A Hybrid Systolic-Dataflow Architecture for Inductive Matrix Algorithms

Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, Tony Nowatzki
University of California, Los Angeles
Los Angeles, California, US
{jian.weng, sihao, seanzw, vidushi.dadu, tjn}@cs.ucla.edu

Abstract—Dense linear algebra kernels are critical for wireless, and the oncoming proliferation of 5G only amplifies their importance. Due to the inductive nature of many such algorithms, parallelism is difficult to exploit: parallel regions have fine-grain producer/consumer interaction with iteratively changing dependence distance, reuse rate, and memory access patterns. This causes a high overhead both for multi-threading due to fine-grain synchronization, and for vectorization due to the non-rectangular iteration domains. CPUs, DSPs, and GPUs perform order-of-magnitude below peak.

Our insight is that if the nature of inductive dependences and memory accesses were explicit in the hardware/software interface, then a spatial architecture could efficiently execute parallel code regions. To this end, we first extend the traditional dataloop model with first class primitives for inductive dependences and memory access patterns (streams). Second, we develop a hybrid spatial architectural combining systolic and dataflow execution to attain high utilization at low energy and area cost. Finally, we create a scalable design through a novel vector-stream control model which amortizes control overhead both in time and spatially across architecture lanes.

We evaluate our design, REVEL, with a full stack (compiler, ISA, simulator, RTL). Across a suite of linear algebra kernels, REVEL outperforms equally-provisioned DSPs by $4.6 \times$–$37 \times$. Compared to state-of-the-art spatial architectures, REVEL is mean $3.4 \times$ faster. Compared to a set of ASICs, REVEL is only $2 \times$ the power and half the area.

Keywords—Spatial Architecture; Reconfigurable Accelerator; Software/Hardware Codesign; Digital Signal Processor

I. INTRODUCTION

Dense linear algebra kernels, like matrix factorization, decomposition and FFT, have for decades been the computational workhorses of signal processing across standards, specifications, and device settings. The oncoming proliferation of 5G wireless is only further pushing the computational demands, both in performance and energy efficiency [1], [2]. Driven by needs of higher capacity [3] and applications like augmented and virtual reality [4], new standards will require signal processing at more than an order-of-magnitude higher throughput and lower latency. Relying on fixed-function ASICs alone has many drawbacks: design effort, extra on-chip area, and lack of flexibility; these are especially relevant for wireless, where standards are continually changing (4G, LTE, 5G, etc).

Despite their ubiquity, many important dense matrix operations are far from trivial to parallelize and compute at high hardware efficiency on programmable architectures. Figure 1 shows the throughput of a modern CPU, DSP, and GPU running common DSP algorithms, compared to an ideal ASIC
Results:
A single 1.25GHz REVEL unit can outperform a 2.1GHz OOO core running highly-optimized MKL code on DSP workloads by mean 9.6×, with an area normalized speedup of 1089×. Compared to a DSP, REVEL achieves between 4.6×-37× lower latency. It is half the area of an equivalent set of ASICs and within 2× average power.

Paper Organization:
We characterize the workloads and challenges for existing architectures in Section II, and the promise and challenges for spatial architectures in Section III. We then develop inductive dataflow and the hybrid architecture in Section IV. Our accelerator, REVEL, and its vector-stream control model is described in Section V, and its compiler is in Section VI. Finally, we cover methodology, evaluation and additional related work in Sections VII, VIII, and IX.

II. Workload Characterization

In this section, we explain how the inductive nature of many linear algebra workloads creates parallelism that is difficult to exploit. We start with workload background, then discuss inductive workload characteristics and why they hamper traditional architectures.

A. Why these particular DSP workloads?

Figure 4 shows typical 4G/5G transmitter/receiver stages:

![Fig. 4: Typical 4G/5G Transmitter/Receiver Pipeline](image)

Kernels we do not target: Channel coding and modulation involve mostly bit-level arithmetic. RE mapping is a short resource allocation phase which is not computation intense.

1. Open-source release of simulator, compiler, and workload implementation: https://github.com/PolyArch/stream-specialization-stack
Kernels we target: The Beamforming stage involves mostly GEMM, coming from spatial signal filtering [14]. Filters and FFT of several varieties are also common [15]–[17].

Challenging inductive workloads are mostly within MIMO equalization and channel estimation. These include Singular Value Decomp., used for noise reduction [18], QR Decomposition, used for signal detection for (MIMO) [19], and Cholesky Decomposition and Solver used in channel estimation and equalization [20], [21].

Why are matrices small? The parameters often depend on the number of antennas and beams (in the range of 12-32 would be common) [22].

B. Inductive Workload Properties

To explain the characteristics and challenges of inductive workloads, we use Cholesky decomposition as a representative example. Figure 5(a) shows the algorithm with inter-region dependences annotated. Cholesky contains a point, a vector, and a matrix computation region. We use the term region to refer to a set of statements at one loop-nest level.

