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Abstract

Modern Data-Intensive Scalable Computing (DISC) systems
are designed to process data through batch jobs that exe-
cute programs (e.g., queries) compiled from a high-level lan-
guage. These programs are often developed interactively by
posing ad-hoc queries over the base data until a desired re-
sult is generated. We observe that there can be significant
overlap in the structure of these queries used to derive the
final program. Yet, each successive execution of a slightly
modified query is performed anew, which can significantly
increase the development cycle. VEGA is an Apache Spark
framework that we have implemented for optimizing a series
of similar Spark programs, likely originating from a devel-
opment or exploratory data analysis session. Spark develop-
ers (e.g., data scientists) can leverage VEGA to significantly
reduce the amount of time it takes to re-execute a modified
Spark program, reducing the overall time to market for their
Big Data applications.

Categories and Subject Descriptors H.2.4 [Information
Systems]: Database Management—query processing, paral-

lel databases
General Terms Languages, Performance, Theory

Keywords Query Rewriting, Incremental
Spark, Interactive Development, Big Data

Evaluation,

1.

Data scientists report spending the majority of their time
writing code to ingest data from several sources, transform-
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ing it into a common format, cleaning erroneous entries, and
performing exploratory data analysis to understand its struc-
ture [22]. These tasks span the development cycle of a Big
Data application. For instance, data cleaning and exploratory
data analysis are typically performed in an iterative process:
programmers start with an initial query and iteratively im-
prove it until the output is in a desired form.

Despite this common pattern, existing Data-Intensive
Scalable Computing (DISC) systems, such as Apache
Hadoop [3] and Apache Spark [4], do not optimize for these
scenarios. Rather, they run each query refinement anew, ig-
noring the work done in previous executions. Due to the im-
mense scale of today’s datasets and the aforementioned steps
involved, developing Big Data applications is very time con-
suming; it is not uncommon for data scientists to wait hours,
only to find that they should have filtered some unforeseen
outliers. A common fallback approach is to develop against
a sample of the data. However, this approach is incomplete
in that it does not guard against outliers not in the sample.

Our goal is to support interactive development of data-
intensive applications by optimizing the execution of query
refinements. There have been several prior works on opti-
mizing data-intensive applications, but they do not meet this
need. Some works can provide large speedups in the face of
changes to the input data, for example via a form of incre-
mental computation [25, 26, 29] or targeted optimizations
for recurring workloads [23, 28] and iterative (recursive)
queries [9, 26, 31]. These approaches all assume that the
query itself is unchanged. Other systems provide the ability
to cache and reuse the results of sub-computations [15, 24].
In an interactive development setting, these systems would
allow unchanged portions of a query to reuse old results.
However, any parts of a query that are downstream of a code
change must still be executed from scratch, thereby limiting
the ability to obtain interactive speeds.

In this paper we introduce VEGA: an Apache Spark
framework that automatically optimizes a series of simi-
lar Spark programs, likely originating from a development
or exploratory data analysis session. VEGA automatically



reuses materialized intermediate results from the previous
run when executing the new version of a program. As a
starting point, we can reuse the results from the latest ma-
terialization point before any code modification, as prior
cache-based systems would do [15, 24]. VEGA significantly
improves upon this baseline by automatically rewriting the
dataflow to push the code modifications as late as possible,
thereby allowing the execution to start from a later material-
ization point. This optimization is driven by an analysis that
determines when and how two successive operations can be
reordered without changing program semantics.

In addition to the rewriting optimization, VEGA employs
a complementary technique that adapts the prior work on in-
cremental computation mentioned above (i.e., [25, 26, 29])
to our setting. Specifically, VEGA can perform an incremen-
tal computation rather than ordinary re-execution of the op-
erations downstream of the modified portion of the program,
thereby computing only data changes (deltas) relative to the
previous execution. We detail how VEGA determines when
such incremental computation is more profitable than ordi-
nary computation.

We have implemented VEGA both at the Spark SQL level
(referred to as VEGA SQL) as well as at the RDD transfor-
mation level (VEGA RDD), in order to optimize programs
written directly in Spark. Thanks to the high-level semantics
of Spark SQL, query rewriting performed by VEGA SQL is
completely transparent to the user, i.e., no additional infor-
mation is required from the programmer. VEGA RDD instead
trades off transparency for additional optimizations: VEGA
RDD comes with a specifically tailored API enabling rewrites
that leverage the lower-level physical plan information pro-
vided by the RDD representation. VEGA RDD also supports
the complementary incremental computation optimization.

Experimental evaluations show that VEGA is able to
achieve up to three orders-of-magnitude performance gains
by reusing work from prior Spark program executions for
several real-world scenarios. Figure 1 previews the perfor-
mance of VEGA SQL compared to normal Spark SQL for re-
executing a modified query that measures how many links
in the Common Crawl dataset [2] point to a certain domain;
the modification refines the query by returning only links
that point to Wikipedia pages. In the case of Spark SQL, the
modified program is executed from scratch, whereas VEGA
SQL is able to rewrite the modification to operate over the
output of the previous execution. As a result, the response
time of the re-executed query is significantly lower than na-
tive Spark SQL. A more complete description of this exper-
iment is given in Section 5.

Contributions. To the best of our knowledge, VEGA is the
first DISC systems approach to explicitly support optimiza-
tions for iterative program (query) development. The paper
makes the following contributions over the state of the art:

* Two techniques to support interactive development of
data-intensive applications: a form of query rewriting
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Figure 1. VEGA SQL compared against the Spark SQL base
case, in which the re-execution of the changed program takes
place without reusing previous results.

that pushes code modifications to later dataflow stages
in order to avoid re-computing upstream operations; and
an adaptation of incremental computation to avoid a full
re-computation of downstream operations.

e A library that implements these techniques to speed up
the evaluation of updates to both Spark SQL queries and
Spark programs.

® A set of experiments over real-world use cases showing
the effectiveness of the approach.

Organization. The paper is organized as follows: Section 2
briefly introduces Spark, Spark SQL, and describes our ap-
proach for optimizing the execution of modified programs.
Section 3 defines VEGA’s optimization techniques, and Sec-
tion 4 describes the VEGA SQL and VEGA RDD implemen-
tations on top of Spark. The experimental evaluation is de-
tailed in Section 5. Lastly, Section 6 covers related work and
Section 7 concludes the paper.

2. Overview

This section provides a brief background on Apache Spark.
It then describes an example Spark program, which we use
to informally overview our two techniques—plan rewriting
and incremental computation—for optimizing the execution
of modified code.

