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ABSTRACT

Current network control plane verification tools cannot scale to
large networks because of the complexity of jointly reasoning about
the behaviors of all network nodes. We present amodular approach
to control plane verification, where end-to-end network properties
are verified via a set of purely local checks on individual nodes
and edges. The approach targets verification of reachability prop-
erties for BGP configurations, and provides guarantees in the face
of arbitrary external route announcements and, for some proper-
ties, arbitrary node/link failures. We have proven the approach
correct and implemented it in a tool Lightyear. Experimentally
we show Lightyear scales dramatically better than prior control
plane verifiers. Further, Lightyear has been used for six months
to verify properties of a major cloud provider network containing
hundreds of routers and tens of thousands of edges, finding and
fixing bugs in the process. To our knowledge no prior control-plane
verification tool has been shown to scale to that size and complexity.
Our modular approach also makes it easy to localize configuration
errors and enables incremental re-verification.
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1 INTRODUCTION

Routing in networks today is controlled using low-level configura-
tion on individual routers, which often leads to errors, potentially
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causing a network outage. Many earlier techniques try to rem-
edy this by verifying configurations against specified end-to-end
network behavior. For instance, Minesweeper [4] models network
behavior using SMT constraints, ARC [10] and Tiramisu [1] use
graphs, and Plankton [22] uses explicit-state model checking.

These techniques provide strong guarantees, frequently reason-
ing about network behavior over all possible external announce-
ments and/or link failures. However, a key open problem is to scale
these techniques to large networks.While these approaches attempt
to scale through various means, they are not efficient enough to
be used today on large real-world networks such as the wide-area
networks of hyperscalers.

This lack of scalability is fundamentally caused by a shared limi-
tation of earlier approaches: they model and reason about network
behavior monolithically. They analyze the network configuration
and routing processes as a whole, exhaustively exploring all possi-
ble control-plane behaviors induced by the complex interactions
among all configuration directives and protocols. As the size of
the network grows, the number of possible network states grows
exponentially, limiting their ability to scale. By contrast, verifica-
tion has scaled to large systems in other domains, like software or
hardware, throughmodular checking. In this style, subsystems (e.g.,
a software function or hardware module) are verified independently
to meet local specifications (e.g., a precondition/postcondition pair)
that together imply a desired global property [11, 14, 21]. Prior
work has used modularity to scale data-plane analysis [12], but
modularizing control-plane verification is more challenging due to
complex routing protocols and policies.

This paper presents a modular approach to network control
plane verification. Like prior verifiers, Lightyear takes as input a
network’s configuration and a global property to verify. To ensure
the property, Lightyear additionally requires the user to provide
local constraints that should hold on individual routers and edges.
Lightyear then automatically produces a set of local checks on
individual nodes and edges that (1) verify the user’s local constraints
and (2) ensure that these constraints imply the given end-to-end
property.

We focus on BGP since it is ubiquitous and in many networks is
the most complex process that impacts the data plane’s forward-
ing behavior. Our approach targets two common classes of BGP
reachability properties. First, safety properties on individual routers
intuitively ensure that “bad” routes never reach a particular node.
This includes common properties like filtering bogons, preventing
transit between peers, and ensuring isolation. Second, we target
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liveness properties, which intuitively ensure that a “good” route
will eventually be accepted or forwarded at a particular location.
This includes many control-plane reachability queries, for example
that a route received from one neighbor will be sent to another.

Modularizing control-plane verification is challenging. Control
plane behavior depends on the interaction of complex configura-
tions with BGP, a distributed message-passing protocol. A classical
way to reason modularly about protocols is through invariants
indexed by time [2], and/or employ temporal logic [17]. This re-
quires significant effort and expertise. Instead, we demonstrate that
in practice a wide range of desired properties can be modularly
verified without making time explicit. Reasoning modularly about
liveness properties is particularly challenging; it requires that the
modular checks together imply an end-to-end path through the
network. We describe a natural approach to ensure this using two
kinds of constraints: path constraints that ensure the feasibility of a
"good" path, and no-interference invariants that ensure good paths
cannot be prevented.

We have formalized our approach to modular control plane veri-
fication, proved its correctness, and built a tool called Lightyear
based on it. Lightyear’s approach offers several advantages over
the prior work, as summarized in Table 1:

Scalability: Lightyear performs a linear number of checks
in the network size (number of nodes and edges). Further, each
check depends only on the complexity of an individual node’s
configuration. Prior approaches that reason about the joint behavior
of all nodes’ policies scale at least quadratically, if not exponentially.
Lightyear’s local checks are also trivially parallelizable and enable
incremental re-checking when configurations change.

Strong Guarantees: If all of Lightyear’s local checks are satis-
fied, then the specified network property is guaranteed to hold for
all possible external route announcements from neighbors. Further,
for safety properties our guarantees hold even in the presence of
arbitrary node or link failures, though this is not true in general
for liveness properties. As shown in the first two rows of the table,
of the prior work only Minesweeper [4] supports reasoning about
both external route announcements and failures.

Localization: While prior approaches identify incorrect be-
havior, the resulting counterexample is global, making it difficult
to determine which router and policy is erroneous. By contrast, a
local-check violation in Lightyear directly indicates the erroneous
router and policy.

Lightyear’s main tradeoff is that users must specify local con-
straints. However, for networks designed in a modular and struc-
tured fashion, only a few simple constraints are required for any
desired end-to-end property. For example, network nodes are com-
monly partitioned into roles, such as border or core, each with its
own responsibilities; nodes in the same role will typically have the
same local constraints.

In addition, the scalability and localization properties of our
tool make it easy for users to hypothesize an initial set of local
constraints and then refine them iteratively based on feedback. We
used this approach to produce the local constraints in our real-
world experiments (see below), having brief discussions with the
network operators based on Lightyear’s feedback in order to either
determine that an identified issue was a real configuration error or
to update our local invariants appropriately.

ISP1

ISP2

R1

R2
R3

Customer

X

✓

Network

Figure 1: Example network with safety and liveness properties

(shown intuitively by the purple arrows). Routes from ISP1 should

not be sent to ISP2 (safety). Routes from Customer should reach ISP2

(liveness).

We used Lightyear to verify multiple properties for BGP in a
large cloud provider’s wide-area network, which has hundreds of
routers and tens of thousands of BGP peerings. To our knowledge
no prior verification tool that reasons about all possible external
route announcements has been demonstrated at this scale. We also
ran tests on synthetic networks to show howwell Lightyear scales.

In summary, we make the following contributions:
(1) Modularity: A novel solution to scaling control plane veri-

fication by checking individual routers locally.
(2) Formalization: A formal model of BGP routing that we use

to prove correctness of the modular approach.
(3) System: A tool Lightyear built using our approach, which

has been running in a hyperscaler for six months.
(4) Evaluation:Ademonstration of Lightyear’s ability to scale

to very large networks experimentally.
This work does not raise any ethical issues.

2 APPROACH OVERVIEW

In this section we show how Lightyear works with the example in
Figure 1. In the example network, each edge represents a connection
between BGP speakers. The network contains three BGP routers:
R1, R2, and R3. R1 and R2 each have an ISP as an external neighbor.
R3 is connected to an external neighbor that is a customer. The
network satisfies two properties. First, it satisfies the standard no-
transit property that routes originating from ISP1 should not be
advertised to ISP2, and second, it satisfies the property that routes
from Customer, with appropriate prefixes, should eventually be
sent to ISP2. The former is a safety property, holding when a certain
event never occurs, and the latter is a liveness property, holding
when a event must eventually occur. Both are network-wide policies
in that they depend on the interaction of multiple routers to achieve
the correct result.

Existing control-plane verifiers [1, 4, 10, 22, 24] would verify
these properties by creating a representation of the possible data
planes that can result from the entire network’s configuration and
then searching this representation for counterexamples. This joint
representation of all network node behaviors has inherent scalabil-
ity limitations.

However, we observe that network configurations are highly
structured and modular by design. Each router contains route maps
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Tool Feature Minesweeper [4] BagPipe [24] Plankton [22] ARC [10]
Lightyear

Tiramisu [1] Hoyan [26]
Analyzes all peer BGP routes   # #  
Analyzes failures  #   G#
Checks safety and liveness properties  G#    
Verification is fully automatic     G#
Near linear scaling with network size # # # #  
Localizes bugs in configurations # # # #  

Table 1: Comparison of prior verification tools with Lightyear.

(also called route policies and route filters), which define an import
and export policy on each BGP peering session, determining which
routes are rejected, which are accepted, and how accepted routes
are transformed. Each route map plays a particular role in the assur-
ance of desired global properties. For example, in the network from
Figure 1 the no-transit property can be ensured using a common
approach based on communities: (1) R1’s import policy marks re-
ceived routes from ISP1 with a BGP community (a simple 32-bit tag)
with value 100:1 (2) R2’s export policy filters routes tagged with
100:1 when advertising to ISP2, and (3) no other import or export
policy strips community 100:1 from routes that it advertises.

