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Abstract. We describe a new approach to employing specifications for
software reliability. Rather than only using specifications to validate im-
plementations, we additionally employ specifications as a reliable alter-
native to those implementations. Our approach, which we call Plan B,
performs dynamic contract checking of methods. However, instead of
halting the program upon a contract violation, we employ a constraint
solver to automatically execute the specification in order to allow the
program to continue properly. This paper describes Plan B as well as
its instantiation in an extension to Java with executable specifications
that we call PBNJ (Plan B in Java). We present the design of PBNJ by
example and describe its implementation, which leverages the Kodkod
relational constraint solver. We also describe our experience using the
language to enhance the reliability and functionality of several existing
Java applications.

1 Introduction

Many researchers have explored the use of specifications, for example pre- and
postconditions on methods expressed in a variant of first-order logic, to gain
confidence in the correctness of software. One approach employs specifications
for static program verification, guaranteeing that each method meets its declared
specification for all possible executions. In recent years this approach has been
increasingly automatable via the use of constraint solvers (e.g., [11, 1,4, 30, 31]).
However, the limits of static verification make it difficult to scale this technology
to complex programs and rich program properties. A complementary approach
employs specifications for dynamic contract checking (e.g., [22, 10]). In this style
pre- and postconditions are checked as a program is executed. Performing the
checking is straightforward since specifications are only enforced on a single run-
time program state at a time. However, if a specification violation is found, there
is little recourse other than halting the program, which is unacceptable in many
situations.

In this paper we explore a new approach to employ specifications for soft-
ware reliability, which we call Plan B. The main idea is that specifications can
be used not only to check an implementation’s correctness but also as a reli-
able alternative to faulty or incomplete implementations. Like dynamic contract
checking, our approach checks for violations of method postconditions at run



time. However, rather than simply halting the program upon a violation, Plan
B falls back on the specification itself, directly executing it in order to safely
continue program execution. We observe that specifications can be executed us-
ing the same kinds of constraint solvers that are traditionally used for static
verification. Rather than using the constraint solver to verify the correctness of
a method for all possible executions, Plan B ignores the method implementa-
tion and lets the constraint solver search for a model that satisfies the method’s
postcondition given the dynamic program state on entry to the method.

Integrating executable specifications into a programming language in this
fashion provides several benefits. As described above, Plan B can be used to
safely recover from dynamic contract violations. Similarly, Plan B can safely re-
cover from arbitrary errors that prematurely terminate a method’s execution, for
example a null pointer dereference or out-of-bounds array access. Finally, Plan
B allows programmers to leverage executable specifications to simplify software
development. For example, a programmer could implement the common cases
of an algorithm efficiently but explicitly defer to the specification to handle the
algorithm’s complex but rare corner cases. While executing specifications can be
significantly less efficient than executing an imperative implementation, current
constraint-solving technology is acceptable in many situations, especially those
for which the only safe alternative is to halt the program’s execution. Further-
more, Plan B can take advantage of continual improvements in constraint-solving
technology to broaden its scope of applicability over time.

Plan B builds on two existing strands of research. First, researchers have pre-
viously explored forms of executable specifications. For example, several prior
projects propose executing specifications by translation to logic programs [29,
20]. The goal of this research is mainly to execute specifications in order to
test and debug them, independent of the program that employs them. Morgan’s
specification statement [23] is closer to our work since it integrates specifica-
tions with implementations. However, the specifications in that setting are used
as part of a manual process of program refinement to a correct-by-construction
implementation. Plan B leverages similar technology but uses it for a different
purpose, namely as a fallback mechanism that is tightly integrated with the
execution of a traditional programming language. This new use of executable
specifications requires constraint solving to be practical as an online tool during
program execution. We address this challenge with several novel program anno-
tations that allow the programmer to declaratively bound the search space in
an application-specific manner.

Second, there have been several recent research efforts on dynamic repair
to recover from program errors (e.g., [2,3,9,8]). These tools use heuristic lo-
cal search to find a “nearby” state to the faulty one that satisfies a class’s
integrity constraints. The goal is to allow execution to continue acceptably, even
in the face of possible data loss or corruption due to the fault. Our Plan B ap-
proach is complementary: we ignore the faulty program state and “re-execute”
the method using its postcondition (and the class’s invariants) with the aid of
general-purpose decision procedures. PlanB is in general less efficient than re-



pair, which leverages the fact that many errors only break invariants in local
ways. However, Plan B is useful when it is important to fully recover from a
fault rather than simply repairing it. Plan B also enables safe recovery from an
arbitrarily broken program state and can ensure rich program properties that re-
late the input state of a method to its output state, both of which are challenging
for local-search-based approaches.

We have designed and implemented a concrete instantiation of the Plan B
approach as an extension to Java called PBNJ (Plan B in Java). PBNJ aug-
ments Java with support for class invariants and method postconditions in a
first-order relational logic similar to the Alloy modeling language [14]. These
specifications are automatically translated to ordinary Java predicates and used
for dynamic contract checking of methods. In addition, the PBNJ compiler au-
tomatically creates a translation of each specification for input to the Kodkod
constraint solver for relational logic [27]. When a method fails its dynamic post-
condition check, Kodkod is invoked to find a model for the postcondition, the
resulting model is translated into appropriate updates to variables and fields,
and execution continues.

After overviewing PBNJ by example (Section 2) and detailing its implemen-
tation strategy (Section 3), we describe our experience using PBNJ in several
case studies (Section 4). First, we have created executable specifications for sev-
eral common data structures. We use this case study as a stress test for our
approach, employing complete specifications that ensure 100% correctness in
the event of a fallback. Second, we show how executable specifications can en-
hance the reliability and functionality of several existing Java applications. The
PBNJ compiler is available at http://www.cs.ucla.edu/~hesam/planb.

2 An Overview of PBNJ

This section overviews PBNJ and its benefits through a few motivating exam-
ples. After illustrating PBNJ’s specification language, we describe how these
specifications are used for dynamic contract checking and automatic fallback.
Finally we discuss some novel language mechanisms we have introduced to make
falling back on specifications practical.

