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ABSTRACT
Predicate dispatch is an object-oriented (OO) language mechanism
for determining the method implementation to be invoked upon a
message send. With predicate dispatch, each method implemen-
tation includes a predicate guard specifying the conditions under
which the method should be invoked, and logical implication of
predicates determines the method overriding relation. Predicate
dispatch naturally unifies and generalizes several common forms of
dynamic dispatch, including traditional OO dispatch, multimethod
dispatch, and functional-style pattern matching. Unfortunately, prior
languages supporting predicate dispatch have had several deficien-
cies that limit its utility in practice.

We introduce JPred, a backward-compatible extension to Java
supporting predicate dispatch. While prior languages with predi-
cate dispatch have been extensions to toy or non-mainstream lan-
guages, we show how predicate dispatch can be naturally added to
a traditional OO language. While prior languages with predicate
dispatch have required the whole program to be available for type-
checking and compilation, JPred retains Java’s modular typecheck-
ing and compilation strategies. While prior languages with predi-
cate dispatch have included special-purpose algorithms for reason-
ing about predicates, JPred employs general-purpose, off-the-shelf
decision procedures. As a result, JPred’s type system is more flex-
ible, allowing several useful programming idioms that are spuri-
ously rejected by those other languages. After describing the JPred
language and type system, we present a case study illustrating the
utility of JPred in a real-world application, including its use in the
detection of several errors.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—classes and objects, inheritance, procedures, functions, and
subroutines
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1. INTRODUCTION
Many programming languages offer a form of dynamic dispatch,

a declarative mechanism for determining the code to be executed
upon a function invocation. In this style, a function consists of a
set of implementations, each with a guard specifying the condi-
tions under which that implementation should be executed. When
a function is invoked, all the implementations that are applicable,
meaning that their guards are satisfied, are considered. Of the ap-
plicable implementations, the one that overrides all other imple-
mentations is selected to be executed.

For example, a method m in mainstream object-oriented (OO)
languages like Java [3, 28] has an implicit guard specifying that
the runtime class of the receiver argument must be a subclass of
m’s enclosing class. A method m1 overrides another method m2
if the enclosing class of m1 is a subclass of the enclosing class of
m2. Multimethod dispatch, as found in languages like Cecil [11,
13] and MultiJava [16], generalizes the implicit OO guards to sup-
port runtime class tests on any subset of a method’s arguments,
and the overriding relation is likewise generalized to all arguments.
As another example, pattern matching in functional languages like
ML [40] allows guards to test the datatype constructor tags of ar-
guments and to recursively test the substructure of arguments. In
that setting, the textual ordering of function implementations deter-
mines the overriding relation.

Dynamic dispatch offers a number of important advantages over
manual dispatch using if statements. First, dynamic dispatch al-
lows the guards on each implementation to be declaratively spec-
ified, and the “best” implementation is automatically selected for
a given invocation. Second, in the presence of OO-style inher-
itance, dynamic dispatch makes functions extensible: a function
can be extended simply by writing additional implementations that
override existing ones or handle new scenarios, without modifying
any existing code. Finally, dynamic dispatch supports better static
typechecking than manual dispatch using if statements. Dynamic
dispatch alleviates the need for explicit runtime type casts, which
subvert the static type system. Static typechecking for dynamic
dispatch additionally ensures that method lookup cannot fail: there
can never be dynamic message-not-understood errors (which oc-
cur when no methods are applicable to an invocation) or message-
ambiguous errors (which occur when multiple methods are appli-
cable to an invocation, but no unique applicable method overrides
all others).

In 1998, Ernst et al. introduced the concept of predicate dis-
patch [20]. With predicate dispatch, a method implementation may
specify an arbitrary predicate as a guard. A method m1 overrides



another method m2 if m1’s predicate logically implies m2’s pred-
icate. Ernst et al. provide a number of examples illustrating how
predicate dispatch unifies and generalizes several existing language
concepts, including ordinary OO dynamic dispatch, multimethod
dispatch, and functional-style pattern matching. They also formally
define predicate evaluation and provide a static type system that en-
sures that method lookup cannot fail. Finally, Ernst et al. define a
conservative algorithm for testing validity of predicates, which is
necessary both for computing the method overriding relation and
for static typechecking.

Despite this strong initial work, and despite additional work on
the topic [14, 54, 47], to date predicate dispatch has had several
deficiencies that limit its utility in practice. First, implementations
of predicate dispatch have all been in the context of toy or non-
mainstream languages, and none of these implementations has in-
cluded static typechecking. Second, there has been no progress on
static typechecking for predicate dispatch since the original work,
and the type system described there is global, requiring access to
the entire program before typechecking can be performed. This
makes it difficult to ensure basic well-formedness properties of in-
dividual classes, and it clashes with the modular typechecking style
of mainstream OO languages. Third, the existing static type system
for predicate dispatch is overly conservative, ruling out many de-
sirable uses of predicate dispatch. For example, that type system
cannot determine that the predicates x > 0 and x ≤ 0, where x is an
integer argument to a function, are exhaustive and mutually exclu-
sive. Therefore, the type system will reject a function consisting
of two implementations with these guards as potentially containing
both exhaustiveness and ambiguity errors. Finally, little evidence
has been presented to illustrate the utility of predicate dispatch in
real-world applications.

This paper remedies these deficiencies. We present JPred, a
backward-compatible extension to Java supporting predicate dis-
patch. Our contributions are as follows:

• We illustrate through the design of JPred how predicate dis-
patch can be practically incorporated into a traditional OO
language. The extension is small syntactically and yet makes
a variety of programming idioms easier to express and vali-
date.

• We describe a static type system for JPred that naturally re-
spects Java’s modular typechecking strategy: each compila-
tion unit (typically a single class) can be safely typechecked
in isolation, given only information about the classes and in-
terfaces on which it explicitly depends. We achieve modular
typechecking by adapting and generalizing our prior work on
modular typechecking of multimethods [37].

• We describe how to use off-the-shelf decision procedures
to determine relationships among predicates. We use de-
cision procedures both to compute the method overriding
relation, which affects the semantics of dynamic dispatch,
and to ensure exhaustiveness and unambiguity of functions,
which is part of static typechecking. The use of decision pro-
cedures provides precise reasoning about the predicates in
JPred’s predicate language. This contrasts with the special-
ized and overly conservative algorithms for reasoning about
predicates that are used in previous languages containing pred-
icate dispatch.

Our implementation uses CVC Lite [17], a successor to the
Cooperating Validity Checker [53]. CVC Lite contains de-
cision procedures for several decidable theories, including
propositional logic, rational linear arithmetic, and the theory

pred ::= lit | tgt

| Identifier as tgt | [Identifier as] tgt@ClassType

| uop pred | pred bop pred

lit ::= null | IntegerLiteral | BooleanLiteral

tgt ::= this | Identifier | tgt.Identifier

uop ::= ! | -
bop ::= && | || | == | != | < | <= | > | >= | + | - | *

Figure 1: The abstract syntax of predicate expressions in
JPred. Brackets enclose optional pieces of syntax. Nontermi-
nals Identifier, ClassType, IntegerLiteral, and BooleanLiteral are
defined as in the Java Language Specification [28].

of equality. CVC Lite is sound and complete for validity
queries over JPred’s predicate language, so our language and
type system remain well defined and predictable.

• We have implemented JPred as an extension in the Polyglot
extensible compiler framework for Java [44]. In addition
to the modular typechecking strategy, we have implemented
a simple modular compilation strategy that compiles JPred
source to regular Java source, which can be compiled with a
standard Java compiler and executed on a standard Java vir-
tual machine. In this way, JPred source and bytecode files
interoperate seamlessly with Java source and bytecode files,
including precompiled Java libraries.

• To demonstrate the utility of JPred in practice, we have un-
dertaken a realistic case study using the language. We have
rewritten a Java implementation of a discovery service that is
part of the one.world platform for pervasive computing [29]
to use JPred. We illustrate and quantify the advantages that
JPred provides, including its use in the detection of several
errors.

Section 2 introduces JPred and illustrates its expressiveness by
example. Section 3 discusses our modular static type system for
JPred. Section 4 describes how we use off-the-shelf decision pro-
cedures to reason about relationships among predicates. Section 5
overviews our JPred implementation, including the modular com-
pilation strategy. Section 6 describes the case study illustrating
JPred’s effectiveness. Section 7 discusses related work, and sec-
tion 8 concludes.

2. JPRED BY EXAMPLE
In this section we overview the JPred language, illustrating its

benefits to programmers via a number of examples. The section
ends with a precise description of the semantics of method invoca-
tion in JPred.

JPred augments the Java language by allowing each method dec-
laration to optionally include a clause of the form when pred, just
before the optional throws clause. The predicate expression pred
is a boolean expression specifying the conditions under which the
method may be invoked. The abstract syntax of predicate expres-
sions is given in figure 1. Predicate expressions may include lit-
erals, references to formals and fields in scope, identifier binding,
dynamic dispatch on classes, and a host of boolean, relational, and
arithmetic operations. We call a method containing a when clause
a predicate method.



class FileEditor {
void handle(Event e) {
if (e instanceof Open) {
Open o = (Open) e;
. . . // open a file

} else if (e instanceof SaveAs) {
SaveAs s = (SaveAs) e;
. . . // save to a new file

} else if (e instanceof Save) {
Save s = (Save) e;
. . . // save the file

} else {
. . . // handle unexpected events

}
}

}

Figure 2: A file editor implemented in Java.

2.1 Multimethod Dispatch

2.1.1 Event-Based Systems
Figure 2 illustrates an event-based implementation of a file ed-

itor in Java. The handle operation is invoked when an event is
triggered by the user’s action. The passed event is handled differ-
ently according to its runtime class. This implementation style for
event-based systems allows multiple clients to handle posted events
in different ways within an application. It also allows each client to
handle a different subset of posted events. Finally, the style allows
new events to be added to the system without having to modify all
existing clients.

However, this style also has a number of disadvantages. First,
the programmer has the burden of manually performing event dis-
patch, and the cases of the monolithic if statement must be ordered
such that the right code will be executed for each scenario. For
example, assuming that SaveAs is a subclass of Save, the second
and third cases in figure 2 must appear in that order, or else the
handler for SaveAs will never be invoked. Second, the monolithic
style makes the event handlers difficult to reuse and extend by sub-
classes. For example, a subclass cannot easily choose to inherit
some of FileEditor’s handlers, override others, and add new han-
dlers for other events. Third, the heavy use of runtime type tests
and casts provides the potential for dynamic cast failures. Finally,
there is no static checking to ensure that all possible events are han-
dled and that no handlers are redundant. For example, the handle
method in figure 2 would still typecheck successfully if the else
case were removed, even though that could cause errors to occur
dynamically.

Figure 3 shows how the file editor can be equivalently imple-
mented in JPred. The first three methods are multimethods [8], us-
ing JPred’s specializer expression to dynamically dispatch on their
arguments in addition to the receiver. Similar to multimethod nota-
tion in Cecil [11, 13], the predicate e@Open declares the specialized
type (or specializer) of the target e to be Open: the first method in
the figure is only applicable to an invocation of handle if the run-
time class of the actual argument is a subclass of Open. When type-
checking the body of the first handle method, the formal parameter
e is considered to have type Open, thereby allowing the body to ac-
cess fields and methods that are specific to the Open subclass of
Event.

