, destination-based flow control is ‘‘blind’’ to the

congestion, and performs as blocking flow control would.

Perhaps the most interesting result was the effectiveness of SAFC buffers

combined with destination-based flow control. In previous chapters, we showed

how static buffer allocation reduces the degree to which buffers are utilized,

limiting the maximum throughput of a network. Sec. 8.5.10 showed that, by

implementing destination-based flow control with SAFC buffers, buffer utilization

is dramatically improved. The result is a buffer architecture / flow control

mechanism combination whose performance in every benchmark is superior to that

of any other examined in this dissertation. It even outperforms DAMQ buffers

with blocking flow control under uniform traffic conditions (Fig. 8.38).

This chapter makes a number of contributions to the field of communication

network architectures for scalable multicomputers. Among them is the means by

which we evaluated the flow control mechanisms. Segregating the senders into

groups, having one group to cause congestion within the network, and then

measuring the performance of the individual groups and the network as a whole

reveals a wealth of information as to the performance characteristics of the flow

control mechanism. When combined with our congestion benchmark suite, this

methodology provides a thorough evaluation of a flow control mechanism’s ability

to support high performance communication.

283

284

Chapter Nine

Summary and Conclusions

The potential for large multiprocessors and multicomputers to achieve high

performance can only be realized if they are provided with a high-throughput low-

latency communication network. Fast small n ×n switches are critical components

for achieving high-speed communication. The organization of the buffers in the

n ×n switches is one of the most important factors in determining their

performance.

The architecture of n ×n switches should allow them to efficiently utilize their

buffer memory as well as the raw bandwidth of their ports. The architecture is

constrained by the requirement that it must be amenable to high-performance cost-

effective VLSI implementation. Since both the datapath and control of the switch

must operate at high clock rates, complexity must be limited. The primary

contribution of this dissertation is the architecture of a new packet buffer, the

dynamically allocated multi-queue buffer, for use in n ×n switches. This buffer

supports forwarding of packets in non-FIFO order and provides efficient handling

of variable length packets. A critical advantage of DAMQ buffers is that flow

control is simpler than with other multi-queue buffers and there is no need to

‘‘pre-route’’ packets as with the other multi-queue buffers.

We have described the micro architecture of a DAMQ buffer and its

controller in the context of the ComCoBB communication coprocessor for

multicomputers. We have also presented the DAMQ Buffer Chip, a stand-alone

implementation of the DAMQ buffer appropriate for use as the building block of a

284

multi-chip switch. We demonstrated that the DAMQ buffer can be efficiently

implemented in VLSI to support packet transmission and reception at the rate of

one byte per clock cycle with high clock rates. With a ‘‘hardwired’’ linked list

manager and a fast routing mechanism, the buffer supports virtual cut-through of

messages with a latency of four cycles.

We have evaluated the DAMQ buffer by comparing its performance with that

of three alternative practical buffers in the context of a synchronous store-and-

forward multistage interconnection network. Both discarding and blocking

switches were considered. The DAMQ buffer provides two key features: non-

FIFO handling of packets and dynamic partitioning of buffer storage. For uniform

traffic, our modeling and simulations show that these features result in large

performance improvements over conventional FIFO buffers. The DAMQ buffer

also provides a higher maximum throughput than do other practical non-FIFO

buffer organizations with the same total buffer storage capacity.

In order to use large multiprocessors and multicomputers for real-time

applications, it must be possible to guarantee, with a high degree of confidence,

that high-priority traffic can be transmitted through the network with low specified

latency. With conventional interconnection networks used in multiprocessors and

multicomputers, the worst-case latency of traffic through the network can increase

dramatically as the load on the network increases. This may prevent the use of

these interconnection networks for critical real-time applications or force their use

with very low utilization (and thus high cost/performance ratio) in order to

guarantee low maximum latency.

For interconnection networks composed of small n ×n switches, we have

285

shown that simply increasing the size of conventional buffers in the switches does

not result in improved performance for high priority packets. There is thus a

fundamental need for buffer organizations which support high-priority packets.