2.1 Specifications

PBNJ includes fairly standard mechanisms for incorporating specifications
into a Java program. Method postconditions are specified in an optional ensures
clause on methods. Similarly, an optional ensures clause on a class declaration
specifies any class invariants, which must hold at the end of the execution of each
public method in the class. As a simple example, Figure 1 shows a square root
function on integers and an associated specification. As is common, the keyword
result refers to the value returned by the method.

In addition to supporting side-effect-free primitive operations in Java, PBNJ’s
specification language includes a form of first-order relational logic based on Al-
loy [14]. In this style, Java classes are modeled as unary relations (i.e., sets



public static int intSqrt(int i)
ensures result >= 0 &&
result <= i / result &&
(result + 1) > i / (result + 1) { ... }

Fig. 1. A specification for the integer square root function. We convert multiplications
into divisions to avoid integer overflow [25].

SpecExpr := QuantifiedExpr | SetComprehension | SpecPrimary
QuantifiedExpr == ( all | no | some | one | lone ) QuantifiedPart
SetComprehension := { ( all | some ) QuantifiedPart }
QuantifiedPart ::= Type Identifier [: SpecPrimary | | SpecExpr
SpecPrimary := Lit | Primary | FieldClosure | IntegerInterval

| various Java primitive operations on integers and booleans
Lit == null | this | result | IntegerLiteral | BooleanLiteral
FieldClosure ::= Primary . (* | |>) Identifier (+ Identifier )*
IntegerInterval ::= Primary .. Primary

Fig. 2. Specifications in PBNJ. The nonterminals Primary, IntegeralLiteral, and
BooleanLiteral are defined as in the Java Language Specification [13].

of objects) and Java fields are modeled as binary relations between an object
and its field value. The syntax of ensures specification expressions is shown in
Figure 2 and includes forms of quantification as well as transitive closure on rela-
tions. We also provide procedural abstraction for specifications through a notion
of specification methods, which additionally support side-effect-free statement
forms including assignment to local variables and if-then-else statements.

Figure 3 uses these features to provide the specification for a linked list
implementation. The List class includes a spec method nodes, defined as the
reflexive, transitive closure of the next relation starting from this.head. The
List class uses this method to specify that the list must be acyclic (specification
appearing at class header) and to specify the postcondition for a sorting routine.
Specification methods can invoke other specification methods, but not ordinary
Java methods, and only specification methods can be invoked from an ensures
clause. The nodes0fValue method uses PBNJ’s facility for set comprehensions,
and the values method uses the .> operator to map the value relation on each
node in nodes ().

Each object in PBNJ has an implicit field named old that can be used
in method specifications to refer to the state of that object on entry to the
method. This simple mechanism is very powerful because old has a “deep copy”
semantics. For example, the specification of bubbleSort uses the old field of
this to ensure that the implementation of the method does not add or remove
any nodes from the list. Because of the declared class invariant, the resulting



public class List ensures isAcyclic() {
Node head;

spec public PBJSet<Node> nodes() { return head.*next; }
spec public PBJSet<Integer> values() { return nodes().>value; }

spec public boolean isAcyclic() {
return head == null || some Node n : nodes() | n.next == null; }

spec public boolean isSorted() {
return all Node n : nodes() |
(n.next == null || n.value <= n.next.value); }

spec public PBJSet<Node> nodes0fValue(int i) {
return { all Node n : nodes() | n.value ==i }; }
spec int occurrencesOf (int i) { return nodesOfValue(i).size(); }

spec boolean isPermutedSublistOf(List 1) {
return all int i : values() |
occurrences0f (i) <= l.occurrencesOf(i); }
spec public boolean isPermutationOf(List 1) {
return this.isPermutedSublist0f(1) && 1.isPermutedSublistOf(this); }

public void bubbleSort ()
ensures this.isPermutationOf (this.old) && this.isSorted() {
Node curr, tmp, prev = null, last = null;
while (last !'= head) {
curr = head;
while (curr != last) { // A
if (curr.value > curr.next.value) {
if (curr == head)
head = curr.next;
else
prev.next = curr.next;
tmp = curr.next.next;
curr.next.next = curr;
prev = curr; // B
curr.next = tmp;
} else {
prev = curr;
curr = curr.next;
}
}
last = curr;

}r}

Fig. 3. A linked list of integers in PBNJ. The Node class (not shown) includes an integer
value field and a next field of type Node. The marked lines are discussed later.
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Fig. 4. Method invocation in PBNJ: falling back from Plan A (ordinary method exe-
cution) to Plan B (executing the method specification).

list is also required to be acyclic. Our implementation incurs a performance
overhead because of these deep copies, but this mechanism has allowed us to
easily experiment with a variety of expressive postconditions. In the future we
will explore several approaches to optimize the implementation of old, and we
may consider switching to a more standard, shallow, notion of 01d as found for
example in JML [21].

A secondary benefit of specification methods in PBNJ is that they are directly
executable. Specification methods can be invoked by ordinary Java methods and
thereby used as part of the implementation of a class. For example, clients of
our list can invoke the nodes method to get a set of all nodes which can then be
manipulated as usual in Java code. In this way, specifications are useful not only
as a fallback mechanism when an implementation fails (as described below), but
also to make implementations more declarative and hopefully more reliable by
construction. The PBNJ compiler automatically translates specification methods
into ordinary Java methods (see Section 3). We represent sets using our own
PBJSet interface which is similar to that in the Java standard library but also
provides functional versions of several operations (e.g., adding an element, set
union), since specifications need to be free of side effects.

PBNJ does not support user-defined preconditions on methods, but only
postconditions. Our research focuses on the idea of falling back on executable
specifications, which is more natural for postconditions (and class invariants)
than preconditions. Nonetheless, it may be useful to incorporate preconditions
in the future.