2.1 Apache Spark

Spark is a platform for executing data-parallel computations
on Resilient Distributed Datasets (RDDs) [33] that reference
data in distributed storage e.g., HDFS. The RDD abstraction
provides transformations (e.g., map, reduceByKey, filter,
groupBy, join, etc.) and actions (e.g., count, collect) that
operate on the reference partitioned data. A typical Spark
program executes a series of transformations ending with an
action that returns a result value (e.g., the record count of an
RDD, a collected list of records referenced by the RDD) to
the driver program.

RDDs are immutable and RDD transformations are
coarse-grained: i.e., applied in bulk over all the items in the



target RDD. In the driver program, Spark lazily evaluates
RDD transformations by returning a new RDD reference
specific to that transformation operation; essentially building
a query plan. Any action executed by the driver triggers the
execution of the query plan referenced by the action. To exe-
cute a query plan, Spark compiles the transformations into a
dataflow (or DAG) of stages. Spark groups transformations
that can be pipelined (i.e., results are passed one-to-one be-
tween transformations) into a single stage. A shuffle step is
used to re-partition the data between stages. The final stage is
responsible for executing the action and returning the result
to the driver program. The stage DAG represents the physical
plan, which is passed to the Spark scheduler for execution.
The Spark scheduler is responsible for evaluating each stage:
a stage is executed before downstream dependent stages are
scheduled i.e., Spark batch executes the stage DAG. To ex-
ecute a “runnable” stage, the Spark scheduler will launch
tasks that perform the operations of the stage on input data
partitions. Intermediate stage inputs and outputs are materi-
alized in the Spark Block Manager.

Spark SQL. Originally developed as Shark [32], Spark SQL
enables queries over structured data on Spark, using the fa-
miliar declarative SQL language or DataFrame API. Spark
SQL comes with an optimizer framework called Catalyst,
which represents expressions (e.g., selection predicates, at-
tribute projections, join conditions) as trees and supports
rules that can manipulate them. The Spark SQL compiler
and optimizer leverage Catalyst for query analysis, logical
plan optimization, and physical plan generation (i.e., to a
Spark program).

2.2 Running Example

Our running example leverages a dataset made available by
the NYC Open Data Project. Calls to the non-emergency ser-
vice center are monitored, and related metadata is saved into
a database. An excerpt of this CALLS database, containing
data ranging from 2010 to 2015, is publicly available [1].

case class Calls (id:String, hour:Int, agency:String, ...)
format = new SimpleDateFormat ("M/d/y h:m:s a")
input = sc.textFile ("hdfs://...")
calls = input.map(_.split(",")) .map(r =>
Calls(r(0), format.parse(r (1)) .getHours,r(2),...)
calls.registerTempTable ("calls")
hist = sglContext.sqgl ("
SELECT agency, count (x)

® 9 U R W —

9 FROM calls

10 JOIN (

11 SELECT hour

12 FROM calls

13 GROUP BY hour

14 HAVING count (x) > 100000
15 ) counts

16 ON calls.hour = counts.hour
17 GROUP BY agency")

18 hist.show ()

Figure 2. Spark SQL program generating calls distribution
per agency during busy hours. The inner query is used to
detect the busy hours, i.e., when the number of incoming
calls exceed 100k.

Assume that a service manager is interested in knowing
the agencies that received the most calls during busy hours,
where an hour is considered busy if more than 100k calls
were received in total. The Spark SQL program in Figure 2
can be used to answer this query. The schema of the CALLS
dataset is defined in line 1. Line 3 loads the content of the
specified path from HDFS into the input RDD. The data is
in CSV format; lines 4-5 parse and load the data into the calls
DataFrame. Lines 8-17 contains a Spark SQL query that
generates a histogram of calls received by agencies during
busy hours. The inner query (lines 11-14) identifies the busy
hours. The outer query joins the inner query result with the
calls DataFrame to produce call records during busy hours.
The group-by operation generates the final distribution con-
taining the number of calls (during busy hours) received by
each agency. The evaluation of the query defining hist is trig-
gered by the show action (line 18) which prints the result.
The same Spark SQL query can be represented by the logi-
cal query plan depicted in Figure 3 (executed bottom-up).

T agency, count ( *)
\
GROUPBY (agency)
\

X
/\

7T hour CALLS
\
O count (*)> 10000
\
GROUPBY (hour)

\
CALLS

Figure 3. Logical plan for the program of Figure 2.

It turns out that this dataset has a subtle bug: calls that
were not assigned a creation date are given a default hour
of zero, indicating that the call occurred during the midnight
hour. The discovery of this bug could motivate the following
revision to the inner query, with the goal of removing skewed
(midnight) entries:

SELECT hour

FROM calls

WHERE hour <> 0

GROUP BY hour

HAVING count (*) > 100000

Resubmitting the overall program, with the revised inner
sub-query, will execute from scratch in Spark SQL. Our goal
in VEGA is to do better by leveraging work done by the
previous execution. Next, we introduce two techniques that
VEGA uses for this purpose.

2.3 Query Plan Rewriting

The revised logical plan for the inner query (left branch in
Figure 3) will be:



TT hour
\

O count (*) > 10000

\
GROUPBY (hour)

\
O hour <> 0

\
CALLS

Figure 4. Modification to the logical plan of Figure 3.

Catalyst—the Spark SQL query optimizer and planner—
will plan the added selection predicate close to the source
calls dataset (as shown in Figure 4) to exploit early prun-
ing. In contrast, the VEGA query rewrite technique will
try to “push” the introduced selection predicate as late
as possible in the query plan, allowing maximal reuse of
materialized intermediate results from the previous execu-
tion. In the above example, VEGA recognizes—by analyz-
ing the logical query plan expression in Catalyst—that the
added where condition commutes with the inner group-by
operation, since that operation does not modify the hour
field of any record. Similarly, the new where condition also
commutes with the subsequent count, projection, and join
operations. However, the new where condition cannot be
pushed past the GROUPBY operation because it groups over
a different key (i.e., agency).

Therefore, assuming that the join result from the previous
execution was materialized, the following logical plan will
produce the same result as re-executing the modified query.

T agency, count ( *)
\
GROUPBY (agency)

\
O'hour <> 0

\
materialized join

Figure 5. Optimized logical plan.

The performance gains from this rewrite are significant. As
we will show in Section 5, rewritten queries can deliver up to
three orders-of-magnitude performance improvement w.r.t.
the base case of re-running from scratch.

