NOTE: After the publication of this paper in OOPSLA 2017, we found a bug in
our test configuration for the spark-perf benchmarks that caused incorrect flags
to be used for some JVM invocations. As a result the published performance
numbers for these benchmarks under-count the performance cost of our technique.
(The published numbers for other benchmarks are accurate.) We have fixed
the bug and rerun all spark-perf tests, and the corrected results are in the
appendix that we have included at the end of this document.
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1 INTRODUCTION

A memory consistency model (or simply memory model) defines the possible values that a shared-
memory read may return and thus plays a central role in the semantics of a multithreaded pro-
gramming language. Choosing a memory model for a language involves an inherent performance-
programmability tradeoff. Sequential consistency (SC) [Lamport 1979] provides an intuitive program-
ming model by ensuring that a program’s instructions (appear to) execute in a global total order
consistent with the per-thread program order. But achieving SC requires the compiler to disable
some common optimizations, and on current hardware platforms it further requires the compiler
to restrict hardware optimizations by emitting expensive fence instructions on shared-memory
accesses.

To avoid this cost, the Java language [Manson et al. 2005] has adopted a relaxed (or weak) memory
model that is designed to admit most traditional compiler optimizations and obviate the need for
hardware fences on most shared-memory accesses. The downside, however, is that programmers
must carefully declare certain variables as volatile in order to enforce the per-thread program
orderings that are required for proper behavior. If a programmer does not annotate the necessary
variables as volatile, programs are exposed to the relaxed semantics of the Java memory model
(JMM), which is complex, unintuitive, and can violate critical program invariants. For example,
under the JMM an object can be accessed before its constructor has completed, accesses to longs and
doubles are not guaranteed to be atomic, and some programming idioms, such as double-checked
locking [Bacon et al. 2017; Schmidt and Harrison 1997], are not guaranteed to behave correctly. As
discussed in Section 3, this possibility is not just theoretical: errors due to the failure to annotate
certain variables as volatile, which we term missing-annotation bugs, can be found across a range
of widely used Java applications.

This performance-by-default approach to memory models is acceptable for and consistent with
the design philosophy of languages like C and C++ [Boehm and Adve 2008]. However, we argue that
such an approach conflicts with the design philosophy of “safe” languages like Java. Indeed, when it
comes to type and memory safety, Java instead employs a safe-by-default and performance-by-choice
approach: type and memory safety are provided by default, but there is a library of type-unsafe
operations meant for use by expert programmers in performance-critical code [Mastrangelo et al.
2015].

In the same vein, this paper proposes a safe-by-default and performance-by-choice approach to
enforcing per-thread program order in Java. This approach involves a conceptually simple change
to the memory model: every variable has volatile semantics by default, but the language allows a
programmer to tag certain classes, methods, or variables as relaxed and provides the current JMM
semantics for these portions of code. This volatile-by-default semantics provides a natural form of
sequential consistency for Java by default, at the bytecode level: bytecode instructions (appear to)
execute atomically and in program order. This also implies that all Java primitive values, including
(64-bit) doubles and longs, are atomic irrespective of the bit-width of the underlying architecture.
At the same time, expert programmers retain the freedom to build performance-critical libraries
that violate this semantics, and they are responsible for protecting clients from any weak behaviors
that can result.

A volatile-by-default JVM. At the outset, it is unclear if the volatile-by-default semantics is
practical for Java, given the cost of memory fences on today’s hardware platforms. We should deem
the volatile-by-default approach as unacceptable if the only way to make programs reasonably
efficient is to declare large portions as relaxed. In fact, current conventional wisdom about the
cost of these fences and the associated cost of providing SC to the programmer strongly points
against the volatile-by-default approach. For instance, Kaiser et al. [2017] say that SC is “woefully
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unrealistic” due to “the significant performance costs ... on modern multi-core architectures” and
Demange et al. [2013] say that “SC would likely cripple performance of Java programs on all modern
microprocessors.” The core contribution of this paper is to demonstrate, through comprehensive
empirical evaluation, that the volatile-by-default semantics is in fact acceptable for a predominant
use case for Java today — server-side Java applications running on Intel x86 architectures.

The straightforward way to implement the volatile-by-default semantics is through a source-to-
source translation that adds the appropriate volatile annotations. The advantage of this approach
is that it is independent of the JVM, allowing us to evaluate the cost of volatile-by-default
semantics on various JVMs and hardware architectures. Unfortunately, neither Java nor the Java
bytecode language provides a mechanism to declare array elements as volatile. Thus, such an
approach fails to provide the desired semantics. We considered performing a larger-scale source-to-
source rewrite on array accesses, but it would be difficult to separate the cost of this rewrite from
the measured overheads. Finally, once we settled on changing an existing JVM implementation, we
considered doing so in a research virtual machine [Alpern et al. 2005]. But it was not clear how the
empirical observations from such a JVM would translate to a production JVM implementation.

Therefore we implement the volatile-by-default semantics for x86 by directly modifying
Oracle’s HotSpot JVM which is part of the OpenJDK version 8u [OpenJDK 2017]. We call our
modified version VBD-HoTSproT. To the best of our knowledge, this is the first implementation of
SC for a production Java virtual machine (JVM) that includes the state-of-the-art implementation
technology, such as dynamic class loading and just-in-time (JIT) compilation. This in turn enables
us to provide the first credible experimental comparison between SC and the JMM.

We implemented VBD-HoTSPoT by reusing mechanisms already in place for handling volatile
variables in the interpreter and compiler. This provides us two advantages. First and foremost, the
correctness of VBD-HotSpoT mostly follows from the correctness of the HotSpot JVM’s imple-
mentation of volatile semantics. Second, we automatically obtain the benefits of optimizations
that HotSpot already employs to reduce the overhead of volatile accesses. VBD-HoT1SpOT is
open-source and available for download at https://github.com/SC-HotSpot/VBD-HotSpot.

Results. An advantage of modifying the JVM is that the volatile-by-default guarantees extend
beyond Java to other languages that target the Java bytecode language and commonly run on the
HotSpot JVM, such as Scala. We make use of this benefit by benchmarking volatile-by-default on
the traditional DaCapo benchmarks [Blackburn et al. 2006] as well as a set of big-data analytics and
machine learning benchmarks that run on the widely used Spark framework [Zaharia et al. 2016].

For the DaCapo benchmarks on a modern server, with no relaxed annotations, the overhead
of VBD-HoTtSpoT versus the unmodified HotSpot JVM is 28% on average, with a maximum of
81%. Given that VBD-HoOTSPOT potentially inserts a fence on every heap store, we believe that
this overhead is less than commonly assumed. Our experiments show that the benchmarks that
incur the highest overheads are either single-threaded or mostly-single-threaded. Excluding these
benchmarks reduces the average overhead to 21%.

For the Spark benchmarks, the results are even more striking. Our evaluation shows that the
overhead is 12% on average for big-data analytics benchmarks and 19% on average for the machine-
learning benchmarks, again without any relaxed annotations. From profiling these benchmarks
we see that they tend to spend a lot of time doing I/O and also waiting at barriers (e.g., between a
map task and a reduce task), which masks the extra latency due to fences.

