IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993 13

Symmetric Crossbar Arbiters for
VLSI Communication Switches

Yuval Tamir, Member, IEEE, and Hsin-Chou Chi

Abstract— Small crossbars are key components of communi-
cation switches used in multicomputer interconnection networks.
The traffic through the switches is often delayed due to conflicting
demands for resources, such as buffer space or output ports.
Hence, switches must include arbiters that resolve conflicting
resource demands. Efficient design and implementation of these
arbiters are critical for maximizing network performance.

In order to maximize performance, recent communication
switch designs allow packets at an input port, destined to different
output ports, to be transmitted through the switch in any order.
Each input port contends for multiple output ports but needs
only one for full utilization. Similarly, each output port contends
for multiple input ports and needs one for full utilization. The
arbitration task is thus symmetrical with respect to inputs and
outputs.

This paper focuses on the design and implementation of sym-
metric crossbar arbiters. Several arbiter designs are compared
based on simulations of a multistage interconnection network.
These simulations demonstrate the influence of the switch ar-
bitration policy on network throughput, average latency, and
worst-case latency. It is shown that some “natural” designs result
in poor system performance and/or slow implementations. Two
efficient arbiter implementations are proposed. Based on network
simulations, VLSI implementation, and circuit simulation, it is
shown that these arbiters achieve nearly optimal system perfor-
mance without becoming the critical path that limits the system
clock.

Index Terms—Arbiters, communication coprocessors, commu-
nication switches, crossbars, interconnection networks, multipro-
cessors, multicomputers, VLSI systems.

1. INTRODUCTION

HE ability of multiprocessors and multicomputers to
Tachieve high performance is dependent on interconnec-
tion networks that provide high-bandwidth low-latency inter-
processor communication. The key components of intercon-
nection networks for large multiprocessors and multicomputers
are small n x n switches [2]-[4], [8], [19], [21], [27]. An
efficient internal micro architecture for these switches is es-
sential for achieving high-performance communication with
cost-effective implementations.

The function of a communication switch is to receive
packets arriving at its input ports and route them to the
appropriate output ports. The bandwidth of the input ports
is typically equal to the bandwidth of the output ports. If
" two packets destined to the same output port arrive at the

Manuscript received October 10, 1990; revised July 27, 1991. This work
was supported by Hughes Aircraft Company and the State of California
MICRO program.

The authors are with the Computer Science Department, University of
California, Los Angeles, California 90024-1596.

IEEE Log Number 9204619.

input ports of the switch simultaneously, they cannot both be
forwarded. In an unbuffered network, one of the two packets
must be discarded or misrouted. In a buffered network, where
buffer storage is associated with each switch, one of the
packets is stored in the switch until its destination output port is
free [6]. By adding buffer storage to each switch, the maximum
throughput of the network is increased [6].

A typical communication switch consists of input ports,
output ports, an n X n crossbar, and some buffer memory
[6], [11], [20]. Depending on the traffic patterns, there may be
conflicting demands for these resources. Arbiters that resolve
the conflicts and provide efficient and fair scheduling of these
resources are critical for achieving the maximum possible
performance from a given network. This paper focuses on the
design and VLSI implementation of these arbiters.

In communication switches where packets are processed at
each input in first-in-first-out (FIFO) order, arbitration of the
internal crossbar is relatively simple. Following arbitration,
each input port may be either active (transmitting) or idle
(blocked). For each output port, there is a choice of which
of several contending input ports will connect to it. Hence,
for each output port, there is a simple independent arbiter that
selects one of the inputs requesting that output and blocks the
others [1], [3].

Recent communication switch designs maximize perfor-
mance by allowing packets at an input port to be processed
in non-FIFO order [5], [11], [15], [23]. Specifically, packets
at an input port, destined to different output ports, may
be transmitted through the switch in any order. Each input
port contends for multiple output ports but needs only one
for full utilization. Similarly, each output port contends for
multiple input ports and needs one for full utilization. The
arbitration task is thus symmetrical with respect to inputs and
outputs. Furthermore, since the arbitration result for each port
is dependent on the arbitration for other ports, the arbitration
task is more complex than for switches with FIFO input ports
and the task cannot be performed by separate independent
arbiters at the input ports or output ports.

In order to realize the potential for high performance of non-
FIFO processing of packets, the crossbar arbitration should
result in switch configurations that allow for the maximum
number of packets to be transmitted simultaneously. The
arbitration process itself must be fast relative to the rate at
which packets are received and relative to the latency of
packet transmission through the switch. This paper discusses
the design and VLSI implementation of symmetric crossbar
arbiters that meet these requirements. This work is part of the

1045-9219/93$03.00 © 1993 IEEE

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

U.C.L.A. ComCoBB (Communication Coprocessor Building-
Block) project, whose focus is the design and implementa-
tion of a high-performance communication coprocessor for
VLSI multicomputers. The investigation of symmetric crossbar
arbiters was motivated by the fact that our design of a
communication coprocessor involves the use of non-FIFO
input buffers [23].

In the next section, we discuss the crossbar arbitration
problem and summarize previous work on arbiter design.
Symmetric crossbar arbitration is defined and its use in modern
communication switches is explained. Section III -presents
several possible symmetric crossbar arbitration schemes. Basic
implementation considerations are discussed, and the opera-
tion of three practical symmetric crossbar arbiter designs is
described. The performance advantage of using an efficient
arbitration policy is demonstrated using simple probabilistic
analysis of 2x2 switches. The performance of several sym-
metric crossbar arbitration schemes is evaluated in Section IV.
The evaluation is based on event-driven simulations of indi-
vidual switches and of multistage interconnection networks.
The VLSI implementation of the best practical arbitration
schemes is described in Section V. Circuit simulation is used
to determine the performance of the proposed arbiter. The
abbreviations used to denote the various arbitration schemes
discussed are summarized in the Appendix.

II. CROSSBAR ARBITRATION

While many different internal organizations of buffered
communication switches are possible, critical implementation
considerations lead to the use of buffers at the input ports rather
than central buffer pools or buffers at the output ports [23].
In Fig. 1 we show two of the possible switch organizations
with input port buffers. A key component in these switches is
a crossbar, which allows arbitrary permutations in connecting
the input buffers to output ports. The crossbar consists of n
horizontal buses (rows) and n vertical buses (columns). Each
horizontal bus is connected to an input buffer, while each
vertical bus is connected to an output port. A horizontal bus
intersects a vertical bus at a crosspoint. At each crosspoint
there is a switch, which may be closed to form a connection
between the corresponding input buffer and output port.

With FIFO buffers [Fig. 1(a)], there is at most one packet at
each buffer that is ready for transmission through the crossbar.
Based on the destination of the packet at the head of its FIFO
queue, each nonempty input buffer contends for the internal
bus connected to one of the output ports. Access to each
internal output port bus can thus be arbitrated independently of
arbitration of access to other internal buses. Hence, a crossbar
arbiter for an n x n FIFO switch (i.e., a switch with FIFO
input port buffers) can be constructed out of n independent
conventional bus arbiters [1].

A conventional bus arbiter receives up to n requests for use
of the bus and grants one of these requests. For equal priority
requests, the goal of a bus arbitration scheme is to provide fair
access to the different “users” and to lend itself to reliable, low
cost, fast implementation. The design of such n-user 1-server
(or 1-of-n) arbiters has been investigated by many researchers

—N — A ——N—
d——= S —
T
===
T
N3
T
n =il
(a) ®)
Fig. 1. Switches with FIFO buffers and DAMQ buffers. (a) A switch with

FIFO buffers. (b) A switch with DAMQ buffers.

and system developers, and is well understood [9], [24], [25].
Crossbar arbitration with n 1-of-n arbiters is used in the Torus
Routing Chip [3], where there is a fixed priority order of the
inputs to each of the arbiters. Bhuyan [1] describes crossbar
arbitration where there is an attempt to maintain fairness by
“rotating” the priority order in each 1-of-n arbiter such that
the top priority is given to the user following the one who
was last serviced.

