
Proceedings of the
IEEE International Conference on Cluster Computing
Chicago, Illinois, pp. 266-274, September 2002.

Design and Validation of Portable Communication Infrastructure

for Fault-Tolerant Cluster Middleware†

Ming Li, Wenchao Tao, Daniel Goldberg, Israel Hsu, Yuval Tamir
Concurrent Systems Laboratory

UCLA Computer Science Department
{mli,wenchao,dangold,israel,tamir}@cs.ucla.edu

Abstract

We describe the communication infrastructure (CI) for
our fault-tolerant cluster middleware, which is optimized
for two classes of communication: for the applications
and for the cluster management middleware. This CI was
designed for portability and for efficient operation on top
of modern user-level message passing mechanisms. We
present a functional fault model for the CI and show how
platform-specific faults map to this fault model. Based on
this fault model, we have developed a fault injection
scheme that is integrated with the CI and is thus portable
across different communication technologies. We have
used fault injection to validate and evaluate the
implementation of the CI itself as well as the cluster
management middleware in the presence of
communication faults.

1. Introduction

In most clusters each node runs a local copy of an off-
the-shelf operating system that was not designed to
manage a distributed cluster. Cluster Management
Middleware (CMM) runs above the operating system and
provides resource allocation, scheduling, coordination of
fault tolerance actions, and coordination of the interaction
between the cluster and external devices. High-
performance reliable communication is critical for
efficient execution of applications on the cluster as well
as the operation of the CMM.

In many clusters, communication is implemented on
top of TCP and Ethernet. Other clusters, especially those
designed for parallel computation, use more efficient
user-level message passing mechanisms [1]. In either
case, the Communication Infrastructure (CI) must support
interprocess communication within application tasks as
well as the communication for the CMM. It is highly
desirable to implement the CI in a way that facilitates
efficient porting of the cluster middleware to different
communication technologies.

The UCLA Fault-Tolerant Cluster Testbed (FTCT)
hhhhhhhhhhhhhhhhhh
† This research was supported by the Remote Exploration and
Experimentation (REE) program of the Jet Propulsion Laboratory.

project is focused on developing and evaluating algo-
rithms and implementation techniques for fault tolerant
cluster managers [8, 4]. A ‘‘thin’’ communication layer
(CL) is a critical component of the CI for FTCT. This CL
provides an interface for the rest of the middleware that
need not change when porting the system to different
underlying communication platforms. This is done while
adding minimal additional overhead. While all
communication is processed through CL, we argue for an
unconventional layering structure that results in different
processing for application messages and CMM messages.
For both types of messages, the CI provides end-to-end
reliable communication regardless of the reliability
characteristics of the underlying platform [9].

Fault tolerance is a key requirement from many
clusters [6, 10]. This is a focus of our work, which
involves the use of active replication for the CMM in
order to provide uninterrupted management for the cluster
in the presence of faults [8, 4]. The operation of the
cluster with respect to the applications as well as the
CMM is dependent on the operation of the CI in the
presence of faults. Validating the operation of the CI
requires the ability to inject faults in the CI and evaluate
the response of the system. We have developed a
software-implemented fault injector for our CI that is
portable across different platforms that may host the CI.
A key to achieving this portability is a functional fault
model that covers a wide variety of platform-specific
faults that may be encountered. We have used this fault
injector to validate the protocols used by CI and the entire
CMM as well as to measure the performance of the
system in the presence of communication faults.

An overview of our Fault-Tolerant Cluster Testbed
(FTCT) is presented in Section 2. Section 3 describes the
Communication Infrastructure (CI), including the key
parts of its API. The functional fault model for the CI is
presented in Section 4. In this section we also show how
the faults that occur in commonly-utilized communication
platforms map to the functional fault model. The
implementation of the fault injector is described in
Section 5. Our experience with the use of the fault
injector to identify software bugs and evaluate the
performance of our system is presented in Section 6.

- 2 -

T2

T1 T3

T3

T1T1T3

T2

T1

agent agent agent agent

backup

primary

backup

Manager Group

Figure 1. System structure of FTCT

2. Overview of FTCT

The overall structure of the FTCT system is shown in
Figure 1 [8, 4]. The system consists of three components:
a manager group, an agent process on each node, and a
library for user applications. The manager group consists
of three active replicas and performs cluster-level
decision making. An agent process on each node sends
node status information to the manager group, performs
commands at the node on behalf of the manager group,
and provides an interface between application processes
and the CMM. A library that is linked with every
application process is an important part of the CMM,
providing part of the interface between the application
process and the local agent. This library also provides the
mechanisms needed to set up intra-task communication
using MPI.