Another common assumption is that the cost of SC increases with the number of processor cores
and sockets. For instance, a fence on x86 stalls the processor until it has received read invalidations
from all processors that have a shared copy of addresses in its pending store buffer. One expects
these stalls to be longer when there are more threads in the program, and when it is running across
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a larger number cores and sockets. However, our evaluation shows that this assumption is not
true, at least in our experimental setting. The overhead of SC improves with increased concurrency
and with the number of sockets; apparently the increased cost of fences is compensated by the
increased cost of regular memory accesses.

Finally, we added relaxed annotations to some benchmarks in order to reduce the overhead of
VBD-HotSpoT. Our experiments on the benchmarks with the largest overheads for VBD-HoTSpoT
show that roughly half of their overheads arise from 20 or fewer methods. Moreover, many of these
methods are in standard libraries, such as java.io and string-manipulation libraries. These are
good candidates for relaxed annotations, which experts can introduce after careful inspection and
will benefit many applications.

What about ARM? A natural question is whether the results above translate to the other important
use case of Java today — mobile applications running on low-power ARM devices. ARM’s memory
model is weaker than x86 and as such our experiments likely underestimate the cost of volatile-by-
default semantics on ARM. Specifically, our experiments on x86 capture the cost of disabling non-SC
compiler optimizations and the cost of inserting fences on regular stores. On the other hand, our
experiments do not capture the cost of converting regular reads into volatile reads, as the latter
comes free on x86. As reads are more prevalent than writes, one should expect volatile-by-default
to be more expensive on ARM.

Providing a credible experimental evaluation for ARM is beyond the scope of this paper, as it
requires a significant additional engineering effort. The main HotSpot JVM, which we modified to
produce VBD-HoTSPoT (and which required 9 person-months), does not have an ARM backend.
The Open]DK contains a separate project with an ARM port of HotSpot. However, as future work
we instead plan to modify the Android runtime’s ahead-of-time bytecode compiler’, which is the
dominant Java platform on ARM devices today.

Finally, it is worth noting that ARM recently introduced “one-way” barrier instructions [ARMv8
2017] primarily to reduce the cost of volatile accesses in Java (and similar atomic accesses in
C/C++). Speculation-based techniques for implementing the LDAR instruction, the one-way barrier
required for volatile reads, are well known [Gharachorloo et al. 1991] and have been used in
Intel architectures for decades. Thus, if ARM employs these optimizations to make volatile reads
more efficient, the difference in the cost of VBD-HoTSproT on x86 and VBD-HoTSpoT on ARM will
reduce.

Summary. This paper makes the following contributions:

e We propose a volatile-by-default semantics for Java.

e We have implemented this semantics for Intel x86 as a modification of the HotSpot Java
Virtual Machine. To our knowledge this is the first implementation of SC for Java in a
production virtual machine.

e Our experimental evaluation provides a performance comparison between volatile-by-
default and the Java memory model in the context of the HotSpot JVM. We show that the
volatile-by-default semantics can be a practical choice today for common server-side
applications on x86, such as big-data analytics.

The rest of the paper is structured as follows. Section 2 overviews the current Java memory model,
and Section 3 describes the class of missing-annotation bugs that can occur under this memory
model due to insufficient volatile annotations. Section 4 motivates and defines our proposed
volatile-by-default semantics, and Section 5 describes our implementation of the volatile-by-
default semantics for x86 in VBD-HoTSPOT. Section 6 presents the results of an experimental

Ihttps://source.android.com
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comparison of VBD-HoTSpoT with the unmodified HotSpot JVM. Section 7 compares with related
work, and Section 8 concludes.

2 THE JAVA MEMORY MODEL

The Java memory model was defined more than a decade ago [Manson et al. 2005] and attempts to
strike a practical balance among programmer understandability, implementation flexibility, and
program safety.

programmer understandability The JMM designers considered sequential consistency to be “a
simple interface” and “the model that is easiest to understand” [Manson et al. 2005]. However,
largely due to SC’s incompatibility with standard compiler and hardware optimizations, the
JMM adopts a weak memory model based on the DRFO style [Adve and Hill 1990], whereby
SC is only guaranteed for data-race-free programs. A memory race occurs when two threads
concurrently access the same memory location and at least one of those accesses is a write.
A program is considered to be data-race-free if all instance variables that participate in
a memory race are declared volatile.? The JMM guarantees SC semantics for volatile
variables, which requires implementations to disable many compiler optimizations and to
emit fence instructions that prevent the hardware from violating SC through out-of-order
execution.

implementation flexibility The SC memory model does not allow instructions to appear to be
reordered. However, several important optimizations, for example out-of-order execution in
hardware and common subexpression elimination in compilers, have the effect of instruction
reordering. By guaranteeing SC only for data-race-free programs, the JMM can admit most
traditional optimizations.

program safety The JMM strives to ensure safety for all programs, even ones with data races. The
JMM'’s notion of program safety is centered around the idea of preventing “out-of-thin-air
reads” [Manson et al. 2005]. In the presence of data races, some compiler optimizations can in
principle lead to a situation whereby multiple program transformations justify one another
in a cycle. Such transformations can introduce values in the program that would never
otherwise occur, which creates a potentially serious security concern. The JMM prevents
out-of-thin-air reads by defining a complex causality requirement on the legal executions of
incorrectly synchronized programs, which imposes some restrictions on the optimizations
that a compiler may perform [Manson et al. 2005].>

Because the JMM guarantees SC for data-race-free programs, programmers “need only worry
about code transformations having an impact on their programs’ results if those programs contain
data races” [Manson et al. 2005]. However, data races are both easy to introduce and difficult to
detect; it is as simple as forgetting to grab a lock, grabbing the wrong lock, or omitting a necessary
volatile annotation. Therefore in practice many programs are exposed to the effects of compiler
and/or hardware optimizations, which can cause a variety of surprising behaviors and violate
critical program invariants:

non-atomic primitives Writes to doubles and longs are not atomic under the JMM, but rather
are treated as two separate 32-bit writes. Therefore, in the presence of a data race readers
can see values that are a combination of two different writes. Understanding this to be

?Local variables are thread-local and hence can never participate in a memory race.

3The JMM’s causality is known to disallow some optimizations that it was intended to allow, notably common subexpression
elimination [Cenciarelli et al. 2007; Sevcik and Aspinall 2008]. Nonetheless, current Java virtual machines continue to
perform this optimization. While there is no evidence that today’s JVMs in fact admit out-of-thin-air reads, this issue must
be resolved to prevent the possibility in the future.
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problematic, the Java Language Specification states that “implementations of the Java Virtual
Machine are encouraged to avoid splitting 64-bit values where possible*

partially-constructed objects Consider the following example, where one thread tries to safely
publish an object to another thread (assuming d and ready are respectively initialized to
null and false):

Thread 1 Thread 2
d = new Data(); if (ready)
ready = true; d.use();

Under the JMM, it is possible for the second thread to read the value true for ready but
incur a null pointer exception on the call d. use(). More perniciously, d may be non-null at
that point but its constructor may not yet have completed, so the object is in an arbitrary
state of partial construction when use is invoked.’

broken synchronization idioms The publication idiom above is one example of a custom syn-
chronization idiom that is not guaranteed to work as expected in the JMM in the presence of
data races. Other examples include double-checked locking [Schmidt and Harrison 1997] and
Dekker’s mutual exclusion algorithm.