JPred’s semantics differs from Java’s static overloading mecha-

class FileEditor {
void handle(Event e) when e@Open

{ . . . // open a file }
void handle(Event e) when e@SaveAs

{ . . . // save to a new file }
void handle(Event e) when e@Save

{ . . . // save the file }
void handle(Event e)

{ . . . // handle unexpected events }
}

Figure 3: The file editor implemented in JPred.

class PrintingEditor extends FileEditor {
void handle(Event e) when e@Open

{ . . . // a better way to open files }
void handle(Event e) when e@Print

{ . . . // print the file }
}

Figure 4: An extension to the file editor.

nism, which uses the static type of an actual argument expression
to statically determine which methods are applicable. For example,
a Java method of the form

void handle(Open e) { . . . // open a file }

will never be executed from a handle call site whose actual argu-
ment expression has static type Event, even if at runtime the actual
argument is an instance of Open.

The method overriding relation in JPred is determined by pred-
icate implication; the textual order of methods is irrelevant. The @
predicate corresponds to Java’s instanceof expression and has the
same semantics. The last handle method in figure 3 implicitly has
the predicate true. Therefore, the first three methods each override
the last one (since every predicate logically implies true), and the
second method overrides the third (since an instance of SaveAs can
always be viewed as an instance of Save). For example, if an invo-
cation of handle dynamically has a SaveAs instance as the argu-
ment, then the last three methods in the figure are applicable, since
their guards evaluate to true, and the second method is invoked
because it overrides the third and fourth methods. While Java’s
instanceof expression can be used to test against both classes and
interfaces, JPred’s specializer expression requires the given type to
be a class. As mentioned in section 3, this requirement allows us to
preserve modular static typechecking.

The JPred implementation of the editor resolves the problems
of the Java implementation in figure 2. Each conceptual handler
is now encapsulated in its own method, and its guard declaratively
states the conditions under which that handler should be invoked.
JPred’s dispatch semantics naturally matches programmer intent:
the handlers can appear in any order, and JPred ensures that the
right handler is invoked for each scenario. Further, the code is now
statically type safe: there is no potential for dynamic cast failures,
and as described in section 3, the JPred typechecker ensures that
the handlers cover all possible scenarios and are not ambiguous
with one another.

Finally, unlike the original implementation, the JPred implemen-
tation of FileEditor is easily extensible, allowing for deep hier-
archies of event handlers that share code in flexible ways. Pred-
icate methods have the same properties as regular methods, and



class TypeCheck {
Type typeCheck(TypeEnv te, Node@If n) { . . . }
Type typeCheck(TypeEnv te, Node@While n) { . . . }
. . .

}

Figure 5: Noninvasive visitors in JPred.

hence they are naturally inherited by subclasses. For example, an
extended version of the editor is shown in figure 4. This editor pro-
vides a more optimized implementation of file opening and addi-
tionally provides printing functionality. JPred dispatches an invoca-
tion to one of the methods in FileEditor whenever no method in
PrintingEditor is applicable. For example, if a PrintingEditor
instance is sent a Save instance, the third method in figure 3 will
automatically be invoked.

In practice, event handlers can be significantly more complicated
than the example shown in figure 2. For example, a handler may
test its current state in addition to the runtime type of the event,
in order to determine how to handle the event. JPred’s advantages
over Java for implementing event-based systems increase as han-
dlers become more complex. Our case study in section 6 illustrates
JPred’s usage in a real-world event-based system to create reliable
and extensible event handlers.

As a syntactic sugar, JPred supports MultiJava-style syntax for
specializer expressions [16], so the first handle method in figure 3
can be equivalently written as follows:

void handle(Event@Open e) { . . . }

MultiJava-style specializers get desugared into a conjunction of
JPred specializer expressions, which are conjoined to the front of
any explicit predicate expression for the method.

2.1.2 Noninvasive Visitors
A well-known limitation of traditional OO languages is the in-

ability to easily add new operations to existing class hierarchies.
Multimethod dispatch provides a partial solution to this problem
[37]. For example, figure 5 illustrates how multimethod dispatch
is used to add a new typechecking pass to a hypothetical compiler.
The compiler contains a class hierarchy to represent abstract syn-
tax tree (AST) nodes, with base class Node. The methods in the
TypeCheck class dynamically dispatch on different subclasses of
Node, in order to provide functionality for typechecking the vari-
ous constructs in the language being compiled.

Adding new operations to existing classes via multimethod dis-
patch has several advantages over use of the visitor design pat-
tern [25], which is the standard solution in traditional OO lan-
guages. First, the visitor pattern requires the original implementer
of the Node class and subclasses to plan ahead for visitors by in-
cluding appropriate accept methods. This is necessary so that
nodes can be dynamically dispatched upon via a double dispatch
[32] protocol. In contrast, a JPred visitor is completely noninva-
sive, requiring no special-purpose “hooks” in the original nodes.
Second, the visitor pattern requires all external operations to have
the same argument and result types. This often requires argument
and result passing to be unnaturally simulated via fields. In con-
trast, each JPred visitor operation can naturally have its own ar-
gument and result types, as shown in figure 5. Finally, the visitor
pattern requires each visitor class to have one method per Node sub-
class, making it difficult for a node to inherit the behavior of its su-
perclass. In contrast, a JPred visitor naturally supports inheritance
among the nodes.

abstract class TreeNode {
abstract TreeNode left();
abstract TreeNode right();
. . .

}
class DataNode extends TreeNode {
int data;
TreeNode left;
TreeNode right;
. . .

}
class EmptyNode extends TreeNode { . . . }

Figure 6: A class hierarchy for binary search trees.

class TreeIsomorphism {
boolean isomorphic(TreeNode@EmptyNode t1,

TreeNode@EmptyNode t2)
{ return true; }

boolean isomorphic(TreeNode t1, TreeNode t2)
when t1@EmptyNode || t2@EmptyNode
{ return false; }

boolean isomorphic(TreeNode t1, TreeNode t2) {
return isomorphic(t1.left(), t2.left()) &&

isomorphic(t1.right(), t2.right());
}

}

Figure 7: Disjunction in JPred predicate expressions.

2.1.3 Generalized Multimethods
While a traditional multimethod is expressed in JPred as a pred-

icate consisting of a conjunction of specializer expressions on for-
mals, JPred also allows arbitrary disjunctions and negations. An
example of disjunction is shown in figure 7. The code operates
over the class hierarchy in figure 6: TreeNode is the base class for
binary search tree nodes, DataNode represents a node in the tree,
and EmptyNode is used as a sentinel when a node lacks a left or
right child (or both). The TreeIsomorphism class in figure 7 de-
termines whether two binary trees (represented by their root nodes)
are isomorphic. The first two methods in the figure handle scenar-
ios when at least one of the two given tree nodes is empty. By the
semantics of predicate implication, the first isomorphic method
overrides the second one as desired.

The presence of disjunction and negation in predicates raises the
issue of when to allow specialized types from a method’s predi-
cate to be used when typechecking the method’s body. For ex-
ample, it would be unsafe to allow t1 to be considered to have
static type EmptyNode when typechecking the body of the second
isomorphic method, because that method can be invoked in a sce-
nario where t1 is not an instance of EmptyNode. In JPred we take
a simple approach to handling this issue: specialized types may
never “escape” from underneath disjunction and negation. There-
fore, the specialized types for t1 and t2 are not used when type-
checking the body of the second isomorphic method, while t1 and
t2 may safely be considered to have static type EmptyNode when
typechecking the body of the first method. It is possible to relax
JPred’s requirement, for example by allowing a specialized type
for a formal that appears in both sides of a disjunction to be used
when typechecking the method body [20]. However, the current
rule handles the common case and is simple to understand.



class TypeCheck {
. . .

Type typeCheck(TypeEnv te, Node@BinaryExpr n)
when n.operator@Plus || n.operator@Minus
{ . . . // check that the arguments are integers }

Type typeCheck(TypeEnv te, Node@BinaryExpr n)
when n.operator@Concat
{ . . . // check that the arguments are strings }

}

Figure 8: Field dispatch in JPred.

class DataNode extends TreeNode {
. . .

int getMin() when this.left@EmptyNode
{ return this.data; }

int getMin() { return this.left.getMin(); }
}

Figure 9: Another example of field dispatch.

2.2 Field Dispatch
JPred supports dispatch on the substructure of a method’s argu-

ments, as found in functional-style pattern matching. This idiom is
expressed through predicates on fields. Any field in scope within
a method may be dispatched upon in the method’s predicate, in-
cluding fields of the receiver argument, visible fields of the other
arguments, visible static fields of other classes, and fields of fields
(recursively).

For example, consider the typechecking visitor in figure 5, and
suppose a BinaryExpr subclass of Node represents invocations of
a binary operator. It is necessary to know which binary operator
is invoked in order to decide how to typecheck the invocation, and
field dispatch provides a natural and declarative solution, as shown
in figure 8. The example also illustrates another use of disjunction
in predicates.

As another example, figure 9 uses field dispatch to find the mini-
mum element of a binary search tree, in the context of the hierarchy
in figure 6. The code mirrors the way such functionality would be
naturally written in a language with pattern matching, like ML. As
usual, this.left can equivalently be written as left in the pred-
icate expression.

Unlike specialized types for formals, specialized types for fields
are never used when typechecking the associated method body. For
example, this.left is still considered to have static type TreeNode
when typechecking the body of the first getMin method in figure 9,
even though the method can only be invoked when this.left is
an instance of EmptyNode. The unsound method in figure 10 illus-
trates why this rule is necessary. Since the static type of n.left is
TreeNode, the first statement in the body of unsound typechecks.
If the static type of this.left is narrowed to its specialized type
DataNode, then the return statement also typechecks. However,
the return statement will dynamically attempt to access the data
field of an EmptyNode instance on an invocation dn.unsound(dn),
where dn has static type DataNode.

In the above example, an invocation dn.unsound(dn) causes
this.left and n.left to be aliases: they have the same l-value.
The unsoundness occurs because the two field expressions are mu-
table but are considered to have different types. By forcing a field
expression to retain its original static type, JPred ensures type sound-
ness regardless of how the field is modified through aliases. In

class DataNode extends TreeNode {
. . .

int unsound(DataNode n) when this.left@DataNode {
n.left = new EmptyNode();
return this.left.data;

}
}

Figure 10: Narrowing the static type of a field is unsound.

JPred, the code in figure 10 is rejected because this.left.data
fails to typecheck — this.left has static type TreeNode and
hence does not have a data field.

Formal parameters, unlike field expressions, are guaranteed to
be unaliased: each formal parameter is given a fresh memory loca-
tion. It is for this reason that the types of formal parameters may
be safely narrowed to their specialized types when typechecking a
method body, even in the presence of mutation. This observation
provides a mechanism for safely narrowing the types of fields that
have specialized types as well. JPred allows a specializer expres-
sion to bind a new identifier to the specialized target’s value, and
this identifier may be referenced in the associated method body. We
refer to the new identifier as a specialized name. Specialized names
are fresh local variables and hence are guaranteed to be unaliased.
Therefore, it is sound to narrow the type of a specialized name to
the specialized type of its target. For example, the following variant
of the method in figure 10 is allowed by the JPred typechecker and
is perfectly sound:

class DataNode extends TreeNode {
. . .

int sound(DataNode n)
when l as this.left@DataNode {
n.left = new EmptyNode();
return l.data;

}
}

In the example, the method body is able to access the data field
of this.left’s specialized name l, because l is considered to
have static type DataNode. While an invocation dn.unsound(dn)
still causes this.left and n.left to be aliases, l is not aliased
to either of these field expressions. Therefore, assigning to n.left
does not modify the value pointed to by l. The use of specialized
names to soundly narrow the type of a target in JPred is reminis-
cent of the focus construct in Vault [21] and the restrict con-
struct in CQUAL [23], which allow a potentially aliased location
to be temporarily treated as unaliased. As with specialized types,
we do not allow new identifiers bound in predicates to escape from
underneath disjunction and negation.