CMM communication (as opposed to application
communication) is based on authenticated (signed[7])
messages. Errors in the CMM are detected using
heartbeats, comparison of messages generated by the
manager replicas, and standard reliable communication
mechanisms [8, 4]. Under certain conditions, members of
the manager group enter ‘‘self diagnosis,’’ where their
states are compared and, possibly, a faulty replica is
identified and terminated. Once a faulty manager replica
is identified, a new manager replica is restarted using the
states of the remaining two manager replicas.

3. The Communication Infrastructure

The idea of using a communication layer to facilitate
porting is not new. For example, Glunix [3] provides
such a layer. However, the Glunix portability layer is
tuned for an implementation over TCP/IP and leads to
inefficiencies when implemented over state-of-the-art
communication platforms.

High-performance communication requires avoiding
system calls and eliminating local message copies [11].
Hence, modern designs of NIC (network interface card)
hardware allow user-level send and receive primitives,

allow the NIC and host to access shared memory, and
expose buffer management to the application [13]. The
design of the FTCT CI was done with these
considerations in mind — if the underlying
communication platform provides these high performance
features, our CI must be able to take advantage of them.
Since the networking hardware available to us was
Myrinet [1], our low-level CL was inspired by Myricom’s
GM library and has a similar, though not identical,
‘‘look-and-feel.’’ However, CL can be easily ported to
other user-level communication platforms as well as more
traditional platforms, such as TCP over Ethernet. We
have working implementations on top of Myricom’s GM
as well as on top of UDP and sockets.

CL provides connectionless communication with no
reliability guarantees. Basically, CL provides a way to
get bits (most of the time) from one node to another with
minimal overhead above the overhead of the underlying
platform. CL uses (node id, port number) pairs to identify
communication endpoints. In order to be able to
efficiently utilize modern user-level message-passing
mechanisms, the CL API exposes message buffer
management to the application. The CL_send() operation
is nonblocking and a status handle provided by the caller
contains the status of the operation. The message to be
sent must be in memory allocated using the CL API. CL
calls can fail in a variety of ways. Table 1 summarizes
the most important error conditions that may be flagged
as a result of a call to a CL procedure.

The cluster must support the requirements of two
classes of communication: application-level communica-
tion and CMM communication. Both classes require
reliable communication. In general, the CMM uses
aggressive fault tolerance mechanisms to ensure that the
cluster as a whole remains usable. On the other hand, in
our application domain, the failure of an application task
is not quite as critical. Accordingly, we defined a
Management Message Layer (MML) for CMM
communication and a platform for application-level
communication, called Reliable CL (RCL).

In order to meet its reliability requirement, MML
provides authentication as well as the standard integrity
checks. In addition, it must facilitate reliable atomic
multicast required for maintaining active replication.
Some of the CMM communication is of the form
request-reply, or request-acknowledge. For example, the
manager group directs an agent to start a process and
expects a confirmation that the process has been started
within some timeout. For this style of communication,
end-to-end arguments lead to the conclusion that low-
level (message layer) acknowledgements and
retransmissions are not necessary. Regardless of the
communication subsystem, the sender must be ready to
take corrective action if it does not receive a high-level

- 3 -

Table 1. Key error conditions flagged by calls to CL procedures
iii

Error Code Descriptionii
LOCAL_RESOURCE Required resources on the local node for completing the operation are currently not

availableiii
REMOTE_RESOURCE Required resources on the remote node for completing the operation are currently not

available (applies to send)iii
INVALID_BUFF A buffer address passed to CL is invalidiii
INVALID_ENDPOINT A specified communication endpoint (node id, port number) is invalidiii
INVALID_ARGS Invalid arguments (not covered by the above entries) are passed to CLiii
DEST_REJECT Message rejected by destinationiii
UNREACHABLE Unreachable destination (network problem, closed port at destination, etc)iii
NOT_INITIALIZED Attempt to use an uninitialized communication layeriii
INTR An asynchronous signal occurred during the CL call.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

confirmation that the requested operation has been
performed.

The considerations above lead to an MML that is quite
complex due to all the functionality it must provide. For
example, MML actually supports three types of messages:
UNR — unreliable message where no acknowledgements
are required, ACK — reliable message that requires a
positive acknowledgement, and NACK — reliable
message that does not require positive acknowledgement
(negative acknowledgements used to flag lost messages).
Heartbeats use UNR messages while the request-confirm
scenario above uses NACK messages. MML is
implemented strictly above CL, using only the CL API for
communication. MML provides an API that is used by
the management middleware (CMM).