3  MISSING-ANNOTATION BUGS

The misbehaviors above are instances of what we call missing-annotation bugs. In these examples, the
synchronization protocol intended by the programmer is correct and need not be changed. Rather,
the error is simply that the programmer has forgotten to annotate certain variables as volatile.
This omission allows compiler and hardware optimizations to violate intended program invariants.
Adding volatile annotations forces the Java implementation to disable those optimizations and
thereby restore the desired invariants. For example, a double or long field that is declared volatile
will have atomic reads and writes. Similarly, declaring ready as volatile in our publication idiom
above ensures that the second thread will only ever see a fully constructed object.

Missing-annotation bugs are easy to make and hence it is not surprising that they are common in
Java applications. A quick search on the Apache Software Foundation’s issue-tracking system found
more than 100 issues where the fix required annotating a field as volatile. We report the first
twenty here: AMQ-6251, AMQ-6495, BOOKKEEPER-848, CASSANDRA-11984, CASSANDRA-2490,
FELIX-4586, HBASE-15261, HDFS-1207, HDFS-4106 , HDFS-566, HTTPCLIENT-594 , KAFKA-2112,
KAFKA-4232, LOG4J2-247, LOG4]J2-254, OAK-3638, OAK-4294, SLING-1144, SLING-3793, SPARK-
3101, SPARK-6059.° These errors occur in popular systems such as the Cassandra database, the
HDFS distributed file system, and the Spark system for big-data processing’ and can thereby impact
the applications that employ these systems.

Missing-annotation bugs contrast with data races that violate program invariants due to the
programmer’s failure to implement the necessary synchronization protocol. Examples of the latter
errors include atomicity violations that arise from failing to hold a lock or holding the wrong lock,
and ordering violations that arise when threads fail to signal one another properly. Yet as Boehm
[2011] points out, missing-annotation bugs are far from “benign” but rather can cause surprising
and harmful behaviors. For instance, exposing a partially constructed object, as shown above, can
have serious security implications [TSM03-] 2017]. The volatile-by-default semantics discussed
below eliminates all missing-annotation bugs.

4https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html

5Java does guarantee that the final fields of d will be properly initialized when use is invoked.

%Each bug contains the project name and the bug ID. Its details can be found at https://issues.apache.org/jira/browse/
<ProjectName>-<BuglID>.

’Spark is implemented in Scala, which compiles to Java bytecode and inherits Java’s memory model.
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4 VOLATILE-BY-DEFAULT SEMANTICS FOR JAVA

Under the JMM, the onus is on programmers to employ the volatile annotation everywhere that
is necessary to protect the program from compiler and hardware optimizations that can reorder
instructions. By doing so, the JMM can allow most compiler and hardware optimizations. We argue
that this performance-by-default approach is not consistent with Java’s design philosophy as a “safe”
programming language. Instead we advocate a safe-by-default and performance-by-choice approach
to Java’s concurrency semantics.

To that end, we propose the volatile-by-default semantics for Java, which makes one concep-
tually simple change: all instance variables are treated as if they were declared volatile. In this
way, missing-annotation bugs cannot occur and all Java programs are guaranteed SC semantics
by default. With this change, the volatile annotation becomes semantically a no-op. Instead, we
introduce a relaxed annotation that allows a programmer to tag variables, methods, or classes
that should employ the current JMM semantics. Expert programmers can use this annotation in
performance-critical code to explicitly trade off program guarantees for increased performance.

Precisely defining the SC semantics requires one to specify the granularity of thread interleaving,
which has been identified as a weakness of the SC memory model [Adve and Boehm 2010]. The
volatile-by-default semantics does this in a natural way by providing SC at the bytecode level:
bytecode instructions (appear to) execute atomically and in program order. This also implies that
all Java primitive values, including (64-bit) doubles and longs, are atomic irrespective of the bit-
width of the underlying architecture. The volatile-by-default semantics provides a clean way for
programmers to understand the possible behaviors of their concurrent programs, provided they
understand how Java statements (such as increments) are translated to bytecode.

Of course, “safety” is in the eye of the beholder, and there are many possible definitions. We
argue that the volatile-by-default semantics is a natural baseline guarantee that a “safe” language
should provide for all programs. The volatile-by-default memory model clearly satisfies the JMM’s
desired programmability and safety goals. In terms of programmability, volatile-by-default is
strictly stronger than the JMM, so all program guarantees provided by the JMM are also provided
by volatile-by-default. In terms of safety, the volatile-by-default semantics prevents all cyclic
dependencies and hence rules out the particular class of such cycles that can cause out-of-thin-air
reads. Moreover, volatile-by-default eliminates all missing-annotation bugs.

Further, the volatile-by-default semantics provides a more general notion of safety by protect-
ing several fundamental program abstractions [Marino et al. 2015]. First, all primitives are accessed
atomically. Second, sequential reasoning is valid for all programs. This ensures, for example, that
an object cannot be accessed until it is fully constructed (unless the program explicitly leaks this
during construction), and more generally that program invariants that rely on program order are
guaranteed regardless of whether the program has data races.

Finally, we note that though the volatile keyword is semantically a no-op in the volatile-by-
default semantics, it is still useful as a means for programmers to document their intention to use a
particular variable for synchronization. Indeed, volatile annotations can make the code easier
to understand and can be used by tools to identify potential concurrency errors. However, under
the volatile-by-default semantics, and in sharp contrast to the JMM, an accidental omission or
misapplication of volatile annotations will never change program behavior.

5 A VOLATILE-BY-DEFAULT JVM FOR X86

Our original idea was to implement the volatile-by-default semantics for Java through a simple
transformation on either Java source code or Java bytecode to add volatile annotations. However,
ensuring SC requires that all heap accesses be treated as volatile, which in Java includes both
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instance variables and array elements. Unfortunately neither Java nor its bytecode language provides
a way to declare array elements to be volatile — declaring an array to be volatile ensures SC
semantics for accesses to the array itself but not to its elements.

Therefore, we opted to instead implement the volatile-by-default semantics through a direct
modification to the Java virtual machine, which executes Java bytecode instructions. We chose
to modify Oracle’s HotSpot JVM, which is widely used and part of the OpenJDK — the official
reference implementation of Java SE. In particular we modified the version of HotSpot that is part
of the Open]DK 8u, which is the latest stable version [Open]JDK 2017]. Our modified version, called
VBD-HotSPoT, adds a flag -XX:+VBD that allows users to obtain volatile-by-default semantics.

5.1 HotSpot Overview

The HotSpot JVM is an implementation of the Java Virtual Machine Specification [Java Virtual
Machine Specification 2017]. To execute Java bytecode instructions, HotSpot employs just-in-time
(JIT) compilation. In this style, bytecodes are first executed in interpreter mode, with minimal
optimizations. During execution, HotSpot identifies parts of the code that are frequently executed
(“hot spots”) and compiles them to optimized native code for better performance.