In order to increase the bandwidth between processors
and memory modules, systems with multiple buses have
been proposed [12], [18]. In these systems n processors are
connected to . memory modules through b buses. In order to
complete, a request from a processor must win the arbitration
for two types of resources: a memory module and a bus. Since
each processor requests one particular memory module and a
memory module can handle only one request at a time, this
arbitration can be performed by m independent conventional
1-of-n arbiters [1], [13]. All the memory modules for which
there are requests must then contend for the available b buses.
Since a memory module can use any of the b buses, a different
type of arbiter must be used. Lang and Valero [13] describe
the design and implementation of such an m-user b-server
(b-of-m) arbiter.

In the Concert multiprocessor system [10], a segmented
ring bus is used to interconnect processor clusters. Each one
of the n processor clusters (users) can request up to n/2
bus segments (servers) in order to complete an access. Each
cluster request is translated into a request for a particular set
of bus segments. If any one of the requested bus segments
is busy, the cluster request cannot be serviced. If a cluster
request is denied because one of its required bus segments is
busy, any other bus segments already “given” to the cluster
become free for use by another cluster. Hence, for maximum
utilization of the ring bus, the arbitration for each bus segment
cannot be performed independently of the arbitration of other
bus segments. Thus, conventional 1-of-n arbiters cannot be
used. The required arbitration is also different from the b-of-m
arbitration used for multibus systems since the resources (bus
segments) are not interchangeable and a request may require
more than one resource.

An n x n communication switch with FIFO buffers [Fig.
1(a)] does not utilize the resources of the switch efficiently.
Specifically, the problem with such a switch is that packets
may be blocked unnecessarily—if the packet at the head of

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 15

the queue is blocked, all other packets in the buffer, even
those destined to idle output ports, are also blocked [23]. In
order to improve output port utilization, and thus increase the
throughput of the switch, packets can be segregated according
to the output port to which they have been routed. This can be
done using separate FIFO buffers for each of the output ports
at each of the input ports [15], [23]. In order to better utilize
the available buffer space, the input buffers can be dynamically
partitioned between the different queues. Such a dynamically-
allocated, multiqgueue (DAMQ) buffer has been designed at
U.C.LA. [Fig. 1(b)], and has been shown to significantly
increase network throughput [7], [23]. In a slightly different
context, Dally [5] has shown that multiqueue input buffers are
also useful when there is a dedicated queue for each virtual
channel instead of each output port.

An n X n crossbar and its associated arbiter are shown in
Fig. 2. The inputs to the arbiter consist of n? request lines, one
per crosspoint, and n output port blocked (OPB) lines, one per
output port. A request line is asserted when the use (“service”
of the particular crosspoint is needed. In order to provide flow
control, it is sometimes necessary to block a switch from
forwarding packets to one of its outputs. An OPB line is
asserted in order to prevent use of a particular output port
by inhibiting granting of any crosspoint in the corresponding
column. In the rest of this paper we consider a crosspoint
to be requested only if the request line is asserted while the
block line is negated. The outputs from the arbiter consist of
n? grant lines and n? control lines. The grant lines indicate
which crosspoint requests have been granted, while the control
lines connect or disconnect the individual crosspoints in the
crossbar.

At any point in time, a multiqueue input buffer can transmit
through the crossbar the packet at the head of any of its
queues. If any one of these packets-is transmitted, the input
buffer output bandwidth is fully utilized. We consider each
queue 1o be a “user” and each internal crossbar bus to be a
“server” (resource). Hence, the switch consists of n? users
and 2n resources. A request from a queue can be granted only
when the required input bus and the required output bus are
available. Hence, as with the Concert segmented ring bus, each
user requests more than one resource. Furthermore, as with the
segmented bus, arbitration for the different resources cannot
be performed independently. In order to maximize resource
utilization and performance, the result of the arbitration of
one resource (e.g., an input bus) may have to be modified if
the winner loses the arbitration for another resource (an output
bus). Unlike the segmented bus arbitration problem, if a user
has a request, it is always for the same two resources. Hence,
only n out of the n? users may contend for any resource.
Furthermore, at most n out of the n? users may win each
arbitration.

A user-resource model of a 2x2 crossbar with multi-
queue input buffers is shown in Fig. 3. For any crossbar, the
arbitration problem can be described as a matrix of requests,
each one for a crosspoint of the crossbar. The goal is to
arbitrate among the requests so that at most one grant is
given to a row of the matrix, and at most one grant is given
to a column of the matrix. With conventional FIFO buffers,

,lZ
request — =, ||
n2 Arbiter I
grant . |
n? } control
d
—c
n
Buffers Crossbar
-]
A1
Output Ports OPB

Fig. 2. A crossbar arbiter in context. The crossbar connects n d-bit buses
from the input buffers to the n output ports. Crosspoints (row/column
connections) are requested using the n? request lines, and granted using the
grant lines. The OPB (output port blocked) lines indicate which output ports

are blocked and should not participate in the arbitration.

queue (1,1) buffer 1 read bus
queue (1,2) buffer 2 read bus
queue (2,1) output port 1
queue (2,2) output port 2

Users Resources

Fig. 3. A user-resource model of symmetric arbitration of a 2x2 crossbar.

there are never conflicting requests for crosspoints on the
same row. With multiqueue input buffers, conflicting requests
on the same row can occur. Due to this symmetry between
rows (input buses and input ports) and columns (output buses
and output ports), the function of the required arbiter is
called symmetric crossbar arbitration. Note that conventional
crossbar arbitration is a special case of symmetric crossbar
arbitration.

Since DAMQ buffers (and other multiqueue buffers) allow
more than one request to the crossbar arbiter, there is the
opportunity to connect more crosspoints of the crossbar than
with FIFO buffers, thus leading to higher throughput and lower
latency. Fig. 4 shows an example of buffer contents and how
requests can be arbitrated for FIFO and DAMQ buffers. The
numbers in the buffers represent the destination output ports of
the packets. The crosspoints with single circles indicate denied
requests, while those with double circles indicate granted
requests.

III. SYMMETRIC CROSSBAR ARBITERS

With multiqueue input buffers there is the potential for
achieving significantly higher network throughput than with
conventional FIFO buffers [23]. In order to realize this po-
tential, it is necessary to use symmetric crossbar arbiters
which, on the average, connect more crosspoints following
every arbitration cycle than conventional crossbar arbiters.
Since the arbitration task is more complex than with FIFO
buffers, there is a question of whether “good” arbiters will
be too slow and/or use excessive chip area. In this section

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

13— O—1— oO—1—
112 —1Q ©
2 — - ©
43 — — Q
Buffer Contents Arbitration for FIFO Arbitration for DAMQ

Fig. 4. Example arbitrations for switches with FIFO and DAMQ buffers.
Double circles indicate granted requests. Single circles indicate denied re-
quests.

we demonstrate the importance of the arbitration scheme
for achieving high performance and discuss several possible
schemes. We focus on three schemes that appear particularly
promising in terms of the potential for high performance and
practical implementation. More extensive discussion of the
performance and implementation of the proposed schemes are
found in Sections IV and V, respectively.

A. The Importance of the Arbitration Scheme

There may be a question of whether there is a significant
performance difference between “good” -and “poor” symmetric
crossbar arbitration schemes. In this subsection we demon-
strate that there is such a difference by using static probabilistic
analysis to compare two arbitration schemes for a 2x 2 switch:
a practical scheme that follows naturally from previous work
on arbiter design (Section II), and a theoretical scheme which
is not practical but can achieve nearly optimal performance.
In order to calibrate the performance of the proposed schemes,
they are compared to conventional crossbar arbitration for a
switch with FIFO buffers.

