
Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
Victoria, Canada, pp. 29-32, August 2003.

Performance Optimizations for Transparent Fault-Tolerant Web Service

Navid Aghdaie and Yuval Tamir
Concurrent Systems Laboratory

UCLA Computer Science Department
Los Angeles, California 90095

{navid,tamir}@cs.ucla.edu

Abstract—Reliable Web service requires the ability to
complete transactions that are in progress when a Web server
fails. We have previously presented a client-transparent scheme,
based on a standby backup and logging, for providing such
fault-tolerant Web service. The scheme does not require
deterministic servers and can thus properly handle dynamic
content. This paper presents two performance optimizations that
significantly reduce the overhead of the scheme. For dynamic
content, the throughput of a server cluster is increased by
distributing the primary and backup tasks among the servers.
For static content, that is deterministic and readily generated, the
overhead is reduced by avoiding explicit logging of replies to the
backup. Our implementation is based on special modules in the
Linux kernel and the Apache Web server. We discuss
implementation issues and present overhead measurements in
terms of latency, throughput, and CPU cycles.

I. INTRODUCTION

Web service for critical applications is often provided by a
three tier architecture, consisting of: client Web browsers, one
or more replicated front-end servers (e.g. Apache), and one or
more back-end servers (e.g. a database). We have previously
proposed and implemented a client-transparent fault-tolerant
Web service scheme based on a hot standby backup front-end
server and logging [1, 2]. Our scheme recovers in-progress
requests and does not require deterministic servers or changes
to the clients. In this paper, we describe and evaluate the
implementation of two performance enhancements. In our
original implementation each node in a primary/backup pair
maintained its role as the primary or the backup for all
requests for as long as both nodes were operational. This
results in unbalanced utilization of the nodes. The first
performance enhancement we propose is to allow each node
to serve as primary for some requests and backup for others.
Our original scheme was focused on handling requests for
dynamic content so that the replies generated may not be
deterministic. With requests for static content, this approach
has unnecessarily high overhead. The second performance
enhancement we propose here is to handle requests for
dynamic content and static content differently, requiring lower
overhead for the latter requests.

II. TRANSPARENT FAULT-TOLERANT WEB SERVICE

In order to provide client-transparent fault-tolerant Web
service, a fault-free client must receive a valid reply for every
request that is viewed by the client as having been delivered.
Both the request and the reply may consist of multiple TCP
packets. Once a request TCP packet has been acknowledged
by a server, it must not be lost. All reply TCP packets sent to
the client must form consistent, correct replies to prior
requests.

Our scheme logs HTTP requests and replies to a hot
standby backup (Figure 1) [1, 2]. Clients are unaware of the

DUPLEXSTANDARD

entire reply
RequestRequest ReplyReply

ack

ack

ackackack data

data

datadatadata

PrimaryBackup

Client

PrimaryBackup

Client

Server

Client

Server

Client

Figure 1: Message paths for a standard unreplicated server and a hot
standby replication scheme. Replicated servers appear as a single
entity to clients. Each client request is logged by the backup before
being forwarded to the primary. The reply is generated by the
primary and reliably sent to the backup and logged before being sent
to the client.

duplex servers and communicate with a single IP address.
Request packets are acknowledged only after they are stored
redundantly (logged) so that they can be obtained even after a
failure of a server host. Since the server may be non-
deterministic, none of the reply packets are sent to the client
unless the entire reply is safely stored (logged) so that its
transmission can proceed despite a server host failure. Since
the request logging is done at the HTTP level, the requests can
be matched with logged replies so that a request will never be
reprocessed following failure if the reply has already been
logged. This is critical in order to ensure that for each request
only one reply will reach the client.

Our more efficient implementation [2], which is the starting
point for this paper, utilizes a Linux kernel module and an
Apache Web server module. Clients send their requests to the
advertised service IP address, which is mapped to the backup
server during normal operation. The backup kernel module
forwards a copy of the packets to the primary after they have
been logged, effectively multicasting the requests. The
primary server module processes the request and generates a
reply. It then sends the reply to the backup over a reliable
connection for logging, and waits for an acknowledgment
from the backup server module. The server modules on both
the primary and backup then pass the replies to their
respective kernels. The kernel modules provide the
transparent reply transmission by assuring that only one copy
of the reply is sent to the client, while preserving the
connection state. The primary kernel module sends the reply
to client, using the advertised address as the source address of
the packets. The backup kernel module discards the messages
as it receives acknowledgments from the client for messages
sent by the primary. Further details of the scheme, including
the fault model and rationale for design choices, are explained
in our previous papers [1, 2].

