
Accelerating Sequential Consistency for Java
with Speculative Compilation

Lun Liu
University of California, Los Angeles

USA
lunliu93@cs.ucla.edu

Todd Millstein
University of California, Los Angeles

USA
todd@cs.ucla.edu

Madanlal Musuvathi
Microsoft Research, Redmond

USA
madanm@microsoft.com

Abstract

A memory consistency model (or simply a memory model)
specifies the granularity and the order in which memory
accesses by one thread become visible to other threads in
the program. We previously proposed the volatile-by-default
(VBD) memory model as a natural form of sequential con-
sistency (SC) for Java. VBD is significantly stronger than
the Java memory model (JMM) and incurs relatively modest
overheads in a modified HotSpot JVM running on Intel x86
hardware. However, the x86 memory model is already quite
close to SC. It is expected that the cost of VBD will be much
higher on the other widely used hardware platform today,
namely ARM, whose memory model is very weak.
In this paper, we quantify this expectation by building

and evaluating a baseline volatile-by-default JVM for ARM
called VBDA-HotSpot, using the same technique previously
used for x86. Through this baseline we report, to the best
of our knowledge, the first comprehensive study of the cost
of providing language-level SC for a production compiler
on ARM. VBDA-HotSpot indeed incurs a considerable per-
formance penalty on ARM, with average overheads on the
DaCapo benchmarks on two ARM servers of 57% and 73%
respectively.

Motivated by these experimental results, we then present
a novel speculative technique to optimize language-level SC.
While several prior works have shown how to optimize SC
in the context of an offline, whole-program compiler, to our
knowledge this is the first optimization approach that is com-
patible with modern implementation technology, including
dynamic class loading and just-in-time (JIT) compilation.
The basic idea is to modify the JIT compiler to treat each
object as thread-local initially, so accesses to its fields can

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314611

be compiled without fences. If an object is ever accessed
by a second thread, any speculatively compiled code for
the object is removed, and future JITed code for the object
will include the necessary fences in order to ensure SC. We
demonstrate that this technique is effective, reducing the
overhead of enforcing VBD by one-third on average, and ad-
ditional experiments validate the thread-locality hypothesis

that underlies the approach.

CCS Concepts · Software and its engineering→ Con-

current programming languages; Just-in-time compil-

ers; Runtime environments.

Keywords memory consistency models, volatile by default,
sequential consistency, Java virtual machine, speculative
compilation

ACM Reference Format:

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2019. Accelerat-

ing Sequential Consistency for Java with Speculative Compilation.

In Proceedings of the 40th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI ’19), June 22ś

26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3314221.3314611

1 Introduction

A memory consistency model (or simply a memory model)
specifies the granularity and the order in which memory
accesses by one thread become visible to other threads in the
program. We recently proposed a strong memory model for
Java called volatile-by-default [20]. In this semantics, all vari-
ables are treated as if they were declared volatile, thereby
providing sequential consistency (SC) at the level of Java
bytecode. Specifically, all programs are guaranteed to obey
the per-thread program order, and accesses to individual
memory locations (including doubles and longs) are always
atomic. In contrast, the Java memory model (JMM) [22] only
provides these guarantees for programs that are data-race-
free, and it has a weak and complex semantics for programs
that contain data races.
The cost of the strong volatile-by-default semantics is a

loss of performance versus the JMM Ð the compiler must re-
strict its optimizations to avoid reordering accesses to shared
memory, and it must also insert fence instructions in the gen-
erated code to prevent the hardware from performing such
reorderings. This cost is relatively modest for a modified

16

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314611
https://doi.org/10.1145/3314221.3314611

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

version of Oracle’s HotSpot JVM running on Intel x86 hard-
ware [20], but the x86 memory model is already quite close
to SC. In particular, volatile reads do not require any hard-
ware fences in x86. As reads tend to far outnumber writes
in programs, it is reasonable to expect the overhead of the
volatile-by-default semantics to be much higher on weaker
memory models such as ARM and PowerPC, which require
fences for both volatile reads and writes.

In this paper, we quantify this expectation by building and
evaluating a baseline volatile-by-default JVM for ARM using
the same implementation technique as previously used for
x86 [20]. This new JVM, which we call VBDA-HotSpot, is
a modification of the ARM port of the HotSpot JVM from
OpenJDK8u1. Through this baseline we report, to the best
of our knowledge, the first comprehensive study of the cost
of providing language-level SC for a production compiler
on ARM. Motivated by these experimental results, we then
present a novel speculative technique to optimize language-
level SC and demonstrate its effectiveness in reducing the
overhead of VBDA-HotSpot. While several prior works have
shown how to optimize SC in the context of an offline, whole-
program compiler [17, 35, 38], to our knowledge this is the
first optimization approach that is compatible with modern
implementation technology, including dynamic class loading
and just-in-time (JIT) compilation. The implementations of
VBDA-HotSpot and the optimized version, called S-VBD,
are available on our GitHub repository: https://github.com/

Lun-Liu/schotspot-aarch64.

Baseline Overhead. Experiments on our baseline imple-
mentation, VBDA-HotSpot, show that the volatile-by-default
semantics incurs a considerable performance penalty on
ARM, as expected. However, we observe that the perfor-
mance overhead crucially depends on the specific fences
used to implement the volatile semantics. With the de-
fault fences that HotSpot employs to implement volatile
loads and stores on ARM, VBDA-HotSpot incurs average
and maximum overheads of 195% and 429% (!) on the Da-
Capo benchmarks [7] for a modern 8-core ARM server. But
employing an alternative choice of ARM fences reduces the
average and maximum overheads on that machine respec-
tively to 73% and 129%. We also find similar results on a
96-core ARM server, with VBDA-HotSpot incurring an av-
erage and maximum overhead of 57% and 157% with the
alternative fences.

Speculative Compilation. The overheads above motivate
the need to develop techniques to optimize language-level SC.
Prior work in this area has leveraged heavyweight, whole-
program analyses to eliminate fences, such as delay-set anal-
ysis [35] and object escape analysis [17, 38]. While that work
shows that such optimizations can provide low overheads
for language-level SC, they are not compatible with modern

1http://hg.openjdk.java.net/aarch64-port/jdk8u

virtual-machine technology, where classes are loaded dynam-
ically and code is optimized and compiled during execution.
Indeed, the HotSpot JVM already includes an escape analysis,
and VBDA-HotSpot does not insert fences for field accesses
of non-escaping objects, but the constraints of the JVM re-
quire this analysis to be fast and intraprocedural, thereby
limiting its effectiveness.

We propose a new optimization technique that, to the best
of our knowledge, is the first optimization for language-level
SC that is compatible with modern language features such
as JIT compilation and dynamic class loading. Like other
JIT-based optimizations, it is speculative. The basic idea is to
modify the JIT compiler to treat each object as safe initially,
meaning that accesses to its fields can be compiled without
fences. If an object ever becomes unsafe during execution,
any speculatively compiled code for the object is removed,
and future JITed code for the object will include the necessary
fences in order to ensure SC.
It is challenging to turn this high-level idea into an ef-

fective optimization. First, dynamic concurrency analyses
for Java are very expensive, so a direct application of these
analyses to track whether an object is safe would defeat the
purpose. For example, dynamic data-race detection would
provide the most precise notion of safe, but such analyses
for Java have average overheads of 8× or more [40].

Instead our approach treats an object as safe if it is thread-
local, i.e. accessed only by the thread that created it. While
this approach unnecessarily inserts fences on objects that
are shared but data-race-free, we hypothesize that many ob-
jects are thread-local, thereby allowing us to remove a large
percentage of fences. Our experimental evaluation shows
that this hypothesis is well founded. Further, we leverage
this approximate notion of safe to optimize its enforcement,
and in particular we develop an intraprocedural analysis
to remove many per-access thread-locality checks that are
provably redundant.