RCL is a simple, conventional, reliable communication
layer. Since high performance is a key requirement from
RCL, we have chosen not to implement RCL (as we did
MML) strictly above CL. In some cases, such strict
layering would lead to inefficiencies due to lack of access
to the internal workings of CL by the reliable
communication routines. For example, with a Myrinet
GM backend and strict layering above CL, RCL would
have to perform periodic probing of the status of control
messages, such as ACKs, in order to determine when this
data can be garbage collected. Our implementation of
RCL is integrated with the implementation of CL. Hence,
the reliable communication routines have full access to
the internals of CL. In the example above, this allows
RCL to garbage-collect the status data structures and free
the control packet’s buffer in the callback routines that
are called by GM without any probing.

The structure of the FTCT CI is shown in Figure 2.
The MML is tightly-coupled with the CMM and strictly
layered on top of CL. RCL functionality is integrated
with CL and provides a high-performance reliable
communication platform for implementing application-
level communication. A retargeted version of MPICH
provides the MPI API for the application.

Communication Platform (e.g.GM)

Common Base
CL Reliable CL

MPICH

User Applications

Management Message
Layer

Middleware
Cluster Management

Figure 2. The structure of the FTCT
Communication Infrastructure

4. A functional fault model for the FTCT CI

As mentioned earlier, our goal was to implement a
portable fault injector for the communication
infrastructure and use it to validate the protocols used in
FTCT and evaluate their performance in the presence of
communication errors. The basis of a portable fault
injector must be a ‘‘portable fault model’’ that does not
depend on the specific characteristics of the underlying
communication platform. Since we have a
communication infrastructure (CI) that wraps the
communication platform with a standard interface, there
is an opportunity to use this interface to develop a
functional fault model that can meet the portability
requirements. In Subsection 4.1 we define this functional
fault model. In Subsection 4.2 we show how the specific
faults of the Myrinet/GM communication platform maps
to our functional fault model.

4.1. Defining a functional fault model
Software-implemented fault injection involves adding

to a working system special software that perturbs the
normal operation of the system, emulating the results of
faults. Software-implemented fault injectors have been
used by many systems to emulate communication
faults [2, 5, 12]. Typically, the emulated faults are at a
relatively high functional level, such as dropping,
modifying, duplicating, and delaying messages. In this

- 4 -

subsection we define such a fault model that goes one
step further, to include faults that cannot be covered by a
strictly message-oriented high level model.

Our functional fault model includes the following
types of faults: message faults, invocation faults, and
operation faults. Message faults are faults that affect
particular messages, including dropping, delaying,
modifying, reordering, and injecting messages.
Invocation faults are faults that happen (or are
manifested) at the time of CL API invocation.
Specifically, the CL invocation fails to perform its
function and/or returns one of the error status codes
described in Table 1. Operation faults are faults that
occur during the actual transmission operation — the CL
API invocation proceeds normally but there is an error
indication later that is not a simple change of one
message. For example, a message is sent but is never
delivered due to full buffers on the receiver side.

All faults can be specified with a probability
distribution of the fault recurrence interval. For message
delaying faults, the duration of the delay can also be
specified with a probability distribution. Message
injecting faults include sending a previously-sent message
to an arbitrary destination. The combination of message
injecting faults and messages modifying faults also covers
the more general case of sending an arbitrary message to
an arbitrary destination.

Communication errors can also result in resource
‘‘leakage’’ that can have consequences that are not
covered by the message-oriented faults. Specifically,
resources like low level memory buffers and tokens used
for flow-control can be leaked due to various
communication faults. With the CL API, such resource
leakage is eventually manifested at the functional level as
send failure, receive failure, or allocation failure at the
time of CL API invocation. Hence, these faults are
covered by the invocation faults mentioned above.
Invocation faults also include faults that cause CL API
call failure due to parameter validation errors (e.g., a
message buffer address that is not accessible by the
network interface hardware).

With the CL API, the send call specifies a status
variable where the result of the operation (success or
failure) is eventually stored. This status mechanism can
be used to emulate the faults that occur during the send
operation but are not covered by the message faults. For
example, with GM/Myrinet the status is set to failure if
the receiver is out of buffer space for receiving the
message and causes the sender to timeout. A list of the
functional faults are summarized in Table 2. Each fault
type is associated with parameters such as the probability
distribution of the fault’s recurrence interval.