0-7803-7978-0/03/$17.00 2003 IEEE 1

III. TWO PERFORMANCE ENHANCEMENTS

We have implemented two performance optimizations for
our original scheme. The first, improves throughput by
distributing the primary and backup tasks among all the server
hosts. The second, reduces the average overhead per request
by allowing a more efficient scheme to be used with requests
for static content.

A. Dual-Role Server Hosts

Using our original scheme, when serving dynamic content
that requires significant processing in order to generate each
reply, the primary is likely to require significantly more
processing than the logging that is performed on the backup.
This type of content is common for transaction processing
e-commerce applications, where fault-tolerance is critical.
For the experimental setup described in Section IV, Figure 2
shows the CPU cycles used per reply, where replies are
generated using the WebStone [6, 11] CGI benchmark. The
large difference between the processing cycles used at the
primary and backup servers indicate that the backup host is
mostly idle, with its processing potential largely wasted. A
simple solution to this problem is to distribute the primary
server tasks and backup server tasks among all the hosts.
Hence, each server host will serve as the primary for some
requests and the backup for others [3, 10]. We refer to this
scheme as dual-role servers. The distribution of requests can
be done using standard load balancing techniques, such as
Round Robin DNS [4] or a centralized load balancer (with
failover capability) [5].

0
2
4
6
8

10
12

0 10 20 30 40 50

C
P
U

C
y
c
l
e
s

Reply Size (Kbytes)

.

.

Duplex Total

Duplex-pri

Duplex-bu

Unreplicated

Figure 2: Server hosts CPU cycles (in millions) per request for
processing requests requiring dynamically-generated replies of
different sizes. The primary and backup nodes of the system in
duplex mode are denoted by Duplex-pri and Duplex-bu,
respectively. The Duplex Total line is the sum of the cycles used by
the primary and backup per request.

In our original implementation, the kernel modules and the
Apache server modules were statically initialized to perform
the primary or backup functions [2]. For the dual-role server
optimization, the kernel module must perform both functions
simultaneously. Hence, for each packet received, the module
must dynamically determine whether to invoke primary or
backup processing. In addition, the Web server processes
(server modules) need to dynamically determine whether to
perform primary or backup processing at the HTTP level,
These requirements are met using two separate TCP ports: one
for incoming packets from clients and another for the
forwarded packets from the other server. When a kernel
module receives a packet on the public (client) port, it
functions as the backup and forwards a copy of the packet to
the internal (forwarding) port of the other server. Based on
the port number through which the packet arrives, the kernel
module performs the appropriate processing. The same basic

mechanism also works for the server module. Although user-
level server modules do not have access to packet headers,
they can determine the message destination address and the
appropriate mode based on the socket through which the
request is received.

B. Efficient Handling of Static, Deterministic Content

Our replication scheme was designed to handle non-
deterministic dynamic reply generation. The reply is
generated by the primary and then logged on the backup
before its transmission to the client can begin. The logging is
done over a dedicated TCP connection between the primary
and backup. The primary waits for an explicit user-level
acknowledgment from the backup before it begins to transmit
the reply to the client [1, 2]. Compared with transmission of
the reply as soon as it is generated, our scheme results in
increased latency. Specifically, most of the latency overhead
of our scheme is due to the logging of the replies (see
Section IV) and increases with message size.

Much of the latency overhead of our scheme can be
eliminated if the replies are deterministic — for example, if
the replies are based on the contents of static data (files)
available to all hosts. In that case, instead of logging replies,
active replication [7, 8] can be used, where both the primary
and backup independently generate each reply.

