
An Extensible State Machine Pattern for
Interactive Applications

Brian Chin and Todd Millstein

Computer Science Department
University of California, Los Angeles

{naerbnic, todd}@cs.ucla.edu

Abstract. The state design pattern is the standard object-oriented pro-
gramming idiom for implementing the state machine logic of interactive
applications. While this pattern provides a number of advantages, it
does not easily support the creation of extended state machines in sub-
classes. We describe the extensible state design pattern, which augments
the traditional state pattern with a few additional constraints that allow
subclasses to easily add both new states and new events. Further, we
observe that delimited continuations, a well-known construct from func-
tional programming languages, supports state refinement in subclasses
as well as the modular expression of control flow in the presence of in-
teraction. We illustrate our pattern in the context of Java, leveraging
its generics to obviate the need for dynamic typecasts and employing a
small library that implements delimited continuations. We have used our
pattern to simplify and modularize a widely used application written by
others.

1 Introduction

Interactive applications are those that repeatedly accept input from and produce
output to an external entity. Typically the output produced depends upon the
current input along with the current state of the application, and this output
may in turn affect the next input. Many common application domains are funda-
mentally interactive, including servers, user interface programs, and computer
games. In addition, more traditional applications often include an interactive
component. For example, a program whose behavior is configured by an XML
file might interactively parse the file through the event-driven Simple API for
XML (SAX) [17].

The logic of an interactive application essentially takes the form of a state
machine, and the standard way to implement this logic in an object-oriented
(OO) language is with the state design pattern [9]. This pattern reifies each
state as a distinct class, which has one method for each possible external event.
The state machine class maintains a field containing the current state, and all
external events are forwarded to the current state to be handled appropriately.
Handling an event may result in some output and additionally update the current
state.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 566–591, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Extensible State Machine Pattern for Interactive Applications 567

The state design pattern has a number of advantages. Because the current
state is represented explicitly as an object, there is no need to manually test
the current state of the machine when an event occurs. Instead, the state object
is sent an ordinary message send upon an event, and each state “knows” how
to appropriately respond to each kind of event. Further, each state class can
naturally encapsulate its own data (i.e., fields), which is less error prone than
storing all necessary data in the state machine itself.

While the state design pattern simplifies the creation of a new state machine,
even simple ways in which one might want to extend an existing state machine
in a subclass are difficult to implement without code duplication and/or unsafe
features like type casts. State logic is inherently difficult to reuse via standard
mechanisms like method overriding, since the logic of the machine is fragmented
across multiple cooperating event handlers. The state design pattern exacerbates
this problem by fragmenting the application logic across several interdependent
classes. As a result, the traditional benefits of object-oriented software reuse
mechanisms are not readily applicable to interactive applications.

In this paper, we present an extension of the state design pattern that we call
the extensible state design pattern (Section 2). In addition to the requirements
of the basic state pattern, we impose new rules on how state machines and state
classes should be structured. Obeying the rules allows subclasses to modularly
and safely extend the original state logic in a variety of desirable ways. This
pattern is implemented within vanilla Java 1.5, however, the pattern is not Java-
specific and could be implemented in other OO languages. The pattern relies on
the generics found in both Java and C#; an implementation in C++ is possible
using templates but would have weaker type-correctness guarantees.

Using our pattern, subclasses of a state machine can easily add new states to
the machine and override existing states to have new behaviors (Section 2.1),
as well as add new kinds of events that the extended state machine can accept
(Section 2.2). These tasks are similar to those in the expression problem identified
originally by Reynolds [16] and named by Wadler [20]. Torgersen [19] provides
several solutions to the expression problem in Java, which make heavy use of
generics. Our solution borrows ideas from his “data-centered” solution but is
specialized for the domain of the state design pattern, which allows for a simpler
solution without loss of functionality. For example, since states are not a recursive
datatype, we do not require the sophistication of F-bounded polymorphism [3].

The state pattern additionally has several extensibility requirements that have
no analogue in the expression problem. For example, we would like to allow a
subclass to easily “interrupt” the existing state logic, insert some additional logic,
and later resume the original state logic. This natural idiom can be seen as the
interactive equivalent of a subroutine call. It can also be used to express a form
of hierarchical state machines, whereby a state of the superclass is implemented
in the subclass as its own state machine. Further, traditional control flow logic
such as subroutines and loops are difficult to express modularly even within a
single state machine, due to the need to pass control back to the environment.
For instance, if a state machine must wait for an event in the middle of a loop,

568 B. Chin and T. Millstein

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Fig. 1. The Base State Machine

that loop must be unrolled and split between multiple classes, obfuscating the
original intent and introducing new possibilities for error.

We observe that delimited continuations [7], a well-studied language feature
from the functional programming community, naturally supports modular ex-
pression of traditional control flow in the presence of interaction. We have im-
plemented a form of delimited continuations as a small Java library with a simple
API (Section 4), and we incorporate the usage of this API as constraints in our
extensible state design pattern. We illustrate how this API and the associated
constraints overcome all of the difficulties described above and provide several
other benefits (Sections 2.3 and 3).

To validate our design pattern, we have used it to refactor a widely used
application written by others (Section 5). This application, JDOM [12], is an
XML parser that creates a DOM tree by using a SAX model parser. JDOM was
originally implemented as a monolithic class that used several fields to encode
properties of its current state. We refactored its implementation to employ our
design pattern, which greatly simplified the logic and made it significantly more
readable. Further, we demonstrate the extensibility benefits of our pattern by
structuring the refactored code as two state machines: a class that supports basic
XML parsing and a subclass that supports more advanced features of XML and
has the same functionality as the original JDOM implementation.