What makes a workload “Inductive”? The inductive property indicates that certain aspects of the execution iteratively change based on an outer loop induction variable. In this example, loop trip counts all depend on outer-loop variables, creating the triangular iteration space in Figure 5(b), which is also shrinking on each outer k loop iteration. Being inductive affects all aspects of Cholesky’s execution:

- **Inductive Parallelism** The amount of parallelism that is made available by completing various statements iteratively changes. For example, the amount of parallel work in the vector and matrix regions triggered by the production of inv and invsqrt is iteratively less.
- **Inductive Dependencies** The dependence distance or number of times a value is reused iteratively changes. For example, inv is reused n-k times in the vector region.
- **Inductive Memory Access** The maximum stride of contiguous memory changes iteratively. For example, the access to array a within the matrix region has contiguous length n-j (assuming row-major order).

Parallelization Challenges: Both vectorization and multi-threading are hampered by inductive behaviors.

Vectorization would be useful for parallelizing the work within each region, but this is hampered by inductive parallelism. To explain, vectorization is accomplished by choosing sets of iterations (size of the vector length) to combine into their vector equivalents, where ideally they have contiguous memory access - this is known as tiling. An inductive iteration space cannot be tiled perfectly into sets with contiguous memory access.

In the Cholesky example, the iterations within the inner loop (rows of the matrix region within the figure), have contiguous access. Figure 5 shows a possible tiling with vector-length of four. The common way to execute remaining iterations is with a scalar loop – scalar iterations quickly dominate due to

(a) Cholesky Code
for (k=0; k<n; ++k)
inv = 1/a[k,k]
invsqrt = 1/sqrt(a[k,k])
for (j=k; j<n; ++j)
1[j,i] = a[i,j]*inv
for (j=k+1; j<n; ++j)
a[j,j] = a[j,j]*inv
for (i=j; i<n; ++i)
a[i,j] -= a[k,i]*inv
l[j,i] = a[i,j]*invsqrt
for (j=k; j<n; ++j)

(b) Iteration Space and Dependences
Point Vector Matrix

(c) Schedule with inter-region parallelism
Point Vector Matrix

Fig. 5: Inductive Workload Example: Cholesky
Amdahl’s law. For the matrix region with n = 24 and vector-width of 8, only 55% of iterations can be vectorized, for a maximum speedup of less than 2×. With vector size 16 the maximum speedup drops to 1.2×.

Multi-threading could be used for parallelizing across regions; Figure 5(c) depicts such a schedule, where all regions are executed in pipeline-parallel fashion. This schedule would at least require synchronizing the loop-carried dependence between subsequent matrix regions. The granularity of these dependences is problematic for the commonly small matrices. Figure 6 shows the cumulative dependence distance of inter-region dependences across workloads. Most dependences are around a thousand instructions. Synchronizing multiple times through shared memory (for blocking) within this range is impractical. Empirically, Intel’s optimized MKL library does not attempt multi-threading until a matrix size of 128 on Cholesky, and even then it hurts performance (details in Figure 24 on Page 11).

III. SPATIAL DESIGNS AND CHALLENGES

Spatial architectures expose low-level computation and network resources to the hardware/software interface. They are attractive for inductive workloads, as they rely less on multi-threading and vectorization, and instead leverage pipeline par-
Dedicated PEs Temporally Shared PEs
Dynamic Sched. Static Sched.
+
>>
×
+
×
1
2
2
3
Spatial mapping,
all timing pre-determined
Area
2.1×
Area
 Systolic CGRA
 Ordered Dataflow Tagged Dataflow
Least
Complex
Most
Complex

Fig. 7: Spatial Architecture Taxonomy with Example Program
allellism. We describe here a taxonomy of spatial architectures, and use this to explain the unique challenges and limitations that motivate a novel dataflow execution model and spatial architecture.

A. Spatial Architecture Taxonomy

We categorize spatial architectures in two dimensions: 1. static or dynamic scheduling: is the timing of all instructions determined statically or dynamically? 2. dedicated or shared PEs: is each PE dedicated to one instruction or shared among multiple instructions? Figure 7 depicts this taxonomy, along with how a simple computation graph is mapped to each. It also includes a relative PE area estimate\(^2\). Table I gives examples of each category. We explain each quadrant\(^3\):

- **“Systolic”** architectures have dedicated PEs, and the compiler schedules events to allow perfect pipelining of computation. Our definition includes systolic designs with a reconfigurable network. They are the simplest and smallest because PEs lack flow control.

- **“CGRA”** (Coarse Grain Reconfigurable Architectures) add temporal multiplexing capability, so regions can be larger. They keep the hardware simplicity of static schedules, but require an instruction memory and register file.

- **“Ordered Dataflow”** augments systolic with limited dataflow semantics: instruction firing is triggered by data arrival; however, it is simpler than tagged dataflow as the order of firing is predetermined.

- **“Tagged Dataflow”** architectures allow data-triggered execution at each PE, with the capability or reordering instructions. They are the most expensive due to tag matching of some form, but also the most flexible and tolerant to variable latencies.

B. Spatial Architecture Challenges

To understand their tradeoffs, we implement and evaluate the two extremes within the spatial architecture taxonomy: systolic and tagged dataflow (hence just “dataflow”). The

\(^2\)Methodology in Section VII; 64-bit PE; shared PEs have 32-instr. slots and 8 reg-file entries. Area does not include floating point (FP) units, but even with FP multiply, dataflow is \(>4\times\) the systolic.