The HotSpot JVM has one interpreter, but its behavior depends on the underlying hardware
platform being used. HotSpot includes two just-in-time compilers. The client compiler, also called
C1, is fast and performs relatively few optimizations. The server compiler, also called C2 or opto,
optimizes code more aggressively and is specially tuned for the performance of typical server
applications.

We have implemented the volatile-by-default semantics for Java server applications on x86,
which are a dominant use case in practice. Accordingly we have modified the HotSpot interpreter
when executing on x86 hardware as well as the HotSpot server compiler.

5.2 Volatile-by-Default Interpreter

The HotSpot JVM uses a template-based interpreter for performance reasons. In this style a
TemplateTable maps each bytecode instruction to a template, which is a set of assembly in-
structions (and hence platform-specific). The TemplateTable is used at JVM startup time to create
an interpreter in memory, whereby each bytecode is simply an index into the TemplateTable.

Figure 1 illustrates how the template-based interpreter works. The bytecode pointer (BCP) is
currently pointing at the bytecode putfield (181). The interpreter uses this bytecode as an index
in the TemplateTable (right side of the figure) to find the address of the corresponding template.
The interpreter then jumps to this address to begin executing the template (left side of the figure).
After writing to the field, the last four lines of the template show how the interpreter reads the
next BCP index, increments the BCP, and jumps to the next code section. In this example, we add 3
to BCP (%r13) to point to the next bytecode, because the length of the putfield instruction is 3
bytes: a 1-byte opcode and a 2-byte index representing the field.

Figure 1 also shows how the HotSpot JVM handles accesses to volatile variables. The SC
semantics for volatile accesses is achieved by inserting the appropriate platform-specific fences
before/after such accesses. In the case of x86, which has the relatively strong total store order
(TSO) semantics [Owens et al. 2009], a volatile read requires no fences and a volatile write
requires only a subsequent StoreLoad barrier, which ensures that the write commits before any
later reads [JSR133 2017]. In the figure, %edx is already loaded with the field attribute for volatile.
Instruction (1) tests if the field is declared volatile. If so, the lock instruction (2) will be executed,
which acts as a StoreLoad barrier on x86; otherwise the lock instruction is skipped.

To implement our volatile-by-default semantics for x86, we therefore modified the template
for putfield to unconditionally execute the lock instruction. This is done by removing instruction
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Bytecode Pointer

invokespecial |astore_1 |aload_1 | dup | getfield | iconst_1 |iadd |putfield | ... ‘
\
0x7ff804e04a20: | push %rax — (nop) 0 | Ox7ff804dfa740
... // do the actual putfield (aconst_null) 1 | 0x7ff804dfa7c0
0x7ff804e04d69: | test %edx, %edx (1)
0x7ff804e04d6b: | je  0x00007ff804e04d76 ———— (iconst_1) 4 | 0x7ff804dfa940
0x7ff804e04d71: | lock addl $SOx0,(%rsp) (2)
0x7ff804e04d76: | movzbl 0x3(%r13),%ebx — (iadd) 96 |0x7ff804dfd8c0
0x7ff804e04d7b: | add  $0x3, %r13
0x7ff804e04d7f: | movabs $0x7fafc8f60300,%r10 (putfield) 181 | 0x7ff804e04a20
0x7ff804e04d89: | jmpq *(%r10,%rbx,8)

Template Code Template Table

Fig. 1. Interpretation example of bytecode putfield

(1) and the following jump instruction je. We also added the lock instruction to the templates for
the various bytecode instructions that perform array writes (e.g., aastore for storing objects into
arrays, bastore for storing booleans into arrays, etc.).

Inserting memory-barrier instructions ensures that the hardware respects SC, but it does not
prevent the interpreter itself from performing optimizations that can violate SC. The interpreter
performs optimizations through a form of bytecode rewriting, including rewriting bytecodes to
new ones that are not part of the standard Java bytecode language. For example, on encountering a
putfield bytecode and resolving the field to which it refers, the interpreter rewrites the bytecode
into a “fast” version (fast_aputfield if the field is an Object, fast_bputfield if the field is a
boolean, etc.) The next time the interpreter executes the enclosing method, it will execute the faster
version of the bytecode, avoiding the need to resolve the field again.

We manually inspected all of the interpreter’s bytecode-rewriting optimizations and found that
they never reorder the memory accesses of the original bytecode program. In other words, the
interpreter does not perform optimizations that violate SC. However, to ensure SC semantics we
had to modify the templates for all of the fast_*putfield bytecodes in order to unconditionally
execute the lock instruction, as shown earlier for putfield.

Finally, the interpreter treats a small number of common and/or special methods, for example
math routines from java.lang.Math, as intrinsic: the interpreter has custom assembly code for
them. However, we examined the x86 implementations of these intrinsics and found that none of
them contain writes to shared memory, so they already preserve SC.

5.3 Volatile-by-Default Compiler

When the JVM identifies a “hot spot” in the code, it compiles that portion to native code. As
mentioned earlier, we have modified HotSpot’s high-performance server compiler, which consists
of several phases. First a hot spot’s bytecode instructions are translated into a high-level graph-based
intermediate representation (IR) called Ideal. The compiler performs several local optimizations
on Ideal-graph nodes as it creates them. It then performs more aggressive optimizations on the
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graph in a subsequent optimization phase. Next the optimized Ideal graph is translated to a lower-
level platform-specific IR, and finally machine code is generated in the code generation phase.
Optimizations are performed during each of these last two phases as well.

B1

Bl

AN
50 MemBarRelease

-63 Loadl|

=

J’
\1

Le—

57emBarVolatile

64 MemBarAcquire

Fig. 2. ldeal graph sections for volatile reads (left) and writes (right).

At the Ideal graph level, the semantics of volatile is implemented by three kinds of memory-
barrier nodes, each of which represents a specific combination of the four basic memory barriers:
LoadLoad, LoadStore, StoreLoad, and StoreStore. Figure 2 shows snippets of the Ideal graph for
volatile loads and stores. Each volatile load is followed by a MemBarAcquire node, which
enforces “acquire” semantics: subsequent instructions (both load and store) cannot be reordered
before the barrier node. Each volatile store is preceded by a MemBarRelease node, which enforces
“release” semantics: prior instructions cannot be reordered after the barrier node. Each volatile
store is also followed by a MemBarVolatile node, which prevents subsequent volatile memory
accesses from being reordered before the barrier node.®

The memory-barrier nodes in the Ideal graph are translated to their counterparts in the lower-
level IR. When generating machine code, they are finally translated into the appropriate assembly
instructions. On x86 both the MemBarAcquire and MemBarRelease nodes become no-ops, since TSO
already enforces those instruction orders. However, it is critical to keep these memory-barrier nodes
in the code until the point of code generation, in order to prevent the compiler from performing
optimizations that violate their semantics.

Given this structure, we chose to implement the volatile-by-default semantics by modifying
the phase that creates the Ideal graph. Specifically, we modified that phase to emit the appropriate
memory-barrier nodes around all loads and stores, rather than only volatile ones. As in the
interpreter, this was done both for accesses to instance variables and to array elements.