Table 2. Functional fault model for FTCT CI
iii

Fault Type Descriptionii
Drop Message is droppedii
Delay Message is delayedii
Modify Message is modifiedii
Reorder Message is reorderedii
Inject A previously sent message is sent to an

arbitrary destination.ii
Invocation Invocation faults — often due to lack of

resources or bad parametersii
Operation Operation faults — send operation properly

invoked but fails to complete correctly (e.g.,
receiver is out of buffer space)iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

4.2. Mapping communication platform faults
to the functional fault model

The proposed functional fault model is quite general
and provides good ‘‘coverage’’ of the errors that can
occur with a wide variety of back-ends to the CL API.
We do not attempt to prove this assertion but simply show
the mapping for the GM/Myrinet platform. Mapping for
the sockets/UDP platform has also been done but is
omitted here due to space limitations.

GM over Myrinet provides user-level message-passing
— no system calls are involved in the send or receive
operations. Tokens are used for flow control, limiting the
number of outstanding messages from any sender. On the
receive side, tokens are used to regulate the number of
active receive buffers. Some of the host memory is
shared with the Network Interface Card (NIC). In order
for a message to be sent, it must be placed in this shared
space. The application ‘‘provides’’ the NIC with buffers
in the shared space to be used for receiving messages.
After a message is received and the data is read by the
application, the buffer space is ‘‘provided back’’ to the
NIC for future use.

The GM API for Myrinet is event-driven. Events are
‘‘returned’’ as a result of the application invoking
gm_receive(). For example, to send a message, the
application invokes gm_send_with_callback(). At some
later point, when the application invokes gm_receive(), a
sent_tokens_event is returned, causing a callback routing
passed by the application to be invoked and reclaiming
the send token. The event recv_event is returned when a
message is received. Upon the receipt of this event, the
application can extract the message from the receive
buffer.

The operation of GM can lead to complex fault
scenarios. For example, consider the consequences of a
dropped message. If the message is dropped on the
remote (receiver) NIC, the callback for the send may still
be invoked as usual, the message is then marked as
successfully sent, and a send token is reclaimed. If the
message is dropped at the sender NIC, the callback for the

- 5 -

Table 3. Mapping of GM/Myrinet faults to functional faults
iii

Communication Platform API Communication Platform Failure Mode Functional Faultii
Send completes but doesn’t call callback.
Depletion of send tokens.

Eventual CL_send failure —
eventual invocation/operation
fault.iii

Doesn’t send and doesn’t call callback.
Depletion of send tokens.

Eventual CL_send failure —
invocation fault, Dropiii

Doesn’t send and calls callback Dropiii
Operation fault.Send completes and calls callback but error on

remote side. Includes no available buffers, port
closed, port unreachable, etc.iii
Send wrong data, length Modifyiii

gm_send_with_callback

Send to wrong location Inject,Dropiii
gm_alloc_send_token No tokens available CL_send failure — invocationiii

Doesn’t return message event Drop, eventual invocation fault
(buffer not provided back)iii

Returns incorrect message event Inject, eventual invocation fault
(wrong buffer provided back)iii

gm_receive

Doesn’t return sent tokens event. Depletion of
send tokens.

Eventual invocation fault
iii

gm_provide_receive_buffer Doesn’t provide buffer Eventual invocation faultiii
gm_unknown Fails to call callback (or with correct arguments) Eventual invocation and/or

operation faultiii
gm_dma_malloc No available memory Invocation faultiii

GM failure CL_init fails — invocationgm_init, gm_open, gm_get_node_id,
etc. (called at init)iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

send is never invoked, leading to the loss of a token. The
possible send errors consist of all the combinations of
sending or not sending the message and having the
callback eventually invoked or never invoked. In
addition, messages can be sent to the wrong location or
with the wrong data. Sends can also fail because of a
resource error — running out of tokens.

Table 3 shows the mapping of possible GM/Myrinet
platform faults to our functional fault model. As a result
of a fault, events that are supposed to be received may
never arrive or may arrive with incorrect values. If a
recv_event is lost, the results are a dropped message and a
receive buffer that is not provided back to GM. If an
incorrect recv_event is generated, the result may be the
injection of a bogus message to the host. This could also
cause the CI implementation to provide the wrong buffer
back to GM, resulting in fewer buffers of a particular size
being available. With GM, when a message send
operation is completed, the appropriate callback function
should be invoked after a sent_tokens_event is received
by gm_receive(). If the sent_tokens_event is lost, the
send buffer is never released for reuse and, eventually, the
sender runs out of buffers for sending messages. If
corrupt information is returned with the
sent_tokens_event, resources may not be properly
reclaimed and/or the status of the send may be incorrect
(operation functional faults).

