Safe-by-default Concurrency for Modern Programming
Languages

LUN LIU and TODD MILLSTEIN, University of California, Los Angeles, USA
MADANLAL MUSUVATHI, Microsoft Research, Redmond, USA

Modern “safe” programming languages follow a design principle that we call safety by default and performance
by choice. By default, these languages enforce important programming abstractions, such as memory and type
safety, but they also provide mechanisms that allow expert programmers to explicitly trade some safety guar-
antees for increased performance. However, these same languages have adopted the inverse design principle
in their support for multithreading. By default, multithreaded programs violate important abstractions, such
as program order and atomic access to individual memory locations to admit compiler and hardware opti-
mizations that would otherwise need to be restricted. Not only does this approach conflict with the design
philosophy of safe languages, but very little is known about the practical performance cost of providing a
stronger default semantics.

In this article, we propose a safe-by-default and performance-by-choice multithreading semantics for
safe languages, which we call volatile-by-default. Under this semantics, programs have sequential con-
sistency (SC) by default, which is the natural “interleaving” semantics of threads. However, the volatile-
by-default design also includes annotations that allow expert programmers to avoid the associated
overheads in performance-critical code. We describe the design, implementation, optimization, and evaluation
of the volatile-by-default semantics for two different safe languages: Java and Julia. First, we present VBD-
HotSpot and VBDA-HotSpot, modifications of Oracle’s HotSpot JVM that enforce the volatile-by-default
semantics on Intel x86-64 hardware and ARM-v8 hardware. Second, we present SC-Julia, a modification to the
just-in-time compiler within the standard Julia implementation that provides best-effort enforcement of the
volatile-by-default semantics on x86-64 hardware for the purpose of performance evaluation. We also detail
two different implementation techniques: a baseline approach that simply reuses existing mechanisms in the
compilers for handling atomic accesses, and a speculative approach that avoids the overhead of enforcing the
volatile-by-default semantics until there is the possibility of an SC violation. Our results show that the cost
of enforcing SC is significant but arguably still acceptable for some use cases today. Further, we demonstrate
that compiler optimizations as well as programmer annotations can reduce the overhead considerably.

CCS Concepts: « Software and its engineering — Concurrent programming languages; Just-in-time
compilers; Runtime environments;

Additional Key Words and Phrases: Memory consistency models, sequential consistency, just-in-time
compilers

This work is supported in part by National Science Foundation under grants CCF-1527923 and CNS-1704336.

Authors’ addresses: L. Liu and T. Millstein, UCLA Computer Science Department, 404 Westwood Plaza, Box 951596, Los
Angeles, CA 90095-1596; emails: {lunliu93, todd}@cs.ucla.edu; M. Musuvathi, Microsoft Research, Redmond, Microsoft
Building 99, 14820 NE 36th Street, Redmond, WA, 98052; email: madanm@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2021/08-ART10 $15.00

https://doi.org/10.1145/3462206

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3462206

10:2 L. Liu et al.

ACM Reference format:

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2021. Safe-by-default Concurrency for Modern Program-
ming Languages. ACM Trans. Program. Lang. Syst. 43, 3, Article 10 (August 2021), 50 pages.
https://doi.org/10.1145/3462206

1 INTRODUCTION

In common parlance, safety in programming languages almost always refers to memory safety and
type safety. However, the notion of safety is more general and refers to the ability of programming
languages to protect their abstractions [52]. For instance, a language is memory-safe if it main-
tains the illusion that each object is logically separate—an update to one cannot change the state
of the other despite being allocated in the same address space. Similarly, a language is type safe
if it enforces the abstraction of types by only allowing intended operations on objects, thereby
encapsulating their implementation details. Because protecting language abstractions typically in-
duces associated runtime costs, for example garbage collection, array-bounds checks, and runtime
type checks, safe languages also provide mechanisms for expert programmers to selectively trade
safety guarantees for performance, such as native code and unsafe code blocks.

We call this paradigm of language design safety by default and performance by choice. Today’s
mainstream “safe” languages, for example Java and Julia, implement this paradigm for type and
memory safety, and for good reason. This paradigm allows all programs to enjoy important safety
guarantees by default, while still providing flexibility to selectively give up these guarantees where
necessary for performance. Any unsafe code can be carefully audited for correctness, and any
safety violations that do occur can be localized back to those sections of code.