JPred also allows a target to be bound to a new identifier using
the Identifier as tgt syntax, without providing a specializer for the
target. In that case, the new identifier acts simply as a convenient
shorthand for use in the method’s body. For the purposes of deter-
mining predicate implication, such a predicate is considered to be
the predicate true, since it always succeeds (modulo null derefer-
ences, which JPred, like Java, does not statically prevent).

2.3 Equality
Functional languages like ML allow formals and (the analogue

of) fields to be tested against constants via pattern matching. JPred
can express this idiom via equality testing against literals and other



class FileProtocol {
static final int WANT OPEN = 0;
static final int WANT CLOSE = 1;
int state = WANT OPEN;
void check(Event@Open o) when state==WANT OPEN

{ state = WANT CLOSE; }
void check(Event@Open o) {
throw new FileException("Error opening file!");

}
void check(Event@Close c) when state==WANT CLOSE

{ state = WANT OPEN; }
void check(Event@Close c) {
throw new FileException("Error closing file!");

}
void check(Event e)

{ // no state change for other events }
}

Figure 11: A finite-state machine in JPred.

class ExtendedFileProtocol extends FileProtocol {
static final int WANT SAVE = 2;
void check(Event@Modify m) when state==WANT CLOSE

{ state = WANT SAVE; }
void check(Event@Save s) when state==WANT SAVE

{ state = WANT CLOSE; }
}

Figure 12: Extending a finite-state machine in JPred.

compile-time constant expressions. For example, FileProtocol
in figure 11 implements a finite-state machine (FSM) that checks
that users of the file editor in figure 2 never attempt two opens
or two closes in a row. Typical for the implementation of FSMs
in Java, the states are represented by compile-time constant fields,
WANT OPEN and WANT CLOSE. JPred allows each transition of the
FSM to be encapsulated in its own method, and the equality predi-
cate is used to declaratively test the current state.

Unlike a corresponding implementation with functional-style pat-
tern matching, the FSM in figure 11 is easily extensible. For exam-
ple, figure 12 extends the FSM to additionally check that a modified
file is saved before it is closed. One new state and two new transi-
tions are added to the FSM.

As in Java, the == operator may also be used to compare ob-
jects for reference equality. (JPred disallows method invocations
in predicate expressions, so equality testing via Object’s equals
method is not supported.) For example, we can provide special-
purpose behavior for null values. Consider the handle function-
ality in figure 3. As currently written, if handle is passed a null
event, the only applicable method will be the last one in the fig-
ure. (Recall that the @ predicate has the same semantics as Java’s
instanceof expression. Therefore, null@C is false for every class
C.) For safety, that method’s body should test whether e is null be-
fore attempting to access one of its fields or methods. As a declara-
tive alternative in JPred, we can provide a separate method to han-
dle the erroneous situation when e is null, which overrides the last
handle method:

void handle(Event e) when e==null { . . . }

JPred’s equality predicate is more general than its analogue in
functional-style pattern matching, since JPred allows targets to be

class DataNode extends TreeNode {
. . .

boolean equals(Object o) when o==this
{ return true; }

boolean equals(Object o)
when o@DataNode && data==o.data {
return left.equals(o.left) &&

right.equals(o.right);
}

}

Figure 13: Another example of equality predicates in JPred.

class DataNode extends TreeNode {
. . .

boolean contains(int elem) when elem == data
{ return true; }

boolean contains(int elem) when elem < data
{ return left.contains(elem); }

boolean contains(int elem) when elem > data {
{ return right.contains(elem); }

}

Figure 14: Linear inequalities in JPred.

compared against one another. An example is shown in figure 13,
where the equals method inherited from Object is overridden.
The first method’s predicate shows that JPred subsumes alias dis-
patch [34, 4], in which procedure implementations can be special-
ized to particular alias scenarios of their arguments. The second
method’s predicate tests equality of the fields of arguments to de-
termine applicability. It also illustrates that specialized types and
identifiers that escape to the method body may also be used later in
the predicate expression: the data field of o may only be accessed
because the type of o has been narrowed to DataNode. As shown
in the example, JPred methods may override any existing methods,
including those in the Java standard library.1 If neither method in
the figure is applicable to some invocation, then the default equals
method in Object will automatically be selected for execution (as-
suming TreeNode does not contain an overriding equals method).

2.4 Linear Arithmetic
JPred supports arithmetic inequalities in predicate expressions,

via the various relational and arithmetic operators shown in fig-
ure 1. All arithmetic expressions in a predicate are required to be
linear. The JPred typechecker enforces this requirement by check-
ing that, for every predicate expression of the form pred1 * pred2, at
least one of the two operands is a compile-time constant expression
as defined by Java [28]. Forcing arithmetic to be linear ensures that
testing relationships among predicates, such as logical implication,
remains decidable.

Figure 14 illustrates a simple example of linear inequalities in
JPred. The contains operation checks whether a given data ele-
ment is in a binary search tree. The figure shows the implementa-
tion of contains for DataNode; the implementation for EmptyNode
is the base case and simply returns false. By predicate implication,
none of the methods in the figure overrides any of the others.

As another example, consider an nth method on tree nodes,

1Technically, the methods in figure 13 should be declared public,
in order to properly override Object’s equals method, but we have
elided such modifiers for readability.



abstract class TreeNode {
. . .

abstract int nth(int n);
int nth(int n) when n < 0 {
throw new TreeException(
"nth invoked with a negative number!");

}
}

Figure 15: Partially abstract methods in JPred.

which takes an integer argument n and returns the nth smallest
element (counting from zero) in the tree. It may be desirable to
make the nth method in the TreeNode class abstract, thereby forc-
ing each subclass to provide an appropriate implementation. At the
same time, it is likely that all subclasses will act identically when
nth is passed a negative integer as an argument. Therefore, it would
be nice to write the code to handle this erroneous scenario once, al-
lowing all subclasses to inherit that functionality. In essence, we
would like to make TreeNode’s nth method partially abstract.

Figure 15 shows how inheritance of predicate methods in JPred
naturally allows operations to be declared partially abstract. The
first nth method in TreeNode is declared abstract, but it is partially
overridden by the second method, which handles the error case.
Subclasses of TreeNode inherit the second method, but they are
still obligated to provide implementations of nth that handle sit-
uations when the integer argument is nonnegative; the static type
system described in section 3 enforces this obligation.

Many other operations besides nth naturally have error scenar-
ios and hence would also benefit from being partially abstract. Par-
tially abstract operations are particularly useful for large class hi-
erarchies. For example, TreeNode could represent a base class for
many different kinds of binary trees (binary search trees, heaps,
etc.). Although each binary tree will have a different implementa-
tion of nth, they can all share code to handle the error case, which
is nicely modularized. In contrast, Java and its type system force
the programmer either to make TreeNode’s nth method (fully) ab-
stract or to implement it for all possible integer values.

2.5 Method Invocation Semantics
We end this section by describing more precisely the semantics

of method invocation in JPred. To simplify the discussion, we as-
sume that all methods have a when clause and that MultiJava-style
specializers have been desugared. A method without a when clause
is equivalent to one with the clause when true.

Consider a message send of the form e1.m(e2, . . . ,en) appearing
in some JPred program. At compile time, static overload resolution
is performed exactly as in Java, based on the name m and the static
types of e1, . . . ,en. This has the effect of determining which generic
function [8, 41] — a collection of methods of the same name, num-
ber of arguments, and static argument and result types — will be
invoked dynamically.

At runtime, each expression ei is evaluated to produce a value
vi and the unique most-specific applicable method belonging to the
statically determined generic function is invoked. A method is ap-
plicable if its associated predicate expression evaluates to true in
the context of the given actual arguments v1, . . . ,vn. A method is
the unique most-specific applicable method if it is the unique appli-
cable method that overrides all other applicable methods. Finally,
one method m1 overrides another method m2 if either of the follow-
ing holds:

class C {
private Object f;
void m() when f@String { . . . }
. . .

}
class D extends C {
Object g;
void m() when g@String { . . . }
. . .

}

Figure 16: A problem with the symmetric approach to method
lookup.

• Method m1’s receiver class is a strict subclass of m2’s re-
ceiver class.

• Methods m1 and m2 are declared in the same class, and m1’s
predicate expression logically implies m2’s predicate expres-
sion. We use off-the-shelf decision procedures, which are
discussed in section 4, to test predicate implication.

For example, consider the invocation treeIso.isomorphism(en,
dn) in the context of the class in figure 7, where treeIso, en,
and dn have runtime types TreeIsomorphism, EmptyNode, and
DataNode, respectively. The second and third methods in the figure
are applicable, and the second method is the unique most-specific
applicable one.

If there are no applicable methods for a message send, a message-
not-understood error occurs. If there is at least one applicable
method but no unique most-specific applicable method, a message-
ambiguous error occurs. The modular static type system in sec-
tion 3 ensures that these kinds of errors cannot occur.

JPred’s method-lookup semantics can be viewed as a generaliza-
tion of the encapsulated style of multimethod dispatch [10]. In this
style, dispatch consists of two phases. In the first phase, ordinary
OO-style dispatch finds the receiver argument’s class. In the second
phase, the unique most-specific applicable method in the receiver
class is selected, recursively considering methods in the superclass
if no methods in the receiver are applicable.

Other multimethod semantics could instead be generalized in
JPred without affecting our results. For example, we could gener-
alize the symmetric multimethod semantics, in which the receiver
argument is not treated specially. This semantics is used in multi-
method languages such as Cecil and MultiJava. In the symmetric
approach to JPred dispatch, a method m1 would be considered to
override another method m2 only if m1’s receiver class is a (re-
flexive, transitive) subclass of m2 and m1’s predicate expression
logically implies m2’s predicate expression.

We chose the encapsulated style in JPred for several reasons.
First, the encapsulated style is arguably quite natural in a language
like Java, which is already heavily receiver-centric. Further, the en-
capsulated style reduces the dependence of classes on their super-
classes: a class’s methods cannot be ambiguous with any methods
in superclasses. Finally, receiver-based encapsulation can some-
times make the symmetric semantics impossible to satisfy, as shown
in figure 16. Under JPred’s invocation semantics, D’s m method
overrides C’s m method. In contrast, under the symmetric seman-
tics, neither of the two methods in the figure is considered to over-
ride the other: a message-ambiguous error will occur if m is ever
invoked on a D instance whose f and g fields are both instances of
String.



Therefore, under the symmetric semantics a static typechecker
must reject the program in figure 16. If f were accessible from D,
then the implementer of D could resolve the ambiguity and allow
the program to typecheck by adding a new method as follows:

void m() when f@String && g@String { . . . }

Since f is private to C, however, there is no way for the implementer
of D to resolve the ambiguity. Indeed, under the symmetric seman-
tics, every m method in class D (except methods whose predicates
are logically false) is ambiguous with C’s m method.