2 The Extensible State Pattern

In this section we build up our extensible state machine pattern in stages, be-
ginning with the standard state design pattern [9]. As a running example we
consider a state machine for a simple user interface, along with several desired
extensions to this state machine. Each stage in our discussion will refine the
design pattern to obey new constraints necessary to enable a particular kind
of extensibility. Our example sometimes sacrifices realism for simplicity, but it
represents the kinds of tasks which are needed in UIs in general.

In our first user interface, there is a window containing a single button. The
state machine logic should simply cause a function triggerButton to be invoked
whenever the button is clicked. The InputState interface at the top of Listing 1
shows the three events that can occur based on a user’s actions. Clicking a button
actually consists of two events, a mouse down followed by a mouse up, both of
which need to occur inside the bounds of the button. The diagram for this state
machine is depicted in Figure 1.

An Extensible State Machine Pattern for Interactive Applications 569

interface InputState {
void MouseUp(Point at);
void MouseDown(Point at);
void MouseMotion(Point from, Point to);

}

class InputStateMachine {
// standard currState members
private InputState currState = new MouseUpState();
public InputState getCurrState() {

return currState;
}
protected void setCurrState(InputState newState) {
currState = newState;

}

// state class definitions
protected class MouseUpState implements InputState {

public void MouseDown(Point at) {
if (buttonShape.contains(at)) {
setCurrState(new MouseDownState());

}
}

public void MouseUp(Point at) {}
public void MouseMotion(...) {}

}

protected class MouseDownState implements InputState {
public void MouseUp(Point at) {

if (buttonShape.contains(at)) {
setCurrState(new MouseUpState());
triggerButton();

}
}

public void MouseDown(Point at) {}
public void MouseMotion(...) {}

}

// forwarding methods and other members...
}

Listing 1. The base code for the UI example

570 B. Chin and T. Millstein

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotionMouseUp

MouseMotion

Fig. 2. Adding the Drag State

The rest of the code in Listing 1 uses the standard state design pattern to
implement the desired functionality. The InputStateMachine class maintains a
field currState representing the current state of the machine. There is one state
class per state in our machine. The MouseUpState represents the situation when
the mouse is currently up, and similarly for MouseDownState. We define these
classes as inner classes to allow them access to the state machine’s members.
Forwarding methods (not shown) pass signaled events to currState, which does
the main work of the state machine.

In the rest of this section, we illustrate how to sequentially extend our example
in three stages:

1. We will add basic drag-and-drop capabilities, allowing the user to click-drag
the button in order to move it around. Releasing the mouse after a drag will
not trigger the button.

2. We will add an event to handle keyboard presses, which can change the
button’s color. The user may modify the button’s color while dragging it.

3. We will add a feature to hit a designated button during a drag, which will
bring up a dialog box with information about the dragged object. When the
dialog box is dismissed, the drag will continue.

2.1 Adding and Overriding States

As the diagram in Figure 2 shows, implementing drag-and-drop functionality
requires the creation of a new state, to represent the situation when we are
in the middle of a drag. The state machine should move to this state upon a
MouseMotion event when the mouse is down on the button, and subsequent
MouseMotion events should be used to move the dragged button.

The state design pattern makes adding new states straightforward: a subclass
DragStateMachine of InputStateMachine can simply contain a new inner class
DragState to represent the DragState. DragStateMachine can similarly con-
tain a subclass DragMouseDownState of MouseDownState, which overrides the
implementation of MouseMotion to move to the dragging state as appropriate.

Unfortunately, these changes alone will not affect the state machine logic,
since the state machine is still creating instances of MouseDownState rather than
DragMouseDownState. We can of course solve this problem by code duplication,

An Extensible State Machine Pattern for Interactive Applications 571

class InputStateMachine {
// standard currState members
private InputState currState = makeMouseUpState();
// ...

// factory methods
protected InputState makeMouseUpState() {

return new MouseUpState();
}

protected InputState makeMouseDownState() {
return new MouseDownState();

}

// state class definitions
protected class MouseUpState implements InputState {

public void MouseDown(Point at) {
if (buttonShape.contains(at)) {
setCurrState(makeMouseDownState());

}
}
public void MouseUp(Point at) {}
public void MouseMotion(Point from, Point to) {}

}

// ...
}

Listing 2. The base state machine with factory methods added

for example by creating a subclass DragMouseUpState of MouseUpState, which
reimplements the MouseDown method to instantiate DragMouseDownState. How-
ever, this approach is tedious, error prone, and non-modular. This problem leads
to the first new constraint for our design pattern:

Constraint : There must exist a consistent way of creating states that will
allow future extensions to override the implementation of a state class.

To satisfy the constraint, we introduce factory methods [9] in the base state
machine, as shown in Listing 2. The state machine logic must never directly
instantiate state classes, but instead always go through the factory methods.
For example, the MouseUpState’s MouseDown method now invokes makeMouse-
DownState to create the new state.

Given this extension to the state design pattern, implementing drag-and-drop
functionality is straightforward, as shown in Listing 3. We define a new class
DragState as well as a subclass DragMouseDownState of MouseDownState. To
incorporate DragMouseDownState into the state machine logic, we simply over-
ride the corresponding factory method for that state. We also create a new

572 B. Chin and T. Millstein

class DragStateMachine extends InputStateMachine {
// overridden factory methods
protected InputState makeMouseDownState() {

return new DragMouseDownState();
}

// new factory methods
protected InputState makeDragState() {

return new DragState();
}

// subclassed state classes
protected class DragMouseDownState extends MouseDownState {

public void MouseMotion(Point from, Point to) {
setCurrState(makeDragState());

}
}

// new state classes
protected class DragState implements InputState {

public void MouseUp(Point at) {
setCurrState(makeMouseUpState());

}

public void MouseMotion(Point from, Point to) {
buttonShape.move(from, to);

}

public void MouseDown(Point at) {}
}

}

Listing 3. The drag-and-drop extension

factory method for the dragging state, so that DragStateMachine itself satis-
fies our constraint. In this way, the new state machine can itself be seamlessly
extended by future subclasses. We will maintain this hierarchical nature of the
design pattern throughout.