Based on the discussion above, the more complex
faults in GM/Myrinet are likely to result in resource

leakage that is eventually manifested as invocation faults
or operation faults. For example, if a node runs out of
buffer space, that may be manifested as an invocation
fault when trying to allocate a new buffer for a send.
Running out of buffer space may also be manifested and
as an operation fault for a remote node trying to send to
the node with no buffer space.

Some possible faults can have unexpected
consequences, such as causing the host system to hang or
crash. For example, it is undefined to send a message
over GM/Myrinet if there is no available send token. The
GM API requires the application using GM to ensure that
a token exists before calling gm_send_with_callback().
However, the application’s accounting of the available
tokens could be incorrect. For example, the
sent_tokens_event could be replicated, thus causing the
application (in this case, the CI implementation) token
management routine to operate as though there are more
tokens than there actually are. Hence, a
gm_send_with_callback() may be called even though
there really are no tokens available. This could hang the
host. Faults like this that can hang or crash the host are
not considered in our fault model or validation.

5. A portable fault injector for the FTCT CI

The message functional faults can be implemented on
either the send or receive side. The invocation faults
must be implemented locally — on the node where the
fault is being emulated. These faults are easy to emulate

- 6 -

by simply not performing the requested operation and
returning an error code. The operation faults can be
emulated on the sender side by returning incorrect
information in the status variable passed to the send
operation. In general, the implementation of the fault
injector was guided by two key goals: ease of porting to
different communication platforms and minimal
disruption to the normal operation of the CI.

Table 4. Fault injector implementation
iii

Fault Type General Implementationii
Drop Do not call underlying send; set the status for

this send as successful.iii
Inject Call the underlying send with a copy of a

previously sent message.iii
Delay Hold on to the received message and do not

deliver. Each time into CL_receive, deliver
the delayed message if one exists before
calling underlying receive.iii

Modify Randomly modify bits in the buffer returned
from underlying receive.iii

Reorder Hold on to the received message and call the
underlying receive again. Deliver the new
message before delivering the message being
held.iii

Invocation Return with a resource error condition
without calling the underlying
communication function
(send/receive/memory allocate)iii

Operation Set status with random error. Possibly drop
message.iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4 summarizes how the functional faults are
implemented. The functions for fault injection exist at the
CL interface, just above the calls to the communication
platform’s send and receive functions and just below the
reliability features of RCL. The fault injection code is
separated from the code for CL implementation.

It is straightforward to implement message dropping
on the sender side by simply not sending the message.
Dropping a message on the receiver side is more complex
— with a user-level network protocol, such as GM,
messages must be received and discarded and buffers
must then be released back to the network layer. If
messages are dropped on the receive side, they still use
resources (receive buffers) and potentially cause side
effects due to resource exhaustion. Such side effects are
emulated separately as invocation and operation faults in
our functional fault model.

Message injection is also simpler to implement on the
sender side. When injecting a message, a sender creates a
new message and sends it to a random destination. The
content of the message is copied from a previously sent
message.

Message delaying and reordering are implemented on
the receive side. Implementing message delaying on the
send side would involve holding a message in order to

send it at a later time while reporting it as a successful
send to the application. However, the fault injection
mechanism must then ensure that the message is actually
sent successfully at the later time. If, at this later time,
there are problems completing the delayed send (due to a
lack of resources, for example), the application cannot be
alerted since the delayed message has already been
reported as sent. In general, it is difficult to guarantee the
completion of a send operation for all possible CL
implementations. This problem is avoided on the receive
side, where messages can be easily reordered or delayed.

In order to avoid the complexity of dealing with
timers, we implemented a restricted version of message
delaying and reordering. Specifically, on the receive side,
when a message is selected for delaying or reordering, it
is buffered, the underlying receive is called again, and
nothing is delivered to the application until the next
message arrives. For delaying, the first message is then
delivered to the application. For reordering, the second
message is delivered to the application first.

Message modifying is implemented by changing a
random bit in a message on the receive side. Sender-
based emulation of message corruption during
transmission would require making a copy of the original
message — if the original copy of the message is
modified on the sender, the faulty message would be
repeatedly retransmitted.

The fault injector implementation is not completely
portable. For each underlying platform it is likely that
some platform-specific code needs to be developed. For
example, with the GM/Myrinet platform, the code needs
to deal with callbacks and token allocation. If the fault
being emulated is a message drop at the receive GM
endpoint, the send actually completes successfully so the
callback for the send operation must be invoked. With
our fault injector, for a dropped message the underlying
send is never called. Hence, the fault injection code itself
has to perform the function of the callback function.
Specifically, it must set the status of that send to indicate
completion. Similarly, GM requires that a token be
allocated for each send. The token is later freed by the
callback function. When emulating message dropping,
since the underlying send is not invoked, the token
allocation is also skipped. Thus the normal token
allocation is not disrupted. Despite the need for such
platform-specific code in the fault injector, the majority
of the fault injection code is portable.