A possible disadvantage of using active replication is
increased CPU load on the backup for generating the replies.
However, deterministic replies of Web services are often
generated from static files and their generation is not
processor intensive. Even processor intensive deterministic
server applications (e.g. deterministic CGI scripts), often have
their results pre-computed and preserved in ‘‘cache’’ files for
performance reasons. With reply logging, for replies
generated from cached files, the number of CPU cycles
required by the backup server for logging the replies is
approximately the same as the number of CPU cycles required
by the primary to generate the replies [2]. Thus, for cached
static files, the total number of CPU cycles per request with
active replication can be expected to be lower than with reply
logging since the primary server’s CPU cycles for transmitting
the reply to the backup are eliminated.

The lack of synchronization between the primary and
backup servers with this optimization can cause a performance
problem. Since replies are not logged and reply messages are
not exchanged between servers, the backup may fall behind
the primary. The primary server may process a request,
produce the reply, and send the reply to the client all before
the backup server processes the same request. In such a case,
the backup receives client TCP acknowledgment packets
before it has produced the corresponding TCP data packets.
The backup kernel module drops these acknowledgments,
allowing the primary and backup TCP states to converge
before the acknowledgment packets are processed. This
approach can lead to retransmission of some packets and an
increase in the observed request processing time by some of
the clients. This problem can be fairly common under heavy
load because both servers perform identical operations except
that the backup performs the extra step of forwarding every
client packet to the primary, making the backup the processing
bottleneck of the system.

2

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

Requests
per

Second

Reply Size (Kbytes)

.
..

..

∆∆
∆

∆
∆

∆
∆ ∆ ∆

∆

a

a
a

a

a

a

a
a

a

a

. . . .
2*Unreplicated
Dual Role Theoretical
Dual Role
Unreplicated
Duplex

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50

Kbytes
per

Second

Reply Size (Kbytes)
.
.
...

..
.
.
.
..

a

a

a

a

a

a

a

a
a

∆
∆∆

∆

∆

∆
∆ ∆ ∆

2*Unreplicated

Dual Role
Theoretical

Dual Role
Unreplicated

Duplex

Figure 3: Dual role optimization: peak throughput for different reply message sizes Replies generated with WebStone 2.0 CGI benchmark.

The problem with packet retransmission described above
can be alleviated, at a cost of some latency and processing
overhead, using a scheme we call sync static (synchronized
static). With the sync static approach, the backup server sends
a message containing the connection identifier to the primary
upon the generation of each reply. The primary sends the
reply to the client only after it receives the synchronization
message from the backup. This prevents the primary from
getting too far ahead of the backup.

The active replication version of our scheme and the
original reply logging version of our scheme can be used
simultaneously on the same servers. The Apache Web server
provides a mechanism similar to a content-based (layer-7)
router, where decisions about the processing of a request can
be made based on the request URL in the HTTP header.
Instead of routing requests to different servers as done by
routers, Apache decides whether or not to use each module
based on the request URL [9]. If the request URL includes a
path that has been designated to be non-deterministic content,
our module that implements the reply logging is used.
Otherwise, the module and the reply logging step is skipped.
For example, servers can be setup where the URLs for non-
deterministic content begin with http://hostname/non-
deterministic/, and those for deterministic or static content
begin with http://hostname/static/.

A conceivable further optimization is to have the backup
server log the requests and generate the reply only if the
primary fails. As a result, processing cycles on the backup
would not have to be used for reply generation during normal
operation. Our original non-deterministic scheme also
accomplishes this goal with the additional cost of sending the
replies from the primary to the backup. Hence, the benefits of
this possible approach are limited to only the cases where the
replies are deterministic, processor intensive, and very large.

IV. PERFORMANCE EVALUATION

Our measurements were performed on 350 MHz Intel
Pentium II PCs interconnected by a 100 Mb/sec switched
network. The servers were running our modified Linux 2.4.2
kernel and the Apache 1.3.23 Web server with logging turned
on. The dynamic server replies were generated using
WebStone 2.0 benchmark’s CGI workload generator [6, 11].
This benchmark randomly generates each reply byte. The
static replies were generated from files that were cached in the
server’s memory. We used custom clients that continuously
generate one outstanding HTTP request at a time. For each
experiment, all the replies were the same size. We compared
the results with the performance optimizations to the results of
two other configurations: the unreplicated system — the

standard simplex server with no kernel or Web server
modifications, and the duplex system — our previous
implementation of fault-tolerant Web service [2].