To summarize, we add the following rules to the standard state design pattern,
in order to support new states:
– Each state class should have an associated factory method in the state ma-

chine class.
– State objects must always be instantiated through their factory method.

2.2 Adding Events

As the diagram in Figure 3 shows, in order to implement our second extension
we need to respond to a new kind of event, representing a keyboard press. It is

An Extensible State Machine Pattern for Interactive Applications 573

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotion
MouseUp

KeyDownMouseMotion

Fig. 3. Adding the KeyDown Event

natural to incorporate this event through an extension to the InputState event
interface:

public interface KeyState extends InputState {
public void KeyDown(Key key);

}

Now a subclass KeyStateMachine of DragStateMachine can subclass each
state class to add a KeyDown method and implement this new interface. How-
ever, all of the factory methods are declared to return an InputState, as is the
currState field. Therefore, the KeyStateMachine will have to use type-unsafe
casts from InputState to KeyState whenever it needs to make use of the new
KeyDown method. If the implementer forgets to subclass one of the state classes
appropriately, this error will only manifest as a runtime ClassCastException.

The underlying problem is that the state interface is set in stone in the base
state machine. To be able to update the state interface without typecasts, our
pattern should obey the following constraint:

Constraint : Each state machine must abstract over the events it responds
to. While it may require that certain events exist, it may not limit what
events can be added by future extensions.

Generics provide a natural way to satisfy this constraint. Rather than hard-
coding the interface for events as InputState, we use a type variable to represent
the eventual interface to be used, as shown in Listing 4. The State type variable
replaces all previous occurrences of InputState. The State type variable is
declared to extend InputState, so the implementation of the state machine can
assume that at least the three events in InputState will be handled.

Since the factory methods no longer know which concrete class will actually
meet the abstract interface State, they can no longer have a concrete implemen-
tation and are instead declared abstract (making the entire class abstract as
well). As a result, the InputStateMachine class can no longer be instantiated
directly. Rather, we must concretize the state machine, as shown in Listing 5;
this new class is identical in behavior to our original version of the UI from
Listing 1. Concretization serves two purposes. First, it fixes the set of events by
instantiating the State type variable with an interface. Second, it fills in all of

574 B. Chin and T. Millstein

abstract class InputStateMachine<State extends InputState> {
// standard currState members
private State currState = makeMouseUpState();
public State getCurrState() {

return currState;
}
protected void setCurrState(State newState) {
currState = newState;

}

// factory methods
protected abstract State makeMouseUpState();
protected abstract State makeMouseDownState();

// ...
}

Listing 4. InputStateMachine modified for adding events

the factory methods by instantiating classes that meet this interface. Because
ConcreteInputStateMachine explicitly defines the state interface, it effectively
terminates future extensions being made from it. Of course this does not prevent
further extensions derived off of InputStateMachine.

The entire logic of the state machine is still contained within the abstract state
machine class. For example, the class in Listing 4 will contain the definitions
of the MouseUpState and MouseDownState classes that we have seen earlier.
The uniform usage of factory methods and the State type variable allow the
definitions of these state classes to remain unchanged. For example, a call of the
following form is the idiomatic way to change states and requires no typecasts
within the context of the class in Listing 4:

setCurrState(makeMouseUpState())

Extending the state machine is now accomplished by subclassing from the
abstract state machine class. Listing 6 contains an updated version of our drag-
and-drop state machine. The body of this class is identical to that of Listing 3,
except that the State variable is used in place of InputState and the factories
are abstract. Keeping this class abstract allows it to be uniformly extended, as
we will do next. Naturally, the concretized drag-and-drop state machine would
instantiate the State variable as InputState and add the necessary implemen-
tations of the factory methods.

Finally, Listing 7 shows how to use our pattern to easily add new events. The
State variable is given the new bound KeyState, which indicates that the state
machine must handle the KeyDown event in addition to the others. Accordingly,
the existing state classes are subclassed in order to provide appropriate KeyDown
implementations. The concretized version of this state machine (not shown) will
instantiate State with KeyState and override all of the factory methods to

An Extensible State Machine Pattern for Interactive Applications 575

class ConcreteInputStateMachine extends
InputStateMachine<InputState> {

protected InputState makeMouseUpState() {
return new MouseUpState();

}

protected InputState makeMouseDownState() {
return new MouseDownState();

}
}

Listing 5. The concretized InputStateMachine

abstract class DragStateMachine<State extends InputState>
extends InputStateMachine<State>

{
// new factory methods
protected abstract State makeDragState();
// ...

}

Listing 6. The DragStateMachine extension modified for adding events

abstract class KeyStateMachine<State extends KeyState>
extends DragStateMachine<State>

{
public class KeyDragState extends DragState implements KeyState {

public void KeyDown(Key key) {
if (key.equals(COLOR_KEY))
changeButtonColor(key);

}
}

// default implementation
public class KeyMouseUpState

extends MouseUpState implements KeyState
{ public void KeyDown(Key key) {} }

// same for others ...
}

Listing 7. Adding a new event in a state machine extension

576 B. Chin and T. Millstein

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotionMouseUp

KeyDownMouseMotion

Help

Fig. 4. Interrupting the Drag

instantiate the new state classes. Unlike with the original pattern, no type casts
are necessary, and the Java typechecker will signal an error if one of the state
classes is not properly handling the new event.

To summarize, we add the following rules to our design pattern, in order to
support new events:

– A state machine must define a type variable that is bound by the currently
known state interface.

– This type variable must be used uniformly in place of any particular state
interface.

– All factory methods are declared abstract.
– A state machine must be concretized before it can be used, by fixing the

state interface type and implementing the factory methods.