As described earlier, with FIFO arbitration (FIFOA), there
is at most one request for each row. Multiple requests for
each column are arbitrated independently, using round-robin
arbiters [1], [25]. For a switch with multiqueue buffers,
efficient symmetric crossbar arbitration maximizes the num-
ber of crosspoints utilized. We consider the performance of
a statically optimal arbiter (SOA), which examines all the
requests and searches for the arbitration result that maximizes
the throughput for the next cycle. If there are several configu-
rations with equal throughput, one is selected randomly. The
SOA uses exhaustive search of all legal configurations and is
clearly not a practical arbiter design. We use it for comparison
with other, more practical, arbiter designs.

A straightforward extension of FIFO arbitration to symmet-
ric crossbar arbitration is to decompose the arbitration process
into two steps: arbitration among conflicting column requests
followed by arbitration among conflicting row requests that
have won the first step. Such a two-step arbiter (TSA) is
amenable to VLSI implementation as an n X n array of
arbitration cells, one cell per crosspoint (Fig. 5). For each
crosspoint (i, j), in addition to the request (R; ;) input and
grant (G, ;) output, each cell has two inputs, north (N; ;) and
west (W; ;), and two outputs, south (S;;) and east (E; ;).
Note that N,',j = Si-1,5 and W,',J' = L j-1. The NiJ‘ signal
indicates that the rows above did not request column j. The
W, ; signal indicates that there are no granted requests for

the crosspoints to the left. The G output is asserted if, and
only if, the crosspoint is requested and both the IV and the
W inputs are asserted. Thus, G;; = Ri;j A Nij AW, ;,
Si’j = NiJ A F:;, and Ei,j = Wi,j A Gi!j. For the highest
priority row and column, all the N and W inputs, respectively,
are set to 1. If the arbitration cells are combinational circuits
with propagation delay 7T, then, for an n x n crossbar, the
arbiter reaches a valid arbitration configuration in (2n — 1)T
time units.

In order to ensure fairness with the two-step arbiter, the
highest-priority row and column must not be fixed. Hence,
while in the discussion above we assumed that crosspoint (1,1)
has the highest priority, fairness requires that each crosspoint
has an equal opportunity to have the highest priority. With top
priority at a crosspoint other than (1,1), the scheme requires
that the S output from the bottom row is connected to the
N input of the top row and the £ output from the rightmost
column is connected to the W input of the leftmost column.
Two n-stage token rings (circular shift registers) are used to
keep track of the highest priority row and the highest priority
column. The column shift register is advanced following each
arbitration cycle while the row shift register is advanced
following every n arbitration cycles. Fig. 5 shows an example
of the operation of the 4x4 two-step arbiter, in which the top
left crosspoint has the highest priority. In the figure, double
squares indicate that the crosspoint has been requested while
shaded squares indicate that the crosspoint has been granted.

Simple probabilistic analysis can be used to evaluate the
throughput of switches with the arbitration schemes discussed
above. We assume that requests for various crosspoints are
independent, and that the probability that there is at least one
packet in buffer 7 destined for output 7 is p, forall 1 < 4,5 <
n. For a switch with multiqueue buffers, this implies that the
request probability for any crosspoint is p. For a FIFO switch,
there can be only one request on each row, so the request
probability for any crosspoint is (1/n){1 — (1 — p)"]. The
probability of a grant for crosspoint (¢, j) will be denoted by
gi,;- The normalized throughput of the switch (the throughput
per column) can be calculated using: (37—, 37— 9i,5)/n. As
an example, we will compare the three arbitration schemes for
a 2x2 switch: FIFOA, SOA, and TSA.

Probabilistic analysis of crossbars in FIFO switches is
discussed in [17]. For FIFOA, if the crosspoint request.prob-
ability is g, the normalized throughput is 1 — (1 — q)%
Using ¢ = (1/2)[1 — (1. — p)?}, the normalized throughput
is 2p — 2p% + p* — (1/4)p".

For SOA, six cases must be considered. a) no requests: The
probability is (1 — p)*, and the throughput is 0. b) I request:
The probability is ()p(1 —p)® and the total throughput is
1. ¢) 2 requests in the same row or column: The probability
is 4p%(1 — p)? and the total throughput is 1. d) 2 requests
in different rows and in different columns: The probability is
2p%(1 — p)? and the total throughput is 2. e) 3 requests: The
probability is (3)p>(1 — p) and the total throughput is 2. f) 4
requests: The probability is p* and the total throughput is 2.
The normalized throughput is 50% of the expected value of
the total throughput, calculated from the analysis above, i.e.,
2p — 2p% + 2p% — pt.

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 17

4x4 Arbiter

Fig. 5.

grant l

Arbitration cell

A two-step symmetric crossbar arbiter. An example arbitration is shown. Double squares indicate that the crosspoint has been requested. Shaded

squares indicate that the crosspoint has been granted.

For the TSA, without loss of generality, we assume that
crosspoint (1,1) has the highest priority. Let v;; denote the
probability that crosspoint (4, j) wins the (vertical) arbitration
for column j in the first arbitration step. Clearly, v11 =
vig = p, and v21 = V22 = (1 — p)p. Based on this, we
can calculate the grant probability for the second arbitration
step: g11 = vig =P g1z = (L—vi)ve = (1 - D)Ps
gon = vg1 = (1 —p)p, and g2p = (1 - v2,1)U22 =
[1—(1—p)p)(1—p)p. The normalized throughput is 50% of the
sum of the grant probabilities, yielding 2p—2p®+p®—(1/2)p".

The results of the above analysis are shown in Fig. 6. As
expected, SOA outperforms FIFOA. TSA, however, is even
worse than FIFOA, especially when the request probability
is high. In the extreme case where p = 1, the normalized
throughput with TSA is 1/2, because the requests granted after
the first arbitration step are all in the same row. This result
indicates that a poor symmetric crossbar arbiter can negate the
potential performance advantage of multiqueue buffers.

B. The Skewed Two-Step Arbiter

A key problem with the two step arbiter (TSA) is that, in
the first step, the top priority is given to the same row for
all the column arbitrations. This increases the probability that
multiple crosspoints in one row will win the first step, even
though only one of them can be used at a time. A possible
solution to this problem is to give the top priority to different
rows for the different column arbitration. The “skew” in the
column arbitration starting points is provided in the skewed
two-step arbiter (STSA).

The operation of the STSA is identical to the TSA, except
for the mechanism used to indicate the top priority cells.
Specifically, instead of the two n bit circular shift registers
which point to the top priority row and column, the STSA
uses a single n bit circular shift register, which points to a
“wrapped diagonal” of top priority crosspoints. For example,
Fig. 7 shows a STSA where the “diagonal” of high priority
cells consists of cells (1,1), (2,4), (3,3), and (4,2). The, result

DAMQ-SOA
08~ FIFOA - - - -
DAMQTSA — — I
0.6 AT
Normalized i
throughput ’
04 /
0.2
0 T T T T

0 0.2 04 0.6 0.8 1
Request probability at each crosspoint

Fig. 6. Normalized throughput based on static probabilistic analysis. A 2x2
switch with FIFOA, SOA, and TSA arbitration schemes.

is that four connections are made by the STSA, while with the
TSA, there is no way for four connections to be made for the
specific paitern of requests shown.

The arbitration cells of the STSA are identical to those used
in the TSA. The periphery of the array of arbitration cells,
which changes the top priority cells to maintain fairness, is
simpler since there is only one shift register instead of two.
With the STSA, the horizontal (row) arbitration is performed
in parallel with the vertical (column) arbitration. Hence, the
STSA is faster (has smaller worst case delay) than the TSA.
Specifically, if the delay per cell is T time units, the worst
case arbitration time for the STSA is only nT time units.