2.2 Contract Checking and Recovery

Figure 4 overviews the execution of a method in PBNJ. The method is executed
as usual. Upon normal completion, we check that the method obeys the de-
clared class invariant and method postcondition by executing (Java translations



of) these predicates. If the method invocation violates the declared specifica-
tion, we fall back to the specification. Execution also falls back to the spec-
ification if the method terminates with a Java RuntimeException (e.g., an
ArrayIndexOutOfBoundsException or NullPointerException). Fallback in-
volves translating the class invariant and method postcondition into the logic
of the Kodkod relational constraint solver [27] and invoking the solver to search
for a model satisfying the specification. If a model is found we use the model
to transform the current program state and continue execution. If Kodkod re-
ports unsatisfiability, then the specifications have no solution within the search
bounds provided by the programmer (see Section 2.3). In such a case we throw a
ContractViolationException, similar to what would happen with traditional
contract checking.

Before a method is executed, we make a deep copy of the reachable state
from any object whose old field is mentioned in the method’s postcondition.
This copy is then used to check the postcondition after the method’s execution
completes. If the postcondition is not satisfied, the old state on entry to the
method is translated into a set of relations that are provided to the Kodkod
solver for the purpose of model finding. Details on this translation are provided
in the next section.

Accidental Fallback Our linked list example in Figure 3 illustrates how PBNJ
helps ensure reliability in the face of program errors. The bubbleSort method
implementation has two errors, which are marked in the figure. First, the guard
in the while loop at line A should read curr.next != last. The error will
cause the subsequent line to throw a NullPointerException when curr.next
is null. Second, line B should read prev = curr.next. This error does not cause
any exceptions to be thrown, but on some lists it will erroneously throw away
elements. With the provided specification, PBNJ catches and successfully recov-
ers from both errors via the external constraint solver. Aside from a slowdown
in the application (depending on the size of the list being sorted), this recovery
is completely transparent to the user and to the rest of the application.

Intentional Fallback Figure 5 illustrates an example where fallback may be
useful for a programmer to rely upon explicitly, in order to handle complex
corner cases that arise in rare circumstances. SweetHome3D [26] is a popular
interior design application implemented in Java. Users can add and arrange
pieces of furniture in a room and view the results in a 3D view. We enhanced
the implementation of SweetHome3D to automatically rearrange furniture as
new pieces are added in a room to ensure that two pieces never overlap in space.
This is a good application for intentional fallback, since it would be cumbersome
and error prone to implement manually, and it may be reasonable to expect such
rearranging to be necessary only rarely.

To implement the enhancement we simply augmented the existing method for
adding a piece of furniture to invoke the empty method moveFurnitureIfNeeded
shown in Figure 5. PBNJ’s contract checking dynamically checks the method’s



public void moveFurnitureIfNeeded()
ensures notOverlapped() && notTooFar() && keepRelativePosition() { }

spec public boolean notOverlapped() {
return all HomePieceOfFurniture pl : this.furniture |
all HomePieceOfFurniture p2 : this.furniture |
(pl == p2 ||
(abs(pl.getX() - p2.getX())
>= ((pl.getWidth() + p2.getWidth())/2)) ||
(abs(pl.getY() - p2.getY())
>= ((pl.getDepth() + p2.getDepth())/2)));
}
spec private boolean notTooFar() {
return all HomePieceOfFurniture p: this.furniture |
((abs(p.getX() - p.old.getX()) <= p.getWidth()/2) &&
(abs(p.getY() - p.old.getY()) <= p.getDepth()/2));
}
spec private boolean keepRelativePosition() {
return all HomePieceOfFurniture pl: this.furniture |
all HomePieceOfFurniture p2: this.furniture |
((compare(pl.getX(), p2.getX()) ==
compare(pl.old.getX(),p2.0ld.getX())) &&
(compare(pl.getY(), p2.getY()) ==
compare(pl.old.getY(),p2.0ld.getY(D)));

Fig. 5. Enhancing SweetHome3D to automatically rearrange overlapping pieces of fur-
niture. The getX and getY methods return the coordinates of the center of a piece of
furniture. The compare method returns -1 if the first argument is less than the second
argument, 0 if the arguments are equal, and 1 otherwise.

(a) (b)

Fig. 6. (a) Four chairs and a coffee table overlapping the chairs. (b) PBNJ’s fallback
mechanism automatically rearranges the furniture.



postcondition and performs fallback if necessary, thereby allowing the program-
mer to safely ignore this special case. The declared postcondition ensures that
there are no overlaps and that the new position of each piece of furniture is close
to its old position and retains the same relative position to every other piece.
Figure 6 shows “before” and “after” screenshots for a simple example.

2.3 Making Fallback Practical

We have developed two main techniques to allow PBNJ programmers to declar-
atively bound the search space for fallback in an application-specific manner.

Frame Conditions By default, the constraint solver can modify the values of
any fields mentioned in a postcondition or class invariant in order to perform
the fallback. However, it is useful to allow programmers to override this default
by providing an explicit frame condition as a subset of fields that are intended
to be modifiable. This is done with an optional modifies fields clause on a
method. Traditionally such frame conditions have been used to aid static verifi-
cation of methods (e.g., [11]). We instead use these annotations to improve the
performance of constraint solving by limiting the search space. For example, an-
notating the bubbleSort method in Figure 3 with the following clause prevents
the solver from attempting to change the integer values stored in each list node,
but instead only their next pointers:

modifies fields List.head, Node.next

Frame conditions can also be used to simplify a specification by ensuring that
certain nonsensical solutions are ruled out.