We have developed a technique for efficiently supporting high-priority traffic,

while maintaining good performance for normal traffic. The modifications to the

DAMQ buffer in order to support high-priority traffic involve a few additional

control registers and somewhat more complex arbitration of the crossbar switch.

Overall these modifications are expected to require only a small percentage

increase in total buffer area.

We have evaluated alternative approaches to providing support for high-

priority packets in n ×n switches. This evaluation was based on implementation

complexity and simulation studies of a multistage interconnection network

transmitting packets with two levels of priority. Our simulations have

demonstrated five key points. (1) In a conventional network with a single priority

level for all packets, worst-case latency for packets can be several times higher

than average latency. Hence, there is a need to identify and provide preferential

treatment to those packets for which fast service is particularly important.

(2) Using the priority of packets as the determining factor in arbitrating contention

within each switch does not provide sufficient support for high-priority traffic.

Such arbitration does not reduce the 99th percentile latency of the high-priority

packets to the level of average normal packet latency, even under moderate

network load. (3) As long as the proportion of high-priority traffic is low,

dedicated queues for high priority traffic reduce the 99th percentile latency of the

high-priority packets to the level of the average latency for normal traffic under a

286

wide range of network throughputs. (4) When the proportion of high-priority

traffic is large and the network is heavily loaded, multiple dedicated queues for

high-priority traffic can reduce the 99th percentile latency relative to the single

dedicated queue approach. However, this performance advantage is marginal and

the associated implementation cost is very high. (5) Dedicated buffers for the

high-priority traffic can provide the same performance advantage as dedicated

queues in shared DAMQ buffers. However, since DAMQ buffers are needed to

maximize performance for normal traffic, the implementation cost for dedicated

buffers is much higher than the cost of adding dedicated queues to DAMQ buffers.

Hence, there is no reason to use dedicated buffers.

Our results indicate that the DAMQ buffer with a single dedicated queue for

high-priority packets provides support for high-priority traffic which is superior to

the support provided by alternate switch designs based on a dedicated high-priority

queue. This resulting network performance, with respect to high-priority traffic, is

very close to the performance of a network based on ‘‘ideal’’ switches for which a

practical implementation is not feasible. Hence, given the low hardware overhead

of the scheme based on a DAMQ buffer with a single high-priority queue, it is

clearly the preferable option.

The DAMQ buffer architecture was designed to support variable-length

packets and virtual cut-through — features which are not present under

synchronous transmission protocols. In Ch. 6, we demonstrated the value of non-

FIFO buffer and dynamic buffer allocation in asynchronous communication

networks. We showed that, under uniform traffic conditions, for both constant and

variable-length packets, the DAMQ buffer supports a higher saturation network

287

throughput over multistage interconnection networks than do FIFO buffers or

statically allocated non-FIFO buffers. For constant-length packets, we showed that

networks operating at saturation throughput self-synchronize. For a network of

FIFO or DAMQ switches, this results in network behavior similar to that of a

synchronous network — the number of connections that can be made during each

crossbar arbitration is maximized and wasted network bandwidth is minimized.

For SAMQ and SAFC switches (multi-queue buffers whose memory is statically

allocated among their queues), the presence of virtual cut through reduces the

impact of their inefficient buffer utilization, resulting in a slight improvement in

their performance relative to the synchronous protocol. With variable-length

packets, however, the statically allocated buffers suffered a significant reduction in

their performance due to the amount of buffer memory lost to fragmentation. The

DAMQ buffer, by virtue of its dynamic buffer allocation, experienced minimal

fragmentation and maintained its high performance.