Note that each of the above behaviors is node-local and pertains
to an individual BGP route map. Unlike Lightyear, prior control
plane verification tools are not aware of this modular structure
and so cannot leverage it. Alternatively, one could envision making
a tool that simply performs a set of user-specified local checks
like the ones above. However, in that case there is no guarantee
that together they imply the desired end-to-end property. Even in
this simple example, the fact that it is necessary to check the third
condition above is subtle and easily missed.

Figure 2 shows the architecture of Lightyear. Like prior control-
plane verifiers, it takes as input the network configuration and an
end-to-end property to verify. However, Lightyear requires the
user to provide additional local constraints that capture the modular
structure of the configurations. From these inputs Lightyear gen-
erates a set of local checks on individual nodes in the network and
uses a constraint solver to verify each one. If all of these local checks
succeed, then the end-to-end property is guaranteed to hold, for
all possible external route announcements from neighbors and, for
safety properties, for all possible link and node failures in the net-
work. Otherwise, Lightyear provides concrete counterexamples
for each failed local check.

In the rest of this section, we show how Lightyear modularly
verifies the two properties for the network in Figure 1.

2.1 Safety Properties

End-to-end Property: For safety properties, the end-to-end prop-
erty of interest is specified as a pair of a particular location in the
network and a predicate on all routes reaching that location. Many
network policies fall into this class of properties, for example bogon
filtering; ensuring that a network only advertises routes to its own
destinations; and forms of isolation between nodes or groups of
nodes. Such properties can also express complex constraints among
BGP attributes, for example that prefixes in a specific range always
have a particular local preference or MED value.

As shown in the first line of Table 2, the no-transit property
specifies that no route transmitted over the edge from R2 to ISP2
should originate at ISP1. To enable the expression of rich properties,
Lightyear allows users to define ghost attributes that conceptually
update message headers with additional fields. This is a common
technique in software verification, where additional variables are
introduced that do not affect the computation but allow for easier
property specification [9]. In the table, FromISP1(𝑟 ) is a boolean
ghost variable that is defined by the user to be false in all originated
routes, set to true by the import filter on R1 from ISP1, and left
unchanged by all other filters.

Network Invariants: Users must also specify invariants that
are true for routes at locations within the network. While in prin-
ciple the user could specify a different invariant for each network
location, many locations play the same role in the network and have
the same behavior with respect to the desired end-to-end property.
In our example, there are only three network invariants, shown in
Table 2, which correspond exactly to the three node-local behav-
iors described earlier that ensure the no-transit property. First, no
assumption is made about the routes coming from ISP1 to R1, so
the associated predicate is True. Second, routes coming from R2 to
ISP2 should not come from ISP1. Note that this invariant is identical
to the end-to-end property, which is common but need not be the
case. Third, all other locations in the network should satisfy the
key correctness invariant: routes from ISP1 must be tagged with
the community 100:1.

For many safety properties, like in the example above, invariants
follow a straightforward three-part structure. First, very little is
assumed about routes coming from outside the network (so the
associated local invariant is True or similarly nonrestrictive). Sec-
ond, the desired global property should hold at the corresponding
location in the network (the edge from R2 to ISP2 in the above
example). Third, there is a key invariant that holds in the rest of
the network, which intuitively describes how the network ensures
the global property. In our example above, the invariant specifies
the fact that the network uses the community 100:1 to keep track
of the routes that came from ISP1. In general this invariant restricts
the routes that can flow through the network to be of a limited
kind, for example a specific set of prefixes or containing specific
attribute values such as the MED, local preference or communities.
Notably, this three-part decomposition is analogous to the modular
verification of software [11], which typically involves a precondi-
tion that is assumed to hold initially, a postcondition to be proven,
and one or more inductive invariants that hold throughout each
execution and are sufficient to imply the postcondition.
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Figure 2: The architecture of Lightyear.

Type Location(s) Logical Formula Description

End-to-end Property R2 → ISP2 ¬FromISP1(𝑟 ) No routes sent to ISP2 come from ISP1

ISP1 → R1 True ISP1 can send our network any route
R2 → ISP2 ¬FromISP1(𝑟 ) No routes sent to ISP2 come from ISP1Network Invariants
Nodes and other
edges in network

FromISP1(𝑟 )
⇒ 100:1 ∈ Comm(𝑟 ) Routes from ISP1 are tagged with community 100:1

ISP1 → R1 (True ∧ 𝑟 ′ = Import(ISP1 → R1, 𝑟 ))
⇒ (FromISP1(𝑟 ′) ⇒ 100:1 ∈ Comm(𝑟 ′))

R2 → ISP2 ((FromISP1(𝑟 ) ⇒ 100:1 ∈ Comm(𝑟 )) ∧ 𝑟 ′ = Export(R2 → ISP2, 𝑟 ))
⇒ ¬FromISP1(𝑟 ′)

Other Edge 𝐸 ((FromISP1(𝑟 ) ⇒ 100:1 ∈ Comm(𝑟 )) ∧ 𝑟 ′ = Export(𝐸, 𝑟 ))
⇒ (FromISP1(𝑟 ) ⇒ 100:1 ∈ Comm(𝑟 ))

Generated Checks

((FromISP1(𝑟 ) ⇒ 100:1 ∈ Comm(𝑟 )) ∧ 𝑟 ′ = Import(𝐸, 𝑟 ))
⇒ (FromISP1(𝑟 ) ⇒ 100:1 ∈ Comm(𝑟 ))

Table 2: Using Lightyear to prove the no-transit property from Figure 1. The user-provided global property and local invariants

are show in blue. Lightyear-generated local verification checks are shown in yellow.

Type Location(s) Logical Formula Description

End-to-end Property R2 → ISP2 HasCustPrefix(𝑟 ) Customer prefixes are advertised to ISP2

Assumption Customer → R3 HasCustPrefix(𝑟 ) Assume customer routes are advertised to R3

R3, R2, HasCustPrefix(𝑟 ) Routes from customer are accepted/forwarded
R3 → R2 ∧¬ 100:1 ∈ Comm(𝑟 ) and not tagged with community 100:1Path Constraints
R2 → ISP2 HasCustPrefix(𝑟 ) Routes are forwarded to ISP2

Customer → R3 (HasCustPrefix(𝑟 ) ∧ 𝑟 ′ = Import(Customer → R3, 𝑟 ))
⇒ (HasCustPrefix(𝑟 ′) ∧ ¬100:1 ∈ Comm(𝑟 ′))
((HasCustPrefix(𝑟 ) ∧ ¬100:1 ∈ Comm(𝑟 )) ∧ 𝑟 ′ = Export(R3 → R2, 𝑟 ))
⇒ (HasCustPrefix(𝑟 ′) ∧ ¬100:1 ∈ Comm(𝑟 ′))R3 → R2
((HasCustPrefix(𝑟 ) ∧ ¬100:1 ∈ Comm(𝑟 )) ∧ 𝑟 ′ = Import(R3 → R2, 𝑟 ))
⇒ (HasCustPrefix(𝑟 ′) ∧ ¬100:1 ∈ Comm(𝑟 ′))

Propagation Checks

R2 → ISP2 ((HasCustPrefix(𝑟 ) ∧ ¬100:1 ∈ Comm(𝑟 )) ∧ 𝑟 ′ = Export(R2 → ISP2, 𝑟 ))
⇒ HasCustPrefix(𝑟 ′)

No-interference Checks R3, R2 HasCustPrefix(𝑟 ) Routes accepted at R3 and R2 with a customer
(Safety Properties) ⇒ ¬100:1 ∈ Comm(𝑟 ) prefix must not have community 100:1

Table 3: Using Lightyear to prove the liveness property from Figure 1. The user-provided global property, and path constraints

are show in blue. The propagation checks are shown in yellow for the path is Customer→ R3→ R2→ ISP2. The no-interference

checks are safety properties proven using their own invariants (not shown).
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Importantly, these local invariants are far from complete specifi-
cations of the network’s routing behavior. Rather, local invariants
need only describe the constraints on routes that are necessary
to ensure the particular global property of interest. For example,
suppose that our example network uses a route’s local preference
value to choose among multiple routes to a destination. Since the
local preference values don’t pertain to our no-transit property, this
behavior need not be specified.