2.4 Beyond Logical Optimizations

As we will describe in the next section, the above rewrite
technique works at both the Spark SQL level (via the log-
ical query plan) and at the physical RDD level. VEGA fur-
ther leverages incremental evaluation at the RDD level to
speed up Spark program re-execution. Our approach lever-
ages prior work on handling incremental data changes for
efficient support of view maintenance [6, 16] and iterative
queries [8, 9, 11, 26]. Specifically, we treat the output of a
new or modified RDD as a change to the input data for the
downstream operators, relative to that of the prior program
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execution. Specifically, the output of the new RDD is repre-
sented as a delta, a pair of multisets A= (A, A_) consisting
of record insertions and deletions, respectively. This then al-
lows us to employ the delta rules [16] approach of execut-
ing incremental versions of the downstream operators, which
now take deltas as input and produce deltas as output.
Consider again the logical plan of Figure 5. The related
physical plan (executing top-down) will look as follows:

1 — materialized join

2 — FILTER (hour = 0)

3 — MAP (agency, 1)

4 — SHUFFLE

5 — REDUCE (agency, SUM)

Figure 6. Physical plan for the logical plan of Figure 5.

When we execute the newly introduced FILTER transfor-
mation at line 2 on the previously saved join results, we pro-
duce a A consisting of an empty A and a A_ that contains all
records that do not pass the added filter. Downstream trans-
formations are then executed incrementally, taking deltas as
input and producing output deltas. For example, the MAP
on line 3 will produce a A_ record for each of the incom-
ing ones. The REDUCE transformation on line 5 similarly
uses the input A records to revise its results from the previ-
ous execution; note that this assumes the REDUCE results
from the prior execution were materialized. Therefore, there
is a space cost associated with incremental evaluation that
is common across all incremental systems [8, 11, 16, 26].
These costs will be further explored in Section 3.3.

3. The VEGA Optimizations

This section describes our two approaches to optimizing
query re-execution. We introduce a simple formal model of
an execution workflow, which is an abstraction of both the
logical and physical plans shown in the previous section. We
use this formal model to precisely define our plan rewriting
and incremental computation optimizations.

3.1 The Program Model

We model the dataflow of a program as a sequence of trans-
forms, each of which is a data-parallel function such as map,
filter, and reduce. Please see the previous section for the
semantics of such functions in Spark. Consider a dataflow
composed of n transforms Ty — T, — ... — Ty, where the
input to transform T; is the output of T;_;.! The output of a
transform is a multiset. We assume that a user has already
executed the program, and that the output of transform T; is
represented as O;. The user observes the final output Oy, and
decides to add a new transform 6T, after Ty, with (1 <k <
n). The revised dataflow is ... — Ty — 6Ty, = Ty 1 — ... Th.
We handle multiple inserted transforms one at a time. Dele-

''W.l.o.g. we omit the input dataset for transform T;.



U (other) — Filter Map Shuffle Reduce Join

T (target) | | Key | Value Key Value

Filter(Key) T T Filter (T.foU.m™1) T T T T

Filter(Value)| T T T Filter (T.foU.m™ 1) T | None Filter (T.f oU.coly)
T if T.m invertible T if T.m invertible

Map(Key) None| T Map (U.moT.moU.m™") r shuf o T otherwise U oshuf o T otherwise None

Map(Value) T | None T Map U.moT.moU.m™1) T T if T.m distributes over U.r | Map (T.moU.col)

Table 1. Rewrite rules for commuting Spark transformations.

tion and modifications of transorms are discussed at the end
of the section.

As noted in the previous section, our approach depends
on the reuse of materialized intermediate results from a pre-
vious execution. By default, VEGA retains stage inputs (i.e.,
shuffle outputs), and full job outputs; other materialization
points can be specified by the programmer. Retaining results
at input stage boundaries incurs minimal I/O overhead (cf.
Section 5.1) since this intermediate data is already materi-
alized by Spark shuffle. VEGA retains these materialized re-
sults (possibly on disk) beyond the lifetime of a given job for
possible reuse in speeding up a subsequent query execution.

3.2 Logical Plan Rewriting

Recall again the revised dataflow 1 — ... = T, =1 T" —
Tir1 — ... T, after anew transform ! 7+ has been added. Let
O'j be the output produced by transform 7; in the revised
dataflow. Clearly when 1 < j <k, then O; = O;.. Therefore,
we need only re-execute starting from the last materializa-
tion pointin 71 — ... — T;. The goal of query plan rewriting
is to go beyond this by enabling a later materialization point
to be used instead, without changing the final result of the
program.

The key idea of query plan rewriting is to identify a
new transform ! 7/ (possibly equivalent to ! 7+ ) such that
Tir1 — ! T! is equivalent to ! T+ — T (i.e., they produce
the same output when given the same input). Repeated appli-
cations of this idea cause the newly introduced transform to
move farther downstream, modified as necessary to maintain
the semantics of the original program. This process can be
repeated until either we reach the last materialization point
or we encounter a transform that the newly introduced trans-
form cannot move past.

VEGA currently only supports pushing filters and maps
past other transformations, because we found that these are
the main operations that are added/modified iteratively in
workflows. We have developed a set of rules for pushing
these two kinds of transformations past other transforma-
tions without changing program behavior. Next we describe
these rules in their full generality; Section 4 describes how
these rules are employed in the context of our VEGA SQL
and VEGA RDD implementations.

Commutativity Rules. Table 1 presents the rules that drive
our program rewriting optimization. Each row contains a
“target” transform 7', which is added to the workflow, and
each column contains a transform U that is directly after
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T in the workflow. The cell in the table for T /U contains
the code T’ such that T — U is equivalent to U — T". For
example, if T is a transform that filters only keys (first row),
and U is a map only on values (fourth column), then T can
be safely commuted with U and no rewrite is necessary.
The table uses several notational conventions: T.f refers to
the filter function if 7 is a filter transform; 7.m refers to
the map function if 7 is a map transform; 7'.r refers to the
reduce function if 7 is a reduce transform; 7.col; refers to
the first non-key column if 7 is a join transform; shuf refers
to a shuffle operation; m~! refers to the inverse of m; and o
denotes function composition, i.e., (fog)(x) = f(g(x)).

We briefly describe the table entries. A filter on keys (first
row) commutes with other filters as well as transforms that
do not modify keys, which includes shuffle, reduce, and join.
The more interesting case occurs when a filter on keys T is
followed by a map on keys U. In that case, pushing T past
U requires in general that U be inverted before applying
the filter function 7.f. Therefore the new filter function is
T.foU .m~'. A filter on values (second row) is handled
analogously with respect to later filters and maps. However,
a filter on values cannot move past a reduce operation, which
in general provides no way to recover the original values.
Finally, moving a filter on values past a join requires the filter
function to first select the column containing the original
values; U.col; is used for that purpose.

A map on keys (third row) is pushed past filter and map
transforms using the same techniques as described above.
If the map function is invertible, then it is one-to-one and
hence preserves the grouping of keys done by a shuffle trans-
form. Such maps can be safely commuted with a shuffle
as well as a reduce transform. If the map on keys is not
invertible, we require another stage of shuffling after the
map. However, this shuffle is generally efficient, as it op-
erates only on the records that are modified by the map. Fi-
nally, the only new case for a map on values (fourth row)
involves pushing it past a reduce transform. In general, this
is not possible, because the original values are not recov-
erable after the reduce’s aggregation. However, in the case
where the map function distributes over the reduce func-
tion, we can safely apply the map after the reduce aggre-
gation is completed. The distributive property is defined as
follows: Va,b,U.r(T.m(a),T.m(b)) = T.m(U.r(a,b)). For
example, a map function that doubles each value can be
pushed after a reduce function that sums the values (since
2x+2y =2(x+y)).