\(^3\)We use these nicknames loosely: Our use of “systolic” is broader than in the literature, while our use of “CGRA” refers only to traditional CGRAs.

dataflow design most resembles Triggered Instructions [33], and the systolic most resembles Softbrain [13]. The total execution resources matches the TI DSP (8 cores, 16 MACs each, per-core SPAD). We develop and tune each algorithm for both architectures, and develop a cycle-level simulation framework and compiler (Section VII). Performance tradeoffs are in Figure 8, and are explained in the following paragraphs. Though spatial architectures are much faster than CPUs/G-PUs/DSPs, they still do not achieve full throughput, and each type of architecture favors different workloads.

Challenge 1: Inductive Parallelism: Statically scheduled spatial architectures (systolic and CGRAs) cannot achieve parallelism across regions in inductive workloads, as inductive dependences do not have a static distance, which is required by static scheduling. Also, this limitation helps explain why the vast majority of CGRA compilers only attempt parallelization of inner loops \([35]–[38]\). The systolic architecture in Figure 8 also serializes each program region, which is another reason why it performs poorly on inductive workloads.

Ordered dataflow could parallelize across loops, as instruction firing is dynamic. However, as ordered dataflow only maps one instruction per PE, infrequently executed outer-loop program regions achieve quite low utilization.

Tagged dataflow architectures avoid the above challenges but suffer energy costs. They also do not fare well on non-inductive workloads with regular parallelism, as its difficult for the compiler to create a perfectly pipelined datapath; even a single PE with contention from two instructions in the inner loop will halve the throughput.

Challenge 2: Inductive Control: A common issue is control overhead from inductive memory accesses and dependences. We demonstrate with a simple reuse and inductive reuse pattern shown in Figure 9, along with the dataflow program representation. Traditional spatial architectures require these extra instructions to maintain effectively a finite state machine (FSM) to track the data-reuse for a given number of iterations,
which is especially problematic for inductive dependences. These extra instructions can show up differently depending on the architecture; for systolic these execute on a control core (which can easily get overwhelmed); for dataflow these can be executed on the spatial fabric. The overhead from these instructions is the primary reason why in Figure 8, dataflow does not reach maximum throughput.

Summary: Existing spatial architectures are promising but have a combination of problems: control overhead, cannot achieve inductive parallelism, and/or high energy overhead.

IV. **Specializing Spatial Architectures for Inductive Behavior**

Based on our analysis, spatial architectures would be promising if they could keep their benefits of flexible parallelism without being burdened by control overhead and hardware complexity. Our solution, discussed in this section, is to specialize the dataflow model for inductive behavior and introduce codesigned hardware.

A. **Inductive Dataflow Model**

We develop here an execution model called *inductive dataflow*, which extends a traditional dataflow model with: 1. capability of expressing inductive dependence patterns (as dependence streams), 2. capability to express inductive memory patterns (as memory streams), and 3. semantics for stream interaction with vectorized computation.

Preliminaries: We begin with a simple dataflow model where nodes either represent: 1. a computation performed over inputs in the order received, or 2. a memory stream, which we define as a memory location and access pattern. We refer to the subset of the program region which are computation nodes as the computation graph.

Inspired by synchronous dataflow processes [39], an edge may be labeled by a production—consumption rate. Consumption > 1 indicates reuse of a value. (e.g. data is reused multiple times within a subsequence loop). Production > 1 means that several iterations occur before producing a value (e.g. only the first array item has a dependent computation).

We refer to these patterns of dependences as a *dependence streams*. For example a dependence stream may describe dependences between outer and inner loops, as shown by the example in Figure 9(a). Having dependence streams as first class primitives avoids the overhead of expressing the corresponding FSM in traditional dataflow instructions.

Inductive Memory and Dependence Primitives: In order to express inductive dependence streams, we add the capability to specify the relationship between the outer-loop induction variable and the production to consumption rate. An abstract example is in Figure 9(b), under “inductive dataflow”, where the notation j_0 means j varies from 0 to n.

Similarly, it is useful to express inductive memory access patterns (e.g. triangular). Therefore we extend the definition of memory streams to include the relationship to the outer-loop induction variable. Examples of a non-inductive (rectangular) stream and inductive (triangular) stream are below in Figure 10, along with a simple notation that uses $[0:n]$ to define the range of the stream.

Notation: $a[0:n,0]$
(a) Non-inductive Stream
(b) Inductive Stream

Fig. 10: Memory Address Stream Type Comparison

Note that the purpose of including these in the execution model is not to increase expressiveness, rather it is to open an opportunity for specialization.

Solver Example: Figure 11 (below) shows the solver kernel expressed in inductive dataflow. Circular nodes are compute instructions, and rectangular nodes are memory streams; inductive patterns are shown in blue. Memory accesses within the inner loop depend on j, so are inductive. The dependence between the inner and outer loop are also inductive.