2.3 Adding “Subroutines”

With the above modifications to our pattern, we can modularly add both new
states and new events. While these abilities allow essentially arbitrary modifi-
cations to the base state machine, there is a common extensibility idiom that
deserves special support. It is often useful to “interrupt” an existing state ma-
chine at some point, insert some new state logic, and later “resume” the original
state machine where it left off. Intuitively, this is the interactive equivalent of
a subroutine call, and it also naturally represents a form of hierarchical state
refinement, in which a state of the superclass is implemented as its own state
machine in the subclass.

A case in point is our final extension, shown pictorially in Figure 4. While
dragging an object, a user can press a specified key to bring up a dialog box
about the entity being dragged. Another key press will dismiss the dialog box,
at which point the drag should be resumed. Effectively, the drag state is be-
ing hierarchically refined. We could implement this extension using the above
techniques, but manually interrupting and resuming the drag is tedious. Further,

An Extensible State Machine Pattern for Interactive Applications 577

that approach requires care to ensure that the state of the drag upon resumption
is identical to the state before the interruption. For example, in general it may
not be sufficient to simply create a brand new instance of DragState with which
to resume the drag, since that could discard important state from the original
drag. This brings us to our final constraint:

Constraint : Each state transition should be able to be interrupted and
later resumed by a subclass.

As mentioned above, the interruption is akin to a subroutine call in traditional
program logic. We might therefore attempt to satisfy our constraint by allowing
the base state machine to include a call to a dummy method interruptKeyDown
within each KeyDown method:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key)
// ...

}

The location for this call is decided in the superclass. Now, we can override
interruptKeyDown in subclasses in order to perform the interruption. Unfor-
tunately, such an interruption would be forced to complete entirely within the
current state transition, before control is returned to the event sender. There-
fore, such an approach does not allow interruptions that require further user
interaction, as is required in our example.

One way around this problem is to capture the part of the KeyDown method
after the interrupt as an explicit function that can be called at will by subclasses.
Java’s Runnable interface provides a solution:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key, new Runnable() {

public void run() {
// ... rest of the transition after the interrupt

}
});

}

public void interruptKeyDown(Key key, Runnable next) {
next.run();

}

By default, interruptKeyDown simply invokes the given Runnable immediately,
thereby executing the rest of the transition. However, a subclass can override
the method to properly perform the interruption:

578 B. Chin and T. Millstein

public void interruptKeyDown(Key key, Runnable next) {
if (key.equals(HELP_KEY)) {
setCurrState(makeHelpState(next));

} else {
super.interruptKeyDown(key, next);

}
}

In the above code, if the help key is pressed, then we move to the new help
state (not shown). That state is passed the given Runnable, so it can properly
resume the original transition when the dialog box is dismissed by the user. If
a key other than the help key is pressed, then a super call is used to perform
the original transition as usual. With this approach, a state machine designer
can easily declare points in each state transition that are interruptible, allowing
future extenders to insert arbitrary state logic without breaking the original
state machine’s invariants.

There are two problems that need to be addressed in this approach. First, the
above code still requires the subclass to explicitly set the state back to the drag
state upon a resumption of the original transition. To address this problem, we
require each event handler to always end by setting its state appropriately, even
if the state does not change. With this rule, we can be sure that the original
code will set its state appropriately upon being resumed. To satisfy our rule, the
original code for KeyDown will be modified as follows:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key, new Runnable() {

public void run() {
// ... rest of the transition after the interrupt
setCurrState(this);

}
});

}

The call to setCurrState ensures that we always return to the original drag
state after the dialog box subroutine completes.

Second, the use of simple functions (i.e., Runnables) to capture the code after
the interruption has a number of limitations. Since a runnable can only capture
the code within a single method, it has to be created in the top-level event
handler method, rather than in some auxiliary method. Similarly, these interrupt
points cannot easily occur within control structures like loops or conditionals,
since the resulting runnable would be stuck in a particular scope and therefore
unable to capture the entire rest of the computation. What we need is a uniform
way to save the entire state of the computation after an arbitrary interrupt point.

We discovered that delimited continuations [7,2,8], a language feature devel-
oped in the functional programming community, does exactly this. Programmers
can declare a reset point at any point in the code, which has no semantic effect.
However, if a shift is later executed, then the entire execution stack up to the

An Extensible State Machine Pattern for Interactive Applications 579

public void KeyDown(Key key) {
reset {

// ...
shift (continuation) {
interruptKeyDown(key, continuation);

}
// ...
setCurrState(this);

}
}

public void interruptKeyDown(Key key, Continuation cont) {
cont.execute();

}

Listing 8. Example use of delimited continuations

most recent reset is popped off and saved as a continuation. A block of code
provided with the shift is subsequently executed and is passed the continuation,
which can be invoked to restore the original computation.

For example, the shift-reset version of our KeyDown method is shown in List-
ing 8. It has the same semantics as the earlier code, but it avoids the limitations
mentioned above. The shift can occur anywhere in our code, even in methods
called by KeyDown or inside of control structures. Further, the “rest” of the
computation can be nicely kept outside of the shift block, unlike with runnables.

We have created a simple Java library that implements delimited continua-
tions, which is discussed in Section 4. The library allows the code to be written
essentially as shown above, except that reset and shift are method calls into
the library. For ease of presentation, we continue to use the prettier syntax.

Listing 9 shows how to use delimited continuations to implement our final
state-machine extension. The relevant portion of the KeyStateMachine has been
modified to satisfy the new constraint. The KeyDown method properly ends by
setting the state. The getThis factory method is necessary in order to satisfy
the typing constraints introduced by abstracting on the State type variable; the
concretization of this class will implement getThis appropriately. The KeyDown
method uses a shift to support interruption by subclasses. As mentioned earlier,
the state machine forwards each event to currState. Therefore, it is natural
to put a reset in each such forwarding method, as shown at the bottom of the
figure, thereby alleviating the need for resets within the state classes.