C. The Wave Front Arbiter

The low performance of the TSA is a direct result of the
partitioning of the arbitration process into the two separate
steps of column and row arbitration. As discussed earlier, this
results in low throughput since multiple crosspoints on high

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

l)l

ik e 5 o 0
o v
ey

“43)

0

Fig. 7. A skewed two-step symmetric crossbar arbiter. For the example
arbitration shown, the top priority cells are (1,1), (2,4), (3,3), and 4,2).

priority rows are likely to win the first step and prevent other
crosspoints on their columns from being used. With the wave
front arbiter (WFA) the entire arbitration process is performed
in one step, so higher throughput is expected.

Rather than starting with a top priority row, the arbitration
process with WFA begins with one top priority arbitration cell.
The arbitration cells reach their final configuration in a “wave
front” that moves diagonally from the top left to the bottom
right corner of the arbiter. Fig. 8 shows the operation of the
WFA with the top priority in arbitration cell (1,1). In order
to maintain fairness, two n bit circular shift registers, vertical
and horizontal, as with TSA, are used to select the current
top priority cell. The horizontal shift register is shifted every
cycle, while the vertical shift register is shifted every n cycles.

The critical difference between WFA and TSA as well as
STSA is the function of the arbitration cell. Specifically, the
definition of the N,; signal is different from the one discussed
in Section III-A. With TSA and STSA, N, ; indicates that
none of the rows above have requested column j. With WFA,
N;)j indicates that there are no granted requests for the
crosspoints above (i, 7). Hence, using the notation of Section
IH-A, Gi,j = Rz,j A Ni;]‘ A WiJ, Siﬁ]' = Nl"]' A G_l’]— and
E;; = Wi; A G; ;. As with TSA and STSA, the cells are
simple combinational circuits. If cell (1,1) has the top priority
and a cell performs its operation in T time units, the outputs
of cell (¢, 7) are stable in their final values after (i + j — 1)T
time units. Hence, the arbitration completes after (2n — 1)7T
time units.

D. The Wrapped Wave Front Arbiter

With WFA, in the first stage of arbitration (in the first T
time units), only one crosspoint is “processed” so at most one
final grant signal is generated. This appears wasteful since
even in the first stage it is possible to process n crosspoints
which are guaranteed not to conflict. The n crosspoints of any
“wrapped diagonal” of the arbitration array (see Fig. 9) are
guaranteed not to conflict since they are all on different rows
and different columns. If the arbitration “wave front” begins
with all n crosspoints of such a diagonal, the arbitration of n
crosspoints instead of 1 crosspoint is completed after the first

Fig. 8. Wave front symmetric crossbar arbitration. Cell (1,1) has the top
priority. The numbered diagonals indicate the progression of the arbitration
wave front.

o e e @

Fig. 9. A wrapped wave front symmetric crossbar arbiter. The “wrapped
diagonal” (1,1), (2,4), (3.3), and (4,2) has the top priority. The numbered
diagonals indicate the progression of the arbitration wave front.

T time units. This basic idea is the basis of the wrapped wave
front arbiter (WWFA).

The arbitration cells used in the WWFA are identical to
those used in the WFA. The difference between the schemes
is only in the mechanism used to indicate the top priority cells
when the arbitration process begins. Specifically, with WFA
two circular n bit shift registers are used to indicate the top
priority cell, as with TSA. With WWFA, a single n bit circular
shift register is used to indicate the wrapped diagonal of top
priority crosspoints, as with STSA.

Fig. 9 shows the arbitration process where the diagonal of
high priority cells consists of cells (1,1), (2,4), (3,3), and (4,2).
If a cell performs its operation in T time units, the outputs of
cell (¢,j) are stable in their final values after [((¢ + j — 2)
mod n)+ 1|7 time units. Hence, the WWFA is faster than the
WFA, completing an arbitration in n7" time units.

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 19

E. Probabilistic Analysis of Arbitration of a 2x2 Switch

In this subsection we use simple probabilistic analysis,
as in Section III-A, to evaluate the throughput of a 2x2
switch using the symmetric arbitration schemes discussed
in the previous three subsections. The notation used fol-
lows the notation of Section III-A. This simple analysis
provides an initial indication of the expected throughput.
Realistic performance evaluation, using simulations which take
into account the queueing effects, is discussed in Section
V.

The analysis of the STSA is similar to the analysis of TSA.
Let v; ; denote the probability that crosspoint (¢,7) wins the
(vertical) arbitration for column j in the first arbitration step.
Without loss of generality, we assume that the diagonal of
top priority cells consists of cells (1,2) and (2,1). Clearly,
vg1 =2 =P, and vy = Vg2 = (1—p)p. Based on this, we
can calculate the grant probability for the second arbitration
step:

J12 =V12 =D, 921 = V21 =D,
g11=(1—vi2)vi1=p(1- p)?,
ga2 = (1 —v21)vg2 =p(1~— p)*.

The normalized throughput is 50% of the sum of the grant
probabilities, yielding 2p — 2p* + p°. :

For WFA, we assume, without loss of generality, that cell
(1,1) has the top priority. This implies that if cell (1,1) is
requested, it is granted, ic., g1,1 = p. Cells (1,2) and 2,1)
are granted if requested and cell (1,1) has not been granted,
ie., g12 = g2 = p(1 — p). Cell (2,2) is granted if, and only
if, either cell (2,2) is the only cell requested, or cell (1,1) is
also requested, thus blocking possible grants for cells (1,2)
and (2,1). Hence, g2 = p(1 — p)® + p*. The normalized
throughput is 50% of the sum of the grant probabilities,
yielding 2p — 2p® + (3/2)p® — (1/2)p*.

It is easy to show that, for a 2x2 switch, WWFA always
results in the same arbitration result as STSA. It should be
noted that these two arbitration schemes are not identical with
larger switches (see Section IV). For WWFA, we assume,
without loss of generality, that the diagonal of top priority
cell consists of cells (1,1) and (2,2). For both of these cells
the implication is that if they are requested, they are granted,
i€, g11 = 922 = p. Cells (1,2) and (2,1) can be granted
only if they are requested and neither cell (1,1) nor cell
(2,2) has been requested, i.e., g1,2 = g2,1 = p(1 — p)2
The normalized throughput is 50% of the sumlof the grant
probabilities, yielding 2p — 2p* + p*.

Fig. 10 shows the results of the probabilistic analysis of a
2x2 switch with all the arbitration schemes discussed in this
section. It should be noted that three of the practical arbitration
schemes proposed in this section (STSA, WFA, and WWEFA)
achieve nearly the same performance as the statically optimal
arbitration scheme. This important result, that the benefits
of multi-queue buffers can be fully realized with practical
arbitration schemes, is confirmed in the next section using
simulations.

Normalized
throughput

0.2+

I I T I
0 0.2 0.4 0.6 0.8 1

Request probability at each crosspoint

Fig. 10. Normalized throughput based on static probabilistic analysis. A
2x2 switch with SOA, WFA, WWFA, STSA, FIFOA, and TSA arbitration
schemes.

IV. PERFORMANCE EVALUATION

The probabilistic analysis used in Section I does not
take into account the queueing effects and cannot be easily
extended to evaluating the performance of a complete network
rather than a single switch. In order to perform more realistic
performance evaluation of the proposed arbitration schemes,
we used an event-driven simulator {22], that allows detailed
simulation of arbitrary objects interacting via messages.

Our simulations focus on a 64x64 Omega network [14]
which uses blocking switches. This multistage buffered net-
work operates synchronously. The minimum delay per stage
is called a stage cycle [28]. A stage cycle is the latency of
a packet per stage in an empty network, where there is no
contention for buffer space or output ports. A packet may be
forwarded to a switch in the next stage only if there is a free
buffer slot in the input buffer of the switch.