Second, our technique must properly account for memory
accesses that come from interpreted code as well as those
from JITed native code. We have chosen to always insert
fence instructions for memory accesses in interpreted code.
This approach trades some performance for implementation
simplicity, but since łhotž code will eventually get compiled
we expect the performance loss to be minimal. The memory
accesses from interpreted code must still be checked for
violations of thread locality in order to ensure correctness
of the JITed code.
Third, our approach must handle the case when some

instances of a class are thread-local and others are not. To
avoid having multiple compiled versions of a method, which
would cause code bloat and violate the existing constraints of
the HotSpot JVM, we choose a design where there is exactly
one compiled version per method. That is, as soon as any
instance of a class violates thread locality, all instances of

17

https://github.com/Lun-Liu/schotspot-aarch64
https://github.com/Lun-Liu/schotspot-aarch64
http://hg.openjdk.java.net/aarch64-port/jdk8u

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

the class will use the version of compiled code containing
fences.
Finally, once a violation of thread locality is detected for

some object, we require a low-complexity way to switch
from the fence-less to fence-ful versions of that object’s
code. We demonstrate that the HotSpot JVM’s deoptimization

capabilities can be adapted for this purpose. Specifically,
we use HotSpot’s dependency tracking mechanism to record
the compiled methods that may access objects of a given
class C. The first time that some instance of C is found to
violate thread locality, VBDA-HotSpot invokes HotSpot’s
deoptimization facility to safely pause all threads and remove
the compiled versions of all methods that depend on C before
resuming execution. If JIT compilation is later triggered on
any of these methods, the fence-ful version will be used. This
approach dramatically simplifies our implementation and
allows us to gain confidence in its correctness.

In addition to speculative compilation, we have devised an
orthogonal optimization that reduces the number of fences
required to enforce the volatile-by-default semantics for
ARM. We observe that some of the barriers inserted for
volatiles in Java are only there to prevent reorderings with
regular, non-volatile accesses. Hence in the volatile-by-
default setting, where all accesses are treated as volatile,
it is safe to eliminate some of these barriers, which in turn
eliminates some fence instructions in the generated code.

Our modified version of VBDA-HotSpot that employs the
speculative approach and the fence optimization is called
S-VBD. On the DaCapo benchmarks, S-VBD reduces the
overhead of enforcing the volatile-by-default semantics by
roughly 1/3, bringing the average overhead from 73% to
51% and from 57% to 37% on our two servers respectively.
Further, the maximum overhead over the baseline HotSpot
JVM reduces even more, from 129% to 78% and from 157% to
73% on the two machines. Finally, by isolating the portion of
S-VBD’s overhead due to the speculative checks, we are able
to validate the thread-locality hypothesis that underlies our
speculative technique.

In summary, this paper provides the first empirical mea-
surement of the cost of language-level SC for ARM in a pro-
duction Java compiler. We also describe the first optimization
approach for language-level SC that works within the con-
straints of the Java language and modern JVM technology,
and we demonstrate that it provides significant performance
improvements. Longer-term, the goal of this line of research
is to make the performance of strong language-level memory
models like volatile-by-default competitive even on weak
hardware.

2 A Volatile-by-Default JVM for ARM

This section presents and evaluates a baseline implementa-
tion of the volatile-by-default semantics for ARM, which we
call VBDA-HotSpot. We employ the same implementation

technique previously used to create VBD-HotSpot, a volatile-
by-default version of the HotSpot JVM for x86 [20]. The basic
idea is to treat all heap accesses in both the interpreter and
compiled code as if they were declared volatile. To our
knowledge this is the first comprehensive study of the cost
of language-level SC, for any language, on ARM.

2.1 Implementation

VBD-HotSpot [20] is a modification to the HotSpot JVM, ver-
sion 8u, to provide the volatile-by-default semantics on Intel
x86 hardware. That JVM does not have an ARM backend.
However, Oracle’s OpenJDK includes another project that is
a port of the HotSpot JVM to support the Linux/Aarch64 plat-
form (the 64-bit mode of the ARMv8Architecture). Therefore,
to create VBDA-HotSpotwe ported the platform-independent
portions of VBD-HotSpot to version 8u of that JVM2 and
then augmented it with the ARM-specific implementation of
the volatile-by-default semantics. This involves modifying
the JVM’s interpreter and JIT compiler, which we discuss in
turn.

Interpreter. The HotSpot JVM uses a template-based inter-

preter for performance reasons. In this style a TemplateTable
maps each bytecode instruction to a template, which is a set
of assembly instructions. Hence the interpreter is platform-
specific, requiring us to develop a new volatile-by-default
version for ARM.

We manually inspected the template instructions in the
ARM interpreter for the bytecodes that read from or write
to memory, such as getfield and putfield. The template
code for each bytecode checks the volatile attribute of the
given field and adds the necessary fences if the attribute is
set. In VBDA-HotSpot we have modified this template code
to unconditionally add the necessary fences, thereby treating
all memory reads and writes as volatile. Interestingly, the
template code for getfield already unconditionally adds the
necessary fences without checking the volatile attribute
of the field, so it did not require any modification.
As in VBD-HotSpot [20] we also treat accesses to array

elements as volatile by inserting the appropriate fences
in the template code for the corresponding bytecodes, such
as aaload and aastore. Array accesses are the primary rea-
son that VBDA-HotSpot requires modifying the JVM and
cannot be implemented as a source-to-source or bytecode-
to-bytecode transformation, as there is no way in the Java
language or bytecode to declare array elements as volatile.
To implement the semantics of volatile on ARM, the

interpreter must insert a load-load and load-store barrier
after a volatile load, providing acquire semantics for the
load; a store-store barrier and a load-store barrier before a
volatile write, providing release semantics for the write;
and a store-load barrier after a volatile write. The inter-
preter uses ARM’s dmb (data memory barrier) instruction for

2http://hg.openjdk.java.net/aarch64-port/jdk8u

18

http://hg.openjdk.java.net/aarch64-port/jdk8u

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

this purpose. In particular, it needs a dmb ishld instruction
to enforce acquire semantics after a load, dmb ish to enforce
release semantics before a store, and dmb ish to enforce
store-load dependencies after a store.
However, the baseline HotSpot JVM has a bug of insert-

ing an overly weak barrier before volatile writes in the
interpreter. Specifically it inserts a dmb ishst instruction,
which performs a store-store barrier but not also a load-store
barrier; obtaining both barriers instead requires a dmb ish

instruction.3 We have fixed this bug and use the fixed ver-
sion of the baseline HotSpot JVM in all of our experiments.
Interestingly, the use of dmb ishst before writes suffices for
VBDA-HotSpot, because the preceding memory operation
must end in a dmb ish (for stores) or a dmb ishld (for loads),
both of which act as load-store barriers.

Server Compiler. VBD-HotSpot provides a volatile-by-default
version of HotSpot’s server compiler, which performs ag-
gressive optimizations. In VBD-HotSpot all memory-access
nodes in the HotSpot compiler’s intermediate representation
(IR), called the ideal graph, are treated as volatile by un-
conditionally including appropriate memory-barrier nodes
before and after them. This has the effect of restricting down-
stream compiler optimizations and causing the necessary
hardware fences to be inserted during code generation. VBD-
HotSpot adds memory-barrier nodes to all memory accesses,
including accesses to array elements. Because the modifica-
tions to the compiler were made in HotSpot’s IR, they are
platform-independent. Therefore, we simply ported those
modifications to the version of HotSpot that supports ARM.

By default, HotSpot performs an optimization to identify
volatile loads and stores in the ideal graph and implement
them with aarch64’s ldar and stlr instructions, in order to
respectively obtain acquire semantics for a load and release
semantics for a store with a single instruction. These one-
way fence instructions were introduced in ARMv8 in part in
order to support volatile accesses more efficiently [4]. If
the backend cannot identify that a memory-barrier node is
part of a volatile read or write, it employs the regular two-
way fence instruction (dmb) for that node as described above
for the interpreter. The HotSpot JVM also includes a flag
-XX:+UseBarriersForVolatile to turn off the optimiza-
tion and force the compiler to always use dmb instructions
to implement memory barriers. VBDA-HotSpot’s implemen-
tation is independent of the backend and so we can employ
and evaluate both approaches.

Intrinsics. The HotSpot interpreter and compiler rely on
many intrinsics, which are custom implementations for com-
mon library routines such as arithmetic and string opera-
tions. We manually examined all of the intrinsics for ARM

3This bug has been confirmed and fixed by the developers: http://hg.openjdk.

java.net/jdk/jdk/rev/e2fc434b410a

and inserted the necessary fences around memory accesses
to ensure the volatile-by-default semantics.

Correctness. VBD-HotSpot includes a suite of litmus tests,
such as a version of Peterson’s lock, that sometimes exhibit
non-SC behavior under the unmodified HotSpot JVM. We
added several more litmus tests to this suite that can ex-
pose ARM’s weaker behaviors [31]. In total we have 14 lit-
mus tests, and for each test we have a version using ob-
jects and a version using arrays. These tests are also avail-
able on our GitHub repository: https://github.com/Lun-Liu/

schotspot-aarch64/tree/master/litmustests. We use this suite
to gain confidence in our implementation by ensuring that
the non-SC behaviors never occur under VBDA-HotSpot.
These litmus tests are also used to gain confidence in the
S-VBD implementation described in Section 3.