Inductive Dataflow Vectorization: Often it is useful to apply vectorization to the program region which requires the most work, usually the inner loop. To vectorize, a load stream may connect to multiple compute nodes, and the subsequent

(a) Solver Code
(b) Inductive Dataflow Representation

Fig. 11: Solver’s Dataflows and Ordered Dependences

(a) Inner-loop Region Vectorized
(b) Stream Predication (n=8)

Fig. 12: Implicit Vector Masking with Solver Kernel
values of the stream are distributed round-robin to each (a write stream consumes from connected nodes similarly). Figure 12(a) shows solver with the inner loop vectorized.

However, as with vector architectures, the iteration count of a loop (especially an inductive one) may not align with the vector width. The advantage of expressing inductive streams as a primitive is that we can assign meaning to the completion vector width. The advantage of expressing inductive streams values of the stream are distributed round-robin to each (a write stream consumes from connected nodes similarly). Figure 12(a) shows solver with the inner loop vectorized.

As discussed in Section III, one of the main tradeoffs between systolic and dataflow architectures is the efficiency of simplified control in systolic versus the ability to exploit more general parallelism in dataflow.

Our rationale begins with the observation that in any kernel, some of the concurrent program regions correspond to more total work than others, hence they would execute more frequently. These regions are generally in the inner-most loops (e.g. matrix region in Cholesky). Our insight is that it is only these inner loop regions that make up the bulk of the work, and executing these on the efficient systolic array would yield the majority of the benefits. If we can provide a much smaller dataflow fabric for non-inner loop regions, and a way for all regions to communicate, this would be low cost and high efficiency. Tagged dataflow is specifically attractive because it can both temporally multiplex instructions and be resilient to the timing variation caused by inductive behavior.

Our overall approach is that we embed the dataflow architecture within the systolic architecture’s network, so that functional units (FUs) within the dataflow component may be used for systolic execution. To enable communication between the regions, we use programmable ports which realize the inductive dependence semantics. Figure 13(a) shows the systolic and dataflow PEs, and how they are embedded into the overall design; Figure 13(b) shows an example program mapping.

PEs and Integration: Dataflow PEs are based on Triggered Instructions [33], [40]. An instruction scheduler monitors the state of architecture predicates and input channels (with tags) to decide when to fire an instruction. A triggered instruction will read operands (registers or inputs from neighboring switches) to the FU for processing. Systolic PEs are much simpler; they fire their dedicated instruction whenever any input arrives, are configured with a single register, and only have a single accumulator register (rather than a register file). The compiler is responsible for ensuring all systolic PE’s inputs arrive at exactly the same cycle.

All PEs are embedded into a circuit-switch mesh network with no flow control. To map program regions onto the systolic PEs, the compiler configures the switches to implement the dependences. Only production/consumption edges may be mapped to the circuit switched mesh. If a program region is mapped to the dataflow PEs, routers between the PEs will be statically configured to route to each other, so that there is a communication path between the PEs. Dataflow PEs time-multiplex these links to communicate.

Execution of Concurrent Program Regions: The input and output ports buffer data until it is ready to be consumed by the PEs or written to scratchpad. Ports are implemented as programmable FIFOs that have fixed connections to locations within the mesh. They may be associated with systolic program regions or dataflow regions.

Systolic regions have the execution semantics that one instance of the computation begins when all of its inputs are available. To support multiple systolic program regions which fire independently, the readiness of each region’s ports are tracked separately. On the other hand, ports associated with dataflow regions may immediately send data. In the example in Figure 13, the inner-loop region uses three systolic PEs and the outer-loop region uses both dataflow PEs.

Maintaining Dependences: The XFER unit works with the ports to implement inter-region dependences. It arbitrates access to data buses on the output ports and input ports. If a dependence is non-inductive, the stream controller within the XFER unit is simply configured with a stream to send data from an output to an input port (multiple dependence streams will contend for the bus). For a dependence with reuse...
(consumption>1), a hardware-specialized FSM is configured within the input port to track the number of times the data should be reused before popping the data. If a dependence discards some outputs (production>1), then the output port is configured to implement an FSM to track the number of times an output should be discarded. In the example, the inductive reuse dependence is routed from P6 to P2 by the XFER unit, then reused according to the FSM in P2.

Stream Predication for Vectorization: Ports also implement stream predication. The FSM at the port compares the remaining iterations with the port’s vector length. If the iterations left is non-zero and less than the vector length, the stream control unit sends the data padded with zeroes for the unused vector-lanes, along with additional meta-information which indicates that those vector-lanes should be predicated off.

Memory Access: Finally, a stream control unit in the scratchpad will arbitrate streams’ access into (or out of) the mesh, by writing (or reading) its own set of data buses. Inductive memory access is supported in the same way as dependences: the FSM in the input or output port is configured to reuse or discard according to the inductive pattern. Another benefit of the reuse support in the port is that it reduces scratchpad bandwidth for those accesses.

Overall, the systolic-dataflow architecture achieves both high efficiency execution for the vast majority of the computation, and flexible parallelism where it is needed.