3. STATIC TYPECHECKING
This section describes our extensions to Java’s static type sys-

tem to support predicate methods. A key feature is the retention
of Java’s modular typechecking approach, whereby each compi-
lation unit can be typechecked separately, given type information
about the other compilation units on which it depends. Others have
formalized Java’s notion of modular typechecking and compila-
tion [19, 2].

3.1 Typechecking Message Sends
Message sends are typechecked in JPred exactly as in Java; no

modifications are required. As mentioned in section 2.5, Java’s
static overload resolution is performed to determine which generic
function a message send invokes, based on the message name, num-
ber of arguments, and static types of the argument expressions. As
usual, the result type of the generic function is then used as the type
of the entire message send expression.

3.2 Typechecking Method Declarations
Typechecking for method declarations is augmented to reason

about when clauses. First we describe the local checks performed
on each predicate method in isolation. Then we describe the checks
ensuring that a generic function’s methods are exhaustive, so that
message-not-understood errors cannot happen at runtime. Finally,
we describe the checks ensuring that a generic function’s methods
are unambiguous, so that message-ambiguous errors cannot happen
at runtime.

3.2.1 Local Checks
Local checks on a predicate method are largely straightforward.

The main requirement is that the method’s associated predicate ex-
pression typechecks successfully and has the type boolean. The
predicate expressions (see figure 1) that are also legal Java expres-
sions — literals, targets, unary predicate expressions, and binary
predicate expressions — are typechecked exactly as they are in
Java. Arithmetic predicate expressions are additionally checked
to be linear, as described in section 2.4. Specializer expressions
of the form tgt@ClassType are typechecked like Java’s instanceof
expressions, with the additional constraint that the specialized type
be a class that is a strict subtype of the target’s static type. Special-
ized types may not be interfaces because of challenges for modular
exhaustiveness and ambiguity checking of multimethod dispatch in
the presence of multiple inheritance [39].

Specializer expressions of the form Identifier as tgt@ClassType
are typechecked like regular specializer expressions, and the spe-
cialized name Identifier is additionally given the static type ClassType.
An identifier binding of the form Identifier as tgt is typechecked by
typechecking the target as in Java and additionally giving Identifier
the static type determined for the target. It is an error if an iden-
tifier is bound more than once in a predicate. Specialized types
for formals and type bindings for identifiers that can escape to the

method body are used when typechecking the method body. They
also propagate from left to right during the typechecking of the
predicate itself.

A predicate method may not be declared abstract. However,
concrete predicate methods are allowed in abstract classes, and they
can be used to implement partially abstract methods, as shown
in figure 15. Consistent with Java, a predicate method may have
weaker access restrictions than overridden methods in superclasses,
and it may declare a subset of the exceptions declared by over-
ridden methods in superclasses. However, we require a predicate
method to have the same modifiers and declared exceptions as all
other methods belonging to the same generic function that are in the
same class. It is possible to relax this rule, analogous with Java’s
requirements. For example, it would be sound to allow the first
check method in figure 11 to be declared public, since the two
methods it overrides are both implicitly package-visible.

We have decided not to allow this relaxation, since it requires
the ability to statically evaluate predicate expressions in order to
be useful. For example, if the first check method were declared
public, an invocation of check from outside of FileProtocol’s
package could only be allowed to typecheck if the JPred type-
checker could statically prove that the argument event is an in-
stance of Open or a subclass and the receiver’s state field is equal
to WANT OPEN. Rather than forcing the type system to incorporate
a conservative analysis for statically evaluating predicate expres-
sions, our current rule gives up a bit of flexibility, keeping the type
system simple yet still backward-compatible with Java’s type sys-
tem.

3.2.2 Exhaustiveness Checking
Exhaustiveness checking ensures that message-not-understood

errors will not occur in well-typed programs: each type-correct tu-
ple of arguments to a message has at least one applicable method.
Such checking is already a part of Java’s modular typechecks. For
example, a static error is signaled in Java if a concrete class does
not implement an inherited abstract method, because that situation
could lead to a dynamic NoSuchMethodException, the equivalent
of our message-not-understood error.

JPred naturally augments Java’s class-by-class exhaustiveness
checking. As in Java, for each concrete class C we check that
C implements any inherited abstract methods. For example, as-
suming that TreeNode’s contains method is declared abstract,
DataNode in figure 14 will be checked to implement contains
for all possible scenarios. In JPred we must also check that C im-
plements any inherited partially abstract methods. For example,
DataNode will be checked to implement the partially abstract nth
method in figure 15 for all nonnegative integer arguments. Finally,
in JPred we must check that C fully implements any new generic
functions declared in C (i.e., methods in C that have no overridden
methods in superclasses). For example, FileEditor in figure 3
will be checked to implement the new handle generic function for
all possible pairs of argument events.

All of these checks are performed in a uniform way. To check
exhaustiveness of a generic function from a class C, we collect all
of the concrete methods of that generic function declared in C and
inherited from superclasses of C. If at least one of these methods
is a regular Java method (i.e., it has no when clause), then exhaus-
tiveness is assured and the check succeeds. Otherwise, all of the
methods are predicate methods, and the check succeeds if the dis-
junction of all of the methods’ predicates is logically valid.

For example, consider exhaustiveness checking of handle in fig-
ure 3. Since the last method has no when clause, the check suc-
ceeds. As another example, consider exhaustiveness checking of



contains for DataNode in figure 14. None of the declared meth-
ods is a regular Java method, but the disjunction of the methods’
predicates is logically valid (since one integer is always either equal
to, less than, or greater than another integer), so the check succeeds.

Our exhaustiveness checking algorithm is conservative in the
face of partial program knowledge, which is critical for modular
typechecking. For example, consider again exhaustiveness check-
ing for handle in figure 3, and suppose that the last method were
missing. In that case, our typechecker would signal a static ex-
haustiveness error, since the disjunction of the remaining methods’
predicates is not valid. Indeed, it is possible that there exist con-
crete subclasses of Event other than Open, Save, and SaveAs, and
these events may not be visible from FileEditor.2

Java and MultiJava share JPred’s conservatism, and in fact those
languages are strictly more conservative than JPred. Both Java and
MultiJava always require the existence of a default method, which
handles all possible arguments of the appropriate type, to ensure
exhaustiveness. In contrast, JPred can sometimes safely ensure ex-
haustiveness without forcing the existence of a default method, as
shown in the contains example above. Ernst et al.’s exhaustive-
ness checking algorithm for predicate dispatch [20] safely requires
fewer default methods than JPred, but the algorithm can only be
performed when the whole program is available. In the handle
example, Open and Save must be known to be the only direct con-
crete subclasses of Event in the entire program in order to ensure
exhaustiveness without requiring the last handle method.

3.2.3 Ambiguity Checking
Ambiguity checking ensures that message-ambiguous errors will

not occur in well-typed programs: if a type-correct tuple of argu-
ments to a message has at least one applicable method, then it has
a unique most-specific applicable method. Again, such checking
is already a part of Java’s modular typechecks. In particular, Java
signals a static error if a class contains two methods of the same
name, number of arguments, and static argument types. Languages
that support multiple inheritance, like C++ [52], perform additional
ambiguity checks modularly.

JPred performs ambiguity checking for each class C by compar-
ing each pair of methods declared in C that belong to the same
generic function. The algorithm for checking each method pair
generalizes our earlier algorithm for modular ambiguity checking
in Extensible ML (EML) [38] to handle JPred’s predicate expres-
sions, which subsume EML’s pattern-matching facility. Consider
a pair of methods m1 and m2. If each method overrides the other,
then the methods have the same logical predicate and hence are
ambiguous. This check subsumes Java’s check for duplicate meth-
ods. If one method overrides the other, but not vice versa, then one
method is strictly more specific than the other, so the methods are
not ambiguous.

Finally, suppose neither method overrides the other. Then m1
and m2 are predicate methods, with predicates pred1 and pred2,
respectively. There are two cases to consider. If the methods are
disjoint, meaning that they cannot be simultaneously applicable,
then they are not ambiguous. The methods are disjoint if pred1
and pred2 are mutually exclusive: ¬(pred1∧ pred2) is valid. If the
methods are not disjoint, then the methods are ambiguous unless
the set m of methods that override both m1 and m2 is a resolving set,
meaning that at least one member of m is applicable whenever both
m1 and m2 are applicable. The set m, with associated predicates
pred, is a resolving set if ((pred1 ∧pred2) ⇒

�
pred) is valid.

Consider ambiguity checking for check in FileProtocol of fig-

2These events may not even have been written when FileEditor
is typechecked and compiled.

ure 11. There are ten pairs of methods to consider. The first four
methods each override the last method, but not vice versa, so these
pairs are unambiguous. The pair consisting of the first and second
methods passes the check similarly, as does the pair consisting of
the third and fourth methods. Finally, each of the first two methods
is disjoint from each of the third and fourth methods. Therefore,
ambiguity checking for check in FileProtocol succeeds.

To illustrate resolving sets, consider an OpenAs subclass of Open,
which copies a file to a new name and opens it, and suppose File-
Protocol contained a method of the following form:

void check(Event@OpenAs o) { . . . }

In that case, the JPred typechecker would signal a static error in-
dicating that the above method is ambiguous with the first check
method in figure 11: the methods are not disjoint and there are
no methods that override both of them, so the test for a resolv-
ing set fails trivially. Indeed, the two methods will cause a dy-
namic message-ambiguous error if check is ever passed an OpenAs
event when the receiver is in the WANT OPEN state. However, the
ambiguity would be resolved, and typechecking would succeed, if
FileProtocol additionally contained a method of the following
form:

void check(Event@OpenAs o) when state==WANT OPEN
{ . . . }

JPred’s ambiguity checking algorithm is naturally modular: only
pairs of methods declared in the same class are considered. The
semantics of method invocation described in section 2.5 ensures
that two methods declared in different classes cannot be ambiguous
with one another. If one method’s class is a strict subclass of the
other method’s class, then the first method overrides the second.
Otherwise, neither method’s class is a subclass of the other, so the
methods are guaranteed to be disjoint.

JPred’s modular ambiguity checking algorithm is very similar to
the original ambiguity algorithm for predicate dispatch [20]. How-
ever, that algorithm is performed on all pairs of methods belonging
to the same generic function in the entire program. Further, that al-
gorithm does not check for a set of resolving methods, instead con-
servatively rejecting the program whenever two methods are not in
an overriding relation and are not disjoint.

4. AUTOMATICALLY REASONING ABOUT
PREDICATES

As described in sections 2 and 3, both the dynamic and static
semantics of JPred rely on the ability to test relationships among
predicate expressions. All of these tests reduce to the ability to
check validity of propositional combinations of formulas express-
ible in JPred’s predicate language. Prior languages containing pred-
icate dispatch have used their own specialized algorithms for con-
servatively checking validity of predicates [20, 54, 47]. In contrast,
JPred employs general-purpose off-the-shelf decision procedures,
which are more flexible and precise than these specialized algo-
rithms.