2.2 Performance Evaluation

We compared the performance of VBDA-HotSpot to that of
the baseline JVM on several benchmark suites. We ran exper-
iments on two multicore 64-bit ARM servers: machine A has
8 Cortex A57 cores, 16G memory, and is running openSUSE
Tumbleweed; machine B has 2 Cavium ThunderX CN8890
CPU (96 cores in total), 128G memory, running Ubuntu 16.04.

2.2.1 DaCapo Benchmarks

The DaCapo benchmark suites are a widely used set of Java
applications to evaluate Java performance [7]. We use the
latest maintenance release (9.12-MR1) of the DaCapo bench-
marks from January 2018. Among all tests, we remove batik
which fails on the baseline aarch64 port of OpenJDK 8u (even
without any of our modifications), tradesoap which fails
periodically, apparently due to an incompatibility with the
-XX:-TieredCompilation flag that VBDA-HotSpot requires
(as discussed below)4, and tomcat due to a problem unre-
lated to DaCapo5. We also replace lusearch with the new
lusearch-fix benchmark that includes a bug fix, as recom-
mended by the authors of the DaCapo benchmarks in their
latest release.
We used the default workload and thread numbers for

each benchmark. We employed an existing methodology for
Java performance evaluation [13]. In each JVM invocation
we ran a benchmark for 15 warm-up iterations and then
calculated the average running time of the next five itera-
tions. We ran five invocations of each benchmark using this
process and calculated the average of these per-invocation
averages. Finally we calculated the relative execution time
of each benchmark using the average of the averages and
then calculated the geometric mean of the relative execution
times over all benchmarks.

4https://bugs.openjdk.java.net/browse/JDK-8067708
5https://bugs.openjdk.java.net/browse/JDK-8155588

19

http://hg.openjdk.java.net/jdk/jdk/rev/e2fc434b410a
http://hg.openjdk.java.net/jdk/jdk/rev/e2fc434b410a
https://github.com/Lun-Liu/schotspot-aarch64/tree/master/litmustests
https://github.com/Lun-Liu/schotspot-aarch64/tree/master/litmustests
https://bugs.openjdk.java.net/browse/JDK-8067708
https://bugs.openjdk.java.net/browse/JDK-8155588

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

0

20000

40000

60000

80000

100000

120000

140000

160000

avrora eclipse h2 jython tradebeans

E
x

e
cu

ti
o

n
 T

im
e

 i
n

 m
s

Execution Time Of DaCapo Benchmark (1)

Baseline JVM Baseline JVM with -XX:+UseBarriersForVolatile

VBDA-HotSpot VBDA-HotSpot with -XX:+UseBarriersForVolatile

Figure 1. Absolute execution time of VBDA-HotSpot and
baseline JVM for DaCapo benchmarks on machine A.

0

2000

4000

6000

8000

10000

12000

fop luindex lusearch-fix pmd sunflow xalan

E
x

e
cu

ti
o

n
 T

im
e

 i
n

 m
s

Execution Time Of DaCapo Benchmark (2)

Baseline JVM Baseline JVM with -XX:+UseBarriersForVolatile

VBDA-HotSpot VBDA-HotSpot with -XX:+UseBarriersForVolatile

Figure 2. Absolute execution time of VBDA-HotSpot and
baseline JVM for DaCapo benchmarks on machine A.

Figures 1 and 2 show the execution time in ms for the
baseline JVM and VBDA-HotSpot on machine A. The er-
ror bars show 95% confidence intervals. We use the flag
-XX:-TieredCompilation in all versions in order to turn off
tiered compilation, which employs multiple compilers, since
we have only modified the server compiler to respect the
volatile-by-default semantics. We have verified that for the
baseline HotSpot JVM, there is very little performance dif-
ference with and without tiered compilation on the DaCapo
benchmarks.
The figures show that for the baseline JVM, the perfor-

mancewith orwithout the -XX:+UseBarriersForVolatile
flag is almost the same (1% difference). However, VBDA-
HotSpot is much faster with the flag than without it, even
though the new one-way fences are intended to improve
the performance of volatile accesses. On further investi-
gation, we identified two causes for this counter-intuitive
behavior. First, we ran some microbenchmarks and were
not able to identify any performance improvement of the
acquire-release operations over the use of memory barriers.

1.50

2.52

3.21

3.87 3.81

5.29

2.80

1.72

3.57

2.65

3.41

2.95

1.33

2.04
2.20

2.05

2.37

2.67 2.63

1.23

3.53

1.88
1.96

2.09

1.28

1.73

1.91

1.69

2.05

2.29 2.22

1.18

1.92

1.45

1.66
1.73

1.00

2.00

4.00

8.00

avro
ra

ecl
ip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

arc
h-fi

x
pm

d

su
nflo

w

tr
adebeans

xal
an

geom
ean

Relative Execution Time over Baseline HotSpot

VBDA-HotSpot

VBDA-HotSpot - Fix One Way Fence

VBDA-HotSpot with -XX:+UseBarriersForVolatile (Two Way Fences)

Figure 3. Relative execution time of VBDA-HotSpot, VBDA-
HotSpot with bug fix for one way fences, VBDA-HotSpot
with two way fences on machine A, y-axis in logarithmic
scale.

So it appears that the ARM hardware that we use is still
not exploiting the release-acquire semantics of the one-way
fence instructions in their implementation.

Second, HotSpot’s support for these instructions does not
seem to be mature. For instance, these new instructions do
not (yet) support offset-based addressing, so the compiler
often requires an additional register to use these instructions.
As has been reported by others, this adversely interacts with
the current register-allocation heuristics of HotSpot.6 Fix-
ing those heuristics as suggested in the bug report makes a
dramatic difference, as shown in Figure 3, reducing the aver-
age overhead of VBDA-HotSpot versus the baseline HotSpot
JVM from 195% to 109%. However, the version with two-way
fences is still significantly faster, with an average overhead
of 73%. Therefore, in the rest of the paper we report numbers
with the -XX:+UseBarriersForVolatile flag for VBDA-
HotSpot.
The first series in Figures 4 and 5 respectively shows the

relative execution time of VBDA-HotSpot over the baseline
HotSpot JVM on machine A and machine B (for machine
A these are the same numbers as shown in the last series
in Figure 3). The geometric mean of the relative execution
time shows an average overhead of 73% for DaCapo bench-
marks, with a maximum overhead of 129% for luindex on
machine A, and an average overhead of 57% with a maximum
overhead of 157% for machine B.

To better understand the overhead of VBDA-HotSpot, we
also implemented an łx86-likež version of VBDA-HotSpot
that inserts the store-load barriers after each store but re-
moves all other barriers in the interpreter, in the intrinsics
implementations, and in the ideal graph for the compiler.
The second series in Figures 4 and 5 respectively shows the

6https://bugs.openjdk.java.net/browse/JDK-8183543

20

https://bugs.openjdk.java.net/browse/JDK-8183543

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

1.28

1.73

1.91

1.69

2.05

2.29
2.22

1.18

1.92

1.45

1.66
1.73

1.15

1.41 1.42

1.24

1.41

1.78

1.65

1.09

1.38

1.20

1.30
1.35

1.00

2.00

4.00

avro
ra

ecl
ip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

arc
h-fi

x
pm

d

su
nflo

w

tr
adebeans

xal
an

geom
ean

Relative Execution Time over Baseline JVM

Machine A VBDA-HotSpot Machine A x86-like

Figure 4. Relative execution time of VBDA-HotSpot and
x86-like VBDA-HotSpot over baseline JVM for DaCapo on
machine A, y-axis in logarithmic scale.

1.21

1.63

1.79

1.54

1.85

2.57

1.65

1.09

1.84

1.36

1.22

1.57

1.20

1.50

1.63

1.40

1.60

2.32

1.54

1.09

1.61

1.25
1.22

1.46

1.00

2.00

4.00

avro
ra

ecl
ip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

arc
h-fi

x
pm

d

su
nflo

w

tr
adebeans

xal
an

geom
ean

Relative Execution Time over Baseline JVM

Machine B VBDA-HotSpot Machine B x86-like

Figure 5. Relative execution time of VBDA-HotSpot and
x86-like VBDA-HotSpot over baseline JVM for DaCapo on
machine B, y-axis in logarithmic scale.

relative execution time of this x86-like VBDA-HotSpot over
the baseline JVM on machine A and machine B.