C. Applicability to Other Architectures

The inductive dataflow model opens an opportunity for specializing common control patterns and also enables efficient vectorization of these patterns. It can be independently applied to any spatial architecture by introducing dependence stream and memory stream primitives. For example, if a traditional CGRA (static-scheduled/shared-PE) is extended with hardware and a software interface to specify an inductive memory stream primitive (and if it supports stream predication), vectorization of an inductive region can be achieved.

The principle behind the hybrid-systolic dataflow design — to combine temporally-shared and dedicated-PEs in one spatial architecture — is also broadly applicable. For example, Plasticine [12], a dynamic dedicated-PE spatial architecture, could be augmented with tagged dataflow PEs for low-rate computations, enabling higher overall hardware utilization.

V. REVEL ACCELERATOR

Thus far we have described a spatial architecture to execute inductive-dataflow programs and a microarchitecture which can take advantage of this specialized program representation. What remains is to develop an approach for scaling the design, as well as a specific ISA. We address these aspects with the REVEL accelerator proposed in this section. We first discuss flexible scaling with multiple lanes, then cover the vector-stream ISA which lets a single simple control core coordinate all lanes.
over parallel units and through time to prevent the control code from becoming the bottleneck. For this we leverage streaming-dataflow [13], which is a decoupled access-execute ISA that describes execution as the interaction of a VonNeumann control program and a computation graph, decoupled by streams. Our approach is to develop a version of this ISA which is vectorized across lanes, and can support inductive access. We first describe the extensions for controlling a single lane of inductive dataflow, then discuss the vector-stream approach to extend to multiple lanes.

Control Model: Stream dataflow [13] is an ISA for decoupled access execute, where a VonNeumann control program constructs memory and dependence streams and synchronizes stream access and execution of computation graphs. “Ports” are named identifiers representing the interface between streams and computation nodes; they are the software identifiers for FIFOs discussed earlier. A typical program phase begins with the control program requesting configuration of the spatial architecture for one or more program regions. The control program defines and issues streams through stream commands, which perform memory access and communication. Finally the program waits until the offloaded region is complete.

Figure 15(a) shows solver’s streams represented in the encoding we develop below, and Figure 15(b) shows the corresponding control program (single lane). Numbers indicate ports, chosen by the programmer or compiler.

(a) Using 2D Inductive Streams
(b) Encoded Inductive Streams

<table>
<thead>
<tr>
<th>Pattern Params</th>
<th>Source Params</th>
<th>Dest. Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>StoreStream</td>
<td>ci, cj, nj, ni, sj</td>
<td>out_port, local_addr</td>
</tr>
<tr>
<td>LoadStream</td>
<td>local_addr</td>
<td>in_port, ni, sj</td>
</tr>
<tr>
<td>Const</td>
<td>n1, n2, s</td>
<td>val1, val2, in_port, ni, sj</td>
</tr>
<tr>
<td>XFER</td>
<td>np, sp</td>
<td>out_port</td>
</tr>
<tr>
<td>Configure</td>
<td>local_addr</td>
<td></td>
</tr>
<tr>
<td>Barrier Ld/St/Wait</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II: REVEL’s Vector-Stream Control Commands

Fig. 16: A Vector Stream Control Example

Overall, vector-streams offer more control amortization than either vectorization or streaming alone, as it amortizes both in space across lanes, and in time through streams.

End-to-end Example: Figure 17 demonstrates REVEL’s abstractions by showing how Cholesky may be expressed as a combination of vector-stream control code (c) and dataflow configuration for each lane (d). The parallelization strategy for the optimized code is:
1) Vectorize the inner loop (leveraging stream predication)
2) Designate outer-loop regions for dataflow execution to amortize execution resources, and map scalar, vector, matrix regions to one lane.
3) Parallelize the outer k loop across lanes.

VI. Programming and Compilation

Programming REVEL involves five basic responsibilities:

1) Dividing the work onto lanes and partitioning data.
2) Deciding which program regions execute concurrently.
3) Extracting memory/dependence streams; inserting barriers.
4) Decoupling the computation graph and vectorizing it.
5) Mapping computation onto spatial PEs and network.

We developed an LLVM/Clang-based compiler which relies on pragma-hints for 1-2 and automates 3-5. Figure 18 shows the pipeline of compilation, and Figure 17 shows Cholesky undergoing transformation from C with pragmas to REVEL abstractions. We next explain the compiler stack.

Pragma-based Compilation: The pragmas are inspired by OpenMP's tasks [41]. Each offloaded code region is similar to a lightweight thread: it has an independent flow and potentially input/output dependences. Figure 17 (a) shows how Cholesky is annotated with the following pragmas:

- `#pragma dataflow/systolic` specifies whether a program region is offloaded to the systolic or dataflow architecture. It has two optional clauses: The `unroll` clause specifies the number of iterations to offload in one computation instance, determining resource use; the `in/out/inout` clause specifies data dependence distance patterns.

4) Decoupling the computation graph and vectorizing it.
5) Mapping computation onto spatial PEs and network.

We developed an LLVM/Clang-based compiler which relies on pragma-hints for 1-2 and automates 3-5. Figure 18 shows the pipeline of compilation, and Figure 17 shows Cholesky undergoing transformation from C with pragmas to REVEL abstractions. We next explain the compiler stack.