By default any object reachable from this and formal parameters on entry
to the faulty method may be modified. We allow programmers to override this
default through a novel modifies objects clause, which specifies a Java ex-
pression that evaluates to a collection of objects; PBNJ’s fallback mechanism
considers all other objects to be immutable for purposes of fallback. Consider
again the moveFurnitureIfNeeded method in Figure 5. In a room with a lot of
furniture, it may be useful to restrict which pieces to consider moving upon an
overlap. Aside from the performance benefit, this restriction ensures that pieces
are only moved when necessary. Rather than building this constraint into the
postcondition, which would be tedious and complex, the programmer can pro-
vide the following clause, where surroundingPieces is a regular Java method
that returns the set of pieces that are sufficiently close to the overlap:

modifies objects surroundingPieces(p)

PBNJ invokes the modifies objects expression dynamically when a fall-
back event is triggered, and the resulting set of objects is communicated to the
solver as being modifiable; all other reachable objects are treated as immutable.
(We evaluate the modifies clause on old copies of objects in order to retain



its on-entry evaluation semantics.) This approach allows for significant flexibil-
ity. For example, we have created an alternate version of our SweetHome3D
enhancement whereby the modifiable pieces of furniture are determined by the
SweetHome3D user instead of being computed. In this style, the user explicitly
clicks on pieces of furniture to specify which ones can be automatically rear-
ranged if necessary.

Bounding the Universe Kodkod is a SAT-based reasoning tool, and it there-
fore expects a finite bound for the search space for each of the types, including
primitives. This implies that if the tool does not find a model, we can only assume
the problem is unsatisfiable within the given bounds. This incompleteness can
cause PBNJ to signal a contract violation exception when a recovery might have
been possible, but this is no worse than the situation with traditional contract
checking.

When executing specifications involving search for integer values, the usual
32-bit integer range is often not a tractable space. By default Plan B assumes
8-bit integers when executing specifications. However, we allow the user to ex-
plicitly set bounds for integers. The number of objects of each class must also
be bounded. By default we bound each class by the number of instances of that
class that are reachable from the receiver and formal parameters at the point of
the fallback. However, this bound is insufficient if the faulty method may need
to instantiate new objects. To handle this situation, we allow each method to
include an optional annotation specifying an upper bound on the number of new
instances of each class that Kodkod may create in order to satisfy the method’s
specification. For instance, the specification for an add method in our List class,
which adds one element to the list, states that one new Node object should be
allowed:

adds 1 Node

3 Implementation

We have implemented a prototype compiler for PBNJ using the Polyglot ex-
tensible compiler framework [24]. The compiler employs Kodkod [27], an effi-
cient SAT-based relational constraint-solving tool, which can in turn invoke any
standard boolean satisfiability solver to find models. This section details our
compilation scheme.

3.1 Translating Specifications To Java

The PBNJ compiler translates each specification method to regular Java code
and creates a regular Java method for each declared method postcondition
and class invariant. The translation from our specification language to Java
is straightforward. For example, the transitive closure operation on a field f
is implemented by a simple worklist algorithm that traverses f fields from the



Relation nodes_kk() {
return This.join(List_head).join(Node_next.reflexiveClosure())
.difference(Null); }

Fig. 7. Kodkod translation of the nodes specification method in Figure 3.

specified root object and adds each encountered object into the result set until
reaching either the null value or an object that has already been encountered.
The PBNJ compiler then instruments each public method in a class to perform
dynamic contract checking. We wrap the method body in a try block and use
the finally clause to invoke the Java translations of the method’s postcondition
and class invariant. We also use this try block to catch any run-time exceptions.
If either contract checking fails or a run-time exception is thrown, we proceed
to fall back to the Kodkod solver (described below).

3.2 Translating Specifications to Kodkod

The PBNJ compiler also creates versions of each specification method, postcon-
dition, and class invariant for input to Kodkod. Each of these translations is
placed in a new method inside the enclosing class. Kodkod is implemented as
a Java library [27], so each method contains regular Java code that constructs
a Kodkod-specific data structure representing the original specification formula.
Dynamically these methods are invoked to build a data structure representing a
Kodkod formula, which is passed to the solver for model finding.

Since our specification language is based on Kodkod’s relational logic, these
methods are quite simple. For example, Figure 7 shows the translation of the
nodes specification method from Figure 3 to a method that constructs a corre-
sponding Kodkod Relation. The compiler declares a unary relation correspond-
ing to each class and a binary relation corresponding to each field. For example,
Figure 7 refers to List_head, which is a binary relation between lists and nodes.
Accessing the field value of a particular object corresponds to a join of the (sin-
gleton) relation denoting that object with the field’s relation. As the example
shows, we also declare singleton relations to represent this, null, and other val-
ues in scope. The null value is removed from the result set to properly account
for the semantics of transitive closure in PBNJ. Finally, to handle specifications
that refer to old, the compiler creates a second binary relation for each field
to represent that relation’s value on entry to a method for which we perform
fallback.

3.3 Model Finding with Kodkod

Consider the bubbleSort method in Figure 3. Dynamically on entry to the
method, we perform a deep copy of the receiver object, in order to be able to
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Fig. 8. An example of the reachable state from the receiver object on entry to some
invocation of bubbleSort from Figure 3.

Table 1. A relationalized version of the program state in Figure 8.

Relation Bound
List {[L1]}
Node {[N1], [N2], [N3]}
List_head_old {[L1, N1J}

Node_value-old|  {[N1, 4], [N2, 2], [N3, 1]}
Node_next_old |{[N1, N2J, [N2, N3], [N3, Null]}

properly check the postcondition after the method finishes executing. We then
proceed to execute the bubbleSort method as usual. As described earlier, the
method is instrumented to perform contract checking and to fallback to Kodkod
if necessary.

If fallback is required we invoke the method bubbleSort_spec_kk, which
produces a Kodkod Formula representing the postcondition. We do the same
for the declared class invariant and conjoin these formulas. In order to find a
model for the resulting formula, we must provide Kodkod with lower and upper
bounds for each relation. Upper bounds specify which values may appear in a
relation, while lower bounds state which ones must appear. The bounds for the
unary relations representing classes as well as the binary relations representing
old field values are created by traversing the reachable state starting from old
versions of the receiver and formal parameters. For example, suppose the receiver
object on entry to an invocation of bubbleSort looks as in Figure 8. In that case,
we will set both the lower and upper bounds for various relations as shown in
Table 1, ensuring that Kodkod cannot change the values of these relations.