Generated Checks: Given the invariants provided from the
user, Lightyear automatically generates local checks to validate
the given network invariants. Importantly, each local check per-
tains to a single BGP filter on a single network router, applied to
messages from a specific neighbor. Together these checks imple-
ment a form of assume-guarantee reasoning [14, 21]: each location’s
network invariant is proven under the assumption that the network
invariants of its directly connected locations hold. As we prove
later, together these checks imply that all local invariants in the
network are respected.

Table 2 shows the local checks that Lightyear automatically
generates for our running example. The first check ensures that the
import filter at R1 on the edge from ISP1 to R1 establishes the key
invariant FromISP1(𝑟 ) ⇒ 100:1 ∈ Comm(𝑟 ). Since that filter tags
all routes with community 100:1, the check is easily provable by a
constraint solver. The second check ensures that the key invariant
is sufficient to ensure that routes from ISP1 are not exported on
the edge from R2 to ISP2. Since the export filter at R2 on that edge
drops all routes that are tagged with 100:1, the check passes. The
third set of checks ensure that the key invariant is preserved by all
other import and export filters in the network. Since these filters
never strip community 100:1 from a route, the checks pass.1 Lastly
(not shown in the table), Lightyear must check that the invariant
on the edge from R2 to ISP2 implies the end-to-end property. This
check is trivial since the two properties are identical.

Output: If the configuration contains errors, Lightyear returns
a counterexample for each local check that did not pass. In our
example, suppose that R1’s import filter accidentally does not add
the community 100:1 for some routes received from ISP1. In that
case, the first generated check in Table 2 would fail, producing a
counterexample consisting of a concrete route that is accepted by
R1 but does not get the community 100:1 added to it. This coun-
terexample directly indicates the route policy that is responsible
for the error and concretely illustrates the specific local property
that was violated. Counterexamples from Lightyear are also be
helpful in refining local invariants that are not precisely known in
the beginning. For example, a user might write a local invariant for
some network location but forget to account for a specific corner
case. In that case Lightyear will identify an “error" due to a failed
local check, and the associated counterexample informs the user
how to refine that local invariant to more closely match the network
location’s behavior.

2.2 Liveness Properties

End-to-end Property: For liveness properties, the end-to-end
property of interest is also a pair of a particular location in the

1There are also some analogous checks for originated routes, but they are omitted
here for simplicity.

network and predicate. However, here the predicate indicates that
a route satisfying the property will eventually reach that location.
The property in Table 3 shows that a route with a customer prefix
will eventually be sent from R2 to ISP2. If the routes of interest
come from a neighbor, as in this case, then the property will only be
provable under the assumption that the neighbor advertises such a
route. Users can optionally specify such an assumption, as shown
in the table.

Path and Constraints: As with safety properties, users need to
provide a set of local constraints on individual network locations,
but they take a different form for liveness properties. Users must
provide a path through the network that the desired route can
take to reach the destination from the source, along with local
constraints for each edge and node along the path. The path does
not need to be unique. Intuitively, each local constraint indicates
the properties of the "good" routes that will reach that particular
location, and together they constitute a witness that a "good" route
will eventually reach its intended destination. As shown in Table 3,
our example has two path constraints: at locations R3, R2, and R3
→ 𝑅2 there will eventually be a route with the customer prefix that
does not have the community 100:1, and at R2→ ISP2 there will
eventually be a route with the customer prefix. It is important that
routes from Customer do not have the community 100:1, or else
they will be dropped at R2, due to the way that the earlier no-transit
property is ensured. As described earlier, the local and concrete
feedback from Lightyear can be used iteratively to identify these
conditions.

Propagation Checks: In order to prove the liveness property
two types of checks need to be performed. First, there are local
checks that together imply that a route will in fact traverse the given
path, in the absence of interference from other possible paths. These
checks are analogous to the generated checks for safety properties
shown earlier. Notably, in order for the first propagation check in
Table 3 to be satisfied, the import policy at R3 must not accept any
routes tagged with community 100:1. One way to ensure this is
for the policy to strip communities from all accepted routes. The
other two checks are straightforward.

No-interference Checks: Finally, liveness properties require
an additional set of checks. Since BGP only selects the best route
available from all of a router’s neighbors, it is not enough to show
that filters do not reject "good" routes along our path. It is also
necessary to show that other routes in the network can never
interfere, at any node along the path. To do this, we also check
that any route with the same prefix as a "good" route that can be
accepted by a node on the path is also "good" — it also satisfies the
corresponding path constraint. For our example, at R3 and R2, routes
with a customer prefix are checked to never have the community
100:1. This constraint ensures that if routes for customer prefixes
arrive along other paths and are preferred to those arriving on our
path, those routes will still satisfy the desired property (i.e., they
will be sent from R2 to ISP2). Note that this means that our approach
does not require that the specified path be unique in the network,
so we can verify liveness properties even in some scenarios where
there is routing redundancy. The no-interference constraint is itself
a safety property, and so in general it must be proven using the
machinery shown in the previous subsection, with its own set of
local invariants (not shown in the table).
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Output: As in the previous example, Lightyear returns a con-
crete counterexample for each failed propagation check and no-
interference check. For example, if R3’s import policy does not
properly strip the community 100:1 from accepted routes, then
Lightyear will produce a concrete example illustrating this fact,
allowing the user to easily understand and localize the error.

In summary, Lightyear’s approach to control-plane verification
leverages the modular structure that is already present in the net-
work configurations. By requiring the user to make this structure
explicit through a set of local invariants at each location, Lightyear
soundly reduces checking an end-to-end network property to a set
of checks that each pertain to a single BGP import or export filter.
We formalize our approach and prove its correctness in Sections 4
and 5.

This approach has numerous benefits over the prior, monolithic
approaches. First, our approach is highly scalable, since the number
of checks is linear in the number of edges in the BGP network
graph. Second, Lightyear’s modular checks provide a very strong
guarantee. For both safety and liveness properties, the approach
handles all possible external route announcements from neighbors.
For safety properties, it additionally provides resilience to arbitrary
failures "for free," since it proves that "bad" routes are not received
without making any assumptions about the paths that they might
traverse. Third, the modular approach naturally supports incre-
mental verification when a node is updated: only the local checks
pertaining to that node must be re-checked. Finally, modularity has
large benefits for error localization and understanding: the failure
of a local check directly pinpoints the erroneous import or export
filter and the local invariant that it fails to satisfy.

3 FORMAL MODEL OF BGP

In this section we define a model of BGP in terms of traces and
axioms on traces. This model is used in the next two sections to
make Lightyear’s approach precise and to prove its correctness.

3.1 BGP Topologies and Policies

Wemodel a network’s BGP configuration as consisting of two parts:
a topology and a policy. A BGP network topology is a tuple of the
form (Routers, Externals, Edges), where:

(1) Routers is the set of routers for which the user provides
configurations.

(2) Externals is the set of external routers. That is, there is no
provided configuration, but each such router is an eBGP or
iBGP peer with at least one router in Routers.

(3) Edges is the set of directed edges corresponding to BGP
peering sessions.

The network topology forms a graph with Routers ∪ Externals
as the set of nodes and Edges as the set of edges. We will use the
notation 𝐴 → 𝐵 to refer the directional edge (𝐴, 𝐵) in the topology.

A BGP route (or route advertisement) is modeled as a tuple
(Prefix, ASPath, NextHop, LocalPref, MED, Comm)

where:
(1) NextHop, LocalPref, and MED are integer values
(2) Prefix is a pair consisting of an IP address and a length, both

of which are integer values
(3) ASPath and Comm are lists of integer values representing

the BGP path and the community tags, respectively.

Let Routes denote the set of all routes. We will use Comm(𝑟 ) to
refer to the Comm field of the route 𝑟 , Prefix(𝑟 ) to refer the prefix
of 𝑟 , and so on. Real BGP messages contain a few other attributes
as well, which could be incorporated into this model. Routes can
also be extended with additional “ghost” attributes, such as the
FromISP1 attribute from Section 2. This is described in Section 4.4.

We model the BGP network policy as consisting of three func-
tions, which can be derived from the BGP and route-map configu-
rations of each router:

(1) Import : Edges × Routes → Routes ∪ {Reject}
(2) Export : Edges × Routes → Routes ∪ {Reject}
(3) Originate : Edges → P(Routes)

The first two correspond to the import and export route maps
which are defined in the router configurations. The third models the
router’s ability to advertise static routes or routes from other proto-
cols into BGP. For an edge 𝐴 → 𝐵 and a route 𝑟 , Import(𝐴 → 𝐵, 𝑟 )
either returns the route produced when applying the import fil-
ter at 𝐵 to the route 𝑟 sent from 𝐴 or returns Reject if the im-
port filter rejects the route. Export(𝐴 → 𝐵, 𝑟 ) either returns the
route produced when applying the export filter at 𝐴 to the route
𝑟 sent to 𝐵 or returns Reject if the export filter rejects the route.
Originate(𝐴 → 𝐵) returns the set of routes that are originated at
𝐴 and sent to 𝐵.