Listing 10 shows our final state machine extension. We override interrupt-
KeyDown in the dragging state in order to move to the new help state, rather
than simply calling the continuation. The new state stores the continuation and
opens up the dialog box. When any key is pressed subsequently, the dialog box
is closed and the continuation is invoked, in order to resume the drag.

To summarize, we add the following rules to our state design pattern, in order
to support state-logic interruptions:

580 B. Chin and T. Millstein

abstract class KeyStateMachine<State extends KeyState>
extends DragStateMachine<State>

{
public abstract class KeyDragState extends DragState implements KeyState {

public abstract State getThis();

public void KeyDown(Key key) {
if (key.equals(COLOR_KEY)) {
changeButtonColor(key);

}
shift (continuation) {
interruptKeyDown(key, continuation);

}
setCurrState(this.getThis());

}

protected interruptKeyDown(Key key, Continuation cont) {
cont.execute();

}
}

public void KeyDown(Point at) {
reset {

this .getCurrState().KeyDown(at);
}

}
}

Listing 9. The Key state machine with inserted interrupt-point

– The last command on each path through an event handler must either be a
setCurrState call or an invocation of a continuation.

– Each forwarding method in a state machine class should set a reset before
forwarding an event to the current state.

– An interrupt point consists of a shift placed anywhere inside code that is
part of an event handler. The associated code block contains a call to an
interrupt method, to which it passes the created continuation as well as any
auxiliary information.

– The default behavior for an interrupt method is to immediately call the
continuation which it is passed.

3 Interrupt Points Explored

This section discusses how our novel notion of interrupt points may be used in
our pattern to gain even more flexibility, giving several examples to illustrate
their expressiveness in a variety of dimensions.

An Extensible State Machine Pattern for Interactive Applications 581

abstract class HelpStateMachine<State extends InputState>
extends KeyStateMachine<State>

{
// new factory methods
public abstract State makeHelpState(Continuation cont);

public abstract class HelpDragState extends KeyDragState {
public void interruptKeyDown(Key key, Continuation cont) {

if (key.equals(HELP_KEY)) {
setCurrState(makeHelpState(cont));

} else {
super.interruptKeyDown(key, cont);

}
}

}

// new state class
public abstract class HelpState implements KeyState {

private Continuation cont;

public HelpState(Continuation cont) {
showHelpWindow();
this .cont = cont;

}

public void KeyDown(Key key) {
closeHelpWindow();
cont.execute();

}
// other events with the default body ...

}
}

Listing 10. Our extension using the added interrupt-point

3.1 Returning Values from Interrupt Points

So far shifts have been used only as control structures, copying the stack into a
continuation to return in the future. Our library also allows a shift to return a
value. The following code illustrates a simple example:

String name = shift(Continuation<String> k) {
k.execute(‘‘Hello World!’’);

}

As usual, the shift saves the current execution state in the continuation k and
executes its body. The type of the continuation indicates that it expects a String
as an argument. Accordingly, the continuation is invoked with a string literal in

582 B. Chin and T. Millstein

the shift block. This argument becomes the value of the entire shift expression,
so the above code causes name to have the value "Hello World!".

The ability for “interrupters” to easily pass values back to the interrupted
state logic is often extremely useful. Such values can be used to change the
behavior of the original state logic or to allow that logic to declaratively gather
necessary data from its extensions. Our case study in the next section uses this
feature of shifts to good effect.

3.2 A Stack of Interrupted States

Since any state that stores a continuation from an interrupt point may itself be
interrupted, it is easy to form an arbitrarily long chain of states, each of which has
been interrupted by the next state on the chain. In essence, this is the interactive
equivalent of a run-time call stack. Executing a shift that transitions to a new state
and passes the current continuation to that state has the effect of pushing that new
state onto the call stack. Invoking a continuation has the effect of popping the top
state off the call stack. This ability makes the state machine powerful enough to
declaratively encode a pushdown system. Our case study in the next section relies
on this technique to handle parsing of arbitrarily nested XML data.

Similar functionality could be implemented by having each state keep a ref-
erence to the previous state, given to it at creation time, forming a reference
stack that does not use delimited continuations. When a machine wants to tran-
sition back to a previous state, it just calls setCurrState() with the stored
state pointer. In the pure state machine case, where the only purpose of state
transitions is to end up in the specified state, this would work fine. In real-world
cases, when state transitions can have general Turing-complete code on them,
delimited continuations allow clean-up code to be run after the interrupt point
is returned to, such as that which may be desired in a locking protocol. Further,
the clean-up code could even be used to decide which state should come next,
based on the current context.

3.3 After-the-fact Interrupt Points

In our example in the previous section, the implementer of the base state machine
anticipated the need for an interrupt point in the KeyDown event handler. However,
subclasses can easily add new interrupt points after the fact, for use both within
that subclass and within any future extensions. Since our pattern requires that the
base state machine wrap each event handler call with a reset, any shifts within the
dynamic extent of an event handler are alwayswell defined.For example, ifKeyDown
did not contain a shift, a subclass could simply override KeyDown and add one. We
make use of this ability in our case study in the next section.

3.4 Interrupt Points and Information Hiding

In the traditional state design pattern the current state object must maintain
all of the data associated with the current execution state. If any data is needed

An Extensible State Machine Pattern for Interactive Applications 583

public void KeyDown(Key key) {
DelimitedContinuation.Reset(new ResetHandler() {

public void doReset() {
// ...
DelimitedContinuation.Shift(new ShiftHandler<Unit>() {

public void doShift(Continuation<Unit>() cont) {
interruptKeyDown(key, cont);

}
});
// ...
setCurrState(this);

}
});

}

public void interruptKeyDown(Key key, Continuation<Unit> cont) {
cont.execute(null);

}

Listing 11. Version of Listing 8 using our API

in future states, it must be explicitly passed along to a new state whenever a
state transition occurs. Thus states may have to store data that they don’t need
in order to pass it on to states that may use it later. Aside from being tedious,
this also results in a loss of modularity, since data has to be available where it
logically should never be manipulated.