An additional complication is that the server compiler treats many methods as intrinsic, providing
a custom Ideal graph for each one. We carefully examined the implementation and documentation

80n the POWER processor [Mador-Haim et al. 2012], which is not multi-copy atomic, a MemBarVolatile also precedes
each volatile load, but this is not necessary for x86.
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of these intrinsics to ensure volatile-by-default semantics. First, some intrinsics, for example
math routines from java.lang.Math, only access local variables and hence need not be modified.
Second, we added appropriate memory-barrier nodes in the implementations of many intrinsics that
perform memory loads and/or stores. For example, getObject from sun.misc.Unsafe loads an
instance variable or array element directly by offset. We modified its Ideal-graph implementation to
include a subsequent MemBarAcquire node, as is already done for the getObjectVolatile intrinsic
from the same class. Finally, for some intrinsics, specifically certain string operations, we simply set
the flag -XX: -OptimizeStringConcat, which causes the methods to be compiled normally instead
of using the intrinsic implementations.

Modifying the compiler at this early stage ensures that we need not worry about the potential
for any downstream compiler optimizations to violate SC, since those optimizations already respect
the semantics of memory-barrier nodes. This holds true even for the local optimizations that are
performed during Ideal-graph construction. For example, the local optimizations on a Store node,
such as redundant store elimination, already take into account the presence of any preceding
memory-barrier nodes, which is necessary to avoid violating the semantics of volatile stores.

5.4 Optimizations

Another important benefit of implementing the volatile-by-default semantics in the Ideal graph
is that it allows us to take advantage of the optimizations that the server compiler already per-
forms on memory-barrier nodes at different phases in the compilation process. For example, the
compiler performs an optimization to remove redundant memory-barrier instructions. In this way,
the optimizations that the server compiler already performs to optimize volatile accesses are
automatically used to lower the cost of SC semantics.

We also added an optimization to the compiler that removes memory barriers for accesses to
objects that do not escape the current thread. The HotSpot JVM already performs an escape analysis,
which we simply reuse. In fact, earlier versions of the HotSpot JVM performed this optimization
for a subset of non-escaping objects called scalar-replaceable objects, but it seems to have been
accidentally removed in version 8u: the code for the optimization is still there but it was modified
such that it never actually removes any memory barriers. We updated this code to properly remove
MemBarAcquire and MemBarVolatile nodes for all non-escaping objects.’

Finally, the HotSpot JVM inserts a MemBarRelease node at the end of a constructor if the
object being constructed has at least one final field, in order to ensure that clients only see the
initialized values of such fields after construction. In VBD-HoTSroT, this MemBarRelease node
is unnecessary, because each individual field write in the constructor is already surrounded by
appropriate memory-barrier nodes. Therefore, VBD-HoTSpoT does not insert memory barriers
after constructors.

5.5 Correctness

Our main implementation technique, in both the VBD-HoTSpoT interpreter and compiler, is to
simply reuse the existing mechanisms for handling accesses to volatile variables. Therefore, the
correctness of VBD-HotSpoT largely hinges on the correctness of those existing mechanisms,
which have been in wide use as well as refined and debugged over more than a decade. We also
validated VBD-HOTSPOT’s correctness in several ways. First, we added a VBD Verify phase in the
server compiler after the creation of the Ideal graph, which traverses the Ideal graph to check that
all loads and stores are surrounded by appropriate memory-barrier nodes. Second, we created a
suite of several litmus tests that sometimes exhibit non-SC behavior under the unmodified HotSpot

“Removing MemBarRelease nodes is trickier to implement, so we have not done it though it would be safe to do.
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JVM, such as a version of Dekker’s mutual exclusion algorithm. We have run these litmus tests
many times on the VBD-HoTSpoT compiler and they have never exhibited a non-SC behavior,
which helps lend confidence in our implementation.

5.6 Volatile-by-Default for Java and Scala

Finally, we note that VBD-HOTSPOT ensures volatile-by-default semantics for Java bytecode,
but that does not immediately provide a guarantee in terms of the original Java source program.
However, we have manually examined the widely used javac compiler that is part of the OpenJDK,
which compiles Java source to bytecode, and ensured that it performs no optimizations that have the
effect of reordering memory accesses. Hence compiling a Java program with javac and executing
the resulting bytecode with VBD-HotSpoT provides volatile-by-default semantics for the original
program. We also examined the scalac compiler that compiles Scala source to Java bytecode’
and found no optimizations that reorder memory accesses, so the same guarantees hold for Scala
programs running on VBD-HoTSpoOT.

6 EXPERIMENTAL RESULTS

In this section we describe our experiments that provide insight into the performance cost of
SC for JVM-based server applications, which are a dominant use case today. We compared the
performance of VBD-HoT1SpoT to that of the original HotSpot JVM on several benchmark suites.
The experiments are run on a modern x86 server machine, specifically a 12-core machine with 2
Intel Xeon E5-2620 v3 CPUs (2.40 GHz) with hyperthreading, which provides 24 processing units
in total.

6.1 DaCapo Benchmarks

The DaCapo benchmarks suite is a set of open-source Java applications that is widely used to
evaluate Java performance and represents a range of application domains [Blackburn et al. 2006].
We used the DaCapo 9.12 distribution. We excluded five of the benchmarks: batik and eclipse
are not compatible with Java 8; tradebeans and tradesoap fail periodically, apparently due to an
incompatibility with the -XX:-TieredCompilation flag'!, which VBD-HotSpoT employs (see
below); and lusearch has a known concurrency error that causes it to crash periodically.'

We ran the DaCapo benchmarks on our server machine and used the default workload and
thread number for each benchmark. We used an existing methodology for Java performance
evaluation [Georges et al. 2007]. For each JVM invocation, we ran each benchmark for 20 iterations,
with the first 15 being the warm-up iterations, and we calculated the average running time of the
last five iterations. We ran a total of 10 JVM invocations for each test and calculated the average of
the 10 averages.

Figures 3 and 4 respectively show the absolute and relative execution times of VBD-HoTSpPOT
versus the baseline HotSpot JVM. By default the HotSpot JVM uses tiered compilation, which
employs both the client and server compilers. Since we only modified the server compiler, VBD-
HotSpoT employs the -XX: -TieredCompilation flag to turn off tiered compilation and employ
only the server compiler. Therefore we also present the results for running the original HotSpot
JVM with this flag.

The geometric mean of all relative execution times represents a slowdown of 28% versus the
original JVM, and the maximum slowdown across all benchmarks is 81%. The results indicate that

Ohttp://www.scala-lang.org/download

https://bugs.openjdk.java.net/browse/JDK-8067708

2Interestingly, we observed the crash when executed on the original JVM but never on VBD-HotSpoT, though we cannot
be sure that the bug will never manifest under SC.
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Execution Time of DaCapo with 95% confidence interval
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Fig. 3. Execution time in milliseconds of VBD-HotSpot on the DaCapo benchmarks. “original JVM” means
running the baseline HotSpot JVM without additional flags; “-XX:-TieredCompilation” means running the
baseline HotSpot JVM with -XX:-TieredCompilation; “VBD-HotSPoT” shows results of running VBD-HoTtSPOT.
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Fig. 4. Relative Execution time of VBD-HotSroT on the DaCapo benchmarks
SC incurs a significant cost on today’s JVM and hardware technology, though perhaps less than is
commonly assumed. The -XX:-TieredCompilation baseline is slightly slower than the default
configuration for all but one benchmark (jython), which has a significant speedup. Because of

Jjython’s speedup, the geometric mean of the overhead of VBD-HotSpot increases by 2%. However,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 49. Publication date: October 2017.