A. Dual-Role Servers

The impact of the dual-role optimization on peak
throughput is shown in Figure 3. To emulate the operation of
a load-balancing mechanism that distributes requests among
multiple servers [5], the clients were manually configured so
that half of the requests were sent to each server. Our original
duplex system, using two server hosts, achieves almost the
same throughput as a single host running the unreplicated
server. Hence, using the same amount of resources (two
server hosts), the unreplicated system can achieve slightly
more than twice the throughput. Specifically, the difference
between the 2*unreplicated line and the duplex line represents
the throughput overhead of our original scheme.

The dual role results show significant improvements over
our original implementation. As mentioned earlier, the
performance improvement is due to the use of otherwise idle
backup cycles for processing of requests. The dual role
theoretical line shows the theoretical upper bound for our
optimized throughput. The values were calculated using
measurements of required CPU cycles for the processing of a
single request and the known processing speed of our servers.
The small difference between the dual role theoretical and
dual role lines are likely due to the increased number of
context switches that occur during high loads.

B. Efficient Handling of Static, Deterministic Content

The impact of the optimizations for static content on peak
throughput is shown in Figure 4. Replies are generated from
cached static files. For large replies, the throughput difference
between an unreplicated server and our original duplex
scheme is largely due to the network becoming a throughput
bottleneck due to the logging of replies [2]. We have
previously shown that this situation can be greatly improved
by using two network interfaces on each server, with one
being dedicated for the reply logging [2]. The duplex-mi line
shows the benefit of using such a dedicated connection. The
optimizations for static content (static and sync static)
eliminate reply logging and thus, as shown in Figure 4,
exceeds the performance of the duplex-mi scheme, withoutiiiiiii
using a dedicated network connection.

Figure 5 shows the average request latency as observed by a
client for lightly loaded servers. Specifically, only a single
client accessing the servers, one request at a time. The
difference between the Reply Overhead and Unreplicated
lines is the latency overhead for reply logging, which accounts

3

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

Requests
per

Second

Reply Size (Kbytes)

.
..
.
.
.
.
.
..

∆
∆

∆

∆

∆
∆

∆ ∆

∆

a
a

a

a

a

a

a

a

a

. . . .

Unreplicated
Static
Sync Static
Duplex-mi
Duplex

0

2

4

6

8

10

12

0 10 20 30 40 50

Mbytes
per

Second

Reply Size (Kbytes)..
..

.
.

..

∆
∆

∆

∆
∆ ∆ ∆ ∆

a

a

a

a

a
a a a
Unreplicated

Static

Sync Static

Duplex-mi

Duplex

Figure 4: Optimizations for static content: peak system throughput for different reply sizes. Replies generated from cached static files. The Duplex-mi
line is for a duplex system with a dedicated network between the servers. The Static and Sync Static lines are for the static content optimizations.

0
2
4
6
8

10
12
14

0 10 20 30 40 50

L
a
t
e
n
c
y

Reply Size (Kbytes)

.
Duplex
Reply Overhead

Sync Static
Static
Unreplicated

Figure 5: Average latency (msec) observed by a client for
dynamically generated replies of different sizes. The Reply
Overhead line shows the fraction of Duplex mode overhead due to
reply logging. The Static and Sync Static lines show the latency
with the two alternative optimizations for static content.

0 1 2 3 4 5 6 7 8

1

0.1

0.01

0.001

0.0001

0.00001

F
r
e
q
u
e
n
c
y

Latency (seconds)

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
..
..
.....

..
. .

..
......

....
.
..
.

.
....
..
..
..
..
..
.
..
.
. .

.
..
.
.
..
..
..
.
.
..
....
..
.
.
.
.
..
.
..
..
..
.
.
..
..
.
..
..
.
..
.
.
.
..
.
..
..
..
.
.
.
.
.
..
.
.
.
..
..
..
..
..
..
..
.
.
.
.
..
.
..
.
..
.
..
..
..
..
.
.
.
..
.
. .