Interrupt points provide a convenient solution to this problem. A continua-
tion uniformly stores all current data (indeed, all data on the stack up to the
recent reset) and encapsulates it as a single value. Therefore, a state need only
accept a continuation in order to maintain all of the data potentially needed
in the future, and the state only needs to explicitly maintain the data that it
actually manipulates. When the continuation is eventually invoked, the data in
the continuation is restored and made available to the state logic that has been
resumed.

4 Implementation

As previously mentioned, we implemented delimited continuations as a Java
library. Each continuation is implemented as a thread, which is a simple way
to save the current execution state. A continuation thread waits on itself until
it is invoked. At that point the continuation thread is notifyed so it can run,
and the calling thread in turn waits on the continuation thread. When the
continuation thread is to return, the reverse logic happens. In this way we ensure
a deterministic handoff of control between threads.

Our library has a simple API. Listing 11 shows how Listing 8 looks using the
API. Reset is a static method on the DelimitedContinuation class. It takes a

584 B. Chin and T. Millstein

ResetHandler as an argument, whose doReset method provides the implemen-
tation of the reset block. Shift is handled analogously. The ShiftHandler is
parameterized by the type of the result, as discussed in Section 3.1. The Unit
type admits only the value null, thereby acting similar to void. The doShift
method is provided the continuation thread as an argument. When the continua-
tion is eventually invoked, the Shift method returns the value the continuation
was passed, and the code proceeds as usual.

Our library approach to implementing delimited continuations has a few lim-
itations. First, a continuation cannot be invoked more than once, and doing so
results in a dynamic error. Second, resets prevent exceptions from continuing up
the stack, thereby violating normal exception semantics. Others have considered
direct support for continuations in the Java virtual machine [5], which could
resolve these limitations.

5 Experience

JDOM [12] is a Java implementation of the Document Object Model (DOM)
for XML, which represents XML data as a tree of objects. Clients can then use
this tree to easily access the XML data from within Java programs. JDOM’s
implementation parses XML files using a SAX parser, which reads an XML file
and reports events to an instance of JDOM’s SAXHandler class, such as the start
of a new element, one by one. The SAXHandler object incrementally builds the
DOM tree in response to each event from the parser. As such, SAXHandler is a
real-world example of an interactive software component.

The original SAXHandler implementation is written as a single monolithic
class, rather than using the state design pattern. We refactored the code to use
our extensible state design pattern, creating explicit state classes. To illustrate
the extensibility provided by our pattern, we implemented the functionality of
SAXHandler in two stages. First we implemented a base state machine that can
build the DOM tree for basic XML documents. Then we created a subclass of
this state machine to handle more advanced features of XML, including entities,
Document Type Definitions (DTDs), and CDATA blocks. This class has the
same functionality as the original SAXHandler class.

5.1 Base State Machine

The original SAXHandler class implements four interfaces, which contain the
various parsing events that must be handled. Our basic refactored version of
SAXHandler implements only the ContentHandler interface, which provides
events for, among other things, the beginning and end of the XML document, the
beginning and end of an XML element, and character data within an element.

This state machine (depicted in Figure 5) is fairly simple. There are three
main states: The first is the initial state. On a startDocument event, it enters
the main parsing state. When the document is done, it gets sent the endDocument
event which causes it to enter the Document Complete state. There is one more

An Extensible State Machine Pattern for Interactive Applications 585

Initial
State

Parsing
Document

Document
Complete

startDocument

endDocument

startElement

Parsing
Element

endElement

startElement

Fig. 5. The State Machine for the Simple SAX Handler

state devoted to parsing XML elements, which we will describe in more detail
shortly.

Implementing this state machine in our pattern was straightforward. The most
interesting part is the need to handle arbitrarily nested elements. Effectively, the
statemachineneeds tomaintaina stackof elements that are currently in theprocess
of being parsed. In the original code, this stack was maintained explicitly, and in-
teger fields were used to keep track of the current nesting depth during parsing.

Our use of interrupt points provides a much more natural solution. We employ
our aforementioned “subroutine” idiom to parse a single element. This pattern is
indicated in Figure 5. The interrupt point (represented by the double triangle) is
the entrance to the subroutine that begins at the small triangle at the top, enter-
ing the “Parsing Element” state. When this state receives an endElement event,
it will exit the subroutine environment and return the constructed element, al-
lowing the remainder of the “calling” code to complete (in this case, adding the
returned element to the document). The parsing element state will also enter
into the same subroutine upon receiving the startElement event, causing a re-
cursive call. This recursion is what gives rise to the implicit stack-like nature of
this idiom.

Listings 12 and 13 show the code that implements this approach. When a
startElement event occurs, we invoke the readElement method shown in List-
ing 12. This method shifts the event handler’s execution, stores it into a contin-
uation k, and transitions into a ParsingElementState object, which stores the
continuation (in field prevCont) for later use. Recall that our pattern places a
reset at the beginning of each event handler, so this shift is well defined. The
ParsingElementStatebuilds up the current element (in field currElement) as it
receives characters events. If it receives a startElement event, then it invokes
readElement to recursively interrupt execution in order to parse the nested ele-
ment. Finally, as shown in Listing 13, when the ParsingElementState receives
the endElement event it invokes the stored continuation in order to resume ex-
ecution of the interrupted state machine, passing the parsed element back. This
value becomes the return value of the shift from readElement.