Ideally, before implementing a system, the performance of
the different arbitration schemes should be studied using traces
from actual applications. Such traces may include nonuniform
traffic patterns and variable length packets. The simulations in
this paper are based on a traffic model with the following
properties: 1) packets are of a fixed size, 2) during each
stage cycle there is an equal probability of generating a
packet at each of the source nodes, 3) packet destinations are
uniformly distributed over all the network outputs. Two of the
performance measures used are the average latency and the
normalized network throughput. The latency is the number of
stage cycles from the creation of a packet to its delivery at
the destination. Hence, in a three stage network, the minimum
latency is three stage cycles. The normalized throughput is
the average number of packets received by each output of the
network per stage cycle.

Another important measure of the “quality” of arbitration
is fairness. Ideally, all packets receive fair (equal) treatment
so that the latency for all packets should be the same. In
reality, some packets are forwarded through the network faster
than others. A possible measure of fairness is the difference
between the maximum and minimum latency through the
network. For all arbitration schemes, the minimum latency is

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

bounded by the speed of the hardware. Hence, the maximum
(worst case) latency can be used as a measure of fairness.
In simulations, the maximum latency is a poor measure since
it is susceptible to statistical anomalies of the simulation. In
particular, the simulated maximum latency is sensitive to the
initial random number seeds and increases as the number of
packets transmitted during the simulation is increased. As
a measure of fairness that is less susceptible to statistical
anomalies of the simulation, we use the “99th percentile
latency.” Considering all the packets transmitted through the
network during a simulation run, the 99th percentile latency
is the minimum of the latencies of the 1% of the packets
that received the poorest service (longest latencies) from the
network. Hence, 99% of the packets were transmitted through
the network faster than the 99th percentile latency. Ideally, the
99th percentile latency will be the same as the average latency.
In reality, even if all conflicts local to the switches are resolved
in a fair way, the 99th percentile latency may be several times
larger than the average latency (see Section IV-B). Any lack of
fairness in resolving conflicts local to the switches will result
in increasing the 99th latency and increasing the difference
between the 99th percentile and average latencies.

We report the results from simulating a single switch as
well as from simulating the entire 64x64 network. In all
cases we are interested in the steady-state performance. Hence,
the data collected during the start-up phase of the simulation
was discarded [16]. In order to determine the duration of
the start-up phase, the simulator produced the performance
measures (throughput, average latency, and 99th percentile
latency) for “sub-runs” of the simulation. Specifically, for
the network simulations, for every 1000 packets that left the
network, the performance measures for those 1000 packets
were produced. For the single switch simulations intervals
of 100 packets were used. The end of the start-up phase is
detected when the interval performance measures stop moving
in one direction and start oscillating [16]. In all the simulations,
the performance measures started to oscillate after at most
five intervals. Hence, for the network simulations the start-
up phase lasts less than 5000 packets and for the single
switch simulation it lasts less than 500 packets. In our network
simulations the first 32 000 packets were discarded while
for the single switch simulations the first 4000 packets were
discarded. Hence, our results reflect steady-state performance.

The single switch simulations were run with each sender
generating approximately 3000 packets. The network simu-
lations were run with each sender generating approximately
1500 packets. Simulation was terminated once there was one
sender that had completed sending all its allotted packets.
In order to verify the validity of the results, for each rate
of generating messages at the sources, at least eight runs
were performed with different random number seeds. The
throughput and latency numbers used are the averages of
results from these multiple runs [26]. Each curve is based
on twelve points.

For each point used in the curves presented, we calculated
the 95% confidence interval [26]. In all cases the confidence
interval for the throughput is within 1% of the number
reported. For average latencies, the confidence interval is

within 3% of the results reported. For the 99th percentile
latencies, the confidence interval is within 7% of the numbers
reported. Out of a total of 432 points used to generate the
graphs for 99th percentile latencies, there were only 20 points
for which the 95% confidence interval was not within 5% of
the number reported.

In addition to the six arbitration schemes discussed in
Section III (FIFOA, TSA, STSA, WFA, WWFA, and SOA),
we consider two other possible schemes: 1) fixed-priority wave
front arbitration (FPWFA), which is identical to WFA except
that the top priority always remains in the same arbitration
cell, and 2) longest-queue-first arbitration (LQFA), which
assigns priorities to inputs in direct proportion to the number
of packets in their buffers and arbitrates between different
queues in an input buffer by assigning queue priorities in
direct proportion to the number of packets in each queue
[11]. Since there is no need to rotate priorities with FPWFA,
its implementation is expected to be simpler. LQFA would
be difficult to implement efficiently, but it may be expected
to perform better than other practical arbitration schemes.
DAMQ buffers [23] are assumed in the evaluation of all seven
symmetric crossbar arbitration schemes.

In the following two subsections we consider the effect of
the crossbar arbitration scheme on the performance of 4x4
switches with input buffers that can accommodate up to four
packets. We consider a single switch first and then the 64 x 64
network, consisting of three stages of 4x4 switches. The
effects of switch size (number of inputs and outputs) and buffer
size (number of packet slots per input buffer) are considered
in Section IV-C.

A. Performance Evaluation of a Single 4x4 Switch

Fig. 11 shows the average latency versus throughput of a
single 4x4 switch with four packets slots per input buffer.
In general, the results corroborate the probabilistic analysis of
Section III. The maximum throughput achieved, as well as the
average latencies for high throughputs, are dependent on the
arbitration policy. In particular, poor policies, such as FIFOA
and TSA, achieve significantly lower maximum throughput
than efficient policies, such as WFA or LQFA. WFA and
WWFA provide approximately the same performance as the
much more expensive LQFA, and only slightly worse per-
formance than the theoretical SOA. While the probabilistic
analysis of a 2x2 switch showed identical results for STSA
and WWFA, similar analysis of 4x4 and larger switches shows
that WWFA results in significantly better performance. This
mediocre performance of STSA relative to WFA and WWFA
is also shown in Fig. 11.

The simulation results for 99th percentile latency are shown
th Fig. 12. TSA results in the worst performance with respect
to 99th percentile latency as well as with respect to average
latency. SOA results in relatively poor (high) 99th percentile
latency. Thus, it appears that the optimization for maximum
throughput is at the expense of fairness. As might be expected,
fixed priority results in unfair arbitration—FPWFA results in
the second highest 99th percentile latencies even though it
achieves low average latencies (Fig. 11). Relative to the other

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 21

10
8
6
Average
Latency
2
0 l T T T

0 02 04 0.6 08
Throughput

Throughput

Fig. 11. Average latency versus normalized throughput of a single 4x4 switch with four packet slots per input buffer.

30

30

25+

20
99!]!
Percentile
Latency

Throughput

1 0 02 04 0.6 0.8 1
Throughput

Fig. 12. 99th percentile latency versus throughput of a single 4x4 switch with four packet slots per input buffer.

schemes, FIFOA performs well with respect to 99th percentile
latency despite its poor average latency performance. This is
due to the inherent fairness in a first-in-first-out mechanism.

B. Performance Evaluation of a 64x64 Omega Network

Fig. 13 shows the average latency versus normalized
throughput of a 64x64 Omega network, consisting of three
stages of 4x4 switches with four packet slots per input buffer.
Qualitatively, the results are similar to the results of the
single switch simulations. One difference is that FIFOA is
now shown to provide approximately the same performance
as TSA, while the single switch simulations indicated that the
FIFOA performance is significantly better. The reason for this
apparent discrepancy is that the performance with FIFOA is
more severely degraded by output ports which are blocked
due to a full buffer in the next stage. This effect is very
important, but is obviously not relevant to a single switch.
Another interesting result is that LQFA performs best, even
better than SOA. This is due to the fact that LQFA is optimized
for reducing the probability of buffers overflowing, which is
often the cause of blocking in a highly utilized network.