Chapter 6 also presented the use of the DAMQ buffer in two-dimensional

torus networks. It is shown how the deadlock-free dimensional routing algorithm

presented in [Dall87a] can be implemented using multi-queue buffers. The key

factor of this implementation is that no single queue within a buffer be allowed to

occupy the entire buffer space. Statically allocated buffers (and the Torus Routing

Chip [Dall86]) accomplish this by physically separating the buffer memory

associated with each queue. The DAMQ buffer prevents individual queues from

occupying an entire buffer via maximum usage flow control. The simulation

results for 11×11 and 21×21 torus networks indicate that the DAMQ buffer

supports a higher saturation throughput than do statically allocated multi-queue

288

buffers, for small buffer sizes. Further, the throughput of buffered torus networks

is shown to be ∼∼ 100% higher than that of networks with wormhole routing and

minimal buffering [Dall90b]. We also show that buffered torus networks are

highly reactive (in contrast to unbuffered torus networks[Dall90b]). This is due to

the fact that congestion can propagate around the ring within a given dimension,

creating a positive-feedback loop which causes the network throughput to drop

dramatically when the applied load exceeds the point of maximum network

throughput.

The DAMQ Chip, presented in Ch. 7, is a VLSI implementation of a stand-

alone version of the DAMQ buffer. As an interface chip in the node of a

multicomputer, it asynchronously receives packets from and transmits packets to

other DAMQ Chips. As an example implementation of the DAMQ buffer, it

demonstrates that a non-FIFO buffer can be efficiently implemented in VLSI. We

presented details of the implementation, including the floorplan and critical path

timing.

We have demonstrated that the DAMQ buffer can operate at high clock rates,

despite its complex control. Hence, other factors, such as the buffer memory or the

inter-chip links, will limit the raw bandwidth. For a DAMQ buffer with four

queues and a packet size of 32 bytes, it was shown that the DAMQ buffer will have

one less packet slot available to it than a FIFO buffer occupying approximately the

same chip area. As was shown in Chs. 4 and 6, with as few as two packet slots (64

bytes), a network with DAMQ buffers can outperform a FIFO buffer network

which has an additional packet slot. With three packet slots, the DAMQ buffer

network will saturate at a throughput approximately 23% higher than a FIFO buffer

289

network with four packet slots. The DAMQ buffer is thus shown to be a highly

effective building block for packet switches, demonstrating that for VLSI switches,

increased control complexity may lead to higher performance.

Chapter 8 examines the performance of hop-level flow control mechanisms

for scalable multicomputers. A significant contribution of this chapter is our

methodology for measuring the relative performance of flow control mechanisms

via simulation. A congestion benchmark suite was developed, where each

benchmark in the suite creates a different pattern of congestion using

stochastically-generated communication traffic. The benchmark suite was chosen

to ‘‘stress’’ the flow control mechanisms in a number of different ways such that

any flow control which preserves the network performance through all of the

benchmarks is likely to perform well under the conditions which occur in a

general-purpose multicomputer computer.

The chapter contains the description and analysis of a number of hop-level

flow control mechanisms. Their performance is evaluated via the congestion

benchmark suite described above. We also examined the complexity of their

implementation. There was a single flow control / buffer architecture combination

whose performance was superior to all other switching architectures examined in

this dissertation for every benchmark in the congestion suite — destination-based

flow control with statically allocated, fully-connected (SAFC) buffers. SAFC

buffers are multi-queue buffers in which the buffer memory is statically partitioned

among the queues, and each queue has its own read port. This allows multiple

packets to be transmitted from a single buffer to different output ports

simultaneously. While this superior connectivity gives SAFC buffers the potential

290

to support a higher throughput than DAMQ buffers, the results presented in Chs. 4

and 6 suggest that DAMQ buffers offer higher performance for moderately-sized

buffers. However, when SAFC buffering is combined with destination-based flow

control, a significant improvement in network performance results. Even under

uniform traffic conditions, SAFC buffers with destination-based flow control

supports a higher maximum throughput and a lower average latency for given

throughputs than do DAMQ buffers with blocking, destination-based, or any other

flow control mechanism that we examined.

291

292

Bibliography

[Agar90] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, ‘‘APRIL: A

Processor Architecture for Multiprocessing,’’ Proceedings of the

17th Annual International Symposium on Computer Architecture,

pp. 104-114 (May 1990).

[Agar91] A. Agarwal, ‘‘Limits on Interconnection Network Performance,’’

IEEE Transactions on Parallel and Distributed Systems 2(4) pp.

398-412 (October 1991).

