DSAGEN: Synthesizing Programmable Spatial Accelerators

Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, Tony Nowatzki

University of California, Los Angeles

May 15th, 2020

Specialized Accelerators

Specialized architecture often occupies 1/5~1/3 of publications in top conferences.

Existing Domain-Specific Approach:

DSAGEN: <u>Decoupled Spatial Accelerator Generator</u>

<u>Domain</u> <u>Specific</u>

DSAGEN: <u>Decoupled Spatial Accelerator Generator</u>

Outline

- Design Space Decoupled-Spatial Architecture
 - Insight from Prior Work
 - The Programming Paradigm
 - Design Space: Hardware Primitives (& Composition)
- Compilation
- Design Space Exploration
- Evaluation

(a) ASPLOS18-MAERI

(b) ISCA17-Plasticine

- Decoupled-Spatial Paradigm
 - Decoupled Compute/Memory_{Func. Unit}
 - Spatially exposed resources Memory
- Design Space
 - Composing hardware with simple primitives
 - Architecture Description Graph

Switch

Control

Sync. Elem.

Background: Decoupled-Spatial Architecture

Hardware Primitives: Processing Element & Switch

Hardware Cost: Low	Dedicated (=1)	Shared (>1) High	
Statically Scheduled	"Systolic" 1x Area + No contention - Harder to map - Higher power *Softbrain	"CGRA" 2.6x Area + Better resource utilization - Harder to map *Conventional CGRA	Instruction Function Degisters
Dynamically Scheduled	"Ordered Dataflow" 2.1x Area + Better flexibility *SPU	"Tagged Dataflow" 5.8x Area + Better flexibility + Better resource	Function Unit Register File Instruction Scheduler
High		<pre>utilization *Triggered Instruction</pre>	

Hardware Primitives: Memory

- Memory
 - Size
 - Bandwidth
 - Indirect Support
 - a[b[i]]
 - Atomic Update
 - a[b[i]] += 1

Examples of ADG

(d) Data Path of Complex Mul.

Outline

- Decoupled-Spatial Architecture
- Compilation
 - High-Level Abstraction
 - Hardware-Aware Modular Compilation
- Design Space Exploration
- Evaluation

Compiling High-Level Lang. to Decoupled Spatial

How to abstract diverse underlying features with a unified high-level interface?

- Programmer Hints
 - Which code regions are offloaded onto the spatial accelerator.
 - Which memory accesses can be decoupled intrinsics.
 - Which offloaded regions should be concurrent.

An example of pragma annotation

```
#pragma config ← The offloaded region in this compound body are concurrent
  #pragma stream ← The memory accesses below √ c[0:n] stricted
  for (i=0; i<n; ++i)
    #pragma offload ← The computational instructions be few will be offloaded
    for (j=0; j<n; ++j)
       a[i*n+j] += b[c[j]] * d[i*n+j];
```

Compiling High-Level Lang. to Decoupled Spatial

How to hide the diversity of underlying hardware?

- Modular Transformation
 - Specialized Hardware features often dictate the code transformation
 - A fallback is required when the hardware feature is not available

Modular Transformation

```
Inspect the hardware features to generate
                              c[0:n]
                                      corresponding version of indirect memory
#pragma config
                                      d[0:n] ||
                                              a[0:n]
  #pragma stream
                                                   // With indirect support
  for (i=0; i<n; ++i)
                                                   Read c[0:n], stream0
                                                   Indirect b, stream0, stream1
     #pragma offload
                                     a[0:n]
     for (j=0; j<n; ++j)
                                                   // Without indirect support
                                                   for (j=0; j<n; ++j)
        a[i*n+j] += b[c[j]] * d[i*n+j];
                                                      Scalar b[c[j]], stream0
```

Compiling High-Level Lang. to Decoupled Spatial

Modular XFROM Compute Graph

Encoded Mem. Stream Executable Binary

How is the dependence graph of computational instructions mapped?

Spatial Mapping

How is the dependence graph of computational instructions mapped?

- 1. Placement: Map instruction to PE's with corresponding capability.
- 2. Routing: Routing the dependence edges thru the spatial network.
- 3. Timing: If necessary, balance the timing of data arrival
- If one of 1-3 is not successful, revert some nodes and repeat 123

Outline

- Decoupled-Spatial Architecture
- Compilation
- Design Space Exploration
 - Drive the Search
 - Evaluating Design Points
 - Repairing the Mapping
- Evaluation

Design Space Exploration

Estimation Model

- Performance
 - Spatial architecture essentially enables hardware specialized sw-pipelining
 - The ratio of data availability determines the performance 350000
 - Perf=#Inst * (Activity Ratio)

The model has mean performance error of 7%, and with maximum error 30%.

- Power/Area
 - Synthesis can be time consuming
 - A regression model can predict the trend of hardware cost

Repairing the Spatial Mapping

```
// Original Code
for (i=0; i<n; ++i)
  c[i]+=a[i]*b[i];</pre>
```


Hardware/Software Interface Generation

- How to configure accelerator with arbitrary topology?
 - Reuse the data path for configuration
 - Find path(s) that cover(s) all the components
 - A heuristic based heuristic algorithm to minimize the longest path of configuration
- For a graph with m nodes covered by n paths, the longest path cannot be shorter than $\lceil \frac{m}{n} \rceil$.
- We only introduces 40% overhead over the ideal bound.

Outline

- Decoupled-Spatial Architecture
- Compilation
- Design Space Exploration
- Evaluation
 - Methodology
 - Compiler
 - Design Space Exploration

Methodology

Performance

- Gem5 RISCV in-order core integrated with a cycle-accurate spatial accelerator simulator
 - The in-order core is extended with stream decoupled ISA

• Power/Area

- All the components are implemented in Chisel RTL
- Synthesized in Synopsys DC 28nm @1.00GHz
- SRAM power/area are estimated by CACTI 7.0

Compiler Performance

- Softbrain MachSuite
 - Versatile accelerator can handle moderate irregularity
- SPU Histogram, and Key Join
 - Accelerator specialized for irregular workloads
- REVEL and Trigger DSP
 - Accelerator specialized for imperfect loop body
- MAERI PolyBench
 - Accelerator for neural network

Design Space Explorer

- Workloads
 - Dense Neural Network
 - MachSuite
 - Sparse Convolutional Neural Network
- Initial Design
 - A 5x5 mesh with all capability (arithmetic, control, and indirect)
- Objective: perf²/mm²

Design Space Explorer

Sparse CNN: 24h

MachSuite: 19.2h

Dense NN: 16h

Conclusion

	HLS	Manual	DSAGEN
Frontend	C+Pragma	DSL/Intrinsics, etc.	C+Pragma
Design Flow	Nearly Automated	Manual	Nearly Automated
Input	A Single Application	Multiple Target Applications	Multiple Target Applications
Output	Application- Specific Accel.	ASIC/Programmable Accel.	A Programmable Accelerator
Design Space	Limited	Rich	Rich

Q&A

- Our framework is working in progress at: https://github.com/PolyArch/dsa-framework
- All the questions and comments are welcomed