Pragma-based Compilation: The pragmas are inspired by OpenMP's tasks [41]. Each offloaded code region is similar to a lightweight thread: it has an independent flow and potentially input/output dependences. Figure 17 (a) shows how Cholesky is annotated with the following pragmas:

- `#pragma dataflow/systolic` specifies whether a program region is offloaded to the systolic or dataflow architecture. It has two optional clauses: The `unroll` clause specifies the number of iterations to offload in one computation instance, determining resource use; the `in/out/inout` clause specifies data dependence distance patterns.

4) Decoupling the computation graph and vectorizing it.
5) Mapping computation onto spatial PEs and network.

Support for this pragma is ongoing, some kernels require intervention.
to Pathfinder [48]. All concurrent computation graphs are mapped simultaneously to find the best overall schedule.

VII. EVALUATION METHODOLOGY

REVEL Modeling: Table III shows REVEL hardware parameters. All blocks are modeled at a cycle level in a custom simulator, which is integrated with a gem5 model of a RISC-V inorder core [49], [50], extended for vector-stream control. To compare against state-of-the-art spatial architectures, we create a custom simulator for each. We synthesized REVEL’s prototype using Synopsys DC, 28nm tech library. The design meets timing at 1.25GHz. An open source triggered instructions implementation was our reference for the temporal fabric [40]. Results from synthesis are used to create an event-based power model and area model.

ASIC Analytical Models: These optimistic models (Table IV) are based on the optimized algorithms, and are only limited by the algorithmic critical path and throughput constraints, with equivalent FUs to REVEL. ASIC area and power models only count FUs and scratchpad.

Comparison Methodology: For fairness we compare designs with similar ideal max. FLOPs (except GPU, which has more):
- TI 6678 DSP (@1.25GHz) 8-core DSP, each core has 16-FP adders/multipliers, using DSPLIB C66x_3.4.0.0.
- OOO Core: Intel Xeon 4116 (@2.1GHz) Conventional OOO processor using highly-optimized Intel MKL library. (8 cores used)
- GPU: NVIDIA TITAN V (@1.2GHz) GV100 graphics processor using cuSOLVER, cuFFT, and cuBLAS NVIDIA CUDA library as our gpu benchmark. GPU’s peak FLOPs is >10× higher than REVEL.
- Spatial: The systolic design is similar to Softbrain [13], and dataflow is similar to Triggered Insts. [33]. FUs and #lanes are the same.

VIII. EVALUATION

Our evaluation has four main goals. First to quantify the speedups over state-of-the-art CPUs, DSPs, Spatial, and GPUs. Second, to characterize the sources of benefits behind the specialization of inductive parallelism, as well as the remaining bottlenecks. Third, to understand the sensitivity to architecture features. Finally, to compare the area/power/performance with ASICs. Overall, we find that REVEL is consistently better than all state-of-the-art designs, often by an order of magnitude.

A. Performance

Overall Speedup: Speedups over DSP for batch 1 are shown in Figure 19. The DSP and CPU have similar mean performance, REVEL attains up to 37× speedup, with geometric of 11× and 17× for small and large data sizes. REVEL is 3.5× and 3.3× faster than dataflow and systolic.

Performance for batch 8 is in Figure 20. For small and large sizes, REVEL gets a speedup of 6.2× and 8.1× over

<table>
<thead>
<tr>
<th>Spatial Fabric</th>
<th>PE Type</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubwrdSIMD</td>
<td>4-way Fixed-point, 2-way FP</td>
<td></td>
</tr>
<tr>
<td>Dataflow PE</td>
<td>1x1 (32 Instruction Slots)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Ports</td>
<td>2x512, x256, 1×128, 1×64 bit</td>
</tr>
<tr>
<td>Width/Depth</td>
<td>4-entry FIFO</td>
</tr>
<tr>
<td>Stream Cntl Ctrl</td>
<td>8 Entries for 8 concurrent streams</td>
</tr>
<tr>
<td>SPAD Structure</td>
<td>8Kb, Single-bank</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>512 Bits (1R/1W Port)</td>
</tr>
</tbody>
</table>

TABLE III: REVEL Parameters

TABLE IV: Ideal ASIC Models.

TABLE IV: Ideal ASIC Models. m, n, p are the matrix dims. (except SVD, where m is the number of iterations and Centro-FIR, where m is the filter size), xvec indicates x-vectorized, and d is the latency of div/qr/sqrt.

TABLE V: Workload Parameters. “small”、“large” sizes bolded
the DSP and CPU. REVEL’s dataflow/vector-stream model provides 4.0× speedup over dataflow, and 2.9× over systolic. REVEL provides factors speedup over state-of-the-art.

REVEL vs CPU Parallelism: Figure 21 shows the scaling of REVEL’s performance against the MKL's library’s CPU version for different sizes of Cholesky and thread counts. Observe that when multi-threading is first enabled in MKL (>= matrix size 128), it actually hurts performance. This is because of the inherent fine-grain dependences, which REVEL supports natively.

Inductive dataflow can parallelize much finer-grain dependences than with CPU threading.