The x86-like VBDA-HotSpot results in average and maxi-
mum overheads of 35% and 78% for DaCapo on machine A,
and average and maximum overheads of 46% and 132% for
machine B. In other words, the additional fences on reads
required by VBDA-HotSpot only double the overhead versus
the x86-like version, despite the fact that reads dominate
writes in typical programs. The x86-like implementation
must insert a full fence, dmb ish, after a volatile write to
implement the store-load barrier, so it seems that additional
fences do not incrementally add much overhead.

2.3 Scalability Experiments

We also performed experiments on both machine A and ma-
chine B to understand how the overhead of VBDA-HotSpot
changes with the number of threads/cores available, as an in-
dication of how the cost of volatile-by-default may change as

0.5

1

2

4

0 20 40 60 80 100 120

Threads

Relative Execution Time of VBDA-HotSpot

h2

lusearch

sunflow

xalan

Figure 6. The relative cost of VBDA-HotSpot with different
numbers of threads/cores on machine B. lusearch does not
support running with 96 threads, y-axis in logarithmic scale.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

E
x

e
cu

ti
o

n
 T

im
e

 i
n

 m
s

Threads

Absolute Execution Time

xalan-HotSpot xalan-VBDA

Figure 7. The execution time of VBDA-HotSpot and baseline
JVM running xalan with different numbers of threads/cores
on machine B.

processors introduce more cores. Since committing a mem-
ory operation involves inter-core communication (e.g., co-
herence messages) and fences require a core to stall until all
prior operations have committed, one may expect the over-
head of the volatile-by-default approach to increase with
the number of cores. We previously showed that in fact the
relative overhead of volatile-by-default decreases or stays
the same as the number of cores increases on x86 [20], ap-
parently because of the additional cost of regular loads and
stores, but we were interested to investigate whether the
same would hold true on the weaker ARM platform.
Machine A has 4 sockets, each with 2 cores. Machine B

has 2 sockets, each with 48 cores. For these experiments we
used the -t option in DaCapo to set the number of exter-
nal threads for each test and Linux’s taskset command to
pin execution to certain cores. We choose the benchmarks
in DaCapo which exhibit external concurrency, namely h2,
lusearch-fix, sunflow, xalan.

21

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1.69

2.48

1.91

1.73

1.93
1.84

2.49

1.90
1.78

1.98

1.00

2.00

4.00

h2 lusearch-fix sunflow xalan geomean

Relative Execution Time of VBDA-HotSpot over Baseline JVM

Cross Socket In Socket

Figure 8. The cost of VBDA-HotSpot cross-socket and
within socket on machine A, y-axis in logarithmic scale.

Experiments on both machines show a similar trend as in
the prior x86 work: as the number of driver threads/cores
increases, the relative overhead of VBDA-HotSpot stays the
same or decreases modestly. The results of our experiment
on machine B are shown in Figure 6; the results for machine
A are similar. The figure shows how the relative execution
time of VBDA-HotSpot changes with different numbers of
external threads. Interestingly, VBDA-HotSpot is faster than
the baseline HotSpot JVM for the xalan benchmark at 36
and 48 cores. Plotting the absolute execution times, as shown
in Figure 7, we see that the baseline JVM stops scaling after
24 threads while VBDA-HotSpot stops at 48 threads.
Cross-socket memory accesses tend to be more expen-

sive than within-socket accesses. To understand how the
additional fences of VBDA-HotSpot affect this trend, we per-
formed an experiment to measure the relative performance
difference for VBDA-HotSpot when running on cores within
the same socket versus on cores across sockets. We ran the
DaCapo benchmarks with 2 driver threads in two different
configurations: one using cores 0 and 1, which are on the
same socket, and one using cores 0 and 2, which are on dif-
ferent sockets. Figure 8 shows the relative execution times
for each configuration on VBDA-HotSpot versus that same
configuration executed on the baseline JVM. From the results
we can see that the relative overhead of VBDA-HotSpot in
the multiple-sockets configuration is the same or slightly
lower than that in the single-socket configuration. These
results are again consistent with the earlier experiments on
x86 [20].

2.4 Spark Benchmarks

Finally, we tested VBDA-HotSpot’s performance on big data
and machine learning benchmarks for Apache Spark [41]. As
in priorwork [20]we use the spark-tests and mllib-tests

benchmarks from the spark-perf repository7 provided by
Databricks.
We ran Spark in standalone mode on a single machine,

which reduces the latency of network communication versus
running Spark on a cluster. Therefore, this experiment shows
the worst-case cost. The executor memory is set to 4GB and
the driver memory is set to 1GB. We also use a scale factor of
0.005 for workloads to adapt for single-machine execution.
The spark-perf framework runs each benchmark multiple
times and calculates the median execution time. We ran the
spark-perf framework for 5 invocations and calculated the
average of the median execution times of each test.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

45

50

1.00 1.25 1.50 1.75 2.00 3.00 5.00 More

F
re

q
u

e
n

cy

Relative Execution Time

Histogram and Cumulative % of Spark tests

Machine A

Frequency

Machine B

Frequency

Machine A

Cumulative %

Machine B

Cumulative %

Figure 9. Histogram and cumulative % of relative execution
time of VBDA-HotSpot for Spark benchmarks.

Figure 9 summarizes the results in a histogram. For ex-
ample, the second gray bar from the left indicates that on
Machine A there are 5 benchmarks that incur a relative ex-
ecution time between 1.00 (exclusive) and 1.25 (inclusive).
We omitted four benchmarks that failed on the original JVM
(als, kmeans, gmm, and pic). The geometric mean of VBDA-
HotSpot’s relative execution time onMachine A andMachine
B is 2.03 and 1.85 respectively, representing a 103% and 85%
overhead over the baseline HotSpot JVM. These results are
consistent with those found for VBD-HotSpot in the prior
work[20].8 We suspect that the high overhead for Spark tests
versus the DaCapo benchmarks is due to the many array
reads and writes that are necessary to implement Spark’s key
data structure, the resilient distributed dataset (RDD) [41]. In-
deed, on a version of VBDA-HotSpot that (unsoundly) omits
fences for array-element accesses, the average overhead of
the Spark benchmarks on Machine A is reduced from 103%
to 46%.

7The original repository is at https://github.com/databricks/spark-perf.

We used an updated version that is compatible with Apache Spark 2.0 at

https://github.com/a-roberts/spark-perf.
8See the appendix in the updated version of the paper at http://web.cs.ucla.

edu/~todd/research/oopsla17.pdf.

22

https://github.com/databricks/spark-perf
https://github.com/a-roberts/spark-perf
http://web.cs.ucla.edu/~todd/research/oopsla17.pdf
http://web.cs.ucla.edu/~todd/research/oopsla17.pdf

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

3 Speculative Compilation

As shown in the previous section, the baseline implementa-
tion of the volatile-by-default semantics for Java incurs con-
siderable overhead on a weak platform like ARM. Therefore,
we have designed and implemented an alternative approach
to enforcing the volatile-by-default semantics in the JVM,
which we call speculative compilation. The basic idea is to
modify the JIT compiler to treat each object as safe initially,
meaning that accesses to its fields can be compiled without
fences. If an object ever becomes unsafe during execution,
any speculatively compiled code for the object is removed,
and future JITed code for the object will include the necessary
fences in order to ensure SC. We call the version of HotSpot
that uses this approach to ensuring the volatile-by-default
semantics S-VBD.

3.1 Design Overview

Several design decisions must be made to turn the above
high-level idea into a concrete approach that in fact provides
performance improvements.