By default, the bounds on all other relations are trivial, as shown in Table 2.
Each relation has an empty lower bound and an upper bound that simply indi-
cates the type of the relation. The “function” keyword tells Kodkod that these
binary relations are in fact functions from the first component to the second,
which ensures that all solutions will be valid. For example, the upper bound for
Node next relation is requiring either a node or null value for each of the node
objects shown in Table 1.

These default bounds can be narrowed by the programmer using modifies
clauses. For example, suppose the modifies fields declaration for bubbleSort
in Section 2.3 is provided by the programmer. In that case we know that the
Node_value relation should be unchanged in the solution. Therefore we use the
value of the Node_value_old relation from Table 1 as both the lower and upper



Table 2. Default bounds for the relations to be solved for in a fallback for bubbleSort
from Figure 3.

Relation |Lower Bound Upper Bound
List_head {} function List—(Node+Null)
Node_value {} function Node—Integer
Node_next {} function Node— (Node+Null)

bound for the Node_value relation. Further suppose a modifies objects clause
is provided by the programmer. In that case, we execute the associated expression
on the old receiver to obtain the set of modifiable objects. For any object o not in
the result set, with relational counterpart atom O, for any pair (O, O’) in some
relation of the form C_f_old, we also place the pair (O,0’) in the lower bound
for the relation C_f. This ensures that while the relation C_f can be modified
by Kodkod, the value of o’s field cannot change in the solution. Finally, if the
method contains an adds annotation indicating the number of new objects of
each class that may be created, we update the associated unary relations with
a corresponding number of fresh atoms.

Once the bounds are calculated, we invoke the Kodkod solver to find a model
satisfying the specification formula. If a model is found, we iterate through the
relations of the resulting model and use reflection to update the corresponding
objects’ fields with the specified values. Program execution then continues as
usual.

4 Case Studies

This section describes our experience using PBNJ specifications as a reliable
fallback mechanism and evaluates the expressiveness and run-time performance
of this approach. First we discuss the use of executable specifications to make
common data structures like lists and trees robust to implementation errors.
Then we describe our experience providing a fallback mechanism for existing
Java applications.

4.1 Fallback for Data Structures

Figure 3 in Section 2 showed a portion of a linked list written in PBNJ. In
addition to a complete linked list, we also implemented a binary search tree as
well as a red-black tree. Figure 9 shows a portion of our red-black tree. The
class invariant ensures the various properties required of a red-black tree, which
guarantee that the tree satisfies the usual binary search tree invariant and that
the tree is balanced. The nodes specification method is similar to that from
Figure 3, but we use the + operator to take the union of the left and right re-
lations. The isBinarySearchTree method shows how nested quantifiers provide
a declarative and powerful mechanism for expressing complex invariants.



public class RBTree ensures
isBinarySearchTree() && rootBlack() && redsChildren() && egBlacks() {

class Node {
Node left, right, parent;
int value;
boolean color;
spec public PBJSet<Node> descendants() {
return this.” (left+right);
}
}

protected Node root;

spec public PBJSet<Node> nodes() { return root.*(left+right); }
spec public PBJSet<Integer> nodeValues() { return nodes().>value; }

spec public boolean isBinarySearchTree() {
return all Node n : nodes() |
((n.left == null ||
all Node lc : n.left.descendants() | lc.value < n.value) &&
(n.right == null ||
all Node rc : n.right.descendants() | rc.value > n.value));

}

public void insert(int value)
modifies fields RBTree.root, Node.color, Node.left,
Node.right, Node.parent
adds 1 Node
ensures nodeValues() .equals(old.nodeValues() .plus(value)) { }

public void delete(int value)
modifies fields RBTree.root, Node.color, Node.left,
Node.right, Node.parent
ensures nodeValues() .equals(old.nodeValues() .minus(value)) { }

Fig. 9. A portion of our red-black tree with executable specifications in PBNJ.




In order to evaluate the power and cost of our fallback mechanism, we have
not provided any implementations of methods like insert and delete. Dynam-
ically all invocations of these methods will fail to satisfy the declared postcondi-
tions, triggering a fallback to the specification. In this way, the program serves
as a self-describing, runnable interface of a red-black tree, which can be used
to ensure reliability for more efficient implementations. The code size is roughly
five times smaller than a typical Java implementation of a red-black tree, mainly
because of complex corner cases that imperative implementations of the insert
and delete operations must handle.

The insert and delete operations include frame conditions which ensure
that a node’s value will remain unchanged in the face of a fallback. However,
these conditions still allow the link structure of every node to be modified. Since
the postconditions of these methods only ensure that the resulting tree has
the correct values, fallback may alter the tree in a manner that differs from a
typical implementation, but the resulting tree will still satisfy the red-black tree
invariants and contain the proper values.

One way to preserve the structure of the original tree upon an insert or
delete operation is to include a modifies objects clause. Doing so is fairly
straightforward for a binary search tree. For example, there is always only a
single node in the tree that is affected by an insertion operation. Therefore the
programmer can include a clause on insert as follows, which invokes a function
that produces the singleton set containing the affected node:

modifies objects getParentToBeFor(value)

The same thing can be done for the red-black tree, but in that case computing
the set of nodes affected by an insertion or deletion is more complex due to the
need to potentially rebalance the tree.

Performance We employed the data structures described above as a stress test
for our fallback mechanism, using fallback to guarantee complex invariants with
100% functional recovery from an arbitrary failure. Table 3 shows the running
times of a fallback event for an insertion into a binary search tree, an inser-
tion into a red-black tree, and an invocation of bubbleSort for the linked list
from Figure 3, for various sizes of the data structures. Without object frame
conditions the Kodkod-based fallback mechanism is only practical for relatively
small trees. However, when object frame conditions are provided our approach
becomes feasible up to a 200-node tree. The object frame conditions keep the
number of unknowns roughly the same as the problem size increases, so SAT
solving time (sat) scales well. The main bottleneck is instead Kodkod’s trans-
lation from a relational logic formula to a SAT formula (¢r). In the future we
would like to explore techniques for optimizing this encoding step.