3.2 BGP Traces

We model the semantics of BGP as a set of allowed traces. Our
semantics is a variant of that from the Bagpipe tool [24].

A trace is a sequence of events. There are three types of events
that we consider: recv, slct, and frwd. For 𝑟 ∈ Routes, 𝑅 and 𝑁 ∈
Routers, and 𝑁 → 𝑅 and 𝑅 → 𝑁 ∈ Edges:

(1) recv(𝑁 → 𝑅, 𝑟 ) occurs when 𝑅 receives route 𝑟 from neigh-
bor 𝑁

(2) slct(𝑅, 𝑟 ) occurs when 𝑅 selects 𝑟 as the best route for a
destination and installs it

(3) frwd(𝑅 → 𝑁, 𝑟 ) occurs when 𝑅 forwards route 𝑟 to the
neighbor 𝑁

We denote the set of all traces as Traces.
A valid trace is one that could occur for a given topology and

policy, according to the BGP semantics. We formalize the notion
of trace validity as a set Valid ⊆ Traces of traces that satisfy
specific properties. We consider a trace to be valid, and hence part
of the set Valid, if it satisfies a set of safety axioms, and a set
of liveness axioms. These axioms are stated in Appendix A. The
safety axioms are used to prove the correctness of safety checks
and state necessary conditions for an event to be in the trace. For
example, if a slct event is in the trace, then there must be a recv
event earlier and Importmust have transformed the received route
into the selected route. The liveness axioms are used to prove the
correctness of liveness checks and state sufficient conditions to
show that an event occurs later in the trace. For example, if a slct
event occurs, then the result of Export applied to the selected route
will be used in a fwrd event.

In our model, external neighbors can send different announce-
ments in different traces, and events at different locations can occur
in any order.
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4 SAFETY VERIFICATION IN LIGHTYEAR

In this section, we describe Lightyear’s approach for modularly
verifying safety properties and prove its correctness.

4.1 Inputs for Safety Checks

Lightyear requires three inputs from the user in order to check
safety properties. The first input, the network configurations, is
standard. As described previously, the configurations are used to
build the BGP topology as well as the policy functions.

The second input is the network safety property, which requires
that all route announcements that can reach a particular location
satisfy certain constraints. Formally, a network safety property is a
pair (ℓ, 𝑃) where:

(ℓ, 𝑃) ∈ (Routers ∪ Edges) × P(Routes)
Here ℓ is a location, either a router or an edge, and 𝑃 is a set of
routes matching a particular constraint. In practice, users directly
specify a logical constraint on route attributes that represents 𝑃 .

Each safety property (ℓ, 𝑃) corresponds to a property of all pos-
sible valid traces, as defined in the previous section — all routes
that can reach location ℓ must satisfy 𝑃 . Formally, a network sat-
isfies a property (ℓ, 𝑃) if for all 𝑇 ∈ Valid, 𝑟 ∈ Routes, 𝑅, 𝑁 ∈
Routers, 𝑅 → 𝑁 ∈ Edges:

• if ℓ = 𝑅 and slct(𝑅, 𝑟 ) ∈ 𝑇 , then 𝑟 ∈ 𝑃
• if ℓ = 𝑅 → 𝑁 and frwd(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 ∨ recv(𝑅 → 𝑁, 𝑟 ) ∈
𝑇 , then 𝑟 ∈ 𝑃

For example, the combination of the location (𝑅1 → 𝑅2) and con-
straint 1:1 ∈ Comm(𝑟 ) together specify the property that if the
event frwd(𝑅1 → 𝑅2, 𝑟 ) or the event recv(𝑅1 → 𝑅2, 𝑟 ) are in a
valid trace, then 𝑟 should always have the community 1:1.

Finally, Lightyear’s third input is a set of network invariants,
one per location in the given network. Formally, the network in-
variants are modeled as a set of pairs denoted 𝐼 :

𝐼 ⊆ (Routers ∪ Edges) × P(Routes)
Each element of the set has the form (ℓ, 𝑃), where ℓ is a location
and 𝑃 is a set of routes, as in the network property defined above.
The semantics of each pair is a property of traces, analogous to the
semantics of network properties shown above.

We require that there exist exactly one pair in 𝐼 per location in
the given network, and we use the notation 𝐼ℓ to denote the set 𝑃 of
routes associated with location ℓ in 𝐼 . We also require that 𝐼𝑅→𝑁 =

Routes for each edge 𝑅 → 𝑁 where 𝑅 ∈ Externals. In other
words, we make no assumption about routes coming from external
neighbors but rather assume that any route may be advertised.

4.2 Local Checks

Given the network configuration, network property (ℓ, 𝑃), and net-
work invariants 𝐼 , Lightyear generates the following local checks
for each edge 𝐴 → 𝐵 in the network topology, which validate each
location’s network invariant using assume-guarantee reasoning:

(1) Import: For all 𝑟, 𝑟 ′ ∈ Routes, if 𝑟 = Import(𝐴 → 𝐵, 𝑟 ′)
and 𝑟 ′ ∈ 𝐼𝐴→𝐵 , then 𝑟 = Reject ∨ 𝑟 ∈ 𝐼𝐵 .

(2) Export: For all 𝑟, 𝑟 ′ ∈ Routes, if 𝑟 = Export(𝐴 → 𝐵, 𝑟 ′)
and 𝑟 ′ ∈ 𝐼𝐴 , then 𝑟 = Reject ∨ 𝑟 ∈ 𝐼𝐴→𝐵 .

(3) Originate: For all 𝑟 ∈ Routes, if 𝑟 ∈ Originate(𝐴 → 𝐵),
then 𝑟 ∈ 𝐼𝐴→𝐵 .

For example, the first check verifies that the import route map at
𝐵 on the edge 𝐴 → 𝐵 satisfies 𝐼𝐵 , assuming that 𝐴 → 𝐵 satisfies

its local invariant. If the router 𝐵 is external then the import check
is not performed, and similarly if the router 𝐴 is external then the
export and originate checks are not performed. In our implemen-
tation of Lightyear, the local checks are performed by modeling
import and export filters using SMT constraints and invoking an
SMT solver to validate each check or provide a counterexample.

Finally, Lightyear checks that the network invariants 𝐼 imply
the network property (ℓ, 𝑃). This is done simply by requiring that
𝐼ℓ ⊆ 𝑃 , i.e. that the network invariant for ℓ implies the network
property 𝑃 . Again this check is performed with an SMT solver.

4.3 Correctness

We have proven the correctness of our approach to modular safety
verification.

Theorem: Given a BGP topology and policy, a network property
(ℓ, 𝑃), and network invariants 𝐼 , let 𝐶 be the set of Import, Export,
and Originate checks that Lightyear generates. If all checks in
𝐶 pass and 𝐼ℓ ⊆ 𝑃 , then for all 𝑇 ∈ Valid, 𝑟 ∈ Routes, 𝑅, 𝑁 ∈
Routers:

• if ℓ = 𝑅 and slct(𝑅, 𝑟 ) ∈ 𝑇 , then 𝑟 ∈ 𝑃
• if ℓ = 𝑅 → 𝑁 and frwd(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 ∨ recv(𝑅 → 𝑁, 𝑟 ) ∈
𝑇 , then 𝑟 ∈ 𝑃

Proof: See Appendix B.

4.4 Ghost Attributes

To increase Lightyear’s expressiveness, users can define ghost
attributes, which conceptually extend each route with additional
fields. For example, the FromISP1(𝑟 ) ghost attribute from Section 2
is used to indicate whether 𝑟 originated from ISP1. A ghost attribute
is defined by specifying the set of values that the attribute can
take, along with updates to the Import, Export, and Originate
functions that make up the given network’s policy (Section 3.1).

In the case of FromISP1(𝑟 ) from Figure 1, it can be defined as a
boolean attribute with the following behavior:

• the import filter on ISP1 → R1 sets FromISP1 to true
• the import filters on ISP2 → R2 and Customer → R3 set
FromISP1 to false

• other filters leave FromISP1 unchanged
• all originated routes have FromISP1 set to false

Other natural network properties can be expressed using ghost
attributes. For example, a WaypointR attribute that is true only for
routes processed by a particular router 𝑅 can be defined by specify-
ing that filters on 𝑅 set WaypointR to true, origination as well as im-
port filters from external neighbors at other routers set WaypointR
to false, and all other filters in the network leave WaypointR un-
changed.

Ghost attributes do not affect the description of Lightyear or
proof of its correctness above, as they do not depend on the specific
set of attributes that are in a route.