Unfortunately, these same languages have adopted the inverse paradigm of performance by
default and safety by choice in their design for concurrency via multithreading. By default, mul-
tithreaded programs violate important abstractions that are relied upon from sequential program-
ming. For example, the instructions within a thread can execute out of order, the effects of a func-
tion might not complete before it returns, objects can be accessed before being fully constructed,
and accesses to certain primitive types, such as longs and doubles, are not guaranteed to be atomic.
Rather, these abstractions are only enforced by choice, namely if programmers appropriately an-
notate certain memory accesses, for example with the volatile keyword in Java. Only such well
annotated programs are guaranteed to enjoy the benefits of the sequential abstractions above [42].

These problems arise from the memory consistency models adopted by mainstream programming
languages. A memory consistency model (or simply memory model) defines the possible values that
a shared-memory read may return. Sequential consistency (SC) [35] guarantees that all memory
reads and writes occur in a global total order that is consistent with the per-thread program order.
This standard “interleaving” semantics of threads is natural, as it enforces two crucial abstractions
that underlie sequential reasoning of programs. First, even though instructions can execute out
of order due to compiler and hardware optimizations, SC provides the illusion that instructions
take effect in the order specified in the program text. Second, despite complex memory hierar-
chies orchestrated by sophisticated cache coherence protocols, shared memory behaves logically
as a global map from addresses to values, with each primitive memory read or write taking effect
atomically. However, due to concerns about the cost of enforcing SC, today’s languages instead
have opted for relaxed (or weak) memory models that allow these two abstractions to be violated

by default.

1.1 The volatile-by-default Memory Model

In this article, we present a safe by default and performance by choice memory model called
volatile-by-default. Our memory model is a conceptually simple change to the memory models

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://doi.org/10.1145/3462206

Safe-by-default Concurrency for Modern Programming Languages 10:3

of today’s languages. In our design, each memory access has sequentially consistent semantics by
default; in Java this is akin to annotating every variable as volatile. In this way, sequential con-
sistency is guaranteed by default for all programs. However, expert programmers can employ new
annotations that we introduce, such as relaxed, to “turn off” the default guarantees and overhead
in performance-critical code.!

We stress that the volatile-by-default memory model and those of mainstream languages like
Java [42] are equivalent, both in terms of safety and in terms of performance. It is simply a syntactic
difference regarding what accesses need to be annotated. As stated above, a Java programmer today
can trivially obtain the safety guarantees of volatile-by-default by annotating every variable as
volatile.? Similarly, under the volatile-by-default semantics a programmer can trivially obtain
the performance guarantees of today’s Java memory model (JMM) by annotating the entire
program as relaxed.

But this syntactic change of default makes a huge difference! Under the JMM, programs can
behave in unpredictable and unsafe ways by default, and the programmer has no easy way to
know when sufficient annotations have been added to prevent them. Under volatile-by-default,
programs obtain basic safety guarantees by default, and programmers can make informed choices
about how and where to place annotations to obtain desired performance characteristics while
minimizing the potential for error. Indeed, this is exactly analogous to how today’s safe languages
address memory and type safety.

What are the barriers to considering this change of default? First, maybe it is unnecessary, be-
cause programs in practice already enjoy the guarantees of sequential consistency. However, this
does not seem to be the case. As we show (Section 2.1.2), programmers routinely fail to specify
necessary (volatile) annotations, resulting in hard-to-find bugs. Given that this annotation task
is akin to manually performing static data race detection, perhaps this result is not surprising.
Further, it has turned out to be difficult for language designers to provide a reasonable semantics
for programs that are not well annotated [10] while still admitting desired optimizations, and this
continues to be an active area of research.

Second, it is possible that the annotation burden introduced by this syntactic change of default
is unacceptable. For instance, if a large percentage of memory accesses need to be annotated as
relaxed to get acceptable performance, then we would arguably not be better off by switching
defaults in practice. However, our experimental results indicate that this is not the case. For ex-
ample, with 20 or fewer relaxed method annotations the overhead of volatile-by-default for a
standard Java benchmark suite on x86-64 is less than 20% (Section 3.3.2), and a straightforward
usage of annotations for Julia code shows similar effectiveness (Section 4.3.3).

This conclusion might seem obvious: Since only small parts of the code are likely to be
performance-critical, only those parts need to be tagged as relaxed. However, sequential con-
sistency is often dismissed from consideration as a possible language-level memory model. For
instance, Kaiser et al. [31] say that SC is “woefully unrealistic” due to “the significant perfor-
mance costs ... on modern multi-core architectures,” and Demange et al. [21] say that “SC would
likely cripple performance of Java programs on all modern microprocessors.” Our results indi-
cate that sequential consistency by default, with relaxed annotations to selectively trade some
guarantees for increased performance, can be a viable memory model for modern programming
languages.