586 B. Chin and T. Millstein

public Element readElement(String name) {
return shift (Continuation<Element> k) {

setCurrState(makeParsingElementState(name, k));
}

}

Listing 12. The readElement() method

public void endElement(String name) {
prevCont.execute(currElement);

}

Listing 13. The endElement() event handler for the ParsingElementState

In addition to methods representing possible events, the ContentHandler
interface contains a method getDocument. This method should return the root
of the DOM tree if parsing has completed and null otherwise. This method does
not update any local state and hence is not part of the state logic of the machine.
Therefore, it is safe to implement it as a regular method, which does not conform
to the rules of our design pattern. For instance, it does not begin with a reset
nor end by updating the state. Our design pattern naturally accommodates such
methods, which query the state of the machine but do not update it.

5.2 Extended State Machine

Our subclass of the above state machine class adds support for the events in
the DeclHandler, DTDHandler, and LexicalHandler interfaces. These interfaces
respectively add support for XML entities, DTDs, and CDATA blocks. With the
addition of support for these events, our version of SAXHandler implements all of
the functionality of the original class. While for brevity’s sake we implemented
these aspects in a single extension, we could just as easily have created one
extension for each of these aspects.

In total, we added four new states and support for 12 new events. We also
used four interruption points to insert “subroutines” in the original logic. Our
extensible state design pattern made these additions straightforward. The most
inconvenient part was the addition of the new events, which required subclass-
ing each of the existing state classes in order to add the new methods. If Java
had multiple inheritance, we could create a class DefaultState which contains
default handlers for the new events, and each new state class could then inherit
from both the appropriate old state class as well as DefaultState. Because Java
lacks multiple inheritance, each new state class instead has its own implementa-
tion of each of the new events, thereby incurring some code duplication.

An Extensible State Machine Pattern for Interactive Applications 587

// ...
if (atRoot) {
document.setRootElement(element);
atRoot = false;

} else {
factory.addContent(getCurrentElement(), element);

}
currentElement = element;

Listing 14. A snippet of startElement() from the original SAXHandler implementa-
tion

We briefly discuss each of the three new pieces of functionality in turn. XML
entities are names that can be given to a block of XML data. When the name is
later referenced, it has the effect of inserting the associated data at the current
point, similar to a #include directive in C. Accordingly, when the SAX parser
encounters a reference to an entity, it sends events that correspond to the entity’s
associated data.

The original implementation of SAXHandler allowed the client code to decide
whether to handle entities properly or to simply ignore them. This was accom-
plished via a boolean field suppress, which was consulted within each event
handler to determine whether to handle the current event or not. Our imple-
mentation uses a more declarative approach. When we receive a startEntity
event in the ParsingElementState, we check the suppress field once. If the
client has configured us to expand all entities, we simply continue as usual.
Otherwise, we transition to a new SuppressedState, which simply ignores all
events.

When the SuppressedState receives an endEntity event, we must transition
back to the state we were in before the most recent startEntity event. Effectively,
the logic for suppressing entities interrupts the ordinary flow of the state machine
and later resumes it.Therefore, an interruptpoint is thenatural approach for imple-
menting this extension. Accordingly, the ParsingElementState’s startEntity
method uses a shift to transition to the SuppressedState:

shift (Continuation<Unit> cont) {
setCurrState(makeSuppressedState(cont));

}
setCurrState(this.getThis());

Upon an endEntity event, the SuppressedState invokes the given continuation
in order to resume the original state logic. After invoking the continuation, the
last statement above is executed, in order to return the state machine to the
proper state before returning control to the SAX parser.

Both DTDs (inline declarations of the XML schema) and CDATA blocks
(inline escaped text) were parsed in a similar manner. A new state was defined
for each, which was able to accept the events necessary to parse their respective
structure. The parsing of a CDATA block produces a value, so we implemented

588 B. Chin and T. Millstein

a readCDATA method in the same mold of the readElement method shown in
Listing 12.

5.3 Comparison

It is instructive to compare our refactored version of SAXHandler with the orig-
inal one. The original class maintained its state through many fields, including
seven boolean variables and an explicit stack for keeping track of the incom-
plete elements. The event handlers were typically rife with if statements dis-
patching on the aforementioned boolean fields to implement state-like behavior.
For instance, Listing 14 shows a snippet from the startElement event han-
dler which used the atRoot field to decide which implementation to use. Thus
implementation for two states was put into the same method, making it hard to
understand. In contrast, our pattern allowed us to separate out code associated
with different states, with each state class maintaining its own fields. For exam-
ple, our version of Listing 14 has each branch as an event handler in a distinct
state.

Our code was longer than the original code. Some of this was due to boilerplate
code that, to a practiced eye, could be quickly understood. Some of it was due
to the extra classes and methods which our pattern requires. The base class in
our version has 388 non-comment non-whitespace lines and the extension has
600, while the original JDOM code has 424 non-comment non-whitespace lines.
Excluding boilerplate (forwarding methods, empty event handlers, and factory
declarations), our numbers are 270 for the base and 330 for the extension.

We believe that the improved readability and extensibility of the reimple-
mented code outweighs the increase in code length. The mental overhead of the
pattern could be reduced by using a static checking framework such as Java-
COP [1] to automatically ensure that the pattern’s constraints are obeyed. It
could also be possible to automatically generate much of the boilerplate code,
given a high-level description of the state machine.

6 Related Work

The expression problem [16,20] highlights the difficulty of adding both new opera-
tions and new classes to an inheritance hierarchy in a statically typesafe manner,
and many solutions have been proposed. Our work borrows from solutions pro-
posed in Java [19] and in Scala [14], both of which use the idea of concretizing a
generic abstract class with a trivial concrete subclass that instantiates the type
parameters. Our pattern additionally introduces interrupt points via delimited
continuations as a form of extensibility and modular control flow in the face of
interactive logic.