The simulation results for 99th percentile latency are shown

in Fig. 14. The effects of blocked output ports, discussed
above, manifest themselves strongly in these measurements.
For single switch simulations (Fig. 12), the inherent fairness of
FIFO resulted in similar 99th percentile latencies with FIFOA
and, for example, SOA. On the other hand, with the Omega
network simulations the switches with FIFOA reach saturation
at a much lower throughput, resulting in different performance
characteristics. As could be expected, LQFA provides the best
performance with respect to the 99th percentile latency as well
as with respect to average latency. It should be noted that the
practical arbitration schemes, WFA and WWFA, achieve the
best performance relative to all the schemes other than LQFA.

C. The Impact of Buffer Size and Switch Size

All the simulations discussed above were done for 4x4
switches with four packet slots per input buffer. We consider
here whether the results of these simulations are significantly
different if two important parameters are changed: buffer size
(number of packet slots per buffer) and switch size (number
of inputs and outputs in each switch).

Fig. 15 shows the average latency versus normalized
throughput of 64x64 Omega networks of 4x4 switches

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

T T

T
0 0.2 0.4 0.6

Throughput

04 0.6

Throughput

Fig. 13. Average latency versus normalized throughput of a 64x64 Omega network using 4x 4 switches with four packet slots per input buffer.

60 60
50 50
40 — 40
99
Percentile 30 30
Latency
20 20 |
10 10
0 T | I T 0 T T | T
= 0 02 04 0.6 08 1 0 02 04 0.6 0.8 1
Throughput Throughput

Fig. 14. 99th percentile latency versus throughput of a 64x64 Omega network using 4x4 switches with four packet slots per input buffer.

20
A
v T x
e — — | H
r |
a |
g - . !
e i
i
L)
a 8]]
t
3
n 4 — —
c
Yy
0 T I e e
0 02 04 060 02 04 06 080 02 04 06 08
Throughput Throughput Throughput
2 slots 4 slots 6 slots

Fig. 15. The impact of input buffer size on average latency. Average latency versus normalized throughput of 64x 64 Omega networks using 4x4
switches with various buffer sizes.

with two, four, and six packet slots per input buffer.
As shown elsewhere [6], [23], the maximum throughput
increases as the buffer size increases. For small buffers
(two packet slots), there is almost no difference between the

various symmetric arbitration schemes and there is only a
small performance improvement of those over FIFOA. The
performance advantage of multiqueue buffers, and thus of
symmetric crossbar arbitration, increases as the buffer size

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 23

60

50

8
3

40 —|

30

204

OB OO
<«OoD o~

10—

0 02 04 060 0.2
Throughput

2 slots

04 06

Throughput
4 slots

08 0 02 04 06 08
Throughput
6 slots

Fig. 16. The impact of input buffer size on 99th percentile latency. 99th percentile latency versus normalized throughput of 64x64 Omega networks using
4x4 switches with various buffer sizes.

increases. The reason for this is that for a larger buffer there is
a higher probability that the buffer contains packets destined
to several outputs and thus, with a multiqueue buffer, there is
a higher probability of sending a packet from the input port.
The increase in the relative performance of multiqueue buffers
over FIFO buffers is large as the buffer size increases from two
slots to four slots, but is relatively small for buffer increase of
from four slots to six slots. This is due to the fact that, with a
4x4 switch, the number of different destinations of packets in
a particular buffer cannot be above 4, regardless of the size of
the buffer. As the buffer size increases from two to four slots,
there is a significant increase in the difference between the
maximum achievable throughput with an efficient symmetric
crossbar arbitration scheme (SOA) and an inefficient scheme
(STSA). However, the difference in performance between
efficient and inefficient schemes remains approximately the
same, as the buffer size increases from four to six slots. The
reason for this is, once again, that with uniform traffic and
4x4 switches, there is only a small increase in the expected
number of destinations as the buffer size increases from four
to six slots. Hence, the patterns of requests to the arbiter are
approximately the same for four and six slot buffers, leading
to approximately the same number of connections (packets
transferred) per cycle.

Fig. 16 shows the 99th percentile latency versus normalized
throughput of 64x64 Omega networks of 4x4 switches with
two, four, and six packet slots per input buffer. As with
the average latencies, the performance advantage of good
arbitration schemes increases with increasing buffer size. It is
interesting to note that, with respect to 99th percentile latency,
for small buffers, STSA performs better than SOA, but SOA
performs slightly better for large buffers. The reason for the
relatively good performance of STSA for small buffers is that
STSA is inherently a fair arbitration scheme—each row and
each column have equal time at the top priority position. On
the other hand, as mentioned earlier, SOA achieves higher
maximum throughput at the expense of fairness.. For large
buffers, the difference in the maximum throughputs achieved

by the two schemes becomes more pronounced and leads to
higher 99th percentile latencies with STSA.

Fig. 17 shows the average latency per stage versus normal-
ized throughput of 64x64 Omega networks with four packet
slot input buffers in their switches, using 6, 3, and 2 stages of
2x2, 4x4, and 8x 8 switches, respectively. It should be noted
that the average latency through the network is the product
of the average latency per stage, shown in Fig. 17, and the
number of stages. For FIFOA, as the switch size increases
from 2x2 to 4x4, the maximum throughput decreases [28].
The maximum FIFOA throughput remains approximately the
same when the switch size increases from 4x4 to 8x8. A
relatively poor symmetric arbitration scheme (STSA) results in
approximately the same behavior. As the switch size increases,
there is an increase in the performance advantage of the
good symmetric arbitration schemes (WFA, WWFA, LQFA),
in terms of higher maximum throughput, over FIFOA and
STSA. With WFA, WWFA, and LQFA there is no decrease
in maximum throughput as the switch size is increased from
2x2 to 4x4. Furthermore, the maximum throughput increases
when the switch size is increased to 8x8. The differences
in maximum throughput among WFA, WWFA, and LQFA
remain approximately the same for all three switch sizes.
Hence, with increasing switch size, the arbitration scheme
becomes more important for achieving the maximum possible
performance. WFA and WWFA consistently achieve almost
the same performance as LQFA, which is too complex for
practical implementation.

V. IMPLEMENTATION OF SYMMETRIC CROSSBAR ARBITERS

In the previous two sections we have shown that the crossbar
arbitration policy has a significant impact on performance. The
wave front and wrapped wave front arbitration schemes were
shown to outperform many other schemes. WFA and WWFA,
whose design is fundamentally simple to implement, were
shown to achieve nearly the same performance as theoretical
schemes which are optimized for high performance without
regard to implementation complexity. For a final confirmation

24

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

6
¥
5 — |
Iox
I B
L 4 - ! [
a !
t i
e 3 | !
n '
c
y 2+ n
1]
0 N B . T T
0 02 04 06 080 02 04 06 080 02 04 06 08
Throughput Throughput Throughput
2x2 switch 4x4 switch 8x8 switch

Fig. 17. The impact of switch size. Average latency per stage versus normalized throughput of 64x64 Omega networks with four packet slots per
input buffer and various switch sizes.

Y v I
X X0 x1 xo
Yo Yo
Y v Y v
YP token ring P X
X X0 X X0
Yo Yo

Fig. 18. Organization of a 2x2 wave front arbiter.

that WFA and WWFA are indeed practical arbitration schemes,
this section discusses the circuit design and VLSI implemen-
tation of WFA and WWFA. Since the implementation of the
two schemes is similar, the focus will be on WFA. However,
most of the discussion applies to WWFA as well.