Comparison with Data Structure Repair Techniques The Plan B ap-
proach is complementary to that of recent online data repair tools. Such tools



Table 3. Fallback pre- and post-processing overhead, including copying, contract
checking, and conversion to Kodkod (fb.), Kodkod’s translation to SAT (¢r.) and SAT
solving time (sec.) (sat.) using MiniSat [6] of a fallback event on an insert call in a
binary-search tree (BST) or red-black tree (RBT) and a bubbleSort call on a linked
list (List), with n nodes. We report timings without object frame conditions (no frame)
and with them (with frame). Timeout t/o0 = 600.

BST | RBT List
insert bubbleSort

Size|lno frame|with frame||no frame|with frame|| no frame
(n) ||fo| tr| sat |fb| tr| sat ||fb| tr| sat |fb| tr| sat ||fb| tr| sat
10 (|.1].58] .29 |.1|.21| 0 ||.1].83] .60 |.1{.59| 0O ||.1[.58| .03
20 |[.1|1.3| 37 [.1.39| 0 ||.2]|2.5/108|.1|1.1] .01 |[.1|1.2| .57
40 t/o .1/.86| 0 t/o 1{1.9] .01 ||.1/5.5| 18
60 t/o (1.1 0 t/o 1(1.8] .01 |[.2|18] 278
80 t/o .1|1.51 .01 t/o 1/3.3| .05 ||.4]57| 395
100 t/o |.11.7| .01 t/o 1(3.2| .01 t/o
200 t/o .113.7) .04 t/o 1121 .09 t/o

are very efficient and useful when data is broken in local ways and some data
loss or corruption is acceptable. Our approach is more expensive but can re-
cover the intended semantics of a faulty method and can properly recover from
arbitrarily broken program states. To concretely illustrate these differences, we
ran the Juzi repair tool [8] on our binary search tree using intentionally broken
implementations.

First we modified the insert method of the BST implementation to corrupt
a single node and asked Juzi to restore the binary search tree invariant but not
the postcondition of insert. This kind of local repair is ideally suited for Juzi,
which satisfies the binary search tree invariant in 0.1 seconds for a tree with
10 nodes. In contrast, PBNJ reverts to the state before the faulty method was
invoked, so it cannot leverage the locality of the error. Aside from increasing the
cost of repair, this choice means that without including the method postcondition
Plan B is likely to produce a trivial solution such as an empty tree. We then
augmented the tree’s class invariant to include the postcondition for insert by
manually maintaining a field denoting the original set of nodes on entry to the
method. In that case Juzi timed out after a minute. On the other hand, PBNJ
recovers from the corruption and additionally ensures that the insertion happens
properly in a second without object frame conditions and 0.3 seconds with them.

4.2 Fallback for Existing Java Applications

We ported several existing Java applications to PBNJ, allowing us to explore
the expressiveness of PBNJ’s specification language as well as the practicality



spec protected boolean arrangeGridLayoutValid() {
// for any given component in the window:
return all Component cl : components |
(boundsValid(cl) && sizeValid(cl) && positionValid(cl) &&
all Component c2 : components |
(cl ==c2 ||
(noOverlaps(cl,c2) && relPositionsValid(c1,c2)))); }

Fig. 10. Our specification for the arrangeGrid method in GridBagLayout.

of fallback for various kinds of constraints. In addition to the SweetHome3D ap-
plication described in Section 2, we ported Java’s GridBagLayout class and an
open-source implementation of chess. Since these applications rely on the collec-
tion classes in Java’s java.util library, we also provided PBNJ versions of many
of those classes (e.g., ArrayList). This entailed turning some existing methods
into spec methods (e.g., size()) so they could be used in clients’ specifications
and adding new spec methods as necessary. In order to support quantifying
over a collection, we also implemented a toPBJSet specification method for each
collection class, which returns a set of the collection’s elements.

GridBagLayout The layout task in GUI applications is often complex. While
individual constraints are usually simple arithmetic restrictions, laying out a
window with many different components with both individual constraints and
dependencies among one another is non-trivial. The java.awt.GridBagLayout
class from Java’s widely used Abstract Window Toolkit (AWT) library is a case
in point'. This class is perhaps the most flexible of Java’s layout managers,
allowing components of varying sizes to be laid out subject to a variety of con-
straints.

We augmented several methods in GridBagLayout with PBNJ specifications.
The main layout (and most involved) method in GridBagLayout is arrangeGrid,
which is invoked whenever a user makes any change to the window (e.g., resiz-
ing) and contains over 300 lines of code. We used the informal documentation
provided by Java to provide a partial specification for this method. Our speci-
fication, which is shown in Figure 10, requires that each component is located
within the bounds of the window, is resized appropriately with respect to the
window size, satisfies various position constraints (e.g., each row in the grid is
left- and right-justified), does not overlap any other component, and retains its
position relative to other components. PBNJ supports quantification over ar-
rays (such as the components field in the figure) in addition to PBJSets. The
complete specification including helper methods is 35 lines of code.

! See http://www.youtube.com/watch?v=UuLaxbFKAcc for a funny video about the
difficulties of using GridBagLayout.
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Fig. 11. Using executable specification for arrangeGrid (a) to layout a window origi-
nally and (b) after a resize event.

To execute its specification, we removed the original body of arrangeGrid
so that fallback would occur on each invocation. Figure 11 shows a screenshot
of the initial layout for a window with five buttons using our specification, as
well as the layout after the user resizes the window. The fallback mechanism
takes around 5 seconds on average in each case, and the result is indistinguish-
able from that of the original arrangeGrid implementation. Although not yet
an acceptable performance overhead to use as a complete replacement for the
original implementation, PBNJ provides a practical way to ensure reliability of
an implementation in the face of a crash or incorrect layout.