IThe volatile keyword is specific to Java, but other languages have analogous keywords; throughout, we use the term
volatile-by-default generically to refer to our memory model as applied to any programming language.
2Technically this is currently not possible in Java, as its syntax does not allow volatile annotations on array elements.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:4 L. Liu et al.

1.2 Contributions

This article describes the design, implementation, and evaluation of the volatile-by-default mem-
ory model for safe programming languages.®

Design. We discuss the design philosophy of the volatile-by-default memory model and how
it resolves key challenges of today’s memory models. To illustrate the general applicability of our
design, we have instantiated it for two very different mainstream languages: Java and Julia. Java is a
well-established statically typed language that is widely used for many purposes, including server-
side and mobile applications. Julia is an up-and-coming dynamic language that is increasingly
popular for array-heavy scientific computing.

Implementation. We have implemented the volatile-by-default semantics for Java as a modi-
fication to Oracle’s HotSpot Java virtual machine (JVM), which is the default implementation
platform for Java. Our implementation supports both Intel x86-64 and ARM-v8 hardware architec-
tures. We have also implemented the volatile-by-default semantics for Julia as a modification
to Julia’s default compiler, which is built on top of LLVM [36]. Our implementation supports the
Intel x86-64 hardware architecture. Our implementation provides the volatile-by-default seman-
tics for the LLVM IR and employs existing metadata capabilities in LLVM to transfer higher-level
program information that is useful for optimizations. As such, our implementation can be reused
to provide volatile-by-default semantics for other languages that target the LLVM IR.

While several prior works [32, 60, 62, 63] have proposed ways of implementing SC, they rely
on either whole-program compilation or special hardware support to achieve good performance.
Instead, we have developed two implementation strategies that are compatible with modern im-
plementation techniques, based on virtual machines with just-in-time (JIT) compilation and dy-
namic class loading, and with stock hardware. The baseline implementation is a low-complexity
approach that simply reuses the existing mechanisms for handling volatile and related accesses
to treat all accesses as such. We have implemented this strategy for both Java and Julia. The spec-
ulative implementation is a more sophisticated approach that treats a newly created object as safe,
meaning that its fields can be accessed without additional hardware fences. If the object ever be-
comes unsafe, meaning that it is possible for its accesses to violate SC, then any speculatively
compiled code for the object is removed, and future JITed code for the object will contain the nec-
essary fences to ensure the volatile-by-default semantics. We have implemented this strategy
for Java on ARM-v8 hardware.

The source code of our baseline volatile-by-default JVM for x86-64, called VBD-HotSpot, can
be found on GitHub at https://github.com/SC-HotSpot/VBD-HotSpot. The source code for both
the baseline and the speculative implementations of the volatile-by-default JVM for ARM-v8,
respectively, called VBDA-HotSpot and S-VBD, can be found on GitHub at https://github.com/Lun-
Liu/schotspot-aarch64. Finally, the implementation of our Julia compiler, called SC-Julia, is also
open source and can be found on GitHub at https://github.com/Lun-Liu/SC-by-Default-Julia.

Evaluation. We perform a comprehensive empirical evaluation of the volatile-by-default mem-
ory model for both Java and Julia. First, we describe results for the baseline implementation for
both Java and Julia, on Intel x86-64 hardware and with no relaxed annotations. On the DaCapo
benchmarks our baseline implementation has an average overhead of between 28% and 50%, de-
pending on the specific machine tested. We additionally analyze various factors that affect the cost
of volatile-by-default for both Java and Julia. Finally, we explore the potential for annotations to

3The Java-based work and results were originally described in two prior conference publications [38, 39]. The Julia-based
work and results were reported in the first author’s dissertation [37] but have not been otherwise published.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://github.com/SC-HotSpot/VBD-HotSpot
https://github.com/Lun-Liu/schotspot-aarch64
https://github.com/Lun-Liu/SC-by-Default-Julia

Safe-by-default Concurrency for Modern Programming Languages 10:5

Table 1. Key Experiments and Findings in Article

Figure Experiment Main Findings
Geometric mean of overhead: 28%

Maximum overhead 81%

Geometric mean of overhead: 79%

3,4 Performance evaluation of VBD-HotSpot with DaCapo benchmarks

5,6 Performance evaluation of VBD-HotSpot with spark-tests benchmarks Maximum overhead 164%
Geometric mean of overhead: 67%
7 Performance evaluation of VBD-HotSpot with m11ib-tests benchmarks 54.9% of benchmarks have overhead <= 60%
95. f benchmarks have overhead <=100%
8,9 Scalability experiments of VBD-HotSpot with DaCapo benchmarks Relative overhead decreases with increased concurrency.
10 Cost of VBD-HotSpot with relaxed methods 20 relaxed method annotations each on 4 benchmarks reduces the geometric

mean of overhead for DaCapo to 18% and the maximum overhead to 34%.