Reliable CL (RCL) is not strictly layered on top of CL
— the implementation of RCL procedures interacts
directly with the underlying communication platform’s
API, not the CL API. Hence, implementing fault
injection for CL does not automatically provide fault
injection for RCL. However, both CL and RCL
procedures interact with the platform API in a similar

- 7 -

way. For both CL and RCL procedures, the faults occur
at the point of interaction with the platform API. For
example, the message drop is implemented by essentially
skipping over the call to the underlying send. Hence, the
same fault injection code used to ‘‘instrument’’ the CL
implementation can be used with essentially no
modifications in RCL.

6. Experimental results

This section describes early experience with the use of
the fault injector. It has been used for debugging the
FTCT system as well as for evaluating the system’s
performance in the presence of faults.

6.1. Identifying software bugs
Using random inputs is a well-known technique for

testing the robustness of software and identifying
problems dealing with unexpected inputs. Fault injection
in the CI has been extremely helpful for improving the CI
itself as well as the cluster management middleware
(CMM) as a whole. To illustrate the usefulness of the
fault injection for debugging, we present, as examples,
two bugs that were uncovered using the fault injector.

In our original implementation of RCL, we used the
message length in the message header to determine how
many bytes should be included in the checksum
calculation used to validate the message. When fault
injection corrupted this message length field, the
checksum routine attempted to access protected
addresses, leading to a segmentation fault. The obvious
fix was to use the minimum of the message length field in
the message and the length of the buffer delivered by the
communication layer.

Our cluster management middleware is based on a
triplicated central manager. The manager replicas
monitor each other by exchanging periodic heartbeats.
Since heartbeats are transmitted as ‘‘unreliable’’
messages, some heartbeats are lost in transmission. This
led to a situation where heartbeats from one manager
replica reached a second replica but failed to reach the
third replica. This situation ‘‘emulated’’ a non-fail-stop
failure mode of the first replica and uncovered a flaw in
our original implementation of the middleware.

6.2. The performance of Reliable CL
Application communication is implemented on top of

Reliable CL (RCL). Hence, the performance of RCL is
critical. In this section we report on the performance of
RCL both without faults and with varying fault rate. All
the measurements were conducted on a cluster whose
nodes are dual CPU PCs with 350 MHz Pentium II
processors running Solaris 8. The network is Myrinet
with Lanai 4.3 processors (M2F-PCI32c Lanai cards).

Note that this hardware is quite old so the results are not
competitive with current hardware.

Table 5 shows the one way latencies for five different
ping-pong micro-benchmarks: three that use GM alone,
one that uses CL, and one that uses reliable CL. The first
GM program is a program provided by Myricom to
showcase their software. The second GM program is
written by us and does not use any buffer management (it
provides back to GM the same buffer that the message
arrives in). The third GM program includes standard GM
buffer management so that it can handle more than one
message at a time. The overhead of RCL increases with
increasing message size due to the time it takes to
compute the checksum.

Table 5. One way message latencies (µsec)
ii

API/ Message Size (bytes)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Benchmark 4 64 1024 4096ii

GM (Myricom) 25.1 26.56 54.78 120.7ii
GM (No BM) 26.1 27.75 55.1 122.8ii

GM 27.5 29.35 58 128ii
CL 26.5 28.6 56.5 127ii

RCL 30.9 32.16 72 170iic
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Comparing RCL to CL, the RCL overhead includes
extra processing at the sender and receiver as well as the
handling of a periodic alarm interrupt used to check for
timeouts. However, our measurement shows the
overhead of handling of periodic timer events is not
significant. The processing overhead on the sender side
includes mainly extra header processing (approximately
150 clock cycles for an eight byte message). In addition,
a timer event must be set up (for timeout) but that is done
after the underlying send is invoked so that the send and
timer setup are done mostly in parallel. At the receiver,
extra processing includes checking the checksum,
checking whether the message is in order, setting a timer
event (for a delayed ack) and updating data structures
(approximately 370 clock cycles for an eight byte
message).

Table 6. Communication throughput (MB/sec)
ii

API/ Message Size (bytes)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Benchmark 4 64 1024 4096ii

GM (Myricom) 0.16 2.44 30.73 73ii
GM (No BM) 0.151 2.33 30.62 72.63ii

GM 0.15 2.27 29.32 71.08ii
CL 0.147 2.28 30.27 72.46ii

RCL 0.12 1.94 25.3 67iic
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 6 shows the communication throughput of
micro-benchmarks designed to maximize throughput. For
large messages, the throughput overhead of RCL is lower
than the latency overhead since much of the processing
overhead for a message can be done in parallel with the
transmission of other messages.