We also experimented with a simple optimization that cuts down the time
significantly with little impact on the results. The arrangeGrid method uses
constraints that are described in terms of the entire screen’s pixel coordinates
(e.g., 1024x768), which constitutes a large search space. We experimented with
a version of our specification in which we solve a scaled version of the problem
by dividing all coordinates by a fixed constant (10 in our experiment), solve
for a model, and then multiply the constant back to get the actual coordinate
values to use. This approach reduced fallback time to under a second with little
perceptible difference in the resulting layout. The fallback time for the Sweet-
Home3D application shown in Figure 6 was also reduced to less than a second
after incorporating the same optimization technique. In general, PBNJ allows
programmers to provide such underspecified postconditions, which can be used
to allow practical fallback at the expense of some degradation in the quality of
the result.

JChessBoard JChessBoard [16] is an open-source chess implementation in
Java. The application has a feature to highlight the valid moves for a piece
clicked by the user. The same method is also called when generating candidate
moves for the computer player. For this case study, we annotated that method,
getPossibleMoves, with a PBNJ postcondition that itself computes the set
of valid moves and compares the result to the result of getPossibleMoves’s
implementation. This case study demonstrates the ability of our specification
language to express complex properties and perform sophisticated computations.



spec PBJSet<Move> allValidMovesFrom(Piece p, int from) {
return { all Move move : allMoves.toPBJSet() |
(move.getFrom() == from
&& isValidMove(p, from, move.getTo())) };
}
spec boolean isValidMove(Piece p, int from, int to) {
if (p == BISHOP)
return isValidBishopMove(from, to);
else if ...

}

Fig. 12. Computing valid chess moves as a PBNJ specification.

Figure 12 shows the specification method that computes the valid moves for
a given piece on the board. JChessBoard uses a single-dimensional array board
of size 64 to represent the board, and a given square (z,y) is indexed using the
formula 8x 4y, where x and y are in the range [0,7]. In order to generate the set
of valid moves, JChessBoard iterates over a statically calculated Java Vector
named allMoves — the collection of all moves that can possibly originate from
each square, assuming the square could hold any possible piece. Our specification
quantifies over this vector in order to obtain only moves for the given square from
that are valid for the given piece p.

Figure 13 shows the specification method isValidBishopMove. The method
checks that the from and to squares are on the same diagonal and that all
intervening squares on that diagonal are empty. This specification makes use
of many of the features of our specification language, including assignments to
local variables, nested quantification, integer interval ranges for quantification,
array accesses, and bitwise operations on integers. Except for the quantification
expressions, the rest of the code comes from the original JChessBoard imple-
mentation; we simply added spec annotations. Nonetheless, this code can be
automatically translated to Kodkod for the purposes of automatic fallback.

A fallback event for getPossibleMoves, which entails “executing” the above
method allValidMovesFrom in Kodkod, takes 2-3 seconds on average. We have
also explored an optimization which replaces the allMoves field with a separate
statically computed vector per type of piece (allBishopMoves, allQueenMoves,
etc.). Using the appropriate vector for the given piece during a fallback event
rather than the generic allMoves vector reduces the execution time to about 0.5
seconds.

5 Related Work

Our work builds upon several lines of research on executable specifications and
software reliability.



spec boolean isValidBishopMove(int from, int to) {
int fromRow = getRow(from), fromColumn = getColumn(from) ;
int toRow = getRow(to), toColumn = getColumn(to);

return Math.abs(toRow - fromRow) == Math.abs(toColumn - fromColumn)
&& checkDiagonalLineOfSight (fromRow, fromColumn, toRow, toColumn);
}
spec boolean checkDiagonalLineOfSight
(int fromRow, int fromColumn, int toRow, int toColumn) {
int minRow = Math.min(fromRow, toRow);
int maxRow = Math.max(fromRow, toRow);
int minColumn = Math.min(fromColumn, toColumn);
int maxColumn = Math.max(fromColumn, toColumn);
return all int r : minRow + 1 .. maxRow - 1 |
all int f : minColumn + 1 .. maxColumn - 1 |
(Math.abs(r - fromRow) != Math.abs(f - fromColumn) ||
board[getSquare(r,f)] == EMPTY);
}
spec int getRow(int square) { return square >> 3; }
spec int getColumn(int square) { return square & 7; }
spec int getSquare(int row, int column) { return (row << 3) + column; }

Fig. 13. Specifying the valid bishop moves from a square.

5.1 Executing Specifications via Constraint Solving

The idea to execute specifications has been explored in a variety of contexts.
Two recent examples include work on executable specifications for C++ [29]
as well as for the JML modeling language for Java [20]. These works allow
specifications to be executed on their own, for the purpose of gaining confidence
in their correctness. Our work also executes specifications but in a manner that is
tightly integrated with the host programming language. Specifications in PBNJ
are directly executable as part of a Java program’s execution, and our notion of
fallback requires constraint solving to happen online and in collaboration with
ordinary program execution.

The idea of a mized interpreter, which can execute programs that consist
of both specifications and implementations, is more closely related to our work.
Morgan laid the formal foundations for this approach with his notion of a spec-
ification statement [23]. However, his goal was not to automate the execution
of specifications but rather to support program reasoning uniformly during the
process of manually refining specifications to implementations. Freeman-Benson
and Borning introduced the notion of constraint imperative programming as
embodied in their Kaleidoscope language [12], which can be viewed as an in-
stantiation of the idea of a mixed interpreter. This language allows a class to
declare constraints that are automatically enforced on instances of the class us-



ing a constraint solver that integrates decision procedures for several domains.
Rayside et al. have recently described a vision of “agile specifications,” which
employs the notion of a mixed interpreter to unify the benefits of formal methods
with those of the agile software development methodology [25].

Plan B can be seen as a special case of a mixed interpreter, where constraint
solving is used only as a fallback mechanism rather than as a “first-class” part of
the language. We believe that fallback is a compelling use of executable specifica-
tions that may be more practical to support than a full-fledged mixed interpreter.
For example, it is reasonable for PBNJ to employ bounded constraint solving.
Although this may result in missed opportunities to recover a program, in the
worst case we can simply throw an exception as traditional contract checking
would do. In contrast, it would be unreasonable for a general mixed interpreter
to sometimes fail to execute a specification that is used as part of a program’s
implementation.