4.5 Fault Tolerance for Safety Properties

A significant benefit of Lightyear’s approach to control-plane
verification of safety properties is that it supports reasoning about
failures “for free.” That is, if all of Lightyear’s checks pass, then
the given network property is guaranteed to hold not only in the
failure-free case but also in the presence of arbitrary node and link
failures.
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Lightyear soundly reasons about failures because of our over-
approximate notion of trace validity (Section 3.2 and Appendix A).
Specifically, any trace that is feasible according to the given BGP
topology and passes the import and export filters along the cor-
responding path is considered valid. Hence, every trace that can
occur under any failure scenario is already considered valid. By our
correctness theorem, all of these traces satisfy the property (ℓ, 𝑃).

5 LIVENESS VERIFICATION IN LIGHTYEAR

We now describe how Lightyear checks liveness properties modu-
larly. Proving liveness properties modularly is more difficult than
proving safety properties, since it requires showing both that "good"
routes are allowed and that interfering routes are not.

5.1 Inputs for Liveness Checks

The inputs for a liveness check consist of the following:
(1) The network configurations
(2) A liveness property (ℓ, 𝑃) ∈ {Routers∪Edges}×P(Routes)
(3) A path (ℓ1, . . . , ℓ𝑛 = ℓ) where ℓ𝑖 ∈ {Routers ∪ Edges}
(4) A constraint 𝐶1 . . .𝐶𝑛 for each location in the path, where

𝐶𝑖 ∈ P(Routes)
The property (ℓ, 𝑃) represents a liveness property of all valid traces,
namely that there will eventually be a route at ℓ that satisfies 𝑃 .
Formally, this means for all 𝑇 ∈ Valid, either:

• ℓ ∈ Routers and there exists 𝑟 ′ such that slct(ℓ, 𝑟 ′) ∈ 𝑇
and 𝑃 (𝑟 ′) holds, or

• ℓ ∈ Edges and there exists 𝑟 ′ such that frwd(ℓ, 𝑟 ′) ∈ 𝑇 and
𝑃 (𝑟 ′) holds

The path (ℓ1, ℓ2, . . . , ℓ𝑛−1, ℓ𝑛 = ℓ) is a sequence of routers and
edges that we expect the route to travel across. We require that it
represents an actual topological path in the network: if ℓ𝑖 = 𝑅 ∈
Routers then for some 𝑁 , ℓ𝑖+1 = 𝑅 → 𝑁 , and if ℓ𝑖 = 𝑅 → 𝑁 ,
then ℓ𝑖+1 = 𝑁 . For example, ISP1 → R1, R1, R1 → R3, R3, R3 →
Customer is a path in the network from Figure 1. The last location
ℓ𝑛 must be the location ℓ of the end-to-end property that we are
verifying.

The constraints 𝐶1 . . .𝐶𝑛 are properties that represent the set of
"good" routes that reach each ℓ𝑖 along the path. They play a role
analogous to the local invariants 𝐼ℓ𝑖 for proving safety properties,
described earlier. The property 𝐶1 for the first location in the path
is simply assumed to hold; in practice it is usually an edge coming
from an external router, in which case it is not possible to prove.
Rather, the best we can do is prove that if that router sends a "good"
route, then it will eventually reach its intended destination in the
network.

5.2 Local Checks

The checks for liveness can be broken up into two parts: checks
that prove propagation along the given path, and checks that prove
there is no interference from outside routes.

Propagation along a path: These checks are analogous to the
local checks performed for safety verification, but they are only
checked along the given path. Together they ensure that the import
and export filters along the path (ℓ1, . . . , ℓ𝑛) do not drop "good"
routes. Specifically, for all valid traces 𝑇 and 𝑖 < 𝑛:

If ℓ𝑖 = 𝑅 ∈ Routers, then:
𝐶𝑖 (𝑟 ) ∧ 𝑟 ′ = Export(𝑅 → 𝑁, 𝑟 )
=⇒ 𝑟 ′ ≠ Reject ∧𝐶𝑖+1 (𝑟 ′)

and if ℓ𝑖 = 𝑅 → 𝑁 ∈ Edges, then:
𝐶𝑖 (𝑟 ) ∧ 𝑟 ′ = Import(𝑁 → 𝑅, 𝑟 )
=⇒ 𝑟 ′ ≠ Reject ∧𝐶𝑖+1 (𝑟 ′)

No interference: Next, we need to verify that it is not possible
for a router along the path to select a "bad" route with the same
prefix as a "good" route. Let Prefix(𝐶𝑖 ) refer the set of prefixes
with at least one route in 𝐶𝑖 :

{𝑝 | 𝑝 = Prefix(𝑟 ) ∧ 𝑟 ∈ 𝐶𝑖 }
Then at each router ℓ𝑖 along the path we must prove the following
safety property:

(ℓ𝑖 , Prefix(𝑟 ) ∈ Prefix(𝐶𝑖 ) =⇒ 𝐶𝑖 (𝑟 ))
These properties can be proven using our existing approach for
proving safety properties (Section 4), given appropriate local in-
variants.

Implying the network property: The above checks ensure
that all of the local 𝐶𝑖 constraints in fact hold. Finally, Lightyear
generates a local check that𝐶𝑛 ⊆ 𝑃 , similar to the analogous check
for safety properties, to ensure that the local constraints imply the
desired end-to-end liveness property.

5.3 Correctness

We have proven the correctness of our approach to modular safety
verification.

Theorem: Given the following:
• The network configurations
• A liveness property (ℓ, 𝑃)
• A path 𝑆 = (ℓ1, ℓ2, . . . , ℓ𝑛−1, ℓ𝑛 = ℓ)
• A constraint for each location 𝐶1 . . .𝐶𝑛

For all valid traces 𝑇 , if all of the following are true:
(1) all checks (propagation, no interference) pass
(2) there exists 𝑟 such that recv(ℓ1, 𝑟 ) ∈ 𝑇 ∧𝐶1 (𝑟 )
(3) 𝐶𝑛 ⊆ 𝑃
(4) there are no link failures along the path

then there exists 𝑟 ′ such that either:
• ℓ ∈ Routers and there exists 𝑟 ′ such that slct(ℓ, 𝑟 ′) ∈ 𝑇
and 𝑃 (𝑟 ′) holds, or

• ℓ ∈ Edges and there exists 𝑟 ′ such that frwd(ℓ, 𝑟 ′) ∈ 𝑇 and
𝑃 (𝑟 ′) holds

Proof: See Appendix C.

Notably, the correctness only depends on there being no link failures
along the given path, so the property holds even if there are failures
elsewhere.

6 EVALUATION

6.1 Cloud WAN

We used Lightyear to modularly verify properties of the wide-area
network (WAN) of a major cloud provider, containing hundreds
of routers and tens of thousands of peering sessions. In doing so,
we show that: (1) important behavioral properties in real-world
networks can be expressed in Lightyear; (2) these properties can
be proven through a combination of modular checks; (3) this ap-
proach scales, allowing properties to be verified quickly; and (4) if
a local check does not succeed, it produces actionable information,
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Type Locations (𝑙) Logical Formula (𝐼𝑙 ) Description

End-to-end
Property

Any R in
network

𝐹𝑟𝑜𝑚𝑃𝑒𝑒𝑟 (𝑟 ) =⇒
Prefix(𝑟 ) ∉ Bogons Bogon prefixes from peers should not be accepted

𝑅 ∈ Routers 𝐹𝑟𝑜𝑚𝑃𝑒𝑒𝑟 (𝑟 ) =⇒
Prefix(𝑟 ) ∉ Bogons Bogon prefixes from peers should not be accepted at routers

Network
Invariants

Internal edges
R1 → R2

𝐹𝑟𝑜𝑚𝑃𝑒𝑒𝑟 (𝑟 ) =⇒
Prefix(𝑟 ) ∉ Bogons Bogon prefixes from peers should not be sent along edges

Other 𝑇𝑟𝑢𝑒 Edges to and from external peers are unconstrained
(a) End-to-end property and network invariants needed to verify that the network does not accept bogons from external peers.

Type Locations (𝑙) Logical Formula (𝐼𝑙 ) Description

End-to-end
Property 𝑅 ∉ Region 𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) =⇒

Prefix(𝑟 ) ∉ ReusedIPs
Routers outside a region should not accept
routes with reused addresses from that region

𝑅 ∈ Region
𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) ∧
Prefix(𝑟 ) ∈ ReusedIPs =⇒
RegionalComms ∩ Comm(𝑟 ) = {𝐶}

Routes with reused addresses are tagged with a com-
munity for that region and no other region

Network
Invariants 𝑅 ∉ Region 𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) =⇒

Prefix(𝑟 ) ∉ ReusedIPs
Routers outside a region should not accept
routes with reused addresses from that region

R1 → R2 𝐼𝑅1 Edges have same invariant as sending router
E → R Comm(𝑟 ) = ∅ Routes from external peers have no communities

(b) End-to-end property and network invariants needed to verify that reused addresses are not accepted by any router outside the region.