[Ahma89] H. Ahmadi and W. E. Denzel, ‘‘Survey of modern high-

performance switching techniques,’’ IEEE Journal on Selected

Areas in Communications 7(7) pp. 1090-1103 (Sept. 1989).

[Bert87] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall (1987).

[Cerf74] V. G. Cerf and R. E. Kahn, ‘‘A protocol for packet network

interconnection,’’ IEEE Transactions on Communications

COM-22(5) pp. 637-648 (May 1974).

[Cher89] D. R. Cheriton and C. L. Williamson, ‘‘VMTP as the transport layer

for a high-performance distributed system,’’ IEEE Comunications

Magazine 27(6) pp. 44-47 (June 1989).

[Clar88] D. D. Clark, M. L. Lambert, and L. Zhang, ‘‘NETBLT: A high

throughput transport protocol,’’ Proceedings of ACM SIGCOM ’88,

pp. 353-359 (1988).

[Crow85] W. Crowther, J. Goodhue, R. Gurwitz, R. Rettberg, and R. Thomas,

292

‘‘The Butterfly Parallel Processor,’’ IEEE Computer Architecture

Newsletter, pp. 18-45 (September/December 1985).

[Dall90a] W. Dally, ‘‘Network and Processor Architecture for Message-

Driven Computers,’’ pp. 140-222 in VLSI and Parallel

Computation, ed. Robert Suaya and Graham Birtwistle, Morgan

Kaufmann Publishers, Inc. (1990).

[Dall86] W. J. Dally and C. L. Seitz, ‘‘The Torus Routing Chip,’’

Distributed Computing 1(4) pp. 187-196 (October 1986).

[Dall87a] W. J. Dally and C. L. Seitz, ‘‘Deadlock-Free Message Routing in

Multiprocessor Interconnection Networks,’’ IEEE Transactions on

Computers C-36(5) pp. 547-553 (May 1987).

[Dall87b] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan,

P. Song, B. Totty, and S. Wills, ‘‘Architecture of a Message-Driven

Processor,’’ 14th Annual Symposium on Computer Architecture,

pp. 189-196 (June 1987).

[Dall88] W. J. Dally, The J-Machine: System Support for Actors, MIT

(September 1988).

[Dall90b] W. J. Dally, ‘‘Performance Analysis of k-ary n-cube

Interconnection Networks,’’ IEEE Transactions on Computers

C-39(6) pp. 775-785 (June 1990).

[Dall91] W. J. Dally, ‘‘Express cubes: improving the performance of k-ary

n-cube interconnection networks,’’ IEEE Transactions on

Computers 40(9) pp. 1016-1023 (Sept. 1991).

293

[Davi72] D. W. Davies, ‘‘The control of congestion in packet-switching

networks,’’ IEEE Transactions on Communications COM-

20(3) pp. 546-550 (June 1972).

[Davi92] A. Davis, ‘‘Mayfly: A Scaleable, Parallel Processing System,’’ List

and Symbolic Computation 5(1/2) pp. 7-47 (May 1992).

[Dias81] D. M. Dias and J. R. Jump, ‘‘Packet Switching Interconnection

Networks for Modular Systems,’’ Computer 14(12) pp. 43-53

(December 1981).

[Dias89] D. M. Dias and M. Kumar, ‘‘Preventing Congestion in Multistage

Networks in the Presence of Hotspots,’’ Proceedings of the 1989

International Conference on Parallel Processing, pp. I.9-I.13

(August, 1989).

[Fraz89] G. L. Frazier and Y. Tamir, ‘‘The Design and Implementation of a

Multi-Queue Buffer for VLSI Communication Switches,’’

International Conference on Computer Design, pp. 466-471

(October, 1989).

[Fuji83] R. M. Fujimoto, ‘‘VLSI Communication Components for

Multicomputer Networks,’’ CS Division Report No. UCB/CSD

83/136, University of California, Berkeley, CA (1983).

[Gerl80] M. Gerla and L. Kleinrock, ‘‘Flow Control: A Comparative

Survey,’’ IEEE Transactions on Communications COM-28(4) pp.

553-574 (April 1980).