Algorithm 1 Dataf3ow Rewriting Materialized results Filter Map ShufRe Reduce
Input: An annotatediataBow; An injected transform T;
Theindexof ! T in thedatalBow. 1 [ 105k | NYPD |— 1 |— (NYPD, 1) —p[(NYPD,[11]) (NYPD, 2)
Output: The rewritten version of T; o oook [oo | o] [oswiar] A benTi] fosws
The optimal positionndexfor the rewritten! T. 7 | 260k | DPR |—» 4 |—»] ©PR.1)
1: currentindex:= index+1 0| 600K | NYPD > 0 (NYRDND
21T =1T T
" Filter ! Map ! ShufBe ! Reduce

3: U :=dataBow.from(currentindeX.next()
4: continue:= dataRow.from(currentindex).exists(hasMP())
5: while continueand U # null do

6: res:=! T’ .commuteWith(U)

7:  if res==Nonethen

8: break

9: | T':=resget()

10: if U.hasMP()then

11: IT:=1T

12: index:= currentindex

13:  currentindex+1

14: U :=datalBow.from(currentindex.next()

15:  continue:= datalowfrom(currentindey.exists(hasMP())

Plan Rewriting. Algorithm 1 describes a dataow rewrit-
ing algorithm, which leverages the commutativity rules de-
scribed above. The algorithm takes as input ithdex of
the new transforml T in the datal3ow, and it iteratively
calls thecommuteWith function on the immediate down-
stream transform (line 6) untlone is returned (line 7) or
no downstream materialization point exists (line 15). A call
T.commuteWith(U) decides if transform$ andU, adjacent

~(NYPD, 2) | +(NYPD,1)
~(DSNY, 1)

/,| - (NYPD,1) |—»[ (NYPD, [-1))

[ - (DSNY,1) [ (DSNY, [- 1))

Figure 7. Incremental computation of the physical plan
from Figure 6. The top of the bgure highlights the data modi-
pcations w.r.t. the initial run. The bottom of the bPgure shows
how As are computed and propagated downstream.

in the remainder of the work3ow with its incremental version
AT;. EachAT; outputs two multisetsh;, andA;_ such that

{ = (Ot U (Apr\ At,))\ (At,\ At+).

Example: Incremental Re-execution BContinuing from
the running example and the physical plan of Figure 6,
VEGA applies the blter over the output of the join; any in-
put that does not satisfy the blter will be added & _are-
sult, which is then propagated downstream. The REDUCE
operator uses the aggregatédecords to revise its result
state. In this particular case that means removing all mid-
night calls from every agency. Figure 7 illustrates the execu-
tion of the above incremental plan on a small sample of data.
The top portion of the bgure illustrates the execution of the

to each other in the plan, can be commuted using the rules inoriginal program, together with the modibcations required

Table 1. IfcommuteWith returnsNone then the transforms
do not commute; otherwise a transfofi(line 9) is returned
such thatU followed by T’ has the same behavior @sfol-
lowed byU. The Algorithm returns the optimal position for
I'T and the Pnal rewritten form of that transform (respec-
tively setin lines 12 and 11)ndex and! T are updated only
when a materialization point is reached (line 10).

3.3 Incremental Execution

by the injection of the Plter (highlighted in gray). The in-
cremental plan is described in the bottom part of Figure 7.
We can notice that the delta evaluation of the REDUCE
outputs twoA records for theNYPD agency:—(NYPD, 2),
and+(NYPD, 1). This is because the REDUCE incremen-
tal operator has to update the count FoYPD from 2 to 1,

and eventual downstream operators must be notibed of the
change. ConverselyDSNY, 1) is only removed. Hence only
the delta record-(DSNY, 1) is issued.

Once we have pushed the new transform as far as possibleDiscussion Although we have only discussed how we man-

the dataBow has the fortT- — T 1 — ... T, where! T

age the addition of transforms, our approach also includes

is the newly introduced transformation pushed to some ma-some support fordeleting and modifying existing trans-

terialization point0;.2 VEGA has the ability to execute this
dataBowincrementallyusing delta rules [16], or from scratch
if it determines that the incremental plan is too costly (dis-
cussed further in Section 4.2.2).

forms.A-based incremental computation handles both kinds

of changes naturally. It simply requires that a OdiffO be taken
of the output of the transform before and after the modibca-

tion/deletion, in order to produce the initial delta multisets;

' T- starts the delta computation by producing the pair the downstream process is unchanged. Query plan rewriting

(A 4,A _)whereA . =O-\ OjandA _ =0;\ O- . Inour

handles both deletion and modibcation on maps, as long as

running example from Section 2, the delta version of the new the map function is invertible: deletion has the same effect

plter will becomehour => if (hour == 0) —(hour), where
each —(hour) result contributes to tha- _ multiset (and
A+, is empty). VEGA then uses delta rules to replace edch

as adding the inverse, while updating a map is simulated by
adding the inverse of the original map followed by the re-
vised map. The removal or modibcation of a Plter cannot be
handled with our rewriting technique.

2 As discussed above, the new transformation may have been modibed by . ..
VEGA as it was pushed later in the workRow, but we elide this detail from Summary. Using query plan rewriting we are able to push

our notation as it is irrelevant.

modibcations to later materialization points, saving the up-



stream transformation work. Incremental evaluation allows
us to efficiently re-execute portions of queries where rewrites
do not apply. Section 5 shows that these two techniques can
provide significantly better performance compared to Spark.
Next, we describe the implementations of VEGA for Spark.

4. Spark VEGA Library

The VEGA library implements the query rewriting and in-
cremental processing techniques described in the previous
section. The library consists of two modules: VEGA SQL
(Section 4.1) and VEGA RDD (Section 4.2). Briefly, VEGA
SQL implements the query rewrite technique for Spark SQL
queries, while VEGA RDD implements the query rewrite and
incremental processing techniques at the lower-level Spark
RDD API. Due to the high-level Spark SQL semantics,
query rewriting in VEGA SQL is completely transparent to
the user, i.e., no additional information is required from the
programmer. VEGA RDD instead trades transparency for a
larger space for optimizations: VEGA RDD comes with a
specifically tailored API allowing a larger class of rewrites
(e.g., across map operations) and delta evaluation.