In particular, we rely on an automatic theorem prover that con-
sists of a combination of decision procedures for various logical
theories. Using an automatic theorem prover as a black box allows
us to easily incorporate advances in decision procedures as they
arise. For example, the search for more efficient decision proce-
dures for propositional satisfiability is an active area of research.
Using an automatic theorem prover also makes it easier to aug-
ment our language with new kinds of predicates. Rather than be-
ing forced to extend a specialized validity algorithm to handle the



new predicates, we have the simpler task of deciding how to appro-
priately represent the new predicates in the logic accepted by the
prover.

In this section we describe the interface between JPred and an
automatic theorem prover. First we describe CVC Lite [17], which
is the automatic theorem prover that our implementation uses. Then
we describe how JPred’s predicate expressions are represented in
CVC Lite’s input language. Finally we describe the axioms we
provide to CVC Lite so it can reason precisely about objects and
classes.

4.1 CVC Lite
CVC Lite is an automatic theorem prover in the Nelson-Oppen

style [43]. The theorem prover integrates separate decision proce-
dures for several decidable theories, including:

• propositional logic

• rational linear arithmetic

• the theory of equality with uninterpreted function symbols

• the theory of arrays

CVC Lite also allows users to plug in decision procedures for other
theories, but we have not exploited this feature.

CVC Lite’s input language allows expression of quantifier-free
first-order formulas over the above interpreted theories. The logic
of CVC Lite’s input language is decidable, so CVC Lite is sound,
complete, and fully automatic.3 In a typical usage, various formu-
las are provided as axioms, which CVC Lite assumes to be true.
These user-defined axioms, along with the axioms and inference
rules of the underlying theories, are then used to automatically de-
cide whether a query formula is valid.

For our purposes, there is nothing special about CVC Lite. There
are several automatic theorem provers of comparable expressive-
ness to CVC Lite, including Simplify [18], Vampyre [7], CVC [53],
and Verifun [22]. Moving to one of these provers would merely re-
quire us to translate the queries and axioms we provide to CVC Lite
(see the next two subsections) into the input language of the new
prover.

4.2 Representing Predicate Expressions
Before translating a predicate expression into the syntax of CVC

Lite’s input language, we convert it to internal form. This con-
version process canonicalizes the predicate expression so it can be
properly compared to a predicate expression of another method.
First, we replace the ith formal name with the name argi every-
where.4 Second, we replace any compile-time constant expressions
with their constant values. Third, we convert targets to their full
names, for example adding a prefix of this if it was left implicit.
Fourth, we substitute any use of a bound identifier in the predi-
cate expression with the identifier’s associated target expression,
which is itself recursively internalized. Finally, we remove identi-
fier bindings. Ordinary identifier binding expressions are replaced
by true, and specialized identifier bindings simply have the bind-
ing removed, leaving the specializer expression.
3An extension to CVC Lite allows formulas to contain explicit uni-
versal and existential quantification. The resulting logic is unde-
cidable, so CVC Lite uses various heuristics to prove such formu-
las valid, remaining sound but losing completeness. JPred does not
make use of this extension to CVC Lite.
4The actual internal-form argument names are slightly more com-
plicated, to prevent accidental clashes with other variable names in
the program. We elide the issue of name mangling throughout this
section.

It is straightforward to translate predicate expressions in inter-
nal form into the syntax of CVC Lite’s input language. All of our
allowed unary and binary operators (see figure 1) are translated
to their counterparts in CVC Lite, as are all of the literals except
null. The literal null and all targets appearing in a given pred-
icate expression are translated to themselves; they are treated as
variable names by CVC Lite. For example, the target this.data
is treated as an atomic variable name, with no relation to the target
this. Finally, a specializer expression tgt@ClassType is translated
as instanceof(tgt, ClassType), where instanceof is an uninter-
preted function symbol that we declare.

For example, consider the contains methods in DataNode of
figure 14. During static ambiguity checking, the first and second
methods are tested for disjointness by posing the following query
to CVC Lite:

NOT(arg1 = this.data AND arg1 < this.data)

Here = is CVC Lite’s analogue of Java’s == operator. CVC Lite
easily proves this formula to be valid, because of the relationship
between = and <, so the methods are proven to be disjoint and hence
unambiguous.

4.3 Axioms
Consider testing disjointness of the first and fourth check meth-

ods in figure 11. After converting their predicates to internal form,
we pose the following query to CVC Lite:

NOT((instanceof(arg1, Open) AND this.state = 0) AND
instanceof(arg1, Close))

Since instanceof is an uninterpreted function symbol, CVC Lite
does not know anything about its semantics. Therefore, CVC Lite
cannot prove that the above formula is valid, even though the two
methods are in fact disjoint.

To address this issue, we provide CVC Lite with axioms about
the semantics of instanceof. These axioms effectively mirror the
relevant portion of the associated JPred program’s class hierarchy
in CVC Lite. We call a target a reference target if it has reference
type. Let F be a query formula provided to CVC Lite. We declare
one axiom per pair ({C1,C2}, tgt), where C1 and C2 are distinct
class names mentioned in F and tgt is a reference target mentioned
in F . In particular:

• If C1 is a subclass of C2, we declare the axiom instanceof(
tgt, C1) => instanceof(tgt, C2), where => is the logi-
cal implication operator in CVC Lite.

• If C2 is a subclass of C1, we declare the axiom instanceof(
tgt, C2) => instanceof(tgt, C1).

• If C1 is not a subclass of C2 and C2 is not a subclass of
C1, we declare the axiom NOT(instanceof(tgt, C1) AND
instanceof(tgt, C2)).

For the check example query above, we automatically produce
the following axiom:

NOT(instanceof(arg1, Open) AND
instanceof(arg1, Close))

In the presence of this axiom, CVC Lite can now prove that the
above query is valid, and hence the JPred typechecker will correctly
conclude that the first and fourth check methods in figure 11 are
disjoint. Our axioms for instanceof are similar to the implication
rules used to rule out infeasible truth assignments in Ernst et al.’s
special-purpose algorithm for validity checking [20].



To complete the semantics of instanceof, we have two other
kinds of axioms. First, for each class name C in a query formula
F , we declare the axiom NOT(instanceof(null, C)). This ax-
iom reflects the fact that JPred’s specializer expression evaluates to
false whenever the target is null. The axiom allows JPred to prop-
erly conclude that the handle method near the end of section 2.3,
which tests whether the argument event is null, is disjoint from each
of the first three handle methods in figure 3. Second, for every ref-
erence target tgt in F , we declare the axiom instanceof(tgt, C)
OR tgt = null, where C is the static type of tgt. For the special
reference target this, which can never be null, we leave off the
second disjunct in this axiom.

Finally, we provide CVC with axioms that relate reference tar-
gets and their fields. For each set of targets {tgt1, tgt2, tgt1. f ,
tgt2. f} mentioned in a query formula F , we declare the axiom

tgt1 = tgt2 => tgt1. f = tgt2. f

This axiom allows JPred to properly conclude that the first equals
method in figure 13 overrides the second one.

5. IMPLEMENTATION
We have implemented JPred in the Polyglot extensible compiler

framework for Java [44], declaring new abstract syntax tree (AST)
nodes to represent predicate expressions and predicate methods. In
this section, we describe our augmentations to Polyglot for type-
checking and compiling a class containing predicate methods.

5.1 Typechecking
The local checks on predicate methods, described in section 3.2.1,

are performed on each predicate method as part of Polyglot’s exist-
ing typechecking pass. In a subsequent pass, we partition a class’s
methods by generic function: each generic function’s methods,
where at least one of the methods is a predicate method, are col-
lected in a dispatcher; the methods belonging to the same dis-
patcher are called dispatcher mates [15]. Finally, we perform ex-
haustiveness and ambiguity checking on each dispatcher in a class,
using the algorithms described in section 3. This checking involves
sending queries to CVC Lite using the translation and axioms de-
scribed in section 4. As part of ambiguity checking we compute
the method overriding partial order, which is also used during code
generation.

5.2 Code Generation
We generate code for JPred in two steps. First we rewrite all of

the JPred-specific AST nodes into Java AST nodes. Then we use
an existing pass in Polyglot to output a source-code representation
of Java AST nodes. The resulting .java files can be compiled with
a standard Java compiler and executed on a standard Java virtual
machine.

Our modular compilation strategy generalizes that of MultiJava
[16, 15] to handle JPred’s predicate language. First, there are sev-
eral modifications to each method m associated with a dispatcher.
We modify m to be declared private and to have a unique name.
If m has a predicate pred, we add a new local variable at the be-
ginning of m’s body for each identifier bound in pred that escapes
to the body. The new local variable is initialized with the iden-
tifier’s corresponding target, which is first cast to the associated
specialized type, if any. Static typechecking has ensured that this
cast cannot fail dynamically. If a formal parameter is specialized in
pred and that specialized type escapes to the body, we replace the
formal’s original static type in m with the specialized type. Finally,
m’s associated when clause is removed.

private boolean isomorphic1(EmptyNode t1,
EmptyNode t2)

{ return true; }
private boolean isomorphic2(TreeNode t1,

TreeNode t2)
{ return false; }

private boolean isomorphic3(TreeNode t1,
TreeNode t2) {

return isomorphic(t1.left(), t2.left()) &&
isomorphic(t2.right(), t2.right());

}

Figure 17: The translation of the isomorphic methods in fig-
ure 7 to Java.

boolean isomorphic(TreeNode arg1, TreeNode arg2) {
if (arg1 instanceof EmptyNode &&

arg2 instanceof EmptyNode) {
return isomorphic1((EmptyNode) arg1,

(EmptyNode) arg2);
} else if (arg1 instanceof EmptyNode ||

arg2 instanceof EmptyNode) {
return isomorphic2(arg1, arg2);

} else {
return isomorphic3(arg1, arg2);

}
}

Figure 18: A dispatcher method for the methods in figure 17.

For example, figure 17 illustrates the Java translation of the iso-
morphic methods from figure 7. In the first method, the static argu-
ment types have been narrowed to reflect their specialized types. In
the second method, which corresponds to the original method with
predicate t1@EmptyNode || t2@EmptyNode, the argument types
are unchanged, because neither specializer escapes to the body.

To complete the translation from JPred to Java, we create a dis-
patcher method for each dispatcher d. The method has the same
name, modifiers, and static argument and return types as the orig-
inal methods associated with d. Therefore, compilation of clients
of the generic function is unchanged. The body of the dispatcher
method uses an if statement to test the guards of each associated
method one by one, from most- to least-specific, in some total or-
der consistent with the method overriding partial order. The first
method whose guard evaluates to true is invoked. Static ambigu-
ity checking ensures that this method is in fact the unique most-
specific applicable method. If all the methods in d are predicate
methods and there exist inherited methods belonging to the same
generic function, the last branch of the dispatcher method’s if
statement uses super to recursively invoke the superclass’s dis-
patcher method. Static exhaustiveness checking ensures that an
applicable method will eventually be found.

Figure 18 contains the dispatcher method for the methods in fig-
ure 17. The dispatcher method is given a canonical set of formal
names. Each method’s predicate is tested by converting the predi-
cate to internal form, described in section 4.2, and replacing each
specializer expression with its equivalent instanceof expression.
Although not necessary in this example, the internal form of a pred-
icate is also augmented with casts, wherever a target is substituted
for its corresponding specialized name and wherever a formal with
a specialized type that can escape to the body is referenced. Simi-



public interface EventHandler {
void handle(Event event);

}

Figure 19: The interface for event handlers in one.world.

larly, a formal with an escaping specialized type must be cast to the
specialized type before invoking a predicate’s associated method,
as shown in the first branch of the if statement. As above, static
typechecking has ensured that none of these casts can fail.