[Gott83] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph,

294

and M. Snir, ‘‘The NYU Ultracomputer - Designing an MIMD

Shared Memory Parallel Computer,’’ IEEE Transactions on

Computers C-32(2) pp. 175-189 (February 1983).

[Inte89] Intel Corporation, 82596 User’s Manual. 1989.

[Irla78] M. I. Irland, ‘‘Buffer Management in a Packet Switch,’’ IEEE

Transactions on Communications COM-26(3) pp. 328-337 (March

1978).

[Kalm90] C. R. Kalmanek, H. Kanakia, and S. Keshav, ‘‘Rate controlled

servers for very high speed networks,’’ Proceedings of

GLOBECOM ’90 1 pp. 300.3.1-300.3.9 (1990).

[Karo86] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, ‘‘Input vs. Output

Queueing on a Space-Division Packet Switch,’’ IEEE Global

Telecommunications Conference, pp. 659-665 (December 1986).

[Karo87] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, ‘‘Input vs. Output

Queueing on a Space-Division Packet Switch,’’ IEEE Transactions

on Communication COM-35 pp. 1347-1356 (December 1987).

[Kerm79] P. Kermani and L. Kleinrock, ‘‘Virtual Cut Through: A New

Computer Communication Switching Technique,’’ Computer

Networks 3(4) pp. 267-286 (September 1979).

[Kerm80] P. Kermani and L. Kleinrock, ‘‘Dynamic Flow Control in Store-

and-Forward Computer Networks,’’ IEEE Transactions on

Communications COM-28(2) pp. 263-270 (February 1980).

[Klei80] L. Kleinrock and P. Kermani, ‘‘Static Flow Control in Store-and-

295

Forward Computer Networks,’’ IEEE Transactions on

Communications COM-28(2) pp. 271-278 (February 1980).

[Knig89] T. F. Knight, ‘‘Technologies for Low Latency Interconnection

Switches,’’ Proceedings of the 1989 ACM Symposium on Parallel

Algorithms and Architectures, pp. 351-358 (June, 1989).

[Kuma84] M. Kumar and J. R. Jump, ‘‘Performance Enhancement in Buffered

Delta Networks Using Crossbar Switches and Multiple Links,’’

Journal of Parallel and Distributed Computing 1(1) pp. 81-103

(August, 1984).

[Kuma86] M. Kumar and G. F.Pfister, ‘‘The Onset of Hot Spot Contention,’’

Proceedings of the 1986 International Conference on Parallel

Processing, pp. 28-34 (August, 1986).

[Kuri89] L. Kurisaki and T. Lang, ‘‘Multistage Networks Including Traffic

with Real-Time Constraints,’’ Proceedings of the 1989

International Conference on Parallel Processing, pp. I.19-I.22

(August, 1989).

[Lang88] T. Lang and L. Kurisaki, ‘‘Nonuniform Traffic Spots (NUTS) in

Multistage Interconnection Networks,’’ Computer Science

Technical Report CSD-880001, University of California, Los

Angeles, CA (January 1988).

[Lawr75] D. H. Lawrie, ‘‘Access and Alignment of Data in an Array

Processor,’’ IEEE Transactions on Computers C-24(12) pp. 1145-

1155 (December 1975).

296

[Lee86] G. Lee and C. P. Kruskal, and D. J. Kuck, ‘‘The Effectiveness of

Combining in Shared Memory Parallel Computers in the Presence

of ‘Hot Spots’,’’ Proceedings of the 1986 International Conference

on Parallel Processing, pp. 35-41 (August, 1986).

[Leis92] C. e. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman,

M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. c. Kuszmaul, M. A. S.

Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and R. Zak, ‘‘The

Network Architecture of the Connection Machine CM-5,’’ TMC

Technical Report, Thinking Machines Corporation, Cambridge,

MA (July 1992).

[Leno92] D. Lenoski, J. Laudon, K. Gharachorloo, and W.-D. Weber et al.,

‘‘The Stanford DASH Multiprocessor,’’ Computer 25(3) pp. 63-79

(March 1992).