5.2 Data Structure Repair

Our work is inspired in part by recent work on online repair of data structures.
As mentioned in earlier comparisons, we view the approaches as useful in differ-
ent scenarios. Repair is useful when it is important for an application to continue
executing despite the presence of errors, while Plan B is useful when it is impor-
tant for an application to achieve the intended functionality of a faulty method
before continuing.

The repair approach of Demsky and Rinard [2, 3] allows programmers to pro-
vide high-level specifications in terms of an abstract model of objects, along with
a translation from the concrete to the abstract worlds. These specifications are
checked dynamically and violations invoke a repair algorithm that employs a
specialized set of repair actions (e.g., add or remove an element from a set). The
authors provide several case studies illustrating the practicality of the approach
for surviving errors in a variety of existing applications. The use of abstract mod-
els allows for a high-level approach to repair but also places additional burdens
on programmers. It may be useful for us to consider incorporating user-defined
abstractions in PBNJ, which could allow for higher-level encodings into Kodkod
that are more efficient than our current concrete encoding of a program state.

Elkarablieh et al. describe assertion-based repair of data structures [7,9, 8].
Their approach takes the broken program state along with a Java method repre-
senting the violated assertion predicate and performs a heuristically guided and
bounded state-space exploration to search for a nearby state that satisfies the
predicate. This approach is in some ways analogous to our use of SAT-solving
technology to perform a bounded search. However, our search begins from the
pre-state of the faulty method and strives to achieve the intended functionality
of the method, while their search begins from the post-state of the faulty method
and strives to perform local repairs to satisfy the class’s integrity constraints.
Our experiments in Section 4 compared against the Juzi tool directly. These
repair tools employ symbolic execution [19] along with automatic decision pro-
cedures to solve for the values of integers and other primitives and employ static



analysis to optimize the repair. Both ideas would be useful in our context as well
in order to speed up fallback.

5.3 Alloy

Our use of a specification language adapted from Alloy [14] and of Alloy’s un-
derlying solver Kodkod [27] are no accident. Alloy’s relational style of modeling
programs has proven to be quite natural and powerful, and Alloy and Kodkod
have been used in a variety of ways to gain confidence in the correctness of
imperative programs. One line of work employs these tools for bounded verifi-
cation of implementations [15, 18,28, 4, 5]. In this approach, both the body of a
Java method as well as its specification are translated to Alloy/Kodkod, and a
constraint solver searches for executions (up to some bound on the length of an
execution trace and the size of the heap) of the method that violate its specifi-
cation. The Analyzable Annotation Language (AAL) [18] additionally employs
Alloy to reason about the specifications themselves, for example to ensure that
the specification of an equals method in Java is in fact an equivalence relation.
Finally, TestEra [17] uses Alloy as a test generation tool for Java programs. Al-
loy generates nonisomorphic inputs up to some bound that satisfy a method’s
precondition, and Alloy is also used as the test oracle to determine whether the
result of executing the test satisfies the method’s postcondition.

Our work borrows the basic relational approach to modeling objects from
these prior works, along with the approach to translating a program state into
relations for input to Kodkod. However, rather than using this technology to gain
confidence in an implementation, our approach ignores the implementation and
instead employs Kodkod to “execute” Alloy-style specifications. Our approach
avoids some complications of verification, for example the need to translate arbi-
trary Java code to relational logic. On the other hand, our use of online constraint
solving poses a performance challenge, which we have addressed in part through
novel program annotations (e.g., modifies objects).

6 Discussion and Future Work

The approach proposed in this paper is just a first step, and much more needs to
be done to make Plan B an expressive and practical technique for software reli-
ability. There are several avenues for future work. First, the PBNJ language can
be improved in a few important ways. The specification language lacks support
for floats and strings and associated operations. There is also no special sup-
port for class inheritance currently. For example, the specification of a method
is not automatically inherited by an overriding method and need not have any
relationship to the specification of that method. Finally, specification methods
are currently forbidden from being recursive, which limits their expressiveness.
Others have shown how to translate recursive definitions into Alloy [18], so it
would be natural for us to adopt their approach.



Second, the PBNJ implementation can be optimized to reduce the overhead
of fallback. We plan to explore ways to avoid the deep copying that we currently
perform due to uses of the 0ld field. One possibility is to use static analysis to
determine the parts of an object’s state that cannot change and therefore need
not be copied. Another approach is to use a copy-on-write strategy, where state
is only copied just before it is overwritten. Finally, with more experience we may
find that an alternative semantics for old is more practical while still providing
the desired expressiveness.

Third, we are interested in exploring other uses of online constraint solving
for software robustness. One idea is to pursue the use of executable specifications
to declaratively specify background tasks that can be performed asynchronously
with the main program. For example, one could imagine refactoring a red-black
tree implementation to perform rebalancing in the background or during idle
periods, analogous to the way in which garbage collection runs as a background
thread. This style could provide significant benefits while alleviating some of the
current performance issues with online constraint solving. Another natural ques-
tion is whether the results of automatic fallback can be used to help developers
localize and correct errors in their implementations. Lastly, we are interested to
explore the online use of other kinds of constraint solvers for software reliability,
for example solvers that can maximize a user-provided objective function and
those that can employ local-search heuristics.

7 Conclusion

We have presented the Plan B approach to software reliability. Our main contri-
bution is the notion that formal specifications, when made executable by means
of a SAT-based constraint solver, can act as reliable alternatives for incomplete
or faulty method implementations. As a secondary benefit, such specifications
can also be used directly to make implementations more declarative and reli-
able by construction. We have demonstrated both use cases via example in the
PBNJ extension to Java and presented our experience using the language to
guarantee rich properties on existing Java applications. We are excited about
the possibilities of leveraging modern constraint solving technology as an online
tool for software reliability. While many challenges remain, we are encouraged
by our initial results and believe that there are several fruitful avenues for future
research.
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