Family polymorphism [6] is an inheritance scheme that allows a group of
classes to be extended simultaneously, enabling each of the extensions to explic-
itly use the new features of the other extended classes. This allows for much
more powerful interrelationships between the classes in the group as compared

An Extensible State Machine Pattern for Interactive Applications 589

to our state class extensions. Several languages such as gbeta [10] and Scala [18]
implement a version of it. Family polymorphism could be used to make our
pattern more lightweight. For instance, some forms of family polymorphism can
obviate the need for factory methods by making constructors virtual. Even so,
our pattern remains simple and can be implemented in vanilla Java 1.5.

Delimited continuations [7] are a language feature derived from classic con-
tinuations that limit the amount of remaining execution they save and can be
called without losing the current state of execution. A great deal of work has
been done in the functional community detailing properties and implementation
issues of delimited continuations [2,8] . To our knowledge, the use of delimited
continuations to achieve a common form of extensibility for state machines has
not previously been investigated.

The PLT Scheme web server [13] uses continuations to store the state of HTTP
sessions. This allows them to maintain state while transferring information over
the otherwise stateless HTTP. This approach is similar to our implicit stack
approach. We additionally identify the synergy between delimited continuations
and inheritance in OO languages, in order to support natural forms of state
machine extensibility, and we codify this idiom in a general design pattern.

Others have recently added direct support for various forms of continuation in
the Open Virtual Machine [15] for Java [5]. By leveraging their work, we may be
able to avoid the overhead of switching thread contexts in our implementation,
thus improving our performance and making our delimited continuation library
more powerful.

We previously described ResponderJ [4], an extension to Java that allows state
logic to be implemented as ordinary control flow interspersed with coroutine-
like event-dispatch blocks called eventloops. Actors [11] implement a similar
mechanism using the closures and pattern matching in Scala. Both features
are primarily targeted at improving the state logic of a single state machine
rather than at easily creating new state machines from old ones. However, careful
planning and leverage of ordinary method overriding can be used to achieve the
forms of extensibility that our pattern supports. For example, encapsulating each
eventloop in ResponderJ in its own method allows subclasses to override this
method in order to achieve the effect of replacing an existing state. ResponderJ
is a fairly large language extension, while our new pattern is implementable in
vanilla Java.

7 Conclusion

We have defined the extensible state design pattern, which adds a small number
of requirements onto the traditional state design pattern. By requiring a state
machine to obey extra constraints, we make it possible for subclasses to easily
and flexibly extend the state machine in several dimensions. Our pattern is
implementable in Java, and we have also shown how a library based on the notion
of delimited continuations can give the pattern more power. Our experience
indicates that our pattern’s new requirements are easy to respect and that the
pattern provides commonly desired forms of extensibility in a practical manner.

590 B. Chin and T. Millstein

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant Nos. CCF-0427202 and CCF-0545850, as well as by a generous gift
from Microsoft Research. Thanks to Robby Findler and the anonymous reviewers
for useful feedback on this work.

References

1. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing
pluggable type systems. ACM SIGPLAN Notices 41(12), 57–74 (2006)

2. Biernacki, D., Danvy, O., Shan, C.: On the static and dynamic extents of delimited
continuations. Sci. Comput. Program 60(3), 274–297 (2006)

3. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded polymor-
phism for object-oriented programming. In: Proc. of 4th Int. Conf. on Functional
Programming and Computer Architecture, FPCA 1989, London, September 11-13,
1989, pp. 273–280. ACM Press, New York (1989)

4. Chin, B., Millstein, T.D.: Responders: Language support for interactive applica-
tions. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 255–278. Springer,
Heidelberg (2006)

5. Dragos, I., Cunei, A., Vitek, J.: Continuations in the java virtual machine. In: Pro-
ceedings of the Second Workshop on Implementation, Compilcation, Optimization
of Object-Oriented Languages, Programs and Systems (ICOOOLPS 2007) (2007)

6. Ernst, E.: Family polymorphism. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 303–326. Springer, Heidelberg (2001)

7. Felleisen, M.: The theory and practice of first-class prompts. In: POPL, pp. 180–190
(1988)

8. Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding delimited and composable
control to a production programming environment. In: Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP 2007)
(2007)

9. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Massachusetts (1995)

10. GBeta home page, http://www.daimi.au.dk/∼eernst/gbeta
11. Haller, P., Odersky, M.: Event-based programming without inversion of control.

In: Lightfoot, D.E., Szyperski, C.A. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

12. JDOM home page, http://www.jdom.org
13. Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,

Felleisen, M.: Impelementation and Use of the PLT Scheme Web Server. In: Higher-
Order and Symbolic Computation (2007)

14. Odersky, M., Zenger, M.: Independently extensible solutions to the expression prob-
lem. In: Proc. FOOL 12 (January 2005)

15. Ovm home page, http://www.ovmj.org
16. Reynolds, J.C.: User-defined types and procedural data structures as complemen-

tary approaches to type abstraction. In: Schuman, S.A. (ed.) New Directions in
Algorithmic Languages, pp. 157–168. IRIA, Rocquencourt (1975)

http://www.daimi.au.dk/~eernst/gbeta
http://www.jdom.org
http://www.ovmj.org

An Extensible State Machine Pattern for Interactive Applications 591

17. The Simple API for XML (SAX) home page, http://sax.sourceforge.net
18. The Scala language home page, http://scala.epfl.ch
19. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP

2004. LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004)
20. Wadler, P.: The expression problem. Email to the Java Genericity mailing list

(December 1998)

http://sax.sourceforge.net
http://scala.epfl.ch

	An Extensible State Machine Pattern for Interactive Applications
	Introduction
	The Extensible State Pattern
	Adding and Overriding States
	Adding Events
	Adding ``Subroutines''

	Interrupt Points Explored
	Returning Values from Interrupt Points
	A Stack of Interrupted States
	After-the-fact Interrupt Points
	Interrupt Points and Information Hiding

	Implementation
	Experience
	Base State Machine
	Extended State Machine
	Comparison

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