A. Logic and Circuit Design

The structure of a 2x2 WFA and of a 2x2 WWFA arbiter
is shown in Figs. 18 and 19, respectively. The same arbitration
cell, which is similar to the arbitration cell of Fig. 5, can be
used for both WFA and WWFA. The cell used in Figs. 18
and 19 has the additional X P and Y P inputs, which indicate
top priority within a row (X direction), and within a column
(Y direction), respectively. The X1, XO, Y1, and Y O signals
correspond to the W, E, N, and S signals, respectively, of Fig.
5. They are relabeled here due to the addition of the explicit
priority signal, X P and Y P. The R (request) and G (grant)
signals are as in Fig. 5, but are not shown in Figs. 18 and 19.

! token ring
L Y v 7T}
\XP —1XP
Xt X0 X1 X0
727 Y W
L—aXP L xP
X1 X0 X1 X0

Fig. 19. Organization of a 2x2 wrapped wave front arbiter.

XpP YI

v —hﬁ

OPB Yo

Fig. 20. An arbitration cell. XP and YP indicate top priority in the horizontal
and vertical directions, respectively. The OPB line is 1 when the output port
is not blocked.

A logic diagram of the cells used in Figures 18 and 19
is shown .in Fig. 20. The OPB signal indicates that the
output port is blocked, so there is no reason to include in the

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 25

Fig. 21. Horizontal and vertical priority token rings for a wave front arbiter. The reset signal (RES) initializes the two token rings to a valid state.

arbitration any crosspoint connecting to that port (column).
The function implemented is a modification of the logic
equations presented in Section III-C. The difference is that
the priority signals, X P and Y P, override the X7 and YI
signals. Since the inputs to the cells may go through more than
one transition between 0 and 1 before the arbiter settles to its
final value, static combinational logic is used to implement
the cells.

G=(RAOPB)A(YIVYP)A(XIVXP)
YO=(YIVYP)AG
X0 = (XIVXP)AG.

As discussed in Section III-C, for WFA, two token rings
(shift registers) are used to identify the cell with the highest
priority. The horizontal token is advanced every clock cycle,
while the vertical token is advanced every n cycles, once
the horizontal reaches its right-most cell. The token rings
are implemented as simple dynamic shift registers which, on
system reset, are initialized so that the first cell is 1 while all
the others are 0 (Fig. 21). For WWFA, only one token ring of
this type is needed. With the WFA arbiter, for each clock cycle
only a single cell has both the vertical and horizontal priority
tokens. For WWFA, the priority line from the token ring
delivers a priority token to a whole diagonal of n arbitration
cells.)

B. Prevention of Starvation

In the context of a communication switch, starvation of
a particular queue occurs if it contains a packet that is never
transmitted, even though other packets are transmitted through
the switch. If the output ports are never blocked, the fact
that each queue has the top priority every n? cycles with
WFA or every n cycles with WWFA, guarantees that no
packet will wait in a queue more than bn® or bn cycles,
respectively, where b is the number of packet slots in an input

buffer. However, since output ports can be blocked due to full
buffers in the following stage, it is possible for an “unlucky”
queue to be prevented from transmission every time it has the
top priority. Hence, packets in the “unlucky” queue may be
delayed indefinitely.

Starvation can be prevented if a top priority queue which
contains a packet maintains its top priority until it succeeds in
sending one packet. With the WFA arbiter, this can be done by
not shifting the horizontal X P shift register if the top priority
cell was requested but not granted. For the WWFA arbiter,
a similar solution is for the top priority wrapped diagonal to
maintain its top priority if any of its arbitration cells were
requested but not granted. With the WWFA arbiter, while
priority is kept at a particular diagonal in order to service
one of its queues, a new packet may arrive through another
queue on the same diagonal. If this new packet is allowed to
prevent the transfer of the top priority to a different diagonal,
it is possible for one diagonal to maintain its top priority for a
long time, leading to starvation of queues on other diagonals.
One way to prevent this situation is to latch the request signals
to a diagonal when priority is first moved to that diagonal.
Priority is kept at the same diagonal only as long as there is
a latched request signal for it which has not yet been granted.
It should be noted that if these solutions are used, the shift
registers may not be shifted for many cycles so the dynamic
shift registers shown in Fig. 21 may have to be replaced by
static shift registers.

C. VLSI Layout and Circuit Simulation

Due to their simple regular structure, the WFA and WWFA
arbiters are amenable to efficient VLSI implementation. In
order to determine the actual implementation complexity and
performance, we have laid out a 4x4 crossbar of eight-bit
wide internal buses with a wave front arbiter. The layout was
done for CMOS technology, using the MOSIS scalable design

26 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, 1993

XP 1oken ring

array of
arbitration cells

YP token ring

Crossbar

Fig. 22. The floorplan of a 4x4 crossbar of eight-bit wide buses with a
wave front arbiter. The modules are drawn to scale.

rules. ‘One possible floorplan of such a switch is based on
integrating the crossbar with the arbiter so that each arbitration
cell is-together with the corresponding crosspoint. We have
investigated this possibility but discovered that separating the
arbiter from the crossbar, as shown in Fig. 22, results in more
compact layout.

Fig. 22 shows the floorplan of the crossbar with the arbiter.
The boxes in the figure are drawn to scale with respect to the
sizes of the modules in the layout. The crossbar itself is 615)
wide by 376 X-tall. The arbiter, with the priority shift registers
is 649 X by 527 A. The layout of a single arbitration cell is
shown in Fig. 23. It should be noted that the crossbar and the
arbiter-are small relative to the input buffers. In our layout of
a single 96 byte, four queue, DAMQ buffer, the size of the
storage is, approximately, 2500\ x 1000, while the size of
the control is 3000\ x 900 [7]. Assuming a 2 m technology,
circuit simulation using SPICE indicates that the worst case
delay for reaching an arbitration result is 15.5 ns. In our current
design of the ComCoBB switch [7], [23], the arbitration task
must be completed in one 20 ns clock cycle. Hence, for the
current design, our straightforward implementation of the wave
front arbiter is fast enough. If higher speed is required, the
WWFA arbiter can be used. Such an arbiter can be expected
to operate in approximately 8 ns.

VI. SUMMARY AND CONCLUSIONS

Significant improvements in the performance of communi-
cation switches can be achieved by using multi-queue input
buffers instead of FIFO buffers. A crossbar is often used to
connect multiqueue input buffers to the output ports of the
switch and an arbiter is needed to resolve conflicting requests
for crossbar resources from the various queues. If all the
queues of each input buffer are connected to a single crossbar
input [5], [23], the arbitration task is symmetric with respect to
inputs and outputs. Since the result of the arbitration for each
crosspoint depends on or influences the arbitration of all the
crosspoints in the corresponding row and column, the arbiter is
relatively complex and cannot be partitioned into independent
row or column arbiters.

We have evaluated different symmetric crossbar arbitration
schemes using static probabilistic analysis, single switch event-

dniven simulations, and simulations of a buffered Omega
network. We have shown that a good symmetric crossbar
arbitration scheme is essential to realizing the potential for
performance improvement from multiqueue buffers. In partic-
uldr, a bad scheme may result in lower performance than with
FIFO buffers while a good scheme can increase the maximum
throughput of the network by more than 40%. As the buffer
size and switch size increase, the benefits of a good arbitration
scheme increase.

We have investigated several arbitration schemes, including
complex theoretical schemes (statically optimal and longest-
queue-first arbitrations), which cannot be implemented but
could be expected to perform better than practical schemes. We
have shown that, in order to achieve fairness, it is important to
use a scheme which does not assign static priorities to queues.
Two arbitration schemes, which are based on the propagation
of an arbitration “wave” across an array of arbitration cells,
were shown to achieve nearly the same performance as the
complex theoretical schemes. The proposed wave front and
wrapped wave front arbiters are amenable to simple regular
implementation in VLSI. For a 4x4 switch, the layout of
a wave front arbiter is larger than the data portion of the
corresponding crossbar of eight-bit wide buses. This indicates
that the arbiter is a significant module in terms of size, as well
as performance, in communication switch implementation.
Circuit simulation of our CMOS implementation of the wave
front arbiter, using 2 um technology, indicates that, for a 4x4
crossbar, this arbiter can produce a valid and efficient crossbar
configuration in 15.5 ns.