[Lill91] S. L. Lillevik, ‘‘The Touchstone 30 Gigaflop DELTA Prototype,’’

The Sixth Distributed Memory Computing Conference, pp. 671-677

(April, 1991).

[Lutz84] C. Lutz, S. Rabin, C. Seitz, and D. Speck, ‘‘Design of the Mosaic

Element,’’ Proceedings of the MIT Conference on Advanced

Research in VLSI, pp. 1-10 (January 1984).

[McMi86a] McMillen et al., ‘‘Packet Switched Multiport Memory NxM Switch

Node and Processing Method,’’ United States Patent 4,630,258,

(December 16, 1986).

[McMi80] R. J. McMillen and H. J. Siegel, ‘‘The Hybrid Cube Network,’’

Distributed Data Acquisition, Computing, and Control Symposium,

297

pp. 11-22 (December 1980).

[McMi86b] R. J. McMillen, ‘‘Packet Switched Multiple Queue NxM Switch

Node and Processing Method,’’ United States Patent 4,623,996,

(November 18, 1986).

[Mukh86] U. Mukherji, ‘‘A schedule-based approach for flow-control in data

communication networks,’’ Ph.D. thesis, MIT, (February 1986).

[Ngai89] J. Y. Ngai, ‘‘A Framework for Adaptive Routing in Multicomputer

Networks,’’ Caltech-CS-TR-89-09, Computer Science Department,

California Institue of Technology (1989).

[Nikh92] R. S. Nikhil and G. M. Papadopoulos, and Arvind, ‘‘* T: A

Multithreaded Massively Parallel Architecture,’’ Proceedings of the

19th Annual International Symposium on Computer Architecture,

pp. 156-167 (May 1992).

[Oed] W. Oed, ‘‘The Cray Research Massively Parallel Processor System

CRAY T3D,’’ Cray Research Technical Report ().

[Pfis85a] G. F. Pfister and V. A. Norton, ‘‘‘Hot Spot’ Contention and

Combining in Multistage Interconnection Networks,’’ IEEE

Transactions on Computers C-34(10) pp. 943-948 (October 1985).

[Pfis85b] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.

Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J.

Weiss, ‘‘The IBM Research Parallel Processor Prototype (RP3):

Introduction and Architecture,’’ 1985 International Conference on

Parallel Processing, pp. 764-771 (August 1985).

298

[Rama91] G. Ramamurthy and R. S. Dighe, ‘‘Distributed source control: a

network access control for integrated broadband packet networks,’’

IEEE Journal on Selected Areas on Communications 9(7) pp. 990-

1002 (September 1991).

[Rath89] E. P. Rathgeb, ‘‘Comparison of policing mechanisms for ATM

networks,’’ Proceedings of the 3rd RACE Workshop, (Oct. 1989).

[Reed87] D. A. Reed and R. M. Fujimoto, Multicomputer Networks:

Message-Based Parallel Processing, The MIT Press (1987).

[Reis83] M. Reiser, ‘‘Queueing and delay analysis of a buffer pool with

resume level,’’ 9th International Symposium on Computer

Performance Modelling, Measurement, and Evaluation, (May

1983).

[Rett90] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlinson,

‘‘The Monarch Parallel Processor Hardware Design,’’ IEEE

Computer 23(4) pp. 18-30 (April 1990).

[Rimo87] Y. Rimoni, I. Zisman, R. Ginosar, and U. Weiser, ‘‘Communication

Element for the Versatile MultiComputer,’’ 15th IEEE Conference

in Israel, (April 1987).

[Scot90] S. L. Scott and G. S. Sohi, ‘‘The Use of Feedback in

Multiprocessors and Its Application to Tree Saturation Control,’’

IEEE Transactions on Parallel and Distributed Systems 1(4) pp.

385-398 (October 1990).

[Scot94] S. L. Scott and J. R. Goodman, ‘‘The impact of pipelined channels

299

on k-ary n-cube networks.,’’ IEEE Transactions on Parallel and

Distributed Systems 5(1) pp. 2-16 (January 1994).

[Seit85] C. L. Seitz, ‘‘The Cosmic Cube,’’ Communications of the ACM

28(1) pp. 22-33 (January 1985).