Because the original methods are now private, calls to them from
the dispatcher method are statically bound and therefore do not in-
cur the performance overhead of dynamic dispatch. A Java com-
piler can inline these methods in the dispatcher method, to further
reduce overhead.

6. CASE STUDY
This section describes a case study that we undertook to evaluate

JPred’s effectiveness in a realistic setting. First we describe the
Java application that we rewrote in JPred. Then we illustrate the
basic technique we used to perform the translation from Java to
JPred. Finally, we discuss results of the case study, including the
detection of several errors.

6.1 Application
The one.world system is a framework for building pervasive ap-

plications in Java, designed and implemented by others [29]. Users
build applications in one.world as collections of components that
communicate through asynchronous events. Each component C
imports a set of event handlers, to which C can pass events, and
likewise exports a set of event handlers, to which others can pass
events meant for C.

The one.world system is implemented as a class library in Java.
Users write one.world components by subclassing from the abstract
Component class. Event handlers in one.world use the same style as
the event handlers in our FileEditor example in figure 2. In par-
ticular, one.world event handlers meet the simple interface shown
in figure 19: an event handler provides a handle method, which
is passed the event that occurs. A component’s exported event
handlers are typically implemented as inner classes. The set of
handlers that a component imports is initially decided during static
initialization, but it can also be modified dynamically. Having all
event handlers meet the same interface facilitates such dynamic re-
binding.

The one.world system includes a set of basic services that helps
programmers build applications that meet the unique demands of
pervasive computing. These services are themselves written in the
component-based style described above. One such service is a dis-
covery service, which allows a component to query for event han-
dlers that satisfy a particular description; the querying component
can then import the resulting event handler(s) and begin commu-
nication. A canonical example is a component that queries for a
printer in the current environment, which can subsequently be sent
files to be printed. The discovery service in one.world supports sev-
eral varieties of querying and communication, which are described
elsewhere [29].

6.2 Overview
In this case study, we rewrote the event handlers in the imple-

mentation of one.world’s discovery service to use JPred. We started
with the discovery service implementation from one.world version

0.7.1, which is freely available for download [46]. The discovery
service implementation consists of two components, Discovery-
Client and DiscoveryServer, totaling 2371 non-comment, non-
blank lines of code (LOC). Together the two components include
11 event handlers as inner classes totaling 977 LOC, or 41% of the
code.

Figure 20 shows the Java implementation of an event handler
of average complexity in DiscoveryClient.5 Handlers typically
subclass from the abstract AbstractHandler class, which in turn
implements the EventHandler interface. AbstractHandler’s han-
dle method invokes an abstract helper method handle1, which
is implemented by each concrete subclass in order to provide the
subclass’s event-handling functionality. A handle1 method should
return true if the associated subclass was able to successfully han-
dle the given event and false otherwise. The implementation of
AbstractHandler is discussed further in section 6.3.4.

Figure 21 illustrates how we implement MainHandler from fig-
ure 20 in JPred. All of the advantages of JPred for event-based sys-
tems, as described in section 2.1, apply to our one.world case study.
Unlike the Java version, the JPred implementation is declarative
and statically typesafe, removing a large source of potential run-
time errors. The JPred implementation is also extensible, opening
up the possibility of fine-grained handler reuse in one.world. For
example, a subclass of DiscoveryClient could contain an inner
handler that subclasses from MainHandler (if it were not declared
final), inherits some of MainHandler’s handle1 methods, over-
rides others, and handles new scenarios with additional handle1
methods.

The JPred style of implementing event handlers is very natu-
ral. This is illustrated by the fact that the original implementers
of the discovery service often manually simulated JPred-style de-
composition, as shown in figure 22. To manage the complexity
of event handling in ServerManager, the code has been divided
into two layers. The handle1 method manually dispatches on the
event (and on the event field of a RemoteEvent) in order to in-
voke an appropriate private helper method (whose implementation
is not shown), which actually handles the event. With JPred, each
helper method naturally becomes one or more handle1 methods,
each declaratively specifying its dispatch constraints. The origi-
nal handle1 method is then removed, since JPred automatically
dispatches to the appropriate handler. Indeed, as described in sec-
tion 5.2 the JPred compiler will generate a dispatcher method that
is almost identical to the handle1 method in figure 22.

The handlers in figure 21 that only dispatch on the event’s run-
time type could be implemented in MultiJava. In fact, MultiJava
has been successfully used to implement other event-based sys-
tems [37], and this experience led us to use an event-based sys-
tem for the current case study. The handlers that dispatch on fields
cannot be directly expressed in MultiJava. Instead, helper methods
must be created to perform field dispatch. For example, the trans-
lation to MultiJava of the fourth and fifth methods in figure 21 is
shown in figure 23. This style is tedious and forces the dispatching
logic to be spread across multiple generic functions. Further, as we
show in section 6.3.2 below, some predicates cannot be expressed
at all in MultiJava.

Although our case study only involves rewriting the implemen-
tation of one.world’s discovery service, the ways in which we em-
ploy JPred are more general. JPred would provide similar benefits
for other services provided by one.world as well as for applications
written by programmers on top of one.world. Further, our usage
of JPred would apply to the implementation of event-based sys-

5In examples throughout this section, we elide comments and code
used for debugging.



final class MainHandler extends AbstractHandler {
protected boolean handle1(Event e) {

if (e instanceof EnvironmentEvent) {
EnvironmentEvent ee = (EnvironmentEvent) e;
switch(ee.type) {
case EnvironmentEvent.ACTIVATED:

. . .

break;
default:

. . .

break;
}
return true;

} else if (e instanceof BindingResponse) {
return true;

} else if (e instanceof InputResponse) {
InputResponse ir = (InputResponse) e;
if (ir.tuple instanceof AnnounceEvent) {
AnnounceEvent ae = (AnnounceEvent) ir.tuple;
. . .

}
return true;

} else if (e instanceof ListenResponse) {
ListenResponse lr = (ListenResponse) e;
. . .

return true;
}
return false;

}
}

Figure 20: An event handler in DiscoveryClient.

final class MainHandler extends AbstractHandler {
protected boolean handle1(Event@EnvironmentEvent ee)

when ee.type == EnvironmentEvent.ACTIVATED {
. . .

return true;
}
protected boolean handle1(Event@EnvironmentEvent ee) {

. . .

return true;
}
protected boolean handle1(Event@BindingResponse br) {

return true;
}
protected boolean handle1(Event@InputResponse ir) {

return true;
}
protected boolean handle1(Event@InputResponse ir)

when ae as ir.tuple@AnnounceEvent {
. . .

return true;
}
protected boolean handle1(Event@ListenResponse lr) {

. . .

return true;
}
protected boolean handle1(Event e) {

return false;
}

}

Figure 21: The translation of the code in figure 20 to JPred.

final class ServerManager extends AbstractHandler {
protected boolean handle1(Event e) {

if (e instanceof RemoteEvent) {
RemoteEvent re = (RemoteEvent) e;
if (re.event instanceof BindingResponse) {

handleBindingResponse(re.source,
(BindingResponse) re.event);

return true;
} else if (re.event instanceof LeaseEvent) {

handleLeaseEvent(re.source,
(LeaseEvent) re.event);

return true;
} else if (re.event instanceof ExceptionalEvent) {

ExceptionalEvent eev = (ExceptionalEvent) re.event;
. . .

}
return false;

} else if (e instanceof LeaseRenew) {
handleLeaseRenew((LeaseRenew) e);
return true;

} else if (e instanceof ServerCheck) {
handleServerCheck((ServerCheck) e);
return true;

} else if (e instanceof EntryEvent) {
handleEntryEvent((EntryEvent) e);
return true;

} else if (e instanceof ExceptionalEvent) {
handleExceptionalEvent((ExceptionalEvent) e);
return true;

} else {
return false;

}
}

}

Figure 22: Another event handler in DiscoveryClient.

protected boolean handle1(Event@InputResponse ir) {
return handleIR(ir, ir.tuple);

}
protected boolean handleIR(InputResponse ir,

Tuple tuple)
{ return true; }

protected boolean handleIR(
InputResponse ir, Tuple@AnnounceEvent tuple) {
. . .

return true;
}

Figure 23: Simulating field dispatch in MultiJava. Tuple is a
superclass of Event and is the static type of the tuple field of
InputResponse.



Table 1: Quantitative results.
Java JPred

methods 20 87
total LOC 844 736
avg LOC 42 8.5
max LOC 181 44
instanceofs 80 6
casts 82 18
compile time (sec) 4.5 8.6
CVC Lite queries N/A 452

tems other than one.world. The event-based style has been recom-
mended for the implementation of many important classes of ap-
plications, from Internet services [48, 56] to sensor networks [30,
27]. Finally, section 2 illustrated other uses of JPred, for example
to implement compilers and data structures.

6.3 Results

6.3.1 Quantitative Results
We can quantify several basic properties of the original and rewrit-

ten discovery service implementation. These properties are de-
scribed in table 1. “Java” refers to the original implementation
of the code, and “JPred” refers to the version rewritten in JPred.
Twenty original methods were rewritten to use JPred’s features.
These include nine handle1 methods and 11 helper methods like
handleBindingResponse, whose usage is illustrated in figure 22.
These methods have an average size of 42 LOC, with the biggest
method being 181 LOC. In the JPred implementation, the elimina-
tion of manual dispatching logic causes the number of methods to
roughly quadruple and the total code size to be reduced, leading
to corresponding reductions in the average and maximum method
sizes. The small method sizes indicate that each logical handler is
quite simple. JPred allows these conceptually distinct handlers to
be written as distinct methods, whose headers declaratively specify
their applicability constraints and whose bodies are easy to under-
stand.

The table shows the number of instanceofs and casts present
in the original and rewritten methods. Almost all of the manual
event dispatching is obviated by the JPred style. The six remaining
instanceofs could be removed by introducing helper methods to
perform the type dispatch declaratively, but in these cases it seemed
unnatural to do so. The bulk of the remaining casts are related to
issues other than event dispatch, for example the lack of parametric
polymorphism in Java 1.4.

Table 1 also includes the time to compile each discovery service
implementation. We compiled the Java version with Polyglot and
the JPred version with our extension to Polyglot, measuring the
time to output Java source in each case. The number in each col-
umn is the real time averaged over five runs of the compilers on a
lightly loaded, modern PC running Linux. Polyglot takes 4.5 sec-
onds to parse and typecheck the Java version and output equivalent
code. While the JPred version is slower to compile than the Java
version, in absolute terms the JPred version is still quite practical,
at 8.6 seconds. Both versions require an additional 1.4 seconds to
compile the resulting Java source to bytecode using Sun’s javac
compiler.

The increase in compile time is largely due to time spent in
the automatic theorem prover. This case study makes particularly
heavy use of predicate dispatch, requiring 452 queries to CVC Lite.

protected boolean handle1(Event e) {
if (state != ACTIVE) {

. . .

return true;
}
if (e instanceof RemoteEvent) . . .