First, the notion of safe must be instantiated. It must cap-
ture a large percentage of objects at runtime to reduce the
overhead of volatile-by-default semantics, but the cost of
checking safety should not mask the achieved savings. The
most precise approach would be to convert an object from
safe to unsafe only when a data race is detected on that object.
However, dynamic data-race detection is quite expensive,
so employing it would erase any performance advantage of
this approach over the implementation of volatile-by-default
described in the previous section.
Instead, we treat an object as safe if it is thread-local: all

accesses to the object’s fields occur on the thread that created
the object. This definition is motivated by the expectation
that many objects will be single-threaded throughout their
lifetime. These include non-escaping objects that are not
allocated in the stack due to the imprecision in HotSpot’s
escape analysis, and objects that are reachable from global
data structures but are nevertheless logically thread-local.
VBDA-HotSpot unnecessarily incurs the cost of fences for
these objects.
To track this notion of safety, it suffices to record the ID

of the thread that creates each object. Whenever an object’s
field is accessed, we compare the recorded ID to the ID of
the current thread, in order to decide whether the object can
still be treated as safe or not. Once an object becomes unsafe
it remains so for the rest of its lifetime, so no more checking
is required.
Even though checking thread locality is much less ex-

pensive than checking for data races, the runtime overhead
would be prohibitive if we do this check on every field access.
However, a key property of the way we define thread local-
ity is that many of these checks can be statically eliminated.
Specifically, the check whether an object is created by the

current thread is invariant throughout a method since all
accesses in a method are executed by the same thread. There-
fore, we can safely replace multiple per-access checks to an
object with a single check at the beginning of the method.
Note that this is sound even if an object becomes non-thread-
local in the middle of a method Ð the second thread that
accesses the object will force a decompilation of this method.
We have implemented an intraprocedural analysis in S-VBD
that performs this optimization for the receiver object this
of each method.
Second, speculative compilation requires that we have

both a slow and fast version of each method, respectively
with and without fences inserted. The most precise approach
would be to keep track of the appropriate version on a per-
object basis. However, to vastly simplify our implementation
we instead switch on a per-class basis. That is, as soon as
any instance of class C becomes unsafe, we switch to the slow
version of C’s compiled methods, and this version is used for
all instances of the class. This approach ensures that only
a single version of C’s compiled code is active at any given
point in time, which accords with a constraint in the original
HotSpot JVM.
Third, we must decide how to switch from safe to unsafe

mode in a correct and low-complexity way. We observe that
the HotSpot JVM already has support for deoptimization

of compiled methods, which is used when an assumption
about a method (e.g., that no method overrides it) is violated
(e.g., when a new class is dynamically loaded). We show
how to leverage this capability for our purpose. Specifically
we use HotSpot’s dependency tracking mechanism to record
the speculatively compiled fast methods that may access
fields of objects of a given class C. The first time that some
instance of C is found to be unsafe, S-VBD invokes HotSpot’s
deoptimization facility to safely pause all threads and remove
the compiled versions of all methods that depend on C before
resuming execution. If JIT compilation is later triggered on
any of these methods, the slow versions will be used.
Finally, we have described our design for accesses to the

fields of an object. Conceptually this speculative approach
could also be used for accesses to static fields and array ele-
ments. However, to reduce implementation complexity we
currently treat these accesses exactly as in VBDA-HotSpot.
Specifically, we unconditionally insert the appropriate mem-
ory barriers for these accesses to ensure the volatile se-
mantics. We also unconditionally insert fences for intrinsics
as in VBDA-HotSpot.

3.2 Implementation

Implementing this design is non-trivial: both the JIT com-
piler and the interpreter must be updated to perform safety
checks, and fast code must never be executed after a relevant
safety check fails, even when that failure happens on an-
other thread. This subsection describes our implementation
in detail.

23

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

compile(m) {

if(m.class.mode==fast) {

compile fast_version(m);

critical_section_begin;

if(m.class.mode != fast)

abort_compilation ();

else

register_compiled_method ();

critical_section_end;

}

else {

compile slow_version(m);

register_compiled_method ();

}

}

Figure 10. Just-in-time compilation of a method.

To simplify the presentation, we first describe our imple-
mentation under the assumption that all field accesses are
of the form this.f. If that is the case, then it suffices to
replace all per-field-access checks with a single check of the
this object at the beginning of each method. As mentioned
above, we have implemented an intraprocedural analysis
at class-load time that performs this optimization. We then
describe the more general case where per-field-access checks
are required in the next subsection.
To determine whether an object is safe, we add another

word in each object header which contains the ID of the
thread that created the object. Therefore the safety check
simply compares this value to the ID of the current thread.
We also must remember whether a class is using the fast

or slow versions of its methods; we add a flag to HotSpot’s
VM-level representation of each class for this purpose.

Figure 10 shows what happens when a method gets łhotž
enough and is chosen to be compiled. We check whether
the method’s class is in fast or slow mode and compile the
corresponding version of the method. After compilation of
the fast version we check the class’s mode again. If the class’s
mode has changed, it means that some object of the class
has been found to be unsafe on another thread in the mean-
while, so we abort the compilation. Otherwise we register
the compiled method for subsequent execution. (If there
are inlined methods we also need to re-check their classes’
modes before registering the compiled method.) The process
of checking the mode again and registering the compiled
method is atomic so there is no potential for time-of-check
time-of-use errors.

Figure 11 provides pseudocode for the two versions of each
compiled method. The slow version is simply the method
with all fences added, as in the baseline volatile-by-default
approach. The fast version first performs the safety check. If
the method’s receiver object is still safe, then its method body

slow_version(m) {

vbd(m.body);

}

fast_version(m) {

if (curr_thread == this.creator_thread)

m.body;

else

switch_to_slow(this.class);

}

switch_to_slow(C) {

critical_section_begin;

if(C.mode == slow)

return;

C.mode = slow;

deoptimize_to_slow(C);

critical_section_end;

}

Figure 11. The slow and fast versions of a method.

interpreter_version(m) {

if (this.class.mode == fast &&

curr_thread != this.creator_thread) {

switch_to_slow(this.class);

}

slow_version(m);

}

Figure 12. The interpreted version of a method.

is executed, without requiring any added fences. Otherwise,
all compiled methods of this’s class must be invalidated to
be recompiled in their slow versions.

The switch_to_slow pseudocode in the figure illustrates
the latter process. We first change the mode of the given class
C to slow. The deoptimize_to_slow function (definition not
shown) then leverages the HotSpot JVM’s existing mecha-
nism for deoptimization to invalidate all compiled methods
that depend upon C, which includes the methods of C and its
superclasses, as well as any methods in which one of these
methods is inlined. This function also changes the mode
of all of C’s superclasses to slow. The deoptimize_to_slow
function is implemented as a łVM operationž in the HotSpot
JVM, which causes all other threads to be stopped before its
execution so that it can safely invalidate compiled methods.
Also, we make the switch_to_slow function shown in Fig-
ure 11 atomic to prevent multiple threads from deoptimizing
the same methods and to prevent the compile function in
Figure 10 from concurrently registering any fast methods
for class C.

24

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

Finally, we describe modifications to the HotSpot inter-
preter. As in VBDA-HotSpot, the interpreter always includes
the additional fences necessary to ensure the volatile-by-
default semantics. However, we additionally must perform
the check at the beginning of each method that the receiver
object is safe, and if not then all compiled methods that de-
pend on the object’s class must be deoptimized. Pseudocode
is shown in Figure 12.

3.3 Implementing Per-Access Checks

The above description assumed that all field accesses are of
the form this.f, but Java allows field accesses to arbitrary
objects (e.g., for fields that are declared public). For objects
other than this S-VBD performs safety checks on a per-field-
access basis. This subsection describes how such checks are
implemented.

As mentioned earlier, at class-load time an intraprocedural
analysis identifies field accesses whose receiver object is
definitely this, so we can avoid checks on these accesses.
The analysis also rewrites all other getfield bytecodes in
themethod to a new check_getfield bytecode that we have
defined in S-VBD, and similarly for all other putfields in
the method. Later, whenever a check_getfield bytecode is
encountered during interpretation or compilation, we simply
treat it as if it were an inlined call to a getter method on the
receiver object. That is, we follow exactly the scheme shown
in the previous subsection, except that the various checks
are inlined into the method containing the check_getfield
bytecode. Similarly, a check_putfield bytecode is treated
as an inlined call to a setter method.
Making this approach work requires one addition to the

scheme shown earlier. If a field of class D is accessed by
method m of class C, then we must make sure to deoptimize
C.m whenever class D is deoptimized. Otherwise, the com-
piled version of C.m will still be using the fast version of the
field access even after D has been switched to slow mode.
To do this we record a dependency of the method C.m on
class Dwhenever we encounter such a field access, extending
the dependency-tracking mechanism that HotSpot uses for
deoptimization as described earlier.

3.4 Optimizing Fence Insertion

In addition to speculative compilation, we implemented an
orthogonal optimization that reduces the number of fences
required to enforce the volatile-by-default semantics for
ARM. The first two rows of Table 1 show the memory barri-
ers required before and/or after a volatile memory access
in Java, as described in the JMM Cookbook [16], and the cor-
responding ARM instructions used to achieve those barriers
in HotSpot. For example, a volatile load requires a Load-
Load and LoadStore barrier after it, which is implemented
by a dmb ish ld instruction in ARM.