Benefits from Hardware/Software Mechanisms: To understand the sources of improvement, we evaluate four versions of REVEL with increasingly advanced features. We start with the systolic, then add inductive streams, hybrid systolic-dataflow, and finally stream predication to enable efficient vectorization. Figure 22 shows the results.

Inductive memory and dependence streams improve all workloads by reducing control and increasing parallelism. Even FFT benefits by using inductive reuse to reduce scratch-pad bandwidth. QR and SVD have complex outer-loop regions, so do not benefit as much until adding hybrid systolic-dataflow, which enables more resource allocation for inner-loop regions. Solver was also accelerated by the heterogeneous fabric because it is latency sensitive, and collapsing less critical instructions can reduce latency. The vectorized workloads also receive large gains from stream predication by reducing the overheads of vectorization.

The vector-stream ISA and hybrid systolic-dataflow architecture together enable high performance.

Cycle-Level Bottlenecks: Figure 23 overviews REVEL’s cycle-level behavior, normalized to systolic. To explain the categories, issue and multi-issue means that one or multiple systolic regions fired, and temporal means only a temporal dataflow fired during that cycle. All other categories represent overhead, including the drain of the dedicated fabric, scr-b/w and scr-barrier for bandwidth and synchronization, stream-dpd for waiting on dependences, and ctrl-ovhd for waiting on the control core.

The clearest trend is that our design reduces the control overhead dramatically. For some kernels, REVEL is able to execute multiple regions in the same cycle, especially for larger matrices. One outlier is FFT with small data; it requires multiple reconfigurations, each requiring the pipeline to drain.

Exploiting inductive parallelism increases parallel work and reduces control, enabling better performance.

Dataflow PE Allocation: Tagged dataflow PEs are helpful on inductive workloads, but expensive. A tagged-dataflow PE costs > 5× more area than a systolic PE (2822µm² versus 16581µm²). Figure 24 shows REVEL’s performance and area sensitivity. SVD has the largest demand on dataflow PEs, so are affected the most. The effects on other workloads are neglectable, so we choose 1 dataflow PE to minimize the area penalty.

B. Area and Power Comparison

Breakdown: Table VI shows the power/area breakdown; the largest source (especially power) comes from FP units. REVEL is 1.93mm², and 1.63 Watts.

Comparing against CPU and DSP: Figure 25 shows the relative performance/area normalized to the CPU after adjusting the technology. The DSP achieves a high performance/mm², and REVEL is able to achieve even higher performance with a moderate area overhead. REVEL has 1089× performance/mm² advantage over the OoO core, and 7.3× over the DSP.

Comparing against ASIC: Table VII shows performance-normalized area overhead over ASIC analytical models. REVEL is mean 2.0× power. This is mostly due to the control
logic (ports, bus, etc.) and reconfigurable networks. It is 0.55× the area of the combined ASIC. This is optimistic for ASICs in that it assumes perfect pipelining and no control power. REVEL is on par with ASICs-level efficiency.

PEs with periodically changing rates, and heterogeneous dataflow [53] extends SDF to enable an FSM to step through predefined rates. None of the above were applied to spatial architectures or handle inductive dependences.

StreamIt [54] is a language and runtime with somewhat similar semantics to vanilla SDF, and was evaluated on RAW [55], a (mostly) static/shared-PE spatial architecture.

Synchronous Dataflow Variants: The inductive production to consumption rates in our dataflow model is inspired by the static rates in synchronous dataflow [39] (SDF). SDF was developed as a specialization of existing dataflow models which could be statically scheduled. Cycle-static dataflow [52] extends SDF with periodically changing rates, and heterogeneous dataflow [53] extends SDF to enable an FSM to step through predefined rates. None of the above were applied to spatial architectures or handle inductive dependences.

StreamIt [54] is a language and runtime with somewhat similar semantics to vanilla SDF, and was evaluated on RAW [55], a (mostly) static/shared-PE spatial architecture.

Outer-loop Parallelism: Prabhakar et al. develops “nested-parallelism,” which enables coupling of datapaths with nested parallel patterns [56]. Inductive parallelism is a generalization of nested-parallelism, and we can achieve a higher utilization due to hybrid systolic-dataflow execution.

Some CGRA compilers target nested loops [57], [58], but only parallelize the epilogue and prologue of subsequent loop nests. Recent work has made progress in pipelining imperfect nests [59], but does not parallelize across multiple region instances. CGRA Express [60] allows a CGRA to use the first row of its PEs in VLIW mode during outer loops. Concurrent execution across inner and outer regions is not attained. None of the above handle inductive dependences.

Flexible Vectorization: Vector-threading techniques also marshal independent execution lanes for vectorized execution when useful [61]–[64]. The RISC-V vector extension supports configurable vector-length and implicit vector masking [65]. Vector-length is limited by physical registers (REVEL’s streams are arbitrary length), and inductive access is not supported, so the vector length would have to be reset on each iteration. These architectures are also not spatial, so cannot exploit pipelined instruction parallelism.

Some spatial dataflow models use predicates for control [6], [66]. These do not use streams for vector predication. dMT-CGRA [34] adds inter-thread communication for a spatial-dataflow GPU [32], [67].