}

Figure 24: The need for negation predicates in the case study.

protected boolean handle1(Event e)
when state != ACTIVE {
. . .

return true;
}
protected boolean handle1(Event e)
when state == ACTIVE {
return handleActive(e);

}

Figure 25: The translation of the code in figure 24 to JPred.

There are several opportunities for reducing the number of queries
that we have not yet explored. For example, when computing an
overriding relationship between two methods m1 and m3, if m1 is
already known to override m2 and m2 is already known to over-
ride m3, then we are guaranteed that m1 overrides m3 so there is
no need to ask the theorem prover. Also, CVC Lite is optimized
for handling large formulas with complex boolean structures; other
automatic theorem provers, such as Simplify [18], may be better
suited for the kinds of small queries that we pose [5]. Finally, de-
spite the increase in compile time, JPred’s modular class-by-class
compilation style should allow compilation to scale well with pro-
gram size.

6.3.2 Expressiveness
Figure 21 shows event handlers that employ conjunctions of spe-

cializer expressions and equality tests against constants. Many of
JPred’s other idioms are also utilized in this case study. For exam-
ple, the portion of figure 22 that is elided by an ellipsis looks as
follows:

if (eev.x instanceof LeaseDeniedException ||
eev.x instanceof LeaseRevokedException ||
eev.x instanceof ResourceRevokedException ||
eev.x instanceof UnknownResourceException) {

. . .

}

JPred’s disjunction predicate allows this event dispatch to be declar-
atively specified.

JPred’s negation predicate is also used several times. For ex-
ample, the event-handling code from DiscoveryServer shown in
figure 24 naturally requires negation predicates. The handler main-
tains an integer field that records the handler’s “state,” one of sev-
eral constants represented by static, final fields (e.g., ACTIVE, IN-
ACTIVE, CLOSING). If the handler is not active, then the action to be
performed does not depend on the passed event. Otherwise, event
dispatch is performed via a large if statement as usual. The JPred
version of this code is shown in figure 25. The handle1 generic



. . .

ServerEntry entry = . . .;
if (null != entry) {

if (ae.capacity >= 0) {
. . .

} else if (ae.capacity ==
DiscoveryServer.ANNOUNCE CLOSING) {

. . .

} else if (ae.capacity ==
DiscoveryServer.ANNOUNCE CLOSED) {

. . .

}
} else {

if (ae.capacity >= 0) {
. . .

} else {
. . .

}
}

Figure 26: Null dispatch and linear arithmetic in the case study.

function dispatches on state, invoking handleActive to dispatch
on the event (via several predicate methods) if the state is active.

Other idioms, including null dispatch, linear arithmetic, and alias
dispatch, are also necessary for the case study. An example of the
first two idioms occurs in DiscoveryClient’s MainHandler, in
place of the second-to-last ellipsis in figure 20. After declaring and
initializing a variable entry, both entry and the AnnounceEvent
ae are dispatched upon, as shown in figure 26. JPred’s predicate
language is expressive enough to allow this code to be modularized
into its conceptual handlers.

Of the 87 new methods in the JPred implementation of the dis-
covery service, only 30 of them either have no predicate or per-
form MultiJava-style multimethod dispatch. Therefore, MultiJava
is unable to express 57 of the methods, or 66%. Of these 57 meth-
ods, 46 of them consist of conjunctions of formal and field dis-
patches, where each dispatch is either a runtime type test or an
equality comparison against a constant. Although MultiJava can-
not express these methods directly, it can simulate them by creating
appropriate helper methods to perform the dispatch, as shown in
figure 23. However, in many cases, MultiJava would require mul-
tiple helper generic functions to properly simulate a single JPred
method, making MultiJava’s solution tedious and unnatural. The
final 11 methods, or 13% of the total, rely on predicates that cannot
be declaratively expressed in MultiJava, even with unlimited helper
methods.

A few expressiveness limitations of JPred arose in the course of
the case study. First, there was one case where disjunction would
have been used but our rule that conservatively disallows identifier
bindings from escaping disjunction was too restrictive. It would be
straightforward to extend JPred to resolve this problem. Second,
there were two situations where the textual order of if cases in the
Java implementation was useful. The example in figure 24 illus-
trates one of these situations; the other is analogous. The handler’s
state is tested before commencing dispatch on the event. We imple-
mented this ordering constraint by introducing the handleActive
helper generic function, as shown in figure 25. Unlike the helper
method illustrated in figure 23, which is used to work around a syn-
tactic limitation of MultiJava, the handleActive helper generic
function serves to make explicit a semantic asymmetry in the dis-
patch logic. It is possible to do away with handleActive, dis-
patching directly on the given event in handle1 methods, but this
requires conjoining the predicate state == ACTIVE to the predi-

. . .

else if (e instanceof ExceptionalEvent) {
ExceptionalEvent ee = (ExceptionalEvent) e;
if (ee.x instanceof LeaseRevokedException) {

return true;
}
. . . // several more branches of the if statement
} else if (ee.x instanceof LeaseRevokedException) {

// This wasn’t the bug since it would have complained.
// FIXME: handle this right

}
. . .

}
. . .

return false;

Figure 27: An ambiguity found in the discovery service.

cate of each such method, which is tedious and harder to understand
than the current solution.

Third, there was one situation where it would have been natu-
ral to put a method invocation in a predicate, but JPred does not
allow this. Finally, there were two cases of event dispatch that
did not occur at “top level” in a method. One of these is shown
in figure 26. Because there are several statements (represented by
the initial ellipsis in the figure) before the dispatch code, a helper
generic function handleAnnounceEvent was created in the JPred
implementation, which is invoked after those statements in order to
dispatch on entry and ae.

6.3.3 Errors Found
During the course of the case study, we found ambiguity errors,

nonexhaustive errors, and cast failures. We discuss each in turn.
One redundancy was found during the case study. An ambigu-

ity error was signaled by the JPred typechecker when the handle1
method of DiscoveryClient’s InputHandler was rewritten to
use JPred. This method is the largest of the 20 methods we trans-
lated, at 181 LOC. The relevant code snippet is shown in figure 27.
Not only are there two handlers for the case when the event is an
ExceptionalEvent whose x field is a LeaseRevokedException,
but the handlers have different behavior. The first handler returns
true, while the second one falls through and eventually returns false.
The method is so complex that even this simplest kind of ambigu-
ity was not caught by the original implementers. The comment in
the second handler is in the original code and suggests an unsuc-
cessful attempt to find a related error, most likely without realizing
that the second handler is redundant and can therefore never be ex-
ecuted. The author of this code unfortunately does not recall the
circumstances.

Three potential nonexhaustive errors were found during the case
study. These correspond to situations where a target is assumed to
have one of a finite number of runtime types or values, and no de-
fault case is provided to handle situations when this assumption is
false. One example is shown in figure 26, which was described ear-
lier. The code does not handle the case when entry is nonnull and
ae.capacity is a negative number other than the two constants
that are explicitly tested. This nonexhaustive error was found auto-
matically by JPred when typechecking the handleAnnounceEvent
generic function. Of course, the original programmer could have
known about the potential error and simply decided that the miss-
ing scenarios were impossible. However, ignoring these scenar-
ios makes the code brittle in the face of changes to the surround-



. . .

else if (e instanceof LeaseEvent) {
LeaseEvent le = (LeaseEvent) e;
switch(le.type) {

. . .

case LeaseEvent.CANCELED:
. . .

LocalClosure lc = (LocalClosure) le.closure;
. . .

}
}

Figure 28: An unprotected cast found in the discovery service.

ing system; such changes can occur frequently and dynamically in
one.world applications. JPred forces the programmer to explicitly
address all possible scenarios.

In some sense, all of the original handlers in the Java implemen-
tation are already guaranteed to be exhaustively implemented, since
the Java typechecker ensures that handle1 returns a boolean value
on all feasible paths. However, the Java style of event handling
encourages shortcuts that make this checking insufficient. In our
example, all the handlers corresponding to the code in figure 26
share a single return true; statement. Therefore, the missing
case also returns true, even though it should in fact return false to
indicate that the event could not be handled. In JPred, each handler
is naturally defined in its own method that must explicitly return
true or false, so there is no incentive to take such a shortcut.

Two of the three nonexhaustive errors were found automatically
by the JPred typechecker when typechecking a helper method. One
of these helper methods, handleAnnounceEvent, was introduced
by us during the case study, as described above. The other helper
method existed in the original code. The third nonexhaustive error
was detected when we realized that the natural JPred implementa-
tion of one event handler returned false in “error cases,” whereas
the original code returned true. Even in cases where the original
handler correctly returned false to handle erroneous situations, the
JPred version makes it much easier to understand exactly what con-
ditions correspond to an erroneous situation.

Lastly, several unprotected casts were discovered during the case
study. Typically unprotected casts arose when the programmer as-
sumed a correlation between the properties of two different targets.
An example from DiscoveryClient is shown in figure 28. It is
assumed that when the LeaseEvent’s type is LeaseEvent.CAN-
CELED, the event’s closure is a LocalClosure. If that is not the
case, a dynamic cast failure will result. In the case study, we re-
moved 11 unprotected casts from the discovery service. JPred’s
style encourages such dispatch assumptions to be documented in a
method’s header and makes it natural to do so.

6.3.4 Handler Reuse
In addition to making one.world services like the discovery ser-

vice more understandable and reliable, JPred opens up new possi-
bilities for handler reuse. An example appears in the implementa-
tion of AbstractHandler. As mentioned earlier, AbstractHand-
ler’s handle method invokes the abstract method handle1, which
all subclasses must implement. This structure is used precisely be-
cause the Java style of event handling makes handler inheritance
awkward. The handle1 helper method allows subclasses to “in-
herit” from AbstractHandler the functionality for handling erro-
neous scenarios, as shown in figure 29.

The original developers could have done away with handle1,

public void handle(Event e) {
if (handle1(e)) {

return;
}
if (e instanceof ExceptionalEvent) {

. . .

} else {
. . . // handle unexpected events

}
}

Figure 29: AbstractHandler’s handle method.

public void handle(Event@ExceptionalEvent e) {
. . .

}
public void handle(Event e) {

. . . // handle unexpected events
}

Figure 30: AbstractHandler’s handle method in JPred.

removed the first three lines from the handle method in figure 29,
and required subclasses to simply override handle. However, in
Java this design would require each subclass to use super to explic-
itly invoke the superclass handler whenever none of the subclass’s
handlers is applicable, which is tedious and could easily be acci-
dentally omitted. Even with the handle1 helper generic function,
subclasses must still explicitly return false to invoke the inherited
error handler, but the Java typechecker helps to ensure that this is
not forgotten.

In contrast, JPred can support the desired handler inheritance
in the natural way, as shown in figure 30. The handle1 generic
function is no longer necessary. AbstractHandler provides two
handlers, one for ExceptionalEvents and another for unexpected
events. These handlers are implicitly inherited by subclasses, who
can add new handle methods for particular scenarios of interest.
The inherited handlers are automatically dispatched to whenever no
method in a subclass is applicable; there is no need for the subclass
to explicitly invoke inherited handlers by either invoking super or
returning false. This design in JPred easily generalizes to support
deep hierarchies of handlers with fine-grained code reuse, an idiom
which is too unwieldy to consider in Java.

7. RELATED WORK
There have been several previous languages containing a form

of predicate dispatch. The original work by Ernst et al. [20] was
discussed in the introduction and throughout the paper. They im-
plemented predicate dispatch in an interpreter for Dubious [39], a
simple core language for formal study of multimethod-based lan-
guages. That implementation did not include their static type sys-
tem.