[Stev86] K. S. Stevens, S. V. Robinson, and A. L. Davis, ‘‘The Post Office -

Communication Support for Distributed Ensemble Architectures,’’

The 6th International Conference on Distributed Computing

Systems, pp. 160-166 (May 1986).

[Ston87] H. S. Stone, ‘‘High-Performance Computer Architecture,’’

Addison-Wesley Publishing Company, (1987).

[Stun94] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau, P. H.

Hochschild, D. J. Joseph, B. J. Nathanson, M. Tsao, and P. R.

Varker, ‘‘Architecture and Implementation of Vulcan,’’

Proceedings of the 8th International Parallel Processing

Symposium, pp. 268-274 (April 1994).

[Swop86] S. M. Swope and R. M. Fujimoto, ‘‘Simon II Kernel Reference

Manual,’’ Technical Report UUCS 86-001, University of Utah,

Salt Lake City, UT (March 1986).

[Tami88a] Y. Tamir and J. C. Cho, ‘‘Design and Implementation of High-

Speed Asynchronous Communication Ports for VLSI

Multicomputer Nodes,’’ International Symposium on Circuits and

Systems, pp. 805-809 (June 1988).

[Tami88b] Y. Tamir and G. L. Frazier, ‘‘High-Performance Multi-Queue

300

Buffers for VLSI Communication Switches,’’ 15th Annual

International Symposium on Computer Architecture, pp. 343-354

(May 1988).

[Tami88c] Y. Tamir and G. L. Frazier, ‘‘Support for High-Priority Traffic in

VLSI Communication Switches,’’ 9th Real-Time Systems

Symposium, pp. 191-200 (December 1988).

[Tami92a] Y. Tamir and G. L. Frazier, ‘‘Dynamically-Allocated Multi-Queue

Buffers for VLSI Communication Switches,’’ IEEE Transactions

on Computers 41(6) pp. 725-737 (June 1992).

[Tami92b] Y. Tamir and G. L. Frazier, ‘‘Hardware Support for High-Priority

Traffic in VLSI Communication Switches,’’ Journal of Parallel

and Distributed Computing 14(4) pp. 402-416 (April 1992).

[Tami93] Y. Tamir and H.-C. Chi, ‘‘Symmetric Crossbar Arbiters for VLSI

Communication Switches,’’ IEEE Transactions on Parallel and

Distributed Systems 4(1) pp. 13-27 (January 1993).

[Turn86] J. Turner, ‘‘New directions in communications,’’ IEEE

Communications Magazine 24(10) pp. 8-15 (Oct. 1986).

[Whit85] C. Whitby-Strevens, ‘‘The Transputer,’’ 12th Annual Symposium

on Computer Architecture, pp. 292-300 (June 1985).

[Yew86] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, ‘‘Distributing Hot-Spot

Addressing in Large-Scale Multiprocessors,’’ Proceedings of the

1986 International Conference on Parallel Processing, pp. 28-34

(August, 1986).

301

[Yoon90] H. Yoon, K. Y. Lee, and M. T. Liu, ‘‘Performance Analysis of

Multibuffered Packet-Switching Networks in Multiprocessor

Systems,’’ IEEE Transactions on Computers 39(3) pp. 319-327

(March 1990).

[Yum83] T. P. Yum and H.-M. Yen, ‘‘Design algorithm for a hysteresis

buffer congestion control strategy,’’ IEEE International Conference

on Communications, pp. 499-503 (June 1983).

[Zhan91] L. Zhang, ‘‘VirtualClock: a new traffic control algorithm for

packet-switched networks,’’ ACM Transactions on Computer

Systems 9(2) pp. 101-24 (May 1991).

302

	01.0.ttl
	02.1.cpt
	03.2.sig
	04.3.ded
	05.TOC
	06.TOF
	07.TOT
	08.7.ack
	09.8.vit
	10.9.abs
	11.ch1
	12.ch2
	13.ch3
	14.ch4
	15.ch5
	16.ch6
	17.ch7
	18.ch8
	19.ch9
	20.refs