4.1 VEGA SQL

VEGA SQL supports rewrites that push filters past down-
stream materialized results from previous executions, as
shown by the example in Section 2.2. There are no explicit
maps at the SQL level; however, the lower-level VEGA RDD
framework (described next) supports rewriting both filters
and maps. VEGA SQL makes the following modifications to
the Spark SQL compiler (i.e., Catalyst):

1. The query plan rewriting logic of Algorithm 1 is added
as a new logical optimization rule;

2. The existing filter push down rule is disabled for the filter
operators already optimized by Algorithm 1;

3. We force Catalyst to cache the output of exchange oper-
ators (i.e., shuffle output) as materialization points.

In total, the added rule logic to Catalyst amounts to less
than 100 lines of code. We are actively working on opti-
mizing the mechanisms associated with caching Spark SQL
exchange operators triggered by rule 3. When Spark SQL
caches such intermediate data, it converts that data to an
in-memory columnar format, which can cause significant
compute overheads. Presently, this caching happens syn-
chronously with the execution of the Spark SQL operators,
thereby slowing down the query progress; we report on this
slowdown in Section 5. Since our goal is to potentially use
this cached result in a subsequent job, after a user has revised
the query, it suffices for our purposes to perform the caching
asynchronously; we are working on this change, which will
minimize the impact on the active running query. This for-
matting of cached data is specific to Spark SQL and does
not occur in programs written in the lower-level Spark RDD
abstraction. Therefore VEGA RDD (described next) does not
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incur this extra overhead when it retains materialized data
produced by stages.

4.2 VEGA RDD

While Spark users often employ the high-level SQL API,
it is also common for programmers to directly create Spark
programs as a dataflow of RDDs. VEGA RDD extends the
Spark RDD abstraction with mechanisms that enable trans-
formation rewrites to take advantage of later materializa-
tion points, and operator implementations that incrementally
evaluate transformations.

4.2.1 API

VEGA RDD provides an API that allows programmers to
obtain VEGA’s optimizations in an interactive development
setting. Figure 8 lists the main VEGA RDD abstraction: the
Transform class, which wraps a Spark RDD and exposes a
similar API. Like Spark RDD transformations, VEGA RDD
transforms are evaluated lazily when an action is called.

1 abstract class Transform [ A, B]( val rdd: RDD {

2 /I Public API

3 /I Basic transforms

4 def map(f: (A=>B), finv :(B=>A)) : Transform [ A, B]

5 def flatMap (f: (A=>lterable [B])) : Transform [A, B]
6 def filter (f:(A=>Bool)) : Transform [A, A]

7 /I Pairwise transforms

8 def mapKey(f: (( K V)=>( K1, V)),

9 finv : (( KL, V)=>( K, V))) : Transform [( K, V), (K1, V)]
10 def mapValue (f: (( K, V)=>( K, V1)),

1 finv :(( K V1)=>( K, V))) :Transform [( K, V), (K, V1)]
12 def filterKey  (f: (K=>Bool)) : Transform [( K, V), (K, V)]
13 def filtervValue (f:(Vv=>Bool)) : Transform [( K, V), (K, V)]
14 def join (o: Trasform [( K, V2)]) : Trasform [( K, (V1, V2))]
15 def reduceByKey (f: (( V,V)=>V1), finv : (V=>V),

16 fzero : (V=>Bool)) : Transform [( K, V), (K, V1)]

17

18 /I Workflow operations

19 /= Injecting transform OtO in the workflow

20 immediately past the target one */

21 def inject (t:Transform [A, B]) : this.type

2 def delete (t: Transform [A, B]) : this.type

23 [+ Modify works only on map transforms. The new

2 map function Of0 must have the signature of the

25 original map (for instance a map over keys cannot

26 become a map over values  */

27 def modify (f:(A=>B), finv :(B=>A)) : this.type

28 /I Force Vega to materialize the target transform

29 def materialize () : this.type

30 /I Run the full workflow and return the result

31 def collect () : Array [A]

3

33 /I Private API

Figure 8. VEGA public target API.

There are three main differences between the VEGA RDD
API and the original Spark one. First, VEGA RDD intro-
duces variants of map and filter that identify the part (i.e.,
key or value) of a key-value pair that the transform modifies
or reads. For example, mapKey ensures that the transform
will only map over keys, leaving the associated values un-
changed. Such variants allow VEGA to employ the rules in
Table 1 without requiring analysis of the user-defined func-
tions in each transform. For example, a filterKey transform
is guaranteed to safely commute with a mapValue transform.



Second, the map transform in VEGA RDD accepts an in-
verse function (in addition to the ordinary function argu-
ment). When the inverse is null, the function is assumed
to be non-invertible; otherwise, the inverse can be used to
enable more rewriting, as shown in Table 1. VEGA RDD
includes a suite of several standard functions (e.g., string
reverse, pairWithOne) along with their inverses, which can
be directly used in map transforms. The reduceByKey trans-
form similarly takes two extra functions allowing a reduce
operation to be inverted during incremental evaluation: the
first defines how to remove values from the aggregate (e.g.,
minus for sum); the second helps understand when the
“empty” value is reached for the aggregate (e.g., 0 for sum).

Finally, the VEGA RDD API includes explicit operations
to insert, delete, or modify transforms in an existing work-
flow. VEGA RDD includes an operation that allows the pro-
grammer to explicitly define new (intra-stage) materializa-
tion points, in addition to the default (inter-stage) ones; these
additional materialization points incur extra space and time
costs w.r.t. native Spark.

4.2.2 Implementation

The VEGA RDD implementation performs rewriting of the
physical plan using the approach described in Algorithm 1
in the previous section. The VEGA Execution Planner (EP)
is then responsible for translating the rewritten physical plan
into one of two possible execution plans: a standard plan, or
an incremental A plan. If the plan was previously executed,
then the execution plan begins at the latest materialization
point that precedes the point where the workflow is modified.
All work leading up to that materialization point is avoided.
In the case of a standard plan, VEGA EP simply trans-
lates each transform to a regular Spark transformation that
executes natively. The resulting execution plan persists out-
puts at the default and programmer-specified materialization
points. In the case of an incremental plan, VEGA EP does
the following: (1) all transforms between the input materi-
alization point and the new transform are executed natively
via Spark transformations; (2) the § transform is compiled
into a transformation that generates A results; (3) transfor-
mations that follow the § transform are incrementally pro-
cessed according to delta rules [16]. The approach used in
step (2) above depends on the kind of transformation that
was inserted. For a new filter (and all variants), any record
that does not satisfy the filter condition is added to the A,
set. For a new map (and all variants), the transform is exe-
cuted normally and its result is then “diff’ed with the stored
intermediate results from the same point in the previous ex-
ecution, in order to produce the appropriate Ay and A+ sets.