49:14 Lun Liu, Todd Millstein, and Madanlal Musuvathi

the maximum overhead for any benchmark decreases by 3%. In the rest of our experiments we
present results relative to the default configuration of HotSpot, with tiered compilation enabled.

Interestingly, the three benchmarks that are mostly single-threaded incur some of the highest
overheads. Specifically, fop is single-threaded, most of the tests for the jython benchmark are single-
threaded, and luindex is single-threaded except for a limited use of helper threads that exhibit
limited concurrency; all other benchmarks are multithreaded.'® Ignoring the three benchmarks
that are largely single-threaded, the geometric mean of VBD-HoTSPOT’s relative execution time
versus the original JVM is only 1.21 (i.e., a 21% slowdown) with a maximum overhead of 44%.

We conjecture that this difference in the cost of VBD-HotSporT for single-threaded and multi-
threaded programs is due to the fact that multithreaded programs already must use synchronization
in order to ensure desired program invariants and prevent data races. Hence the overhead of such
synchronization might mask the cost of additional fences and also allow some of VBD-HOTSPOT’s
inserted fences to be safely removed by HotSpot’s optimizations. On the other hand, for single-
threaded programs every fence we add incurs additional overhead.

Of course, if the programmer is aware that her program is single threaded (or has limited
concurrency such that it is obviously data-race-free), then she can safely run on the unmodified
JVM and still obtain volatile-by-default semantics. Programmers can choose to do that in VBD-
HotSpot simply by not setting the -XX: +VBD flag.

6.2 Spark Benchmarks
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Fig. 5. Median execution time in seconds for spark-tests

Big-data analytics and machine learning are two common and increasingly popular server-side
application domains. To understand the performance cost of the volatile-by-default semantics for
these domains, we evaluated VBD-HoTSPOT on two benchmark suites for Apache Spark [Zaharia

Bhttp://dacapobench.org/threads.html
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Execution Time with 95% Confidence Interval
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Fig. 6. Average of 10 median execution times in seconds with 95% confidence interval for ml1ib-tests (part
1 of 4)

et al. 2016], a widely used framework for data processing. Specifically, we employ two sets of Spark
benchmarks provided by Databricks as part of the spark-perf repository'*: spark-tests includes
several big-data analytics applications, and ml1ib-tests employs Spark’s MLIib library [Meng
et al. 2015] to perform a variety of machine-learning tasks. These experiments also illustrate how
VBD-HoTSproT can extend the volatile-by-default semantics to languages other than Java that
compile to the Java bytecode language, since Spark is implemented in Scala.

We ran Spark in standalone mode on a single machine: the driver and executors all run locally as
separate processes that communicate through specific ports. Since running Spark locally reduces the
latency of such communication versus running Spark on a cluster, this experimental setup allows
us to understand the worst-case cost of the volatile-by-default semantics. In our experiments,
the executor memory is 4GB and the driver memory is 1GB. The spark-perf framework runs
each benchmark multiple times and calculates the median execution time. Similar to the DaCapo
tests, we ran spark-perf framework for 10 invocations and calculated the average of the median
execution time.

Figure 5 shows the median execution time for the eight spark-tests benchmarks when run
on the original HotSpot JVM as well as VBD-Hot1SpoT. For four out of the eight benchmarks, the
overhead of VBD-HoTSPoT is small or negligible, ranging from a slowdown of 3.5% to a speedup of
2.3%. The three shortest-running benchmarks (scala-agg-by-key-int, scala-sort-by-key, and scala-
sort-by-key-int) have overheads ranging from 8% to 15%. As mentioned earlier, profiling reveals
that the spark-tests benchmarks spend significant time doing I/O and waiting at barriers, which
explains the relatively low overheads. The scheduling-throughput benchmark is an outlier, with an

4The original repository is at https://github.com/databricks/spark-perf; we used an updated version that is compatible
with Apache Spark 2.0 at https://github.com/a-roberts/spark-perf.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 49. Publication date: October 2017.


https://github.com/databricks/spark-perf
https://github.com/a-roberts/spark-perf

49:16 Lun Liu, Todd Millstein, and Madanlal Musuvathi

Execution Time with 95% Confidence Interval

140
120
100
80
60
40
0 T M am II - ll _ ll _ _— -
B 4+ bO + bO + bO + bo + b + bO + Lo + Lo + Lo + bo + b+ bo + by +
£ 3£ 33 JEJEJEJEJELELEBEDEQDE QD
c v e e e ew e ewv e evw cv ecvw cvh cvecw
£ L E L E L E L E L E L E L ELELELELELELEY
C oL o0 fo0f o0 o fof ol ovlfolfolovfPofolfo
S R E R B ES EY B EYEREYEREYEREY L
w [J] Q [} [J] Q (] [} Q (] Q Q [J] Q
wegéeéeégégéeégéeégéeé&,égéeé
R R R A A R R R R A AR
o .2 £ Q2 L0 L0 L VL Bv LY oL 0Ly LY Ly LY L0 LY
o (%] (%] (%] (%] (%] (%] (%] o (%] (%] (%] (%]
o 29 39 9% 99 30 9SS 9SS IS 9SS 9SS IS 9SO I
2 YT 2T © T YT LT LT VLT LT LT VT LT @ T LT
© o (%] (%] o (5] o (%) (%] o (5] (%] o (%]
c Q (7] [ (] () [ (Y] [T} (7} [} [T} Q [T}
© T © T T © T T © T T © T
W original VM E VBD-HotSpot

Fig. 7. Average of 10 median execution times in seconds with 95% confidence interval for ml11ib-tests (part
2 of 4)

overhead for VBD-HoTSpoT of 77.5%. This benchmark performs a large amount of data serialization
and deserialization, so VBD-HoTSpoT must insert fences for each of these data writes.

Figures 6 through 9 show the results for the m11ib benchmarks.!”> We excluded four benchmarks
that failed on the original JVM (als, kmeans, gmm, and pic). The geometric mean of VBD-HoTSPOT’s
relative execution time is 1.19, or a 19% slowdown. Figure 10 summarizes the results in a histogram.
More than 37% of the benchmarks incur an average overhead of 10% or less, and more than 65%
incur an average overhead of 20% or less. Only 11 out of 102 benchmarks have an overhead greater
than 50%.

6.3 Scalability Experiments

We performed two experiments to understand how the cost of the volatile-by-default semantics
changes with the number of threads/cores available. Our server machine has six physical cores
per socket and two sockets, for a total of 12 physical cores. Further, the server has hyperthreading,
which provides two logical cores per physical one, for a total of 24 logical cores. We were interested
to understand how the cost of VBD-HoTSpoT would change with increased concurrency in general,
as well as the cost difference on cores within one socket versus cores across multiple sockets.