The baseline implementation of VBDA-HotSpot, which
uses the approach of Liu et al. [20], simply inherits this imple-
mentation strategy for volatiles from HotSpot. However,
we observe that some of the barriers are only there to prevent
reorderings between volatile and non-volatile accesses.
Hence in the volatile-by-default setting, where all accesses
are treated as volatile, it is safe to eliminate some of these
barriers, which in turn eliminates some unnecessary fence
instructions in the generated code.

The last two rows in Table 1 show our optimized approach.
The implementation of VBD loads is the same as that for
volatile loads in Java. However, a VBD store does not re-
quire a preceding LoadStore fence, due to the LoadStore
fence after each VBD load. Further, in place of the StoreStore
fence that precedes a volatile store, it is equivalent in VBD
to move this fence after each store, since there are no non-
volatile stores. The result is that we have eliminated the
need for any memory barriers before a VBD store. Further,
while we have added a StoreStore barrier after a VBD store,
the corresponding implementation of the required barriers
in ARM remains the same, namely the use of a full fence dmb
ish.
We implemented this optimized strategy, which we call

VBD-Opt, in S-VBD. For the interpreter, we changed the bar-
riers inserted as described above. For the server compiler, for
simplicity of implementation we keep the original VBD de-
sign at the IR level, so compiler optimizations must respect
all of the original memory barriers. However, during the
code generation phase, we eliminate the dmb ish instruc-
tion before each store.

3.5 Performance Evaluation

3.5.1 DaCapo Benchmarks

Wemeasured the peak performance of S-VBD for the DaCapo
benchmarks using the same methodology as in the previous
section. The fourth series in Figures 13 and 14 shows the
overhead of our approach over the baseline HotSpot JVM
on machine A and machine B. The geomean overhead of
the S-VBD approach is respectively 51% and 37% for the
two machines, which is a significant improvement over the
geomean overheads of the original VBDA-HotSpot (the first
series in the figures) at 73% and 57%. Also, the maximum
overhead across all benchmarks respectively reduces from
129% to 78% and from 157% to 73%.

Figures 13 and 14 also isolate the effect of each of our
optimizations: the second series shows the relative perfor-
mance when using just speculative compilation, and the
third series shows the relative performance when using just
the VBD-Opt fence optimization. On its own each optimiza-
tion provides a considerable performance improvement, but
speculative compilation clearly is the more effective opti-
mization. As the fourth series shows, together they are even

25

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 1. The implementation for volatile accesses on ARM in HotSpot (first two rows). An optimized implementation for
memory accesses on ARM in S-VBD (last two rows).

Barriers Needed Before Barriers Needed After Aarch64 Instruction Sequences

volatile load None LoadLoad and LoadStore
ldr

dmb ish ld ; wait for load

volatile store LoadStore and StoreStore StoreLoad
dmb ish ; full fence

str

dmb ish ; full fence

VBD Load None LoadLoad and LoadStore
ldr

dmb ish ld ; wait for load

VBD Store None StoreLoad and StoreStore
str

dmb ish ; full fence

1.28

1.73

1.91

1.69

2.05

2.29
2.22

1.18

1.92

1.45

1.66
1.73

1.28

1.86

1.74

1.49

1.85

1.60

1.51

1.19

1.59

1.42

1.51 1.53

1.25

1.64

1.78

1.61

1.88

2.22

2.08

1.15

1.84

1.41

1.60
1.65

1.26

1.78

1.68

1.47

1.74

1.62

1.49

1.15

1.66

1.42
1.46

1.51

1.00

2.00

4.00

avrora eclipse fop h2 jython luindex lusearch-fix pmd sunflow tradebeans xalan geomean

Relative Execution Time over Baseline JVM

VBDA VBDA + Speculative Compilation VBDA + VBD-Opt S-VBD

Figure 13. Relative execution time of VBDA + speculative compilation, VBDA + VBD-Opt, S-VBD over the baseline JVM
compared to VBDA-HotSpot on machine A, y-axis in logarithmic scale.

1.21

1.63

1.79

1.54

1.85

2.57

1.65

1.09

1.84

1.36

1.22

1.57

1.22

1.78
1.72

1.39

1.79
1.74

1.27

1.09

1.38

1.26

1.32

1.43

1.13

1.52

1.67

1.39

1.67

2.36

1.48

1.08

1.76

1.24
1.28

1.47

1.19

1.73

1.63

1.27

1.59
1.66

1.23

1.07

1.35

1.27

1.21

1.37

1.00

2.00

4.00

avrora eclipse fop h2 jython luindex lusearch-fix pmd sunflow tradebeans xalan geomean

Relative Execution Time over Baseline JVM

VBDA-HotSpot VBDA + Speculative Compilation VBDA + VBD-Opt S-VBD

Figure 14. Relative execution time of VBDA + speculative compilation, VBDA + VBD-Opt, S-VBD over the baseline JVM
compared to VBDA-HotSpot on machine B, y-axis in logarithmic scale.

more beneficial in terms of reducing the overhead of the
volatile-by-default semantics.

Finally, speculative compilation’s use of deoptimization
is likely to impair startup performance. We measured the

startup performance of both VBDA-HotSpot and S-VBD us-
ing the methodology described by Georges et al. [13]. We
run n invocations of each benchmark, each time measuring
the execution time of one iteration, until either the confi-
dence interval for the sampled times is less than 2% of the

26

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

average execution time or until n is 30. We discard the first
JVM invocation of each benchmark because it might change
some system state such as dynamically loaded libraries or
the data cache. Finally, we report the average execution time
and confidence interval for each benchmark and calculate
the relative execution time of each benchmark using these
averages.
The relative startup performance of VBDA-HotSpot and

S-VBD compared to the baseline HotSpot JVM is shown in
Figure 15. The confidence interval of each benchmark is less
than 5% of the average execution time after 30 invocations.
As expected, the use of deoptimization causes S-VBD to have
a significantly higher impact on startup performance than
VBDA-HotSpot.

3.5.2 CheckOnly Overhead

To further understand the overheads of S-VBD, we imple-
mented a check-only version, which performs all of the safety
and mode checks as described above but never deoptimizes
any methods. Note that this check-only version also keeps
all barriers for array accesses and intrinsics. Figure 16 shows
the relative execution time of this version versus the baseline
HotSpot JVM on machine A and machine B. The experiment
shows that the cost of the checks required by the speculative
approach is considerable, on its own incurring well over half
of the overhead incurred by S-VBD. These results also vali-
date the thread-local hypothesis that underlies our speculative
compilation technique. Specifically, the large overhead of the
checks implies that the overhead due to fences on field ac-
cesses is relatively modest, meaning that the thread-locality
hypothesis is effective at removing many fences.

3.5.3 Spark Benchmarks

We also measured the peak performance of S-VBD for the
spark-perf benchmarks using the same methodology as
in the previous section. Figure 17 summarizes the results
of spark-tests and mllib-tests in a histogram. The geo-
metric mean of S-VBD’s relative execution time on Machine
A and Machine B is 2.01 and 1.86 respectively, representing
a 101% and 86% overhead over the baseline HotSpot JVM.
Comparing these results to the ones for VBDA-HotSpot from
Figure 9 we see that our speculative compilation strategy pro-
vides little speedup for these benchmarks. We suspect this
is due to the fact mentioned earlier that these benchmarks
have many array accesses. Since S-VBD does not speculate
on array accesses it incurs the same cost as VBD-HotSpot
for these accesses.