Type Locations (𝑙) Logical Formula (𝐼𝑙 ) Description

End-to-end
Property 𝑅2 ∈ Region 𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) ∧

Prefix(𝑟 ) ∈ ReusedIPs
𝑅2 inside a region eventually accepts a route
with reused addresses from that region

Assumption Edge from data
center 𝐷 → 𝑅1

𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) ∧
Prefix(𝑟 ) ∈ ReusedIPs

Assume there is a route from the data center to
𝑅1 with a reused prefix

Path
Constraints 𝑅1, 𝑅2, 𝑅1 → 𝑅2

𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) ∧
Prefix(𝑟 ) ∈ ReusedIPs ∧
RegionalComms ∩ Comm(𝑟 ) = {𝐶}

𝑅1 and 𝑅2 eventually select a route with reused
prefixes and the regional community

(c) End-to-end property and path constraints needed to verify that reused addresses are eventually selected by each WAN router in that region.

We assume that the route flows from the data center along the path 𝐷 → 𝑅1 → 𝑅2.

Table 4: End-to-end properties and network invariants for three use cases in the WAN.

indicating a bug in either a specific route map or a specific local
invariant. To our knowledge no prior tool that verifies properties
of all possible external announcements from neighbors has been
demonstrated to scale to such a size.

We used Lightyear to verify two classes of properties that the
wide-area network must satisfy. In all cases we determined the
intended network behavior by inspecting the configurations and
talking with the network operators, and the local constraints were
written based on that intent. This process was typically iterative.
That is, we would write an initial property specification and its set
of local invariants based on our current understanding of how the
network operates. If Lightyear reported violations of local checks,
we would inspect the counterexamples and discuss with opera-
tors, either determining that the bugs are real errors or identifying
special cases that led to refined local invariants and (sometimes)
refined end-to-end property specifications.

Implementation: We implemented Lightyear as a tool in C#.
The tool parses and extracts the BGP policy along with import
and export route maps from each configuration, while supporting
common attributes of BGP routes such as communities, AS path,
MED, local preference, along with common route map features, like
matching on and setting attributes. The tool allows users to provide

local invariants written as a C# function using the Zen constraint
solving library [28], and to specify the routers and policies of in-
terest. The Zen library translates the functions into SMT formulas
that are solved by Z3 [7]. For each local check that fails, the tool
returns a counterexample consisting of a specific route map and a
concrete input route that leads to a violation.

Internet Peering Policies:We used Lightyear to verify that
11 different kinds of "bad" routes are never accepted from peers.
Each of these properties can be expressed as a safety property on
each node 𝑅 in the network of the following form:

(𝑅, {𝑟 |𝐹𝑟𝑜𝑚𝑃𝑒𝑒𝑟 (𝑟 ) =⇒ 𝑄 (𝑟 )})
with different properties 𝑄 (𝑟 ). These include properties like not
accepting bogons or routes with invalid AS paths. An example of
the invariants for the no-bogons property is shown in Table 4a. The
network has a set of Internet edge routers, that peer with Internet
service providers, other cloud providers, and customers, and so
act as gateways between the cloud provider and the Internet. The
wide-area network ensures that "bad" routes are not admitted by
filtering them at all of the Internet edge routers.

As mentioned earlier, running Lightyear to check these prop-
erties is an iterative process, which involves refining the local con-
straints based on operator feedback. In the end, through this process
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Lightyear identified 11 actual configuration errors. These included
cases where a route map denied more traffic than intended, and
inconsistencies between the filters of edge routers that are intended
to have similar behavior. For example, in one case, among the hun-
dreds of similarly defined peering sessions, it was discovered that a
handful had ad-hoc policies that filtered AS paths differently. All
of the findings were latent bugs that did not have an immediate
impact, but could become impactful in the presence of failures or
changes in the external announcements received from neighbors.
Further, because Lightyear is sound the operators can be sure that
these are the only violations of the desired end-to-end properties.
As of this writing, all identified errors are prioritized for fixing by
network engineers.

Verification with Lightyear is highly scalable. The maximum
time that it took Lightyear to sequentially run all of the local
checks for any single property was 15 minutes, across all devices in
the network. As another data point, an automation that sequentially
ran the local checks for four of the properties across all of the
hundreds of edge routers took a total of 16 minutes. Given that
each of these checks can be run independently on each device
configuration, it would also be easy to parallelize these checks
in the future in order to scale horizontally for a large number of
devices.

While using Lightyear to verify these 11 properties, we also
learned best practices for writing properties. Initially, we combined
multiple properties into a single property for Lightyear to check.
However, we found that writing multiple simpler properties, with
associated simpler local constraints, was not only easier to write
and debug but also was usually faster to run, since the constraints
are simpler for the underlying SMT solver to process.

Proper IP Reuse: In the second use case, Lightyear verified
proper usage of reused IPs within the network. The cloud network is
partitioned into dozens of regions, and some private IPv4 addresses
are reused in different regions. There is a safety property that traffic
sent to these private addresses must stay within the region, and also
a liveness property that routes to reused addresses are advertised
to other WAN routers in the same region. We verified both of these
properties for all regions in the network.

The safety property to verify is as follows, for each router 𝑅 that
is not part of the region of interest:

(𝑅, {𝑟 | 𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) =⇒ Prefix(𝑟 ) ∉ ReusedIPs})
Here 𝐹𝑟𝑜𝑚𝑅𝑒𝑔𝑖𝑜𝑛(𝑟 ) is a ghost variable that is set to true only
on routes coming from external routers in the particular region,
and ReusedIPs is the set of prefixes that are reused. The liveness
property requires that in each region, a route with a reused prefix
from the data center routers can reach all other routers in that
region, possibly going through one intermediate router. That is,
for every pair of WAN routers 𝑅1 and 𝑅2 in the same region, if 𝑅1
is connected to a data center router 𝐷 , then routes with a reused
prefix can travel 𝐷 → 𝑅1 → 𝑅2.

The WAN enforces these properties by tagging routes for reused
IP addresses with a region-specific community 𝐶 when they are
received from data centers. Routers in the same region then accept
routes tagged with that community, while routers in other regions
reject them. The local constraints we used to verify the safety
and liveness properties are shown in Table 4b and 4c respectively.
One subtlety is that routes to reused IP addresses in the region

of interest must not only have the community 𝐶 , but they also
must not be tagged with any other region’s community. Otherwise,
these routes could be accidentally accepted by other regions. The
local constraints validate this property, and the WAN enforces it by
deleting all communities on routes coming from the data centers,
before adding the community 𝐶 .

The communities used in each region were documented in a
metadata file, whichmade it easy for us to write the local constraints
for each region. In one case, Lightyear found a violation where a
router used a community that was not present in the metadata file.
The operators acknowledged that this was a bug that could cause
some traffic to be redirected. Lightyear was able to verify all other
local checks, for both the safety and the liveness properties.

6.2 Scaling Experiments

To illustrate the scaling benefits of modular checking, we compared
Lightyear with Minesweeper [4] on synthetic test cases. For a fair
comparison, we created an implementation of Lightyear that is
built on top of the same parser and constraint generation system as
Minesweeper. This is a different implementation from the one used
on the cloud network. We use a BGP full mesh where each router
is connected to one external neighbor through eBGP and all other
routers through iBGP. This leads to a total of 𝑁 2 edges in a network
of size 𝑁 . The network’s configuration is relatively simple, with
each eBGP connection using only prefix and community filters.
We checked a no-transit safety property, similar to the example in
Figure 1.

Figure 3 provides details on these results by comparing the
number of SMT variables and constraints generated by each tool,
as well as the amount of time used to solve the SMT constraints
compared to the total computation time. As the network size in-
creases, Minesweeper requires several orders of magnitude more
SMT variables and constraints than the maximum number required
by Lightyear for any local check (compare Figures 3a and 3b). As
a result, SMT solving time dominates the run time of Minesweeper
and is the limiting factor on its ability to scale, while for Lightyear
the solving time is a relatively small portion of the total time (com-
pare Figures 3c and 3d). Minesweeper does not terminate within
two hours when run on a network of size 40, while Lightyear
verifies a network of size 100 in 5.5 minutes.