The predicate language of Ernst et al. is more general than ours,
including arbitrary boolean expressions from the underlying host
language. They also support predicate abstractions, which are pred-
icate expressions that are given a name and then referred to in
method predicates by name. However, their algorithms for rea-
soning about predicates only precisely handle propositional logic
and specializer expressions, treating all other kinds of predicates as
black boxes that are related only by AST equivalence. This sub-



stantially limits the ways in which their predicate language can
be used. For example, two methods with predicates x == 3 and
x == 4 would be considered ambiguous. In contrast, JPred’s use of
off-the-shelf decision procedures supports precise reasoning over
JPred’s predicate language. Finally, as mentioned in section 3, the
static type system described by Ernst et al. is global while ours
retains Java’s modular typechecking strategy.

Ucko [54] describes an extension of the Common Lisp Object
System (CLOS) [51, 24] to support predicate dispatch. Similar to
the work of Ernst et al., arbitrary Lisp expressions are allowed as
predicates. Again a special-purpose algorithm is used for checking
validity of predicates. The algorithm is not described in detail, but
it appears to only precisely handle propositional logic, specializer
expressions, and equality against constants. Static typechecking is
not supported. Ucko applies predicate dispatch to enhance the ex-
tensibility of an existing computer algebra system written in CLOS.
He shows how predicate dispatch is used in the enhanced system
to implement symbolic integration and another mathematical func-
tion.

Fred [47] is a language that unifies predicate dispatch with fea-
tures of aspect-oriented programming (AOP) [33]. Like predicate
dispatch, methods have predicates associated with them, and logi-
cal implication determines method overriding. Like AOP, there is
a notion of an “around” method, which is a special method that is
always considered to override non-around methods, thereby sup-
porting the addition of new crosscutting code. The language is im-
plemented as a library extension to the MzScheme [42] implemen-
tation of Scheme [1]. Similar to the two languages described above,
a special-purpose validity checking algorithm is used, which han-
dles propositional logic, specializer expressions, and a limited form
of equality. There is no static type system. Instead, the language
reports method lookup errors dynamically.

Chambers and Chen [14] describe an algorithm to construct effi-
cient dispatch functions for predicate dispatch. The algorithm com-
putes a directed acyclic graph (DAG) called a lookup DAG, which
determines the order in which targets are tested. Each node of the
lookup DAG is in turn implemented by a decision tree, which de-
termines the order of tests to be performed on a given target (e.g.,
test that a target is an instance of C1 before testing that it’s an in-
stance of C2). The authors show performance improvements of up
to 30% on a collection of large Cecil programs. Our compilation
strategy likely generates less efficient code than the algorithm of
Chambers and Chen. At the same time, our strategy interacts well
with Java’s modular compilation strategy, and it is essentially what
a Java programmer would write by hand. Although Chambers and
Chen describe their algorithm as a global one, it could probably be
adapted to replace our per-class dispatch methods.

Predicate classes [12] are a precursor to predicate dispatch that
allow an instance of a class C to be considered to be an instance of
some subclass D whenever a given predicate is true. Methods may
dispatch on D, and this has the effect of dispatching on whether
or not a C instance satisfies D’s predicate. Predicate dispatch is
more general, allowing predicates that relate multiple arguments to
a method. Logical implication is used to determine the subclass
relation among predicate classes, analogous with the use of log-
ical implication to determine method overriding in predicate dis-
patch. However, predicate classes require the implication relation-
ships among predicates to be explicitly declared by the program-
mer. Similarly, the programmer must declare information about
other relationships among predicates, such as disjointness, for use
in static typechecking. Classifiers [31] provide similar capabilities
to predicate classes, but they use the textual order of methods to
define the overriding relation, as in functional languages.

Objective Caml (OCaml) [49, 45] and Scala [50] both extend
ordinary ML-style pattern matching with the ability to test an arbi-
trary boolean expression guard. Unlike JPred, which unifies predi-
cate dispatch with Java’s existing dynamic dispatch, pattern match-
ing in OCaml and Scala is independent of the OO dispatch mech-
anism provided by each of the languages. In both languages, the
set of cases in a pattern-matching expression is not extensible, and
the textual order of cases defines the overriding relation. Scala does
not appear to statically check for nonexhaustive errors or redundan-
cies. OCaml’s typechecker does check for nonexhaustive errors,
but it does so simply by assuming that every predicate guard could
evaluate to false simultaneously. This has the effect of statically
signaling a warning whenever there does not exist a default case
(i.e., a case without a predicate). In contrast, JPred sometimes does
not require default methods. Unlike in JPred, pattern matching in
OCaml and Scala is a first-class expression and need not appear at
the top level of a function’s implementation.

JMatch [36] extends Java with a sophisticated form of pattern
matching that includes many of the idioms supported by JPred, in-
cluding type dispatch, dispatch on fields, and identifier binding.
JMatch’s patterns additionally provide support for expressing iter-
ation, for defining abstract patterns that hide a value’s underlying
representation, and for bidirectional computation as provided by
logic programming languages. As with OCaml and Scala, pattern
matching in JMatch has a functional style: pattern matching is sep-
arate from Java’s OO dispatch mechanism, pattern matching is a
first-class expression, the cases in a pattern-match expression are
not extensible, and the textual order of cases defines the overriding
relation. JMatch does not statically check for nonexhaustive errors
or redundancies.

Several recent languages, including XStatic [26], CDuce [6],
and HydroJ [35], support pattern matching for XML-like [9] data.
The patterns in these languages overlap with JPred’s predicate lan-
guage; for example, JPred’s disjunction predicate corresponds to
union patterns for XML data. However, each can express things
that the other cannot. The XML languages lack support for re-
lational and arithmetic predicates as well as predicates that relate
multiple arguments to a function. JPred lacks support for arbitrary
regular expressions. Most of the languages proposed for manipu-
lating XML data are based on functional languages, and their pat-
tern matching constructs therefore have the same style as pattern
matching in OCaml, Scala, and JMatch. An exception is HydroJ,
an extension of Java with support for XML data. HydroJ unifies
XML pattern matching with Java’s OO dispatch and uses a form
of predicate implication as the overriding relation. Like JPred, Hy-
droJ adapts our prior work on modular typechecking of multimeth-
ods [38] to support modular typechecking of patterns.

Our previous languages MultiJava [16] and Extensible ML (EML)
[38] support modular typechecking in the presence of multimeth-
ods. MultiJava’s multimethod dispatch can be viewed as the subset
of JPred supporting only conjunctions of specializer expressions
and equality tests against constants, and only for formal parame-
ters. MultiJava also supports open classes, the ability to add new
methods to existing classes noninvasively. JPred does not support
open classes, but it would be straightforward to add them. EML
subsumes MultiJava’s predicate language, additionally containing
the ML-style pattern matching idioms of identifier binding and dis-
patch on substructure. JPred extends EML’s pattern language to
include disjunction and negation, arbitrary equality and other rela-
tional predicates, linear arithmetic, and predicates that relate multi-
ple arguments, while retaining modular typechecking and compila-
tion. JPred safely relaxes the modularity requirements of MultiJava
and EML, for example not always requiring a default method. This



relaxation allows new programming idioms to be expressed, includ-
ing partially abstract methods. JPred’s use of off-the-shelf decision
procedures is also novel.

8. CONCLUSIONS AND FUTURE WORK
We have described JPred, a practical design and implementa-

tion of predicate dispatch for Java. JPred naturally augments Java
while retaining its modular typechecking and compilation strate-
gies. This contrasts with the global typechecking and compilation
algorithms of prior languages containing predicate dispatch. JPred
uses off-the-shelf decision procedures to reason about predicates,
both for determining the method overriding relation and for static
exhaustiveness and ambiguity checking. This contrasts with the
special-purpose and overly-conservative algorithms for reasoning
about predicates that are used by prior languages with predicate
dispatch. We presented a case study illustrating the utility of JPred
on an existing Java application, including its use in the detection of
several errors.

JPred could be extended in several ways. The predicate lan-
guage currently only supports literals of integer and boolean type.
It would be straightforward to support the other Java literals as
well as arrays, along with many of their associated primitive op-
erations. Named predicate abstractions could be convenient and
would not cause any technical problems. The case study identified
a few ways to extend our predicate language, as described in sec-
tion 6.3.2. These include relaxing the rules for when identifiers can
escape from disjunction and supporting method calls in predicates.
To allow method calls in predicates, it may be necessary to intro-
duce a pure modifier, to declare a method to be side-effect-free.
Similar to method calls, it may be useful to incorporate a notion of
views [55] in JPred. This would allow a class to export a virtual
representation to be dispatched upon by clients, as an alternative to
allowing clients to dispatch directly on fields. Finally, a notion of
resend [13, 37], which generalizes Java’s super to walk up JPred’s
method-overriding partial order, could be useful to allow predicate
methods within a class to easily share code.
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pages 220–242. Springer-Verlag, New York, NY, June 1997.

[34] G. T. Leavens and O. Antropova. ACL — Eliminating
parameter aliasing with dynamic dispatch. Technical Report
98-08a, Department of Computer Science, Iowa State
University, Ames, Iowa, Feb. 1999.

[35] K. Lee, A. LaMarca, and C. Chambers. HydroJ:
Object-oriented pattern matching for evolvable distributed
systems. In Proceedings of the 2003 ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Anaheim, CA, Oct. 2003.

[36] J. Liu and A. C. Myers. JMatch: Iterable abstract pattern
matching for Java. In V. Dahl and P. Wadler, editors,
Practical Aspects of Declarative Languages, 5th
International Symposium, volume 2562 of Lecture Notes in
Computer Science, pages 110–127. Springer, 2003.

[37] T. Millstein. Reconciling Software Extensibility with
Modular Program Reasoning. Ph.D. dissertation,
Department of Computer Science & Engineering, University
of Washington, 2003.

[38] T. Millstein, C. Bleckner, and C. Chambers. Modular
typechecking for hierarchically extensible datatypes and
functions. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’02), volume 37(9) of ACM SIGPLAN Notices, pages
110–122, New York, NY, Sept. 2002. ACM.

[39] T. Millstein and C. Chambers. Modular statically typed
multimethods. Information and Computation,
175(1):76–118, May 2002.

[40] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[41] D. A. Moon. Object-oriented programming with Flavors. In
Conference proceedings on Object-oriented programming
systems, languages and applications, pages 1–8. ACM Press,
1986.

[42] MzScheme home page.
http://www.plt-scheme.org/software/mzscheme.

[43] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures. ACM Trans. Program. Lang. Syst.,
1(2):245–257, 1979.

[44] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. In Proceedings of
CC 2003: 12’th International Conference on Compiler
Construction. Springer-Verlag, Apr. 2003.

[45] OCaml home page. http://www.ocaml.org.
[46] one.world home page.

http://cs.nyu.edu/rgrimm/one.world.
[47] D. Orleans. Incremental programming with extensible

decisions. In Proceedings of the 1st international conference
on Aspect-oriented software development, pages 56–64.
ACM Press, 2002.

[48] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable web server. In Proceedings of the 1999
USENIX Annual Technical Conference (USENIX-99), pages
199–212, Berkeley, CA, June 6–11 1999. USENIX
Association.
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