DSP Accelerators: Many application/domain-specific reconfigurable designs have targeted DSP algorithms. Fasthuber et. al [68] outline the basic approaches. One representative example includes LAC [69], targeted at matrix factorization. Our architecture allows more general programmability.

Stream-based ISAs and Reuse: Many prior architectures have used memory-access stream primitives [13], [24], [31], [70]–[74]. To our knowledge, no prior work has incorporated inductive patterns into such streams.

TABLE VI: Area and Power Breakdown (28nm)

<table>
<thead>
<tr>
<th>Workloads</th>
<th>SVD</th>
<th>QR</th>
<th>Chol.</th>
<th>Sol.</th>
<th>FIR</th>
<th>MM</th>
<th>FFT</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Ovhd.</td>
<td>2.8</td>
<td>2.0</td>
<td>1.9</td>
<td>1.6</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Area Ovhd.</td>
<td>3.3</td>
<td>2.4</td>
<td>2.3</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
<td>2.8</td>
<td>2.5/0.55</td>
</tr>
</tbody>
</table>

TABLE VII: Power/Area overheads to ideal ASIC (iso-perf)

In this section, we discuss work other than that previously covered by the spatial architecture taxonomy in Section III-A.

Synchronous Dataflow Variants: The inductive production to consumption rates in our dataflow model is inspired by the static rates in synchronous dataflow [39] (SDF). SDF was developed as a specialization of existing dataflow models which could be statically scheduled. Cycle-static dataflow [52] extends SDF with periodically changing rates, and heterogeneous dataflow [53] extends SDF to enable an FSM to step through predefined rates. None of the above were applied to spatial architectures or handle inductive dependences.

StreamIt [54] is a language and runtime with somewhat similar semantics to vanilla SDF, and was evaluated on RAW [55], a (mostly) static/shared-PE spatial architecture.

Outer-loop Parallelism: Prabhakar et al. develops “nested-parallelism,” which enables coupling of datapaths with nested parallel patterns [56]. Inductive parallelism is a generalization of nested-parallelism, and we can achieve a higher utilization due to hybrid systolic-dataflow execution.

Some CGRA compilers target nested loops [57], [58], but only parallelize the epilogue and prologue of subsequent loop nests. Recent work has made progress in pipelining imperfect nests [59], but does not parallelize across multiple region instances. CGRA Express [60] allows a CGRA to use the first row of its PEs in VLIW mode during outer loops. Concurrent execution across inner and outer regions is not attained. None of the above handle inductive dependences.

Flexible Vectorization: Vector-threading techniques also marshal independent execution lanes for vectorized execution when useful [61]–[64]. The RISC-V vector extension supports configurable vector-length and implicit vector masking [65]. Vector-length is limited by physical registers (REVEL’s streams are arbitrary length), and inductive access is not supported, so the vector length would have to be reset on each iteration. These architectures are also not spatial, so cannot exploit pipelined instruction parallelism.

Some spatial dataflow models use predicates for control [6], [66]. These do not use streams for vector predication. dMT-CGRA [34] adds inter-thread communication for a spatial-dataflow GPU [32], [67].

DSP Accelerators: Many application/domain-specific reconfigurable designs have targeted DSP algorithms. Fasthuber et. al [68] outline the basic approaches. One representative example includes LAC [69], targeted at matrix factorization. Our architecture allows more general programmability.

Stream-based ISAs and Reuse: Many prior architectures have used memory-access stream primitives [13], [24], [31], [70]–[74]. To our knowledge, no prior work has incorporated inductive patterns into such streams.

X. Conclusion

This work identified that existing techniques, vector, multithreading, and spatial, all experience challenges in achieving high-performance on dense linear algebra workloads, largely due to inductive program behavior.

We found that it is possible to specialize for this behavior by encoding inductive properties into the hardware/software interface. This was the approach behind inductive dataflow, a model that allows the expression of parallelism within inductive program regions and across them. Our taxonomy of spatial architectures also makes it clear why a hybrid architecture – one that combines systolic fabrics for efficiency and dataflow fabrics for flexible parallelism – can achieve the best of both. Finally, this work develops a scalable design: REVEL, by leveraging a vector-stream ISA that amortizes control in space and time. With a full stack implementation, our evaluation against four state-of-the-art designs demonstrates many factors of speedup and energy efficiency.

On one hand, our contribution is what we believe to be a superior digital signal processor. What is perhaps more important is the principle of hardware/software specialization of complex but general control and memory patterns, useful for developing next generation programmable accelerators.

XI. Acknowledgments

We sincerely thank Naxin Zhang, Zhiguo Ge, Jing Tao, and Mian Lu for their thoughtful discussions and domain expertise.

ACKNOWLEDGMENTS
This work was supported by an NSF CAREER award CCF-1751400 and gift funding from HiSilicon.

REFERENCES

[51] K. Asanović and D. A. Patterson, ”Instruction sets should be free: The case for risc-v,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.
[58] S. Yin, X. Lin, L. Liu, and S. Wei, ”Exploiting parallelism of imperfect nested loops on coarse-grained reconfigurable architectures,” IEEE