APPENDIX
THE NAMES OF THE ARBITRATION SCHEMES

FIFOA FIFO Arbitration

FPWFA Fixed-Priority Wave Front Arbitration
LQFA Longest-Queue-First Arbitration
SOA Statically Optimal Arbitration

STSA Skewed Two-Step Arbitration

TSA Two-Step Arbitration

WFA Wave Front Arbitration

WWFA Wrapped Wave Front Arbitration

REFERENCES

[1] L. N. Bhuyan, “Analysis of interconnection networks with different
arbiter designs,” J. Parallel Distributed Comput., vol. 4, no. 4, pp.
384-403, Aug. 1987.

[2] W. Crowther, J. Goodhue, R. Gurwitz, R. Rettberg, and R. Thomas, “The
Butterfly Parallel Processor,” IEEE Comput. Architecture Newsletter, pp.
18-45, Sept./Dec. 1985.

[3] W.7. Dally and C. L. Seitz, “The torus routing chip,” Distributed
Comput., vol. 1, no. 4, pp. 187-196, Oct. 1986.

[4] W. J. Dally, “Fine-grain message passing concurrent computers,” in

Proc. Third Conf. Hypercube Concurrent Comput., vol. 1, Pasadena,

CA, Jan. 1988, pp. 2-12.

W. J. Dally, “Virtual-channel flow control,” in Proc. 17th Annu. Int.

Symp. Comput. Architecture, Seattle, WA, May 1990.

[6] D. M. Dias and J. R. Jump, “Packet switching interconnection networks
for modular systems,” IEEE Comput. Mag., vol. 14, no. 12, pp. 43-53,
Dec. 1981.

[7] G.L. Frazier and Y. Tamir, “The design and implementation of a multi-
queue buffer for VLSI communication switches,” in Proc. Int. Conf.
Comput. Design, Cambridge, MA, Oct. 1989, pp. 466—-471.

5

—

TAMIR AND CHI: SYMMETRIC CROSSBAR ARBITERS FOR VLSI COMMUNICATION SWITCHES 27

[8]

1

[10]

[11]

[12]

[13]

{14]

[15]

(16

[17]

[18]

[19]

{20]
[21]

[22]

[23]

[24)

25 O i
R1EEEEEEEEEL]
Ema

CELEL 1

B ndiff
BB pdiff
S poly
EE metal 1

metal2

Fig. 23. VLSI layout of a single WFA arbitration cell. This cell is 152 A wide by 127 A tall.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph,
and M. Snir, “The NYU Ultracomputer— Designing an MIMD shared
memory parallel computer,” IEEE Trans. Comput., vol. C-32, no. 2, pp.
175-189 Feb. 1983.

D. B. Gustavson, “Computer buses—A tutorial,” IEEE Micro, vol. 4,
no. 4, pp. 7-22, Aug. 1984

R. H. Halstead, T. L. Anderson, R. B. Osborne, and T. L. Sterling,
“Concert: Design of a multiprocessor development system,” in Proc.
13th Annu. Symp. Comput. Architecture, Tokyo, Japan, June 1986, pp.
40-48.

M. Kumar and J. R. Jump, “Performance enhancement in buffered
delta networks using crossbar switches and multiple links,” J. Parallel
Distributed Comput., vol. 1, no. 1, pp. 81-103, 1984.

T. Lang, M. Valero, and I. Alegre, “Bandwidth of crossbar and multiple-
bus connections for multiprocessors,” IEEE Trans. Comput., vol. C-31,
no. 12, pp. 1227-1234, Dec. 1982.

T. Lang and M. Valero, “M-users B-servers arbiter for multiple-busses
multiprocessors,” Microprocessing and Microprogramming, pp. 11-18,
Oct. 1982.

D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145-1155, Dec. 1975.
R. J. McMillen and H. J. Siegel, “The hybrid cube network,” in Proc.
Distributed Data Acquisition, Comput., and Contr. Symp., Dec. 1980,
pp. 11-22.

l.pMitrani, Simulation Techniques for Discrete Event Systems.
bridge, MA: Cambridge University Press, 1982.

T. N. Mudge and B. A. Makrucki, “Probabilistic analysis of a crossbar
switch,” in Proc. 9th Int. Symp. Comput. Architecture, Austin, TX, Apr.
1982, pp. 311-319.

T. N. Mudge, J. P. Hayes, and D. C. Winsor, “Multiple bus architec-
tures,” IEEE Comput. Mag., vol. 20, no. 6, pp. 42—48, June 1987.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss,
“The IBM Research Parallel Processor Prototype (RP3): Introduction

and architecture,” in Proc. 1985 Int. Conf. Parallel Processing, Aug.
1985, pp. 764-771.

D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-
Based Parallel Processing. Cambridge, MA: M.LT. Press, 1987.

C. L. Seitz, “The Cosmic Cube,” Commun. ACM, vol. 28, no. 1, pp.
22-33, Jan. 1985.

S. M. Swope and R. M. Fujimoto, “Simon II Kernel Reference Manual,”
Tech. Rep. UUCS 86-001, Univ. of Utah, Salt Lake City, UT, Mar.
1986.

Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for
VLSI communication switches,” in Proc. 15th Annu. Int. Symp. Comput.
Architecture, Honolulu, HI, May 1988, pp. 343-354.

D. M. Taub, “Arbitration and control acquisition in the proposed IEEE
896 Futurebus,” IEEE Micro, vol. 4, no. 4, pp. 28—41, Aug. 1984.

Cam-

[25]

[26]

[27]

(28]

M. K. Vernon and U. Manbar, “Distributed round-robin and first-come
first-serve protocols and their application to multiprocessor bus arbitra-
tion,” in Proc. 15th Annu. Int. Symp. Comput. Architecture, Honolulu,
HI, May 1988, pp. 269-277.

P. D. Welch, “The statistical analysis of simulation results,” in Computer
Performance Modeling Handbook, S. S. Lavenberg, Ed. New York:
Academic, 1983, pp. 267-329.

C. Whitby-Strevens, “The Transputer,” in Proc. 12th Annu. Symp.
Comput. Architecture, Boston, MA, June 1985, pp. 292-300.

H. Yoon, K. Y. Lee, and M. T. Liu, “Performance analysis of multi-
buffered packet-switching networks in multiprocessor systems,” IEEE
Trans. Comput., vol. 39, no. 3, pp. 319-327 Mar. 1990.

Yuval Tamir (S’78-M’85) received the B.S.E.E.
degree from the University of Towa, Iowa City, in
1979, and the M.S. and Ph.D. degrees in electrical
engineering and computer science from the Uni-
versity of California, Berkeley, in 1981 and 1985,
respectively.

Since 1985 he has been on the faculty of the
Computer Science Department at the University of
California, Los Angeles, where he is currently an
Associate Professor. He established and is currently
directing the Computer Science VLSI Systems Lab-

oratory. His research interests include scalable parallel architectures, fault-
tolerant computing, and VLSI systems.

Dr. Tamir is a member of the IEEE Computer Society and the Association
for Computing Machinery.

Hsin-Chou Chi received the B.S. and M.S. degrees
in electrical engineering from National Taiwan Uni-
versity, Taiwan, in 1982 and 1984, respectively.

He is currently a Ph.D. candidate in the Computer
Science Department, University of California at Los
Angeles. His research interests are in the areas
of computer architecture, paraliel processing, and
VLSI systems.