.
..
..
..
.
..
.
..
.
..
..
.
.
.
. .

.
.
.
..
.
.
.
. .

.
.
.
..
.
.
.
..
.
..
.
..
.
..
.
. .

.
..
.
..
.
..
.
. .

.
..
.
. .

.
..
.
. .

.
..
.
.. .

. . . . Static
Sync Static
Unreplicated

Figure 6: Latency distribution for 5 Kbyte static replies at 550
requests/second throughput. (Note the log scale on the Y axis).

for most of the latency overhead of the duplex scheme. Thus,
our optimizations for static replies, which eliminate the reply
logging, result in a significant reduction of the latency
overhead. In particular, the static line shows very little
latency overhead compared to the unreplicated server.

Figure 6 shows the distribution of request-reply latencies
for the unreplicated, static, and sync static schemes for
5Kbytes static replies and a throughput of 550 requests per
second. While the overwhelming majority of requests are
processed within a few milliseconds, with the static
optimization, under heavy load, a tiny fraction of requests
result in latencies on the order of few seconds. This is due to
an increased probability of required retransmissions, as
discussed in Section III. The figure also shows that the sync
static optimization dramatically reduces the probability of
long latency relative to the static scheme. Figures 4 and 5
show that the reduced latency variance of the sync static
scheme compared to the static scheme comes at the cost of
reduced peak throughput as well as increased average latency.

V. CONCLUSION

We have proposed, implemented, and evaluated two
techniques for improving the performance of our transparent
fault-tolerant Web service. The dual-role server optimization
ensures efficient utilization of available processing resources.
For large messages (50KB), we have demonstrated a
throughput improvement of up to 67% compared to a scheme
where each server host must be dedicated to a single role:
primary or backup. The optimizations for static content allow
the server to simultaneously and efficiently serve both static
and dynamic content, using the best-suited scheme for each
request type. For large messages (50KB), we have
demonstrated a request-reply average latency reduction of up
to 43% coupled with a throughput increase of up to 121%
compared to the scheme based on reply logging, as needed for
non-deterministic content.

REFERENCES

[1] N. Aghdaie and Y. Tamir, ‘‘Client-Transparent Fault-Tolerant Web
Service,’’ 20th IEEE International Performance, Computing, and
Communications Conference, Phoenix, AZ, pp. 209-216 (April 2001).

[2] N. Aghdaie and Y. Tamir, ‘‘Implementation and Evaluation of
Transparent Fault-Tolerant Web Service with Kernel-Level Support,’’
11th IEEE International Conference on Computer Communications and
Networks, Miami, FL, pp. 63-68 (October 2002).

[3] A. Borg, J. Baumbach, and S. Glazer, ‘‘A Message System Supporting
Fault Tolerance,’’ 9th Symposium on Operating Systems Principles,
Bretton Woods, NH, pp. 90-99 (October 1983).

[4] T. Brisco, ‘‘DNS Support for Load Balancing,’’ IETF RFC 1794 (April
1995).

[5] Cisco Systems Inc, ‘‘Scaling the Internet Web Servers,’’ Cisco
Systems White Paper - http://www.ieng.com/warp/public/cc/pd/cxsr
/400/tech/scale_wp.htm.

[6] Mindcraft Inc, ‘‘WebStone Benchmark Information,’’
http://www.mindcraft.com/webstone.

[7] F. B. Schneider, ‘‘Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial,’’ ACM Computing Surveys, pp. 299-
319 (December 1990).

[8] G. Shenoy, S. K. Satapati, and R. Bettati, ‘‘HydraNet-FT: Network
Support for Dependable Services,’’ 20th IEEE International Conference
on Distributed Computing Systems, Taipei, Taiwan, pp. 699-706 (April
2000).

[9] L. Stein and D. MacEachern, Writing Apache Modules with Perl and C,
O’Reilly and Associates (March 1999).

[10] TimesTen Inc, ‘‘Data Replication and TimesTen,’’
http://www.timesten.com (2002).

[11] G. Trent and M. Sake, ‘‘WebSTONE: The First Generation in HTTP
Server Benchmarking,’’ http://www.mindcraft.com/webstone
/paper.html (February 1995).

4