For these experiments we used the -t option in DaCapo to set the number of driver threads for
each test and Linux’s taskset command to pin execution to certain cores. The -t option in DaCapo
does not apply to the three largely single-threaded benchmarks that were mentioned in Section 6.1.
It also does not apply to avrora and pmd — though these benchmarks use multithreading internally,

I5Note that several benchmarks use the same application code but with different arguments. Also note that the y-axis of
Figure 6 has a different scale than that of the other figures, due to the longer execution times of its benchmarks.
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Fig. 8. Average of 10 median execution times in seconds with 95% confidence interval for ml1ib-tests (part
30f 4)

they always use a single driver thread. Therefore our experiments only employed the remaining
four DaCapo benchmarks.

First we tested the overhead of the four benchmarks with 1, 3, 6, 9, 12, and 24 driver threads. For
the experiment with N driver threads we pin the execution to run on cores 0 through N — 1, where
cores 0-5 are different physical cores on one socket, cores 6-11 are different physical cores on the
other socket, and cores 12-23 are the logical cores enabled by hyperthreading.

The results of our experiment are shown in Figure 11. The y-axis shows the relative execution
time of running on VBD-HoTSpPoT versus the baseline HotSpot JVM on each benchmark, and the
x-axis provides this result for differing numbers of driver threads. Figure 12 provides the results
in a different way, showing the absolute execution times in milliseconds with different numbers
of driver threads. As the number of driver threads/cores increases from 1 to 12, there is a trend
of improved performance for VBD-HoTSPOT relative to the original HotSpot JVM. The relative
execution time then is flat or decreases modestly at 24 driver threads. These results belie a common
assumption that SC performance suffers with increased concurrency. They also accord with an
experiment by Boehm [2012] showing that a lock-based version of a particular parallel algorithm
scales better than a version with no synchronization.

Second, we performed an experiment to specifically understand the performance difference for
VBD-HotSpoT when running on cores within the same socket versus on cores across sockets. We
ran the DaCapo benchmarks with 6 driver threads in two different configurations: one using cores
0-5, which are all on the same socket, and one using cores 0-2 and 6-8, so that we have two sockets
and three cores per socket.

Figure 13 shows the relative execution times for each configuration on VBD-HoTSPOT versus
that same configuration executed on the original HotSpot JVM. The overhead of VBD-HoTSproT in
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Fig. 9. Average of 10 median execution times in seconds with 95% confidence interval for ml1ib-tests (part
4 of 4)

the multiple-sockets configuration is uniformly lower than that in the single-socket configuration,
sometimes significantly so. This is an interesting result because in our experience SC is assumed to
be more expensive cross-socket, due to the increased overhead of fences. However, it appears that
the cross-socket configuration slows the rest of the execution down to a greater degree, thereby
offsetting the additional cost of fences.

6.4 Relaxed Execution

We also performed experiments to gauge the potential for judicious usage of relaxed annotations
to improve the performance of VBD-HoTSroT. We profiled four of the five Da Capo benchmarks
that incur the most overhead for VBD-HotSpot'®, as well as the scheduling-throughput benchmark
from the spark-tests suite, to determine the methods in which each benchmark spends the
most execution time. Figure 14 shows how the overheads of these benchmarks are reduced when
the top k methods in terms of execution time are annotated as relaxed, for k ranging from 0
to 20. Declaring a method to be relaxed causes the method to be compiled exactly as in the
original HotSpot JVM, so memory-barrier nodes are only inserted for accesses to variables that are
explicitly declared volatile. Note that the interpreter still executes these methods with volatile-
by-default semantics, and any methods called by these methods are both interpreted and compiled
with volatile-by-default semantics.

The figure shows that annotating the top 20 or fewer methods as relaxed provides a large
reduction in the overhead of VBD-HoTSpoT. Two of the benchmarks have particularly dramatic
reductions in overhead: luindex reduces from 1.82 to 1.17 and scheduling-throughput reduces from
1.67 to 1.16. Many of the top methods are in the Java standard library and so could be declared

16We were not able to perform this experiment for tomcat as our profiler crashes when running this benchmark.
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Fig. 11. The relative cost of VBD-HotSpoT with different numbers of threads/cores

relaxed once and then used by many applications. For example, 16 of the top 20 methods for
scheduling-throughput are in the java.io library and perform reading and writing of object streams.
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Scalability Graph of Multithreaded DaCapo Tests
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Fig. 13. The cost of VBD-HoTSpoT within socket and cross-socket

With 20 relaxed annotations each on the five benchmarks in Figure 14, the geometric mean of
VBD-HoTSPoT’s overhead reduces to 18% for the entire Da Capo suite (with a max overhead of
34% for tomcat) and 6.6% for the entire spark-tests suite (with a max overhead of 16%). These
results show that for big-data applications, which are important use cases for the JVM on servers
today, the volatile-by-default semantics can be a practical choice on modern server hardware,
with a judicious choice of relaxed annotations.
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Relative Execution Time over Original JVM
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6.5 Consumer PCs

Finally, we also ran our benchmarks on several consumer PC machines, in addition to our server
machine. PC1 is a 6-core machine with an Intel Core i7-3930K CPU (3.20GHz), which was released
in the fourth quarter of 2011. PC2 is a 4-core machine with an Intel Core i7-4790 CPU (3.20GHz),
which was released in the second quarter of 2014. PC3 is a 4-core machine with an Intel Core
i7-6700 CPU (3.40GHz), which was released in the third quarter of 2015. Hyperthreading is enabled
on all three machines. Therefore we respectively have 12, 8, and 8 processing units for PC1, PC2,
and PC3.
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Fig. 15. Relative execution time of the DaCapo benchmarks
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We ran the DaCapo benchmarks on these machines using the same setup as in Section 6.1.
Figure 15 shows the relative execution time for VBD-Hot1SPoT of the benchmarks on the three
machines, normalized to the execution time when run on the baseline HotSpot JVM. The geometric
mean of the overhead due to the volatile-by-default semantics is respectively 36%, 40%, and 50%
on machines PC1, PC2, and PC3, which is somewhat higher than the overhead of VBD-HoTSpoT
on our server machine (Section 6.1).

Though not uniformly so, the results indicate an upward trend on the cost of the volatile-
by-default semantics over time, since PC1 is the oldest and PC3 the newest machine. It’s hard to
identify the exact cause of this trend, or whether it is an actual trend, since the machines differ
from one another in several ways (number of processors, execution speed, microarchitecture, etc.).
However, the absolute performance of the benchmarks improves over time. Therefore, one possible
explanation is that the performance of fences is improving relatively less than the performance of
other instructions.

7 RELATED WORK

Language-Level Sequential Consistency. Sura et al. [2005] implemented a high-performance SC
compiler for Java, and Kamil et al. [2005] did the same for a parallel variant of Java called Titanium.
However, both compilers use heavyweight analyses such as interprocedural escape analysis and
delay-set analysis [Shasha and Snir 1988] in the context of an offline, whole-program compiler.
Alglave et al. [2014] implemented SC for C programs similarly. In contrast, VBD-HoOTSPOT is
implemented in the production HotSpot JVM and maintains the modern JIT compilation style.
Recent work [Vollmer et al. 2017] has shown that SC semantics for the Haskell programming
language has negligible overhead on x86. This work relies heavily on Haskell’s largely functional
style and its type system’s clean separation of functional and imperative code.