- 8 -

To measure the performance of RCL in the presence of
faults, two sample tasks were used. The first task is
communication-bound and consists of a sender and a
receiver. The sender sends as quickly as it can and the
receiver receives as quickly as it can. The second task is
CPU bound and also consists of two processes. Each
process performs 12 sends, computes for enough time to
allow for acknowledgments to arrive, and performs 12
receives. For each task, results were obtained based on
five runs for each fault type using different random
number seeds in the fault injector. The execution times of
the CPU-bound task runs were all within 5% of the
average. The communication-bound task had up to 15%
variation in the execution times among runs. The
execution time of the communication-bound task is highly
dependent on the types of faults that occur and on the
types of messages involved. This accounts for the larger
variability in execution times between successive runs.
The ability to evaluate the efficiency of RCL under
different types of faults is important since it allows RCL
to be fine-tuned to deal with the faults expected to occur
in the system.

% Increase
Execution

Time

Fault Rate (per message)

.001 .005 .01 .05 .1
0.04

1

10

50

100

∆.∆.∆.∆.∆

×.×.×.×.×

a

a

a

a a

.

.∆ drop
delay

.× modify
a reorder

. inject
all

Figure 3. The effect of faults on the
execution time of a communication-
bound task.

Figure 3 shows the impact of faults on the performance
of the communication-bound task. As expected, when
faults increase the effective communication latency, the
result is a dramatic increase in the execution time of the
communication-bound task. Inject faults have minimal
impact since they only require low overhead for
eliminating duplicate messages or discarding messages
that arrive at the wrong destinations. Figure 4 shows the
impact of faults on the performance of the CPU-bound
task. In this case retransmissions can occur in parallel
with the computation, so the extra overhead in the
presence of faults is small.

% Increase
Execution

Time

Fault Rate (per message)

.001 .005 .01 .05 .1
0

1

2

3

4

5

∆.∆.∆.∆.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.∆

×.×.×.×.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.×

a a
a

a

a

.

.∆ drop
delay

.× modify
a reorder

. inject
all

Figure 4. The effect of faults on the
execution time of a CPU-bound task.

6.3. Fault injection with the CMM
As part of the evaluation and validation of the FTCT

Cluster Management Middleware, we used the CI fault
injector to inject faults in MML. As discussed earlier,
MML messages include both reliable messages and
unreliable messages (mainly heartbeats). If a fault affects
a reliable message transmission or the corresponding
acknowledgement, the sender may have to retransmit the
same message and the receiver may receive the message
more than once. Communication faults may also cause
false alarms regarding node failures if the manager group
misses two consecutive heartbeats from the agent on a
node, thus invoking the node probing procedure to check
the health of the node. It is also possible that
communication faults cause the managers to initiate the
manager self-diagnosis procedure. This occurs when two
consecutive heartbeat messages from a manager replica
are lost or delayed, or an agent gets inconsistent or
belated messages from the managers [8, 4].

Figure 5 shows the consequences of communication
faults under different fault injection rates. In each case,
the number of consequences is normalized to the total
number of faults injected. The normalized numbers of
message retransmissions and duplicated messages are
constant under different fault rates, indicating that the
number of these events increases proportionally with the
number of faults injected. However, with increasing fault
rate there are smaller increases in the rate of node failure
false alarms and the rate of managers entering self-
diagnosis. The reason for this is that the CMM protocols
are designed to mask (tolerate) some faults without
resorting to high-level recovery or diagnosis actions. For
example, an alarm regarding the possible failure of a node
is raised only if there are two consecutive missing or
delayed heartbeat messages.

- 9 -

Fraction
of

Injected
Faults

Fault Injection Rate

0.005 0.01 0.05
0.0001

0.001

0.01

0.1

1

. .

. .

. .

R D

A
S

R D

A

S

R
D

A

S

Figure 5. The effects of fault injection with
different rates. (R) Retransmissions; (D)
Duplicated messages; (A) False alarms
on node failure; (S) Manager self-
diagnosis.