Dynamic Plan Swapping. By default VEGA EP employs
incremental execution. However, this is not always a per-
formance win over regular execution, particularly when the
sizes of the A sets are large. In the worst case, if an inserted
map transform changes the format of all records, then A
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format = new SimpleDateFormat ("M/d/y h:m:s a")

input = sc.textFile ("hdfs://...")

inputTr = new Transform (input)

calls = inputTr.map (line=>format.parse(line.split (","))
.map (r =>(r(0),r(l).getHours(),...),nul )

agencyPerHour = calls.map (x=>(x._2, (x._4, 1)),null )

pairs = calls.map(x => (x._2, 1),null )

count = pairs.reduceByKey (_+_ ,—-1x_, =

9 filter = count.filter(_._2 > 100000)

10 join = filter. join (agencyPerHour)

1 agencies = join.map(_._2._2,null )

12 result = agencies.reduceByKey (_+_,-1%_, _==0)

13 result.collect.foreach (println)

LI T N N T

=0)

Figure 9. Target program using the VEGA API and gener-
ated from the Spark SQL program of Figure 2.

will include all of the old materialized records and A+ will
include all outputs from the new map, so the total number
of records to propagate is twice that if we used regular ex-
ecution. To overcome this problem, we have instrumented
VEGA RDD to collect statistics when A plans are submitted
to execution. The system is able to switch to a standard plan
when it detects that the delta sets are growing too large.

Example: Full VEGA RDD Pipeline — We now describe
how VEGA RDD works in practice using our running exam-
ple. Figure 9 shows how a user can implement the query of
Figure 2 directly using the VEGA RDD API. The program
is identical to the logical plan discussed previously, except
(1) a transform wrapping the input RDD is added, to define
the source of the VEGA RDD workflow (line 3); and (2) the
reduce transforms include functions that allow them to be
inverted (lines 8 and 12).

When the collect method is called, since this is the first
time the query is executed, VEGA RDD will directly run the
plan without any optimization, and data will be saved at the
default materialization points (i.e., before transformations
defining Spark stage inputs). Assume now that a user wants
to inject the filter removing the midnight occurrences. This is
implemented in VEGA RDD with the following line of code.

pairs.inject (pairs.filterKey (x => x!=0))

When the collect method is called again, VEGA RDD first
tries to optimize the program using the query plan rewriting.
Algorithm 1 detects that the new filter can be pushed to just
before the later join transformation because (1) it commutes
with the reduceByKey and f£ilter operations of lines
8 and 9; (2) it does not commute with the map of line 11;
and (3) even though it commutes with the join operation
in 10, the latest reachable materialization point is on the
input of the join. Once the rewritten plan is generated, VEGA
RDD compiles it into an incremental execution plan where
each RDD transformation takes as input a set of positive and
negative As. The initial A; is generated with the records not
satisfying the filter condition.

5. Evaluation

In this section, we evaluate our two key mechanisms—
incremental evaluation and query rewrites—for improving
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1. Wiki reverse:The WikiReverse project [5] aims to un- = 4 ;
derstand how people use Wikipedia on the web. It con- 1r 4 W
tains statistics such as the number of links incoming to 025 . . . 1 . . .
wikipedia.org domain, the number of popular web- 0 50 100 150 200 0 50 100 150 200
sites linking to Wikipedia, and many others. We will use Dataset Size (GB) Dataset Size (GB)
this scenario to showcase the performance improvements (a) Query 1 (b) Query 2

offered by VEGA sQL, and the cost of materialization. Figure 10. Results for the WikiReverse scenario (log-scale

2. PigMix: A popular benchmark for large-scale data an- used for the time axis). For this scenari@®a sQLis over
alytics. We use this workload to motivate our dynamic two order-of-magnitude faster than Spark.
plan selection, by showing cases when re-running from
scratch is preferable to incremental evaluation ile.,
plans are not silver bullets. This section leverages the Common Crawl! dataset to eval-

3. Word count:A simple workload showing that commuta- uate the benebts (and costs) of our rewrite technique in
tive plans run in time (1) independent of the size of the YEGA SQL Each page record depnes the page URL, from

input dataset, and (2) dependent on the unique number ofVhich & domain (e.g.cnn.com ) can be extracted. Both
words existing in the dataset. qgueries described in this section leverage a DataFrame

LINKS(domainlink), which associates the reference page

Datasets. The word count experiments use two datasets domain with the links contained in that page.

of sizes ranging from 2GB to 200GB. Thélord Bag  Query 1. Our Prst query computes how many pages in
dataset (taken from [20]) contains 8000 unique words gen- the Common Crawl dataset point to a Wikipedia page. The
erated from Zipf distribution. Th&Vikipediadataset con-  Spark SQL query below gives the count of the number of
tains words that are generated from randomly sampling domains for each unique link.

5.1 Query Rewrite

Wikipe(_jia, which itse_lf_ contains approximately 56 mil- SELECT link, count(  *)

lion unique words. WikiReverse uses the Common Crawl FROM links

dataset [2], which comes from the Common Crawl non- GROUP BY link

probt foundation that collects data from web pages. For this ) ]

scenario we will use sizes ranging from 1GB to 200GB. Fi-  After running the program, the analyst realizes that the
nally, we use the PigMix generator to create datasets of sizes1Uery does not PlteriNks to only include Wikipedia
ranging from 50GB to 200GB. pages. Instead, this query returns how many domains ref-

erence each link, regardless of whether that link references
a Wikipedia page. The analyst bxes the bug by adding a se-
1Jection predicate to only include the Wikipedia links.

Experiments Conbguration.All experiments were carried
out on a cluster of 16 machines, each with a 3.40GHz i7
processor (4 cores and 2 hyper-threads per core), 32GB o

RAM and 1TB of disk capacity. The operating system is SELECT link, count( =)

64-bit Ubuntu 12.04. The datasets were all stored in HDFS FROM links

version 1.0.4 with a replication factor of two.B&A uses WHERE link like O%wikipedia.org%0
Spark 1.4.0 as the execution engine for running the work- GROUP BY link

Bows. Materialization points are persisted using e -
ORY_AND_DISK_SERlevel.

For each \EGA experiment we run the initial workf3ow,
make a change (e.g., addkdter), and run the modibed
yvorlTqu. In the PigMix scenario we compared two plans: With commutative rewrites, ¥GA sQLis able to outperform
i.e.,! (incremental evaluation), and standard (from scratch .