11 Performance evaluation of VBD-HotSpot on consumer PCs with DaCapo benchmarks Geometric mean of overhead is between 36% and 50% for different machines.

For VBDA-HotSpot, using dmbs for volatiles is much faster than using ldar/stlr,
while for the original HotSpot there is little performance difference.

Geometric mean of overhead: 73% (machine A), 57% (machine B)

Maximum overhead: 129% (machine A), 157% (machine B).

12-14 | Performance evaluation of VBDA-HotSpot with different fence instructions

15,16 | Performance evaluation of VBDA-HotSpot with DaCapo benchmarks

17 Scalability experiments of VBDA-HotSpot with DaCapo benchmarks Relative overhead is flat or slightly decreases with increased concurrency
18 Performance evaluation of VBDA-HotSpot with spark-tests and ml1ib-tests benchmarks | Geometric mean of overhead: 103% (machine A), 85% (machine B)

19 Performance evaluation of SC-Julia with BaseBenchmarks ﬁ:i:ﬁi:}v::’::}fa;ﬁ;Y(::);;:n(‘(z)it)t(;:}f ;/:}7"(()(2)2;;2% ©0).

20 Performance evaluation of SC-Julia with BaseBenchmarks, without fences in generated code | Most of the overhead of SC-Julia comes from the cost of hardware fences.
2 Performance evaluation of SC-Julia with @drf annotations Simple usage of @drf annotations cuts performance overhead in half,

24 Performance evaluation of SC-Julia with different fence instructions Using MFENCE instead of XCHG roughly doubles overhead.

Geometric mean of overhead: 51% (machine A), 37% (machine B).

28,29 | Performance evaluation of S-VBD with DaCapo benchmarks Maximum overhead: 78% (machine A), 73% (machine B).

"As expected, the use of deoptimization causes S-VBD to have a

30 Startup performance of VBDA-HotSpot and S-VBD with DaCapo benchmarks significantly higher impact on startup performance than VBDA-HotSpot.
The cost of the checks ired by th lati h is siderable,

31 Performance evaluation of just the dynamic checks of S-VBD with DaCapo benchmarks ¢ cost ol the checks requnvre by the speculative approach is considerable
on its own incurring well over half of the overhead.

32 Performance evaluation of S-VBD with spark-tests and ml1ib-tests benchmarks S-VBD provides little speedup for these benchmarks.

reduce the overhead. For instance, by adding 20 method annotations in the DaCapo benchmarks
one can reduce the average overhead of enforcing volatile-by-default from 28% to 18% on x86-64,
our server machine. Similarly, adding annotations to Julia programs in a straightforward manner
cuts the average overhead in half.

Second, we describe results for the baseline and speculative implementations for Java, on ARM-
v8 hardware. We demonstrate that overhead on ARM-v8 is roughly double that for x86-64, which
is significant but somewhat modest given that ARM-v8’s memory model is considerably weaker
than that of x86-64. Further, our speculative implementation strategy reduces the performance
overhead on ARM-v8 versus the baseline JVM by roughly one-third.

We summarize key findings of our experiments in Table 1.

1.3 Article Organization

The article is organized as follows: Section 2 provides necessary background information on mem-
ory models and language implementations. Section 3 describes the volatile-by-default semantics
for Java as well as its baseline implementation and evaluation. Section 4 does the same for Julia.
Section 5 describes and evaluates the speculative implementation of volatile-by-default for Java
on ARM-v8. Section 6 discusses related work, and Section 7 concludes.

2 BACKGROUND

In this section, we provide necessary background on memory models, focusing on the memory
models of Java and Julia. We then overview the implementations of the HotSpot JVM and Ju-
lia compiler, which we modify to support the volatile-by-default semantics for Java and Julia,
respectively.

2.1 Memory Models

The design of a memory model involves an inherent programmability vs. performance tradeoff.
Stronger memory models like sequential consistency (SC) admit fewer behaviors, so they are
relatively easier for programmers to understand and provide important guarantees for all pro-
grams. However, the restrictions on allowed behaviors limit the scope of optimizations, which

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:6 L. Liu et al.

has a performance cost. For example, SC must restrict compiler optimizations that may reorder
memory accesses, such as common subexpression elimination (CSE), code motion, and dead
store elimination, and similarly for hardware optimizations like write buffers. For this reason, main-
stream languages today have memory models that are weaker than SC, thereby trading off some
programmability and safety in favor of performance.