Other work has achieved language-level SC guarantees for Java through a combination of com-
piler modifications and specialized hardware [Ahn et al. 2009; Ceze et al. 2007]. Such a combination
has also been used to provide SC semantics for C [Marino et al. 2011; Singh et al. 2012]. The
results of these works show that SC can be comparable in efficiency to weak memory models with
appropriate hardware support. Finally, several works demonstrate testing techniques to identify
errors in Java and C code that can cause non-SC behavior (e.g., [Flanagan and Freund 2010; Islam
and Muzahid 2016]).

Language-Level Region Serializability. Another line of work strives to efficiently provide stronger
guarantees than SC for programming languages through a form of region serializability. In this
style, the code is implicitly partitioned into disjoint regions, each of which is guaranteed to execute
atomically. Therefore SC is a special case of region serializability where each memory access is
in its own region. Sengupta et al. [2015a] enforce a form of region serializability for Java through
a two-phase locking protocol implemented in the Jikes research virtual machine [Alpern et al.
2005]. The approach achieves good performance but has high implementation complexity. For
example, code regions must be transformed such that they can be safely restarted in the event
of a deadlock, and a whole-program static data-race detector is used to optimize the technique.
Follow-on work by the authors incorporates coarse-grained locking along with runtime profiling
to choose the granularity of locking for different memory accesses [Sengupta et al. 2015b]. Work
on region serializability for C has achieved good performance either through special-purpose
hardware [Lucia et al. 2010; Marino et al. 2010; Singh et al. 2011] or by requiring 2N cores to execute
an application with N threads [Ouyang et al. 2013].

Memory Model Safety. The notion of “safety” in the JMM disallows out-of-thin-air values [Manson
et al. 2005]. Recent work [Boehm and Demsky 2014] proposes a lightweight fencing mechanism to
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guarantee this notion of safety (for Java and C/C++) by preserving load-to-store orders. However,
that work does not empirically evaluate the cost of the proposal. Our work adopts and empirically
evaluates a stronger notion of safety for Java, which additionally preserves the program order of
instructions [Marino et al. 2015] and the atomicity of primitive types.

Weak Memory Model Performance. Finally, other work measures Java performance for weaker
memory models than SC. Demange et al. [2013] define a TSO-like memory model for Java. They
present a performance evaluation that uses the Fiji real-time virtual machine [Pizlo et al. 2010]
to translate Java code to C, which is then compiled with a modified version of the LLVM C
compiler [Marino et al. 2011] and executed on x86 hardware. Ritson and Owens [2016] modified the
HotSpot compiler’s code-generation phase for both ARM and POWER to experiment with different
platform-specific instruction sequences to implement the JMM.

8 CONCLUSION

This paper defines the volatile-by-default semantics as a natural way to make the memory
consistency model of Java and other JVM-based languages safe-by-default and performant-by-
choice. The volatile-by-default semantics protects most programmers from the vagaries of
relaxed-memory-model behavior by providing sequential consistency by default, while still allowing
expert programmers to avoid fence overheads on performance-critical libraries. We presented VBD-
HoTtSpoT, a modification of Oracle’s HotSpot JVM that enforces the volatile-by-default semantics
on Intel x86 hardware. To our knowledge this is the first implementation of SC for Java in the
context of a production JVM and hence the first realistic performance evaluation of the cost of
SC for Java. Our experiments indicate that while VBD-HoTSpoT incurs a significant performance
cost relative to the baseline HotSpot JVM for some programs, it can be a practical choice today for
certain application domains, notably big-data analytics and machine learning.

In our implementation of VBD-HoTSpoT we largely inherited the existing HotSpot optimizations
for volatile accesses. In future work we are interested to explore ways to optimize VBD-HoTSroT
to make the volatile-by-default semantics more widely applicable in practice. We also plan to
build and evaluate a volatile-by-default implementation of Java for ARM hardware by modifying
the Android runtime’s bytecode compiler.
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Appendix

After the publication of this paper in OOPSLA 2017, we found a bug in our
test configuration for the spark-perf benchmarks that caused incorrect flags
to be used for some JVM invocations As a result the published performance
numbers for these benchmarks under-count the performance cost of our technique.
(The published numbers for other benchmarks are accurate.) We have fixed
the bug and rerun all spark-perf tests, and the corrected results are in this
appendix.

Execution Time of spark-tests
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Figure A.1: Median execution time in seconds for spark-tests

As in the original paper, we ran Spark in standalone mode on a single
machine. The executor memory is 4GB and the driver memory is 1GB, with
a scale_factor of 0.05. The spark-perf framework runs each benchmark
multiple times and calculates the median execution time. We ran the spark-perf
framework for five invocations and calculated the average of the median execution
time.

Figure shows the median execution times for the eight spark-tests
benchmarks when run on the original HotSpot JVM as well as on VBD-HOTSPOT,

IThanks to David Devecsery for identifying this issue when attempting to replicate our
results.
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Figure A.2: Relative execution Time of VBD-HotSpot over the baseline JVM
for spark-tests

with 95% confidence intervals. This figure replaces Figure 5 from the original
paper. Figure shows the same results but as a relative execution time
of VBD-HOTSPOT over the baseline HotSpot JVM. The geometric mean of
the overhead of VBD-HOTSPOT is 79%, which is significantly higher than the
average overhead of VBD-HOTSPOT on the Da Capo benchmarks (see Figure
4). We surmise that the large overhead for Spark benchmarks is due Spark’s use
of the resilient distributed dataset (RDD) abstraction, which is an in-memory,
immutable data structure. Each Spark operation potentially incurs many memory
operations in order to read its input RDDs and write its output RDDs.

Figures[A.3|through[A.6|show the results for the m11ib benchmarks, replacing
Figures 6-9 from the original paper. Figure[A.7]shows these results in a histogram,
replacing Figure 10 from the original paper. The geometric mean of VBD-
HoTSPOT’s relative execution time is 1.67, or a 67% slowdown. These results
are consistent with those for the spark-tests benchmarks shown above.
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Figure A.3: Average of 10 median execution times in seconds with 95% confi-
dence intervals for m11ib-tests (part 1 of 4)
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Figure A.4: Average of 10 median execution times in seconds with 95% confi-
dence intervals for m11ib-tests (part 2 of 4)
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Figure A.5: Average of 10 median execution times in seconds with 95% confi-
dence intervals for m11ib-tests (part 3 of 4)
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Figure A.6: Average of 10 median execution times in seconds with 95% confi-
dence intervals for m11ib-tests (part 4 of 4)



Histogram and Cumulative % of Relative Execution Time
40 120.00%

36

35
100.00%100.00%
30
25 80.00%
25
> 70.59%
o
c
[}
> 20 18 60.00%
g 4.90% = Frequency
[ 16 .
—=—Cumulative %
15
40.00%
10
20.00%
5 3
2
ol m H
1 1.2 14 16 1.8 2 3 More

Relative Execution Time

Figure A.7: Histogram and cumulative % of relative execution time for
mllib-tests
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