4 Related Work

Language-Level Sequential Consistency In earlier work
we proposed the volatile-by-default semantics for achieving
SC for Java and evaluated it on Intel x86 hardware [20].
The current work is, to the best of our knowledge, the first

comprehensive study of the cost of providing SC for any
language on ARM, which is a much weaker memory model
than x86. We also propose a novel, speculative approach to
implementing volatile-by-default as well as an optimized
choice of fences for the volatile-by-default semantics. We
show that these optimizations are effective in reducing the
overhead of SC on weak hardware.
Vollmer et al. [39] implement the SC semantics for the

Haskell programming language and demonstrate negligible
overheads on x86. They also demonstrated low overheads for
some benchmarks on ARM but did not do an extensive study
due to the limited portability of Haskell libraries. The key
takeaway is that a pure, functional programming language
like Haskell naturally limits conflicting memory accesses
among threads and so can support SC with low overhead.
As such, these results do not extend to imperative languages
like Java.
We evaluated the volatile-by-default semantics in a pro-

duction JVM with modern features such as dynamic class
loading and just-in-time compilation. In contrast, prior work
has evaluated the cost of SC for Java in the context of an
offline whole-program compiler, which admits more oppor-
tunities for optimization but is incompatible with modern
JVMs. Shasha and Snir [35] propose a whole-program delay-
set analysis for determining the barriers required to guaran-
tee SC for a given program. Sura et al. [38] implement this
technique for Java and Kamil et al. [17] do the same for a
parallel variant of Java called Titanium. These works demon-
strate low performance overhead for SC on both x86 and
POWER. Alglave et al. [2] implemented SC for C programs
similarly.
Other work has achieved language-level SC guarantees

for Java [1, 9] and for C [25, 37] through a combination
of compiler modifications and specialized hardware. These
works show that SC can be comparable in efficiency to weak
memory models with appropriate hardware support. The
technique of Singh et al. [37] is similar to our speculative
approach in identifying safe and unsafe memory accesses.
However, they rely on specialized hardware as well as op-
erating system support to perform the speculation, while
we speculate purely at the JVM level. Finally, several works
demonstrate testing techniques to identify errors in Java and
C code that can cause non-SC behavior (e.g., [11, 14]).

Language-Level Region Serializability Otherwork strives
to efficiently provide stronger guarantees than SC for pro-
gramming languages through a form of region serializability.
In this style, the code is implicitly partitioned into disjoint
regions, each of which is guaranteed to execute atomically.
Therefore SC is a special case of region serializability where
each memory access is in its own region. Several works have
explored a form of region serializability for Java [6, 33, 34, 42].
These approaches are implemented in the Jikes research vir-
tual machine [3] and evaluated only on x86. Work on region

27

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1.23

1.39

1.07

1.47

1.23

1.52

1.26

1.07

1.54

1.23

1.13

1.28

1.61

1.90

2.14

1.61

1.82

2.01

1.45

1.38

1.59

1.50
1.46

1.66

1.18

1.33

1.08

1.38

1.23

1.62

1.09
1.05

1.24
1.27

1.04

1.22

1.46

1.85

2.22

1.45

1.82

2.16

1.39

1.32

1.60

1.44

1.85

1.66

1.00

2.00

4.00

avrora eclipse fop h2 jython luindex lusearch-fix pmd sunflow tradebeans xalan geomean

Relative Start-up Execution Time of VBDA-HotSpot and S-VBD over Baseline

Machine A - VBDA Machine A - S-VBD Machine B - VBDA Machine B - S-VBD

Figure 15. Relative startup execution time of VBDA-HotSpot and S-VBD over the baseline JVM, y-axis in logarithmic scale.

1.05

1.54

1.60

1.31

1.44 1.43
1.42

1.12

1.23

1.32

1.26

1.33

1.09

1.56
1.59

1.32
1.34

1.54

1.10
1.08

1.25 1.25
1.26

1.30

1.00

2.00

avro
ra

ecl
ip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

arc
h-fi

x
pm

d

su
nflo

w

tr
adebeans

xal
an

geom
ean

Relative Execution Time of Check-Only S-VBD

Check-Only Machine A Check-Only Machine B

Figure 16. Relative execution time of check-only S-VBD
over baseline JVM on machine A and machine B, y-axis in
logarithmic scale.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

1.00 1.25 1.50 1.75 2.00 3.00 5.00 More

F
re

q
u

e
n

cy

Relative Execution Time

Histogram and Cumulative % of Spark tests

Machine A

Frequency

Machine B

Frequency

Machine A

Cumulative %

Machine B

Cumulative %

Figure 17.Histogram and cumulative % of relative execution
time of VBDA-HotSpot for Spark benchmarks.

serializability for C has achieved good performance either
through special-purpose hardware [21, 24, 36] or by requir-
ing 2N cores to execute an application with N threads [27].

Memory Model Safety The notion of łsafetyž in the JMM
disallows out-of-thin-air values [22], but it has proven diffi-
cult to ensure while also admitting desired optimizations [5].
Several recent works have defined new memory models
that attempt to resolve this tension [8, 15, 18, 19, 26, 28].
Many of these works formalize the new memory model
along with compilation strategies to common hardware plat-
forms, allowing them to prove properties such as the absence
of thin-air reads. To our knowledge only the work by Ou
and Demsky [26] provides an empirical evaluation; they
demonstrate low overheads for C/C++ programs running on
ARM hardware. Our work adopts and empirically evaluates
a significantly stronger notion of safety for Java than these
works [23], as it additionally preserves the program order of
instructions and the atomicity of primitive types.

Weak Memory Model Performance for Java Demange
et al. [10] define an x86-like memory model for Java. They
present a performance evaluation that uses the Fiji real-
time virtual machine [29] to translate Java code to C, which
is then compiled with a modified version of the LLVM C
compiler [25] and executed on x86 hardware. Ritson and
Owens [30]modified theHotSpot compiler’s code-generation
phase for both ARM and POWER to measure the cost of dif-
ferent instruction sequences to implement the JMM.

5 Conclusion and Future Work

Any proposed language-level memory model must be effi-
ciently implementable on ARM in order to be viable, due to
ARM’s popularity and its weak memory model. In this paper
we have performed the first comprehensive study of the cost
of providing language-level sequential consistency for a pro-
duction compiler on ARM. Our experiments show that an
existing technique that provides the volatile-by-default se-
mantics for Java on Intel x86 hardware at modest cost in fact
incurs considerable overhead on ARM. Motivated by these
experimental results, we then present a novel speculative

28

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Lun Liu, Todd Millstein, and Madanlal Musuvathi

technique to optimize language-level SC and demonstrate its
effectiveness in reducing the overhead of enforcing volatile-
by-default. To our knowledge this is the first optimization
approach for language-level SC that is compatible with mod-
ern implementation technology, including dynamic class
loading and just-in-time (JIT) compilation.
Longer-term, the goal of this line of research is to make

the performance of strong language-level memory models
like volatile-by-default competitive even on weak hardware.
Based on our results, promising avenues of future work in-
clude techniques to reduce the cost of S-VBD’s speculation
checks and techniques to optimize fence insertion for array
accesses.

Acknowledgments

We thank our shepherd John Wickerson and the other re-
viewers for their constructive feedback. We also thank an
anonymous reviewer on an earlier version of this paper for
pointing out the bug in the HotSpot interpreter’s treatment
of volatile writes. We are grateful to the Works on ARM
team, especially Edward Vielmetti, for setting up and pro-
viding access to an ARM server (machine B) and to Xiwei
Ma for help implementing our litmus tests. This work is sup-
ported in part by the National Science Foundation awards
CCF-1527923 and CNS-1704336.

References
[1] Wonsun Ahn, Shanxiang Qi, Jae-Woo Lee, Marios Nicolaides, Xing

Fang, Josep Torrellas, David Wong, and Samuel Midkiff. 2009. Bulk-

Compiler: High-Performance Sequential Consistency through Coop-

erative Compiler and Hardware Support. In 42nd International Sympo-

sium on Microarchitecture.

[2] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014.

Don’t Sit on the Fence - A Static Analysis Approach to Automatic

Fence Insertion. In Computer Aided Verification - 26th International

Conference. 508ś524.

[3] Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria A. Butrico,

Anthony Cocchi, Perry Cheng, Julian Dolby, Stephen J. Fink, David

Grove, Michael Hind, Kathryn S. McKinley, Mark F. Mergen, J. Eliot B.

Moss, Ton Anh Ngo, Vivek Sarkar, and Martin Trapp. 2005. The Jikes

Research Virtual Machine project: Building an open-source research

community. IBM Systems Journal 44, 2 (2005), 399ś418.

[4] ARMv8 2018. ARMCortex-A Series Programmer’s Guide for ARMv8-A

Version: 1.0, Section 13.2.1. http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.den0024a/CHDCJBGA.html Accessed April 2018.

[5] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-

Pharabod, and Peter Sewell. 2015. The Problem of Programming

Language Concurrency Semantics. In Programming Languages and

Systems - 24th European Symposium on Programming (Lecture Notes in

Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 283ś307.

[6] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon

Lucia. 2015. Valor: Efficient, Software-only Region Conflict Exceptions.

In Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2015). ACM, 241ś259.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.

Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis.

InOOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference

on Object-Oriented Programing, Systems, Languages, and Applications.

ACM Press, New York, NY, USA, 169ś190.