. S . T . Spark by over three orders-of-magnitude.
starting from a materialization point). Materialization points o i
are created according to the default®/a policy i.e., only ~ Query 2. Building off of the previous query, the analyst
at Spark stage boundaries. The®A results are compared ~ Would now like to measure the number of popular domains
against native Spark, which always runs the entire workRow referencing Wikipedia pages:
from scratch. Each experiment is run seven times: the Prst  gg| gcT links.link, count( «)
two runs are used to warm up OS caches; from the remaining  FROM links JOIN popular ON domain
5 runs we report the trimmed mean computed by removing WHERE links.link like O%wikipedia.org%0
the top and bottom results and averaging the other three. GROUP BY links.link

VEGA sQLis able to rewrite the query and push the Plter
to the end, leveraging the materialization point on the output
of the previous query. The response time for this query
under various input data sizes is presented in Figure 10(a).
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Figure 12. Comparison for query L3 betweénevaluation

0 50 100 150 200 and rerun from intermediate results.

Dataset Size (GB) .
5.2 Incremental Evaluation

Figure 11. Overhead of materializing intermediate results

. ) We now turn our attention to evaluating benebts of incre-
in VEGA sQLcompared against the base case.

mental evaluation in the context of8A RDD. Our evalua-
tion leverages two queries from the PigMix benchmark.

The analyst realizes there is a small problem with the above pigMix L3 computes the total estimated revenues for each
query:wikipedia.org itself is among the popular web-  yser visiting a webpage. We added a selection predicate that
sites and therefore self references (i.e., internal Wikipedia we use in our experiments. The query involves a join be-
Iinks) are included in the count. The foIIOWing revised query tween apage\/iew table and auserstable, followed by a

removes records that refer to Wikipedia: group by operation that sums up trevenuegperuser The
_ _ added selection predicate over thsersrandomly prunes
SELECT links.link, count( *) records based on a selectivity parameter. In our experiments,

FROM links JOIN popular ON domain

WHERE links.link like O%wikipedia.org%0

AND links.domain not LIKE O%wikipedia.org%0
GROUP BY links.link

we will remove this selection predicate and evaluate the per-
formance of an incremental evaluation that adds previously
bltered users. A more selective predicate will add back more
users, increasing the size of the set. The \EGA RDD plan

. ) for query L3 is as follows:
VEGA sSQL is able to recognize that the blter commutes

with thejoin , however is not able to push it past the suc- FILE(O.\usersO)

cessivegroup by operation, which projects out the do- : MQE (line 1)

main attribute. Therefore, the latest applicable materializa- | FILTEEQ;E‘%R;n d.nextFloat # sel) | U
tion point exists after the shufl3e operation preceding the ’ ' '
join .2 Consequently, ¥GA sQL rewrites the query to per- FILE(O.\ page_ viewsO)

form a map-side join on the materialized (shuf3ed) parti- MAP (line " ..

tions of LINKS and POPULAR followed by the group-by MAP (user, revenues)

count aggregation. In contrast, Spark SQL will execute this SHUFFLE
query from scratch, performing shuff3e-based hash-join on JOIN (u)
LINKS (build phase) an@oPULAR (stream). The results for SHUFFLE

re-executing this query revision are plotted in Figure 10(b), REDUCEBYKEY (user, SUM)

which shows that ¥GA sqL outperforms Spark SQL by up Our experiment brst executes query L3 with the FIL-
to two order-of-magnitude. TERKEY transform, and then re-executes it without the
Materialization Cost. Figure 11 depicts the overhead of FILTERKEY transform. Commutative rewrites are not ap-
saving partial results in ¥GA sQL As we can see, the plicable here, so we are left with two options: from the
cost of materialization is minimal for Query 1 (always less closest materialization point, execute incrementally or from
than 20%), while is in average around 30% for Query 2, scratch. Figure 12 depicts the performance of these two op-
with a peak of 52% for 100GB In general, we deem this  tions. In general we can see tHatevaluation is 2-3 times
costs as reasonable compared with the two or more order-faster than re-running the query from scratch. Interestingly,
of-magnitude saving when doing the re-execution. However, the selectivity of the blter has very little effect on the per-
as mentioned in Section 4.1, we are actively working on formance of the plan. The reason for this is due to our

optimizing the materialization mechanisms iE&A sQLto incremental hash-join implementation, which hasheers
be asynchronous with the target query execution. and streams thpageview table;! records revise the pre-
viously hasheduserstable, after which thepageview ta-
3The stage boundary follows the shuffRe and proceeds the join. ble is streamed from the SHUFFLE materialization pOint. In
4Note that the irregular overhead is a consequence of the underlying words tis particular querypageviewis considerably bigger than
distribution in the dataset. users hence the stream scan dominates the performance.
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Figure 13. Comparison for query L2. Herle evaluation is
of no help. Commutative rewrites (CR) are applicable in this
case, and outperforms the other techniques.

PigMix L2 returns estimated revenues from page visits com-
ing from Opower usersO. Similar to L3, it joins two ta-
bles, pageview and powerusers of different sizes, i.e.,
pageview is considerably larger thapowerusers This
query is represented by the followinge¥¢A RDD plan.

FILE(O.\power_usersO)
I MAP (line" ..)
I MAP (name)! p
FILE(OO page_viewsO)
I MAP (line” ..)

I MAP (users, revenues)
I SHUFFLE

1 JOIN(p)

For this experiment, we modify the query (shown below)
by randomly changing theevenuevalue for a user to O (i.e.,

1024 - —e— Spark 1024 - —o— Spark
256 [ 7 Veoa 256 [ —v— Vega
= 64 - 64
v 16 | 2
£ 10 ‘W
Foaf 4+
1F 1+
0.25 0.25
1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 32 64 128 2 4 8 16 32 64 128

Dataset Size (GB)
(a) Word Bag

Dataset Size (GB)
(b) Wikipedia

Figure 14. Performance for the modibped word count using
Word Bag and Wikipedia datasets (log-scale used for both
axis). In Wikipedia the output contains up to 54 millions
words; the running time of the CR plan therefore increases
w.r.t. the Word Bag dataset.

5.3 Word Count

This section measures the performance of our commutative
rewrites in VEGA RDD on a simple word-count job.

FILE(O..Q) FLATMAP (line.split(O O))
I MAP (word, 1)
! SHUFFLE
I REDUCEBYKEY (word, SUM)

The FLATMAP transform splits everjne into words then
MAP associates an initial count (i.€l) with everyword,
and pnally REDUCEYKEY aggregates all counts for each
word by summing them up.

no revenue) based on a parameter that allows us to select the The following query modibcation adds a map adjoining

number of affected records.

FILE(OO page_viewsO)

I MAP (line" ..)

I MAPVALUE (Rand.nextFloat# par?revenue:0)
I SHUFFLE

I JOIN(p)

The! records in this scenario will include both a re-
moval of the previous version and the addition of the new
version. However, this particular modibcation can be rewrit-
ten by moving the MAPVALUE transform to the output of
the join. Figure 13 shows the results of executing the re-
vised query from scratch, along with an incremental evalua-
tion with rewriting and without. As shown, the incremental
evaluation without rewriting does not outperform the simple

a sufbx to every word in the dataset. This could be useful to
convert the output into CSV format, for example.