7. Conclusion

Robust operation in the presence of communication
errors is key to the reliability of any distributed system.
We have designed and implemented a portable reliable
Communication Infrastructure (CI) for MPI applications
as well as a message layer optimized specifically for a
cluster manager. The cluster manager’s message layer
reduces performance penalties by not repeating at lower
levels that which needs to be done at the higher level
anyway. Fault injection experiments are critical for
validating fault tolerance protocols and evaluating
performance in the presence of faults. In order to
implement a fault injector that is largely portable to
different communication platforms, we have developed a
functional fault model. While previous models covered
message faults, such as dropped messages, our model
includes invocation and operation faults, providing better
coverage of faults that can occur in modern high-
performance message-passing mechanisms. Based on
this functional fault model, we have implemented a
portable fault injection mechanism that is placed in a
common abstract communication layer used by
applications as well as the cluster manager. We used this
fault injector to debug and validate the operation of our
cluster middleware. Preliminary fault injection
experiments provide data on the impact of fault rates on
overhead and performance. Our evaluation of the CMM
under faults demonstrates the complexity of the
relationship between fault rates and error rates in such a
system. Future work will involve enhancing the ability of
the fault injector to emulate more complex fault scenarios
and evaluating the operation of our cluster middleware
under different workloads and fault patterns.

References
[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C.
L. Seitz, J. N. Seizovic, and W.-K. Su, ‘‘Myrinet: A Gigabit-
per-Second Local Area Network,’’ IEEE Micro, vol.15, no.1,
pp. 29-36, February 1995.
[2] S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung,
‘‘Testing of Fault-Tolerant and Real-Time Distributed Systems
via Protocol Fault Injection,’’ Proceedings of the International
Symposium on Fault-Tolerant Computing, Sendai, Japan,
pp. 404-414, June 1996.
[3] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat,
and T. E. Anderson, ‘‘GLUnix: A Global Layer Unix for a
Network of Workstations,’’ Software - Practice and Experience,
vol.28, no.9, pp. 929-961, July 1998.
[4] D. Goldberg, M. Li, W. Tao, and Y. Tamir, ‘‘The Design
and Implementation of a Fault-Tolerant Cluster Manager,’’,
Computer Science Department Technical Report CSD-010040,
University of California, Los Angeles, CA, October 2001.
(Presented at the IEEE Cluster 2001 Conference, October 2001,
Newport Beach, CA).
[5] S. Han, K. G. Shin, and H. A. Rosenberg, ‘‘DOCTOR: An
Integrated Software Fault Injection Environment for Distributed
Real-time Systems,’’ Proceedings of International Computer
Performance and Dependability Symposium, Erlangen,
Germany, pp. 204-213, April 1995.
[6] Z. Kalbarczyk, R. K.Iyer, S. Bagchi, and K. Whisnant,
‘‘Chameleon: A Software Infrastructure for Adaptive Fault
Tolerance,’’ IEEE Transactions on Parallel and Distributed
Systems, vol.10, no.6, pp. 560-579, June 1999.
[7] L. Lamport, R. Shostak, and M. Pease, ‘‘Byzantine Generals
Problem,’’ ACM Transactions on Programming Languages and
Systems, vol.4, no.3, pp. 382-401, July 1982.
[8] M. Li, D. Goldberg, W. Tao, and Y. Tamir, ‘‘Fault-Tolerant
Cluster Management for Reliable High-Performance
Computing,’’ Proceedings of International Conference on
Parallel and Distributed Computing and Systems, Anaheim,
CA, pp. 480-485, August 2001.
[9] R. Minnich, ‘‘Bipolar Disorder in Cluster Networking,’’
Proceedings of the IEEE Cluster 2001 Conference, Newport
Beach, CA, October 2001. http://www.cacr.caltech.edu/
cluster2001/program/talks/minnich.pdf
[10] S. H. Russ, K. Reece, J. Robinson, B. Meyers, R. Rajan, L.
Rajagopalan, and C.-H. Tan, ‘‘Hector: An Agent-Based
Architecture for Dynamic Resource Management,’’ IEEE
Concurrency, vol.7, no.2, pp. 47-55, April-June 1999.
[11] P. A. Steenkiste, ‘‘A Systematic Approach to Host
Interface Design for High-Speed Networks,’’ Computer, vol.27,
no.3, pp. 47-57, March 1994.
[12] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R.
K. Iyer,, ‘‘NFTAPE: A Framework for Assessing Dependability
in Distributed Systems with Lightweight Fault Injectors,’’
Proceedings of the 4th IEEE International Computer
Performance and Dependability Symposium (IPDS-2K),
Chicago, IL, pp. 91-100, March 2000.
[13] T. von Eicken and W. Vogels, ‘‘Evolution of the Virtual
Interface Architecture,’’ IEEE Computer, vol.31, no.11, pp. 61-
68, November 1998.