[8] Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding

Out-of-thin-air Results. In Proceedings of the Workshop on Memory Sys-

tems Performance and Correctness (MSPC ’14). ACM, Article 7, 6 pages.

[9] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007.

BulkSC: Bulk enforcement of sequential consistency. In Proc. of the 34th

Annual International Symposium on Computer Architecture. 278ś289.

[10] Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan,

David Pichardie, and Jan Vitek. 2013. Plan B: A Buffered Memory

Model for Java. In Proceedings of the 40th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’13). ACM, New York, NY, USA, 329ś342.

[11] Cormac Flanagan and Stephen N. Freund. 2010. Adversarial Mem-

ory for Detecting Destructive Races. In Proceedings of the 31st ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’10). ACM, 244ś254.

[12] Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner Dy-

namic Analysis Framework for Concurrent Programs. In Proceedings

of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering (PASTE ’10). ACM, New York, NY, USA,

1ś8. https://doi.org/10.1145/1806672.1806674

[13] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically

Rigorous Java Performance Evaluation. In Proceedings of the 22Nd

Annual ACM SIGPLAN Conference on Object-oriented Programming

Systems and Applications (OOPSLA ’07). ACM, 57ś76.

[14] Mohammad Majharul Islam and Abdullah Muzahid. 2016. Detecting,

Exposing, and Classifying Sequential Consistency Violations. In 27th

IEEE International Symposium on Software Reliability Engineering, IS-

SRE 2016, Ottawa, ON, Canada, October 23-27, 2016. IEEE Computer

Society, 241ś252. https://doi.org/10.1109/ISSRE.2016.48

[15] Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an

Event Structures Model of Relaxed Memory. In Proceedings of the 31st

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’16).

ACM, New York, NY, USA, 759ś767. https://doi.org/10.1145/2933575.

2934536

[16] JSR133 2018. JSR-133 Cookbook for Compiler Writers. Accessed

November 2018. http://g.oswego.edu/dl/jmm/cookbook.html

[17] A. Kamil, J. Su, and K. Yelick. 2005. Making sequential consistency

practical in Titanium. In Proceedings of the 2005 ACM/IEEE conference

on Supercomputing. IEEE Computer Society.

[18] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A Promising Semantics for Relaxed-memory Concur-

rency. In Proceedings of the 44th ACMSIGPLAN Symposium on Principles

of Programming Languages (POPL 2017). ACM, 175ś189.

[19] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In Proceed-

ings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI 2017). ACM, New York, NY, USA,

618ś632. https://doi.org/10.1145/3062341.3062352

[20] Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2017. A Volatile-

by-default JVM for Server Applications. Proc. ACM Program. Lang. 1,

OOPSLA, Article 49 (Oct. 2017), 25 pages.

[21] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, andHans Boehm.

2010. Conflict Exceptions: Providing Simple Parallel Language Seman-

tics with Precise Hardware Exceptions. In Proc. of the 37th Annual

International Symposium on Computer Architecture.

[22] J. Manson, W. Pugh, and S. Adve. 2005. The Java memory model. In

Proceedings of POPL. ACM, 378ś391.

[23] Daniel Marino, Todd Millstein, Madanlal Musuvathi, Satish

Narayanasamy, and Abhayendra Singh. 2015. The Silently Shifting

Semicolon. In 1st Summit on Advances in Programming Languages

29

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CHDCJBGA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CHDCJBGA.html
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1109/ISSRE.2016.48
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/2933575.2934536
http://g.oswego.edu/dl/jmm/cookbook.html
https://doi.org/10.1145/3062341.3062352

Accelerating Sequential Consistency for Java PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

(SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs)),

Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S.

Lerner, and Greg Morrisett (Eds.), Vol. 32. 177ś189.

[24] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musu-

vathi, and Satish Narayanasamy. 2010. DRFx: A simple and efficient

memory model for concurrent programming languages. In PLDI ’10.

ACM, 351ś362.

[25] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musu-

vathi, and Satish Narayanasamy. 2011. A Case for an SC-Preserving

Compiler. In Proc. of the 32nd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation.

[26] Peizhao Ou and Brian Demsky. 2018. Towards Understanding the

Costs of Avoiding Out-of-thin-air Results. Proc. ACM Program. Lang.

2, OOPSLA, Article 136 (Oct. 2018), 29 pages. https://doi.org/10.1145/

3276506

[27] Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.

2013. ...And Region Serializability for All. In 5th USENIX Workshop

on Hot Topics in Parallelism, HotPar’13, Emery D. Berger and Kim M.

Hazelwood (Eds.). USENIX Association.

[28] Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Se-

mantics for Relaxed Atomics That Permits Optimisation and Avoids

Thin-air Executions. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’16). ACM, New York, NY, USA, 622ś633. https://doi.org/10.1145/

2837614.2837616

[29] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek.

2010. High-level Programming of Embedded Hard Real-time Devices.

In Proceedings of the 5th European Conference on Computer Systems

(EuroSys ’10). 69ś82.

[30] Carl G. Ritson and Scott Owens. 2016. Benchmarking Weak Mem-

ory Models. In Proceedings of the 21st ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’16). Article 24,

11 pages.

[31] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek

Williams. 2011. Understanding POWER Multiprocessors. In Proceed-

ings of the 32Nd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’11). ACM, New York, NY, USA, 175ś

186. https://doi.org/10.1145/1993498.1993520

[32] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. 1997. Eraser: A Dynamic Data Race Detector for

Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997),

391ś411. https://doi.org/10.1145/265924.265927

[33] Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond,

and Milind Kulkarni. 2015. Hybrid StaticśDynamic Analysis for Stati-

cally Bounded Region Serializability. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’15). 561ś575.

[34] Aritra Sengupta, Man Cao, Michael D. Bond, and Milind Kulkarni.

2015. Toward Efficient Strong Memory Model Support for the Java

Platform via Hybrid Synchronization. In Proceedings of the Principles

and Practices of Programming on The Java Platform, PPPJ 2015, Ryan

Stansifer and Andreas Krall (Eds.). ACM, 65ś75.

[35] D. Shasha and M. Snir. 1988. Efficient and correct execution of parallel

programs that share memory. ACM Transactions on Programming

Languages and Systems (TOPLAS) 10, 2 (1988), 282ś312.

[36] Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Mill-

stein, and Madan Musuvathi. 2011. Efficient processor support for

DRFx, a memory model with exceptions. In Proceedings of the Sixteenth

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS XVI). ACM, 53ś66.

[37] Abhayendra Singh, S. Narayanasamy, D. Marino, T. Millstein, and M.

Musuvathi. 2012. End-to-end Sequential Consistency. In Proc. of the

39th Annual International Symposium on Computer Architecture. 524

ś535.

[38] Z. Sura, X. Fang, C.L. Wong, S.P. Midkiff, J. Lee, and D. Padua. 2005.

Compiler techniques for high performance sequentially consistent

Java programs. In Proceedings of the tenth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming. 2ś13.

[39] Michael Vollmer, Ryan G. Scott, Madanlal Musuvathi, and Ryan R.

Newton. 2017. SC-Haskell: Sequential Consistency in Languages That

Minimize Mutable Shared Heap. In Proceedings of the 22Nd ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP ’17). ACM, 283ś298.

[40] James R. Wilcox, Cormac Flanagan, and Stephen N. Freund. 2018. Ver-

ifiedFT: A Verified, High-performance Precise Dynamic Race Detector.

In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP ’18). ACM, New York, NY,

USA, 354ś367. https://doi.org/10.1145/3178487.3178514

[41] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram

Venkataraman, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion

Stoica. 2016. Apache Spark: A unified engine for big data processing.

Commun. ACM 59, 11 (2016), 56ś65.

[42] Minjia Zhang, Swarnendu Biswas, and Michael D. Bond. 2017. Avoid-

ing Consistency Exceptions Under Strong Memory Models. In Proceed-

ings of the 2017 ACM SIGPLAN International Symposium on Memory

Management (ISMM 2017). ACM, 115ś127.

30

https://doi.org/10.1145/3276506
https://doi.org/10.1145/3276506
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/3178487.3178514

	Abstract
	1 Introduction
	2 A Volatile-by-Default JVM for ARM
	2.1 Implementation
	2.2 Performance Evaluation
	2.3 Scalability Experiments
	2.4 Spark Benchmarks

	3 Speculative Compilation
	3.1 Design Overview
	3.2 Implementation
	3.3 Implementing Per-Access Checks
	3.4 Optimizing Fence Insertion
	3.5 Performance Evaluation

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