FILE(O..Q) FLATMAP (line.split(O 0))
I MAP (word, 1)
| MAPKEY (word "
! SHUFFLE
| REDUCEYKEY (word, SUM)

word + sufpx)

VEGA RDD pushes the map all the way to the end of the
datal3ow, i.e., past the Pnal materialization point. Figure 14
compares the performance of running the modibPedquery
with Spark wrt using the ¥GA RDD plan produced from
the commutative-rewrite (CR). Here we used both the Word
Bag (Figure 14(a)) and the Wikipedia dataset (Figure 14(b)).
As can be noticed from the regular plan plot of Fig-

rerun. On the contrary, when the percentage of the record af-ure 14(b), the execution of the word count program might
fected is high, incremental evaluation performs worse than depend not only on the dataset size but also on words dis-
the rerun. This is because the size! ofet for this case is  tribution. This behavior is not noticeable in Figure 14(a) be-
twice the number of total records. This case happens whencause the number of unique words in the Word Bag dataset
all the previous records are eliminated, while the new ver- is small. Conversely, using rewriteSE6A RDD computes
sion of each record is added. For this query incremental eval-incremental results one to three orders of magnitude faster
uation does not help because the modibcation is on the big-than re-running the computation, and is independent on both
ger table: to create the delta set a full scan of the table must(1) input dataset size, and (2) words distribution. The results
be executed, so even if few records are actually affected byof Figure 15 lead to the following two observations for com-
the map, the improvement is limited by this big scan. mutative plans: Firstly, in Word Bag the number of unique
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words is small. Hence, ¥GA RDD performs incremental = Database query optimization is traditionally a two-phase
computations in roughly the same time, even when the in- process: brst, query rewrites transform the logical plan into
put size increases. Secondly, since Word Bag has few uniquean equivalent plan based on optimization heuristics e.g.,
words, its output is signibcantly smaller than the Wikipedia pushdown selection predicates and projections; second, a
dataset, and henceeé A performs better on the former. physical plan is selected based on a cost model and search
This experiment highlights an important feature of strategy that enumerates some subset of equivalent plan
VEecANit computes incremental results in time proportional  options. The traditional query planning process does not
to the output of the modibed transformation. Many big data take into account results of previous executions of a simi-
workRBows start out with a large input dataset but reduce it lar query. For example, Catalyst is an extensible optimizer

down to signibcantly smaller sizes after processings¥ for Spark SQL [7], andNlike other traditional optimiz-

performs especially well on such workRows. ers [12, 30]Nits search strategy considers pushing Plters as
close to the input source as possible. Hueské [19] show

6. Related Work how to leverage an analysis of user-debned functions in the

Answering queries using views addresses the problem of context of a DISC system to enable even more traditional
rewriting a query in terms of a given set of views, for exam- GUery optimizations. In contrast, B6A pushes plters and

ple to enable data integration or query optimization [18]. Our maps toward the end of the workow so that prior material-

problem can be seen as an instance of answering queries ugzed reskultﬁ can bgﬂ:ltshed tq avoid Iietgundar;ttwork. Howivert,
ing views, where the materialized intermediate results from ourwork shares wi € prior work the need to reason abou

a previous execution of the Spark program constitute the ;cjhe cor:jwr;”nutat_wny of olzebratlodns. H(;J(_askeOs anatl)3|/5|s of user-
views. However, our setting of interactive program devel- 9€Pned functions could be adapted iBdA to enable more

opment leads to a very different set of challenges and oppor_rewriting, gnd our commutativifq_/ conditions wo.ulc.i Iik_ewise
tunities. Traditionally, the challenge for answering queries be useful in the context of traditional query optimization.
using views is to rewrite an arbitrary query in terms of the ]

view relations, leading to techniques based on logical query 7+ Conclusion and Future Work

containment and equivalence. In our setting the challenge isin this paper we presentedeéA: a library adding explicit
instead to rewrite the quety terms of the base relations in support for interactive query development to Apache Spark.
order to push a specibc modibcation as late as possible in &/ EGA employs a novel rewriting technique to maximize the
query plan; this reasoning, based on a commutativity analy- reuse of previous computations, and it leverages incremental
sis, is completely independent of the particular views. computation to minimize the overhead of re-execution.

Incremental view maintenance is a well studied prob- Our implementation of ¥GA is completely external to
lem [10, 17, 27] for efbciently handling changes to base Spark. In this way (1) we can easily poreAa to different
tables used in view depnitions. REX [26] and Naiad [25] Platforms (e.g., Hadoop [3]), (2) we avoid having to modify
leverage incremental view maintenance techniques, such aghe RDD semantics, and (3) we can provide SparkOs fault-
delta rules [16], to speed up iterative computations e.g., re- tolerance guarantees at no additional cost.

cursive queries and graph algorithms. In contrastG¥ ad- For some of its optimizations, B&GA relies on function
dresses the prob'em of hand"ng Changes to the query |t5e|f|nvert|bll|ty in Order to OgO baCkO to an earlier state Of the

efbciently. We show how to leverage incremental techniques computation. An alternative approach is to leverage avail-
from this prior work as part of our solution. able bne grained lineage information [21], which keeps track

of the input records of each transform. For example, to invert
a mapOs output, we can simply consult the mapOs data lin-
eage. Nonetheless, the current requirements on invertibility
ave not been overly onerous in practice: for exampteg ¥
as successfully enabled interactive debugging sessions for
distributed work3ows [13, 14].

Cache-based systems such as [23, 28] try to optimize re-
curring (bPxed) queries over evolving data by materializ-
ing partial results and taking advantage of the overlap in
results between successive executions. Similarly, system
such as Nectar [15] and Tachyon [24] (and to some de-
gree Spark itself) store (workf3ow) lineage information to
speed-up shared sub-computations and for fault-tolerance.
If applied to the iterative program development scenarios Acknowledgements

that VEGA is targeting, such systems are at best able to re- Vega is supported through NSF grants CNS-1161595, IIS-
sume the computation up to the latest available materializa- 1302698, CNS-1239498, and CNS-1351047, as well as
tion point before the query modibcation, and run incremen- U54EB020404 awarded by the National Institute of Biomed-
tally from there (e.g., Nectar). B6A instead is also able to  ical Imaging and Bioengineering (NIBIB) through funds
take advantage of later materialized results by using query provided by the trans-NIH Big Data to Knowledge (BD2K)
rewriting. For instance, Figure 13 in Section 5 shows a caseinitiative (www.bd2k.nih.gov). We would also like to

in which incremental evaluation is of no help for query re- thank our industry partners at IBM Research Almaden and
execution, while \EGA is more than 100X faster. Intel for their generous gifts in support of this research.
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