7 RELATEDWORK

Control Plane Verification: State-of-the-art approaches to net-
work control-plane verification were summarized in Table 1. Unlike
Lightyear, these approaches are all monolithic — they require
joint analysis of the configurations of all nodes — which dramat-
ically limits scalability. Compared to Lightyear, Minesweeper’s
worst case complexity is exponential in the network size. Other
improvements not only reduce generality but are at least quadratic
in the network size even when using specialized algorithms. Most
approaches make tradeoffs in expressiveness, for example giving
up the ability to reason about all possible BGP announcements
from neighbors [1, 10, 22, 27]. In contrast, Lightyear’s modular
approach only requires reasoning about individual BGP route maps
in isolation and so is highly scalable. Lightyear also provides guar-
antees across all possible external announcements and, for safety
properties, arbitrary failures.
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Figure 3: Comparing Lightyear and Minesweeper on synthetic networks of various sizes.

rcc [8] validates important properties of BGP configurations,
largely through local checks on individual configuration. However,
rcc is limited to specific "best practice" policies, and there is no
guarantee that the local checks together ensure the desired end-to-
end properties.

Closest to our work are recent techniques for modular control-
plane verification, Kirigami [23] and Timepiece [2], which also use
assume-guarantee reasoning for the control plane via local invari-
ants. However, each approach makes a different set of tradeoffs
than Lightyear. Kirigami’s local invariants require the exact routes
that will arrive on a particular edge. Because these invariants are
fully concrete, Kirigami cannot reason about arbitrary route an-
nouncements from neighbors or give guarantees in the presence of
failures.

Timepiece allows for expressive local invariants and properties,
using an explicit notion of time. In Timepiece, routing protocols
have discrete, synchronized time steps, and in each step, each router
computes the best route among those it receives. This model allows
Timepiece to specify and check temporal-logic properties but re-
quires users to provide complex local invariants for each node that
are explicitly indexed by time. In our model routes can be sent and
arrive in arbitrary orders, and we demonstrate how to specify and
check common safety and liveness properties without explicit time.

Another line of work has improved scalability of control-plane
verification through forms of abstraction [5, 6]: the full network is
analyzed monolithically, but irrelevant or redundant configuration
information is abstracted away to simplify the analysis. Our work

is orthogonal to this line of work; the two approaches could be
combined.

Data Plane Verification: Other tools check properties of for-
warding state, rather than network configurations [3, 13, 15, 16, 18,
19, 25]. These approaches generally require joint reasoning about
the entire network. A recent exception is RCDC [12], which mod-
ularly verifies global reachability contracts in a data center via
local checks. However, RCDC is specific to one data center design
and does not provide a general framework for decomposing global
property checks into local checks. Another approach [20] exploits
abstraction, such as symmetries, to scale data-plane verification.

Modular Verification: Assume-guarantee reasoning [14, 21]
enables modular verification in other domains. A global property
is modularized by providing each system component with local
invariants that it must satisfy, assuming other components satisfy
their invariants. Lightyear applies this methodology to networks
to generate the local checks that each BGP policy must satisfy.

Verification often requires identifying inductive invariants, prop-
erties that hold over some unbounded space of system states, such
as the iterations of a loop [11]. Such invariants arise naturally in
networks and enable many locations to use the same local invariant.
Typically, a small set of nodes establishes an inductive invariant
(e.g., by attaching a community), and this invariant holds through
the network as long as other nodes “do no harm” (e.g., never remove
communities).
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8 CONCLUSION

Exploiting symmetries in network verification [20] is natural be-
cause of hardware design patterns such as fat trees. Similarly, ex-
ploiting modularity in control plane verification is natural because
of design patterns in the way configurations are written and main-
tained in well engineered networks. We have confirmed this hy-
pothesis in six months of deployment at a major cloud vendor.
Further, Lightyear finesses the need to reason about time to prove
safety and liveness, offering a sweet spot between expressiveness
and complexity that has worked well for many desired properties
in our network.

In Lightyear, users must provide local network constraints.
While in our experience it has been easy to determine these con-
straints, we believe it is possible to instead learn local invariants
automatically from configurations in the future, for example when
properties are enforced via communities.
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A BGP TRACE AXIOMS

The safety axioms consist of the following properties, for all 1 ≤
𝑘 ≤ 𝑛:

(1) If 𝐴𝑘 = recv(𝑁 → 𝑅, 𝑟 ), then either:
(a) 𝑁 ∈ Externals, or
(b) there exists 𝑗 < 𝑘 such that 𝐴 𝑗 = frwd(𝑁 → 𝑅, 𝑟 )

(2) If𝐴𝑘 = slct(𝑅, 𝑟 ), then there exists 𝑗 < 𝑘 , 𝑟 ′ ∈ Routes, and
𝑁 ∈ Routers∪Externals such that𝐴 𝑗 = recv(𝑁 → 𝑅, 𝑟 ′)
and 𝑟 = Import(𝑁 → 𝑅, 𝑟 ′)

(3) If 𝐴𝑘 = frwd(𝑅 → 𝑁, 𝑟 ), then either:
(a) 𝑟 ∈ Originate(𝑅 → 𝑁 ), or
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(b) there exists 𝑗 < 𝑘 and 𝑟 ′ ∈ Routes such that 𝐴 𝑗 =

slct(𝑅, 𝑟 ′) and 𝑟 = Export(𝑅 → 𝑁, 𝑟 ′)
The liveness axioms depend on the BGP route preference relation,

which selects routes to the same prefix by comparing their local
preference, AS paths, and other attributes. We say that 𝑟1 > 𝑟2 if 𝑟1
is preferred over 𝑟2. The liveness axioms consist of the following
properties, for all 1 ≤ 𝑘 ≤ 𝑛:

(1) If all of the following are true:
• 𝐴𝑘 = slct(𝑅, 𝑟 ) ∈ 𝑇
• 𝑟 ′ = Export(𝑅 → 𝑁, 𝑟 ) with 𝑟 ′ ≠ Reject
then there exists 𝑗 > 𝑘 such that 𝐴 𝑗 = frwd(𝑅 → 𝑁, 𝑟 ′)

(2) If 𝑟 ∈ Originate(𝑅 → 𝑁 ) then there exists 𝑗 > 𝑘 such that
𝐴 𝑗 = frwd(𝑅 → 𝑁, 𝑟 )

(3) If 𝐴𝑘 = frwd(𝑅 → 𝑁, 𝑟 ) and there is no link failure along
𝑅 → 𝑁 , then there exists 𝑗 > 𝑘 such that 𝐴 𝑗 = recv(𝑁 →
𝑅, 𝑟 )

(4) If all of the following are true:
• 𝐴𝑘 = recv(𝑁 → 𝑅, 𝑟 )
• 𝑟 ′ = Import(𝑁 → 𝑅, 𝑟 ) with 𝑟 ′ ≠ Reject
• For all neighbors 𝑁 ′ ≠ 𝑁 and routes 𝑟 ′′:
if Prefix(𝑟 ) = Prefix(𝑟 ′′) and recv(𝑁 ′ → 𝑅, 𝑟 ′′) ∈ 𝑇 ,
then 𝑟 ′ > Import(𝑁 → 𝑅, 𝑟 ′′)

then there exists 𝑗 > 𝑘 such that 𝐴 𝑗 = slct(𝑅, 𝑟 ′) ∈ 𝑇 .

B CORRECTNESS PROOF FOR SAFETY

In this section we prove that Lightyear’s modular approach to
control-plane verification is correct.

First we state and prove the key lemma, which says that the local
checks are sufficient to ensure that the network invariants 𝐼 hold,
for all valid traces.

Lemma: Given a BGP topology and policy as well as network
invariants 𝐼 , let𝐶 be the set of Import, Export, and Originate checks
that Lightyear generates. If all checks in 𝐶 pass, then for all 𝑇 ∈
Valid, 𝑟 ∈ Routes, 𝑅, 𝑁 ∈ Routers:

• if slct(𝑅, 𝑟 ) ∈ 𝑇 , then 𝑟 ∈ 𝐼𝑅
• if frwd(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 ∨ recv(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 , then 𝑟 ∈
𝐼𝑅→𝑁

Proof: The proof is by induction on the length of the (partial) trace
𝑇 .
Base case: For a partial trace of length 0, there are no events, so
the statement is vacuously true.
Inductive case: Suppose 𝑇 = 𝐴1, 𝐴2, . . . , 𝐴𝑘+1. We assume by in-
duction that the statement is true for 𝐴1, 𝐴2, . . . , 𝐴𝑘 . We do a case
analysis on the event 𝐴𝑘+1:
Case 𝐴𝑘+1 = recv(𝑁 → 𝑅, 𝑟 ), so we have to show that 𝑟 ∈ 𝐼𝑁→𝑅 .
By the trace validity axioms, either:

(1) 𝑁 ∈ Externals. In this case we know that 𝐼𝑁→𝑅 = Routes,
so 𝑟 ∈ 𝐼𝑁→𝑅 .

(2) There exists 𝑗 < 𝑘 + 1 such that 𝐴 𝑗 = frwd(𝑁 → 𝑅, 𝑟 ). Then
by the inductive hypothesis we have that 𝑟 ∈ 𝐼𝑁→𝑅 .

Case 𝐴𝑘+1 = slct(𝑅, 𝑟 ), so we have to show that 𝑟 ∈ 𝐼𝑅 . From the
trace validity axioms, we know that there exists 𝑗 < 𝑘 + 1, 𝑟 ′ ∈
Routes, and𝑁 ∈ Routers∪Externals such that𝐴 𝑗 = recv(𝑁 →
𝑅, 𝑟 ′) and 𝑟 = Import(𝑁 → 𝑅, 𝑟 ′). From the inductive hypothesis,
we know that 𝑟 ′ ∈ 𝐼𝑁→𝑅 . Therefore by the Import check in 𝐶 for
𝑁 → 𝑅, we can conclude that 𝑟 ∈ 𝐼𝑅 .

Case 𝐴𝑘+1 = frwd(𝑅 → 𝑁, 𝑟 ), so we have to show that 𝑟 ∈ 𝐼𝑅 . By
the trace validity axioms, either:

(1) 𝑟 ∈ Originate(𝑅 → 𝑁 ). Then from the Originate check in
𝐶 for 𝑅 → 𝑁 we have that 𝑟 ∈ 𝐼𝑅→𝑁 .

(2) There exists 𝑗 < 𝑘 + 1 and 𝑟 ′ ∈ Routes such that 𝐴 𝑗 =

slct(𝑅, 𝑟 ′) and 𝑟 = Export(𝑅 → 𝑁, 𝑟 ′). From the inductive
hypothesis, we have that 𝑟 ′ ∈ 𝐼𝑅 . Then from the Export
check in 𝐶 for 𝑅 → 𝑁 , we can conclude that 𝑟 ∈ 𝐼𝑅→𝑁 .

Now we prove the correctness theorem for Lightyear, which
says that Lightyear’s checks are sufficient to ensure that the given
network property holds, for all valid traces.
Theorem: Given a BGP topology and policy, a network property
(ℓ, 𝑃), and network invariants 𝐼 , let 𝐶 be the set of Import, Export,
and Originate checks that Lightyear generates. If all checks in
𝐶 pass and 𝐼ℓ ⊆ 𝑃 , then for all 𝑇 ∈ Valid, 𝑟 ∈ Routes, 𝑅, 𝑁 ∈
Routers:

• if ℓ = 𝑅 and slct(𝑅, 𝑟 ) ∈ 𝑇 , then 𝑟 ∈ 𝑃
• if ℓ = 𝑅 → 𝑁 and frwd(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 ∨ recv(𝑅 → 𝑁, 𝑟 ) ∈
𝑇 , then 𝑟 ∈ 𝑃

Proof: There are two cases:
(1) ℓ = 𝑅 and slct(𝑅, 𝑟 ) ∈ 𝑇 . From the earlier lemma we have

that 𝑟 ∈ 𝐼ℓ , and since 𝐼ℓ ⊆ 𝑃 it follows that 𝑟 ∈ 𝑃 .
(2) ℓ = 𝑅 → 𝑁 and frwd(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 ∨recv(𝑅 → 𝑁, 𝑟 ) ∈ 𝑇 .

Again from the earlier lemma we have that 𝑟 ∈ 𝐼ℓ , and since
𝐼ℓ ⊆ 𝑃 it follows that 𝑟 ∈ 𝑃 .

Note that our reasoning does not depend on BGP converging as
traces can be infinite.

C CORRECTNESS PROOF FOR LIVENESS

In this section, we prove the correctness of the modular checks for
liveness properties.
Theorem: Given the following:

• The network configurations
• A liveness property (ℓ, 𝑃)
• A path 𝑆 = (ℓ1, ℓ2, . . . , ℓ𝑛−1, ℓ𝑛 = ℓ)
• A constraint for each location 𝐶1 . . .𝐶𝑛

For all valid traces 𝑇 , if all of the following are true:
(1) all checks (propagation, no interference) pass
(2) there exists 𝑟 such that recv(ℓ1, 𝑟 ) ∈ 𝑇 ∧𝐶1 (𝑟 )
(3) for all 𝑟 , 𝐶𝑛 (𝑟 ) =⇒ 𝑃 (𝑟 )
(4) there are no link failures along the path

then there exists 𝑟 ′ such that either:
• ℓ ∈ Routers and there exists 𝑟 ′ such that slct(ℓ, 𝑟 ′) ∈ 𝑇
and 𝑃 (𝑟 ′) holds, or

• ℓ ∈ Edges and there exists 𝑟 ′ such that frwd(ℓ, 𝑟 ′) ∈ 𝑇 and
𝑃 (𝑟 ′) holds

Proof: Consider a valid trace 𝑇 . By the assumption, there exists 𝑟1
such that recv(ℓ1, 𝑟1) ∈ 𝑇 and 𝐶1 (𝑟1)

There must exists at least one router 𝑅 = ℓ𝑗 and a route 𝑟 𝑗 such
that slct(𝑅, 𝑟 𝑗 ) is in the trace and Prefix(𝑟 𝑗 ) = Prefix(𝑟1). If
there are no routers outside the path that have their routes ac-
cepted then 𝑟2 = Import(ℓ1, 𝑟1) is the most prefered route at ℓ2, so
slct(ℓ2, 𝑟2) will be in the trace. If there are routers outside the path
that have their routes accepted, then by the no interference check,
it must be that the router accepted at ℓ𝑗 will satisfy 𝐶 𝑗 (𝑟 𝑗 ).



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Tang et al.

Consider the last router that accepts a route from a neighbor
outside the path. We will use induction to show that all locations ℓ𝑖
between it and the end will have a route satisfying 𝐶𝑖 :
Base case: Take the last router 𝑅 = ℓ𝑗 , where there exists 𝑟 𝑗 ,𝐶 𝑗

such that slct(ℓ𝑗 , 𝑟 𝑗 ) ∈ 𝑇 and 𝐶1 (𝑟 𝑗 ). We have shown above that
there must be one.
Inductive step: If ℓ𝑖 = 𝑅 ∈ Routers, then we know that the event
slct(ℓ𝑖 , 𝑟𝑖 ) ∈ 𝑇 and𝐶𝑖 (𝑟𝑖 ) from the inductive hypothesis. We want
to show that there exists 𝑟𝑖+1 such that frwd(ℓ𝑖+1, 𝑟𝑖+1) ∈ 𝑇 and
𝐶𝑖+1 (𝑟𝑖+1). This is true because:

• let 𝑟 ′ = Export(ℓ𝑖+1, 𝑟𝑖 )
• slct(ℓ𝑖 , 𝑟𝑖 ) ∈ 𝑇 and 𝐶𝑖 (𝑟𝑖 ) (from the inductive hypothesis)
• 𝑟 ′ ≠ Reject and 𝐶𝑖+1 (𝑟𝑖+1) (from the propagation check)
• frwd(ℓ𝑖+1, 𝑟𝑖+1) ∈ 𝑇 (from the liveness axiom)

If 𝑙𝑖 = 𝑁 → 𝑅 ∈ Edges, then we know that frwd(ℓ𝑖 , 𝑟𝑖 ) ∈ 𝑇
and 𝐶𝑖 (𝑟𝑖 ), and we want to show that there exists 𝑟𝑖+1 such that
slct(ℓ𝑖+1, 𝑟𝑖+1) ∈ 𝑇 and 𝐶𝑖+1 (𝑟𝑖+1). This holds because:

• let 𝑟𝑖+1 = Import(ℓ𝑖 , 𝑟𝑖 )
• recv(ℓ𝑖 , 𝑟𝑖 ) ∈ 𝑇 (from liveness axiom given no link failures)
• 𝑟𝑖+1 ≠ Reject and 𝐶𝑖+1 (𝑟𝑖+1) (from the propagation check)
• We know that R and any router after R in the path did not
accept any routes from any neighbors not in the path, so
𝑁 → 𝑅, so we know slct(ℓ𝑖+1, 𝑟𝑖+1) ∈ 𝑇 and 𝐶𝑖+1 (𝑟 ′)

From this, we know that at ℓ𝑛 , there exists a route 𝑟𝑛 such that
𝐶𝑛 (𝑟𝑛) and either frwd(ℓ𝑛, 𝑟𝑛) ∈ 𝑇 or slct(ℓ𝑛, 𝑟𝑛) ∈ 𝑇 .𝐶𝑛 (𝑟𝑛) =⇒
𝑃 (𝑟𝑛), which is what we wanted to prove. Again, note that our rea-
soning does not depend on BGP converging as traces can be infinite.
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