2.1.1 The Java Memory Model. The Java memory model was defined more than 15 years
ago [42] and attempts to strike a practical balance among programmer understandability, imple-
mentation flexibility, and program safety.

programmer understandability The JMM designers considered sequential consistency to be “a
simple interface” and “the model that is easiest to understand” [42]. However, largely due to
SC’s incompatibility with standard compiler and hardware optimizations, the JMM adopts
a weak memory model based on the DRFO style [5], whereby SC is only guaranteed for
data-race-free programs. We say that two memory accesses conflict if they access the same
variable, occur on two different threads, and at least one of the accesses is a write. Informally,
a program is considered to be data-race-free if all concurrent conflicting accesses are to vari-
ables that are declared volatile. The JMM guarantees SC semantics for volatile variables,
thereby ensuring that conflicting accesses on them are not actually concurrent: They will
occur in some sequential order. Doing so requires implementations to disable many compiler
optimizations for these variables and to emit fence instructions or special “synchronizing”
load and store instructions that prevent the hardware from violating SC through out-of-order
execution.

implementation flexibility The SC memory model does not allow instructions to appear to be
reordered. However, several important optimizations, for example out-of-order execution in
hardware and common subexpression elimination in compilers, have the effect of instruction
reordering. By guaranteeing SC only for data-race-free programs, the JMM can admit most
traditional optimizations for most variables.

program safety The JMM strives to ensure safety for all programs, even ones with data races.
The JMM’s notion of program safety is centered around the idea of preventing “out-of-thin-
air reads” [42]. In the presence of data races, some compiler optimizations can introduce
values in the program that would never otherwise occur, which creates a potentially serious
security concern. The JMM prevents out-of-thin-air reads by defining a complex causality
requirement on the legal executions of incorrectly synchronized programs, which imposes
some restrictions on the optimizations that a compiler may perform [42]. The JMM’s causal-
ity is known to disallow some optimizations that it was intended to allow, notably common
subexpression elimination [19, 59]. Nonetheless, current Java virtual machines continue to
perform this optimization. While there is no evidence that today’s JVMs in fact admit out-
of-thin-air reads, this issue must be resolved to prevent the possibility in the future.

Because the JMM guarantees SC for data-race-free programs, programmers “need only worry
about code transformations having an impact on their programs’ results if those programs contain
data races” [42]. However, data races are both easy to introduce and difficult to detect; it is as
simple as forgetting to grab a lock, grabbing the wrong lock, or omitting a necessary volatile
annotation. Therefore, in practice many programs are exposed to the effects of compiler and/or
hardware optimizations, which can cause a variety of surprising behaviors and violate critical
program invariants:

non-atomic primitives Writes to doubles and longs are not atomic under the JMM, but rather
are treated as two separate 32-bit writes. Therefore, in the presence of a data race, readers

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:7

can see values that are a combination of two different writes. Understanding this to be prob-
lematic, the Java Language Specification states that “implementations of the Java Virtual
Machine are encouraged to avoid splitting 64-bit values where possible.”*

partially constructed objects Consider the following example, where one thread tries to safely
publish an object to another thread (assuming d and ready are, respectively, initialized to
null and false):

Thread 1 Thread 2
d = new Data(); if (ready)
ready = true; d.use();

Under the JMM, it is possible for the second thread to read the value true for ready but incur
a null pointer exception on the call d.use(). More perniciously, d may be non-null at that
point but its constructor may not yet have completed, so the object is in an arbitrary state
of partial construction when use() is invoked. This ability to access partially constructed
objects is a known security vulnerability.?

broken synchronization idioms The publication idiom above is one example of a custom syn-
chronization idiom that is not guaranteed to work as expected in the JMM in the presence
of data races. Other examples include double-checked locking [56] and Dekker’s mutual
exclusion algorithm.

2.1.2 Missing-annotation Bugs. The misbehaviors above are instances of what we call missing-
annotation bugs. In these examples, the synchronization protocol intended by the programmer is
correct and need not be changed. Rather, the error is simply that the programmer has forgotten
to annotate certain variables as volatile. This omission allows compiler and hardware optimiza-
tions to violate intended program invariants. Adding volatile annotations forces the Java imple-
mentation to disable those optimizations and thereby restore the desired invariants. For example, a
double or long field that is declared volatile will have atomic reads and writes. Similarly, declar-
ing ready as volatile in our publication idiom above ensures that the second thread will only
ever see a fully constructed object.

Missing-annotation bugs are easy to make, and hence it is not surprising that they are
common in Java applications. A quick search on the Apache Software Foundation’s issue-tracking
system found more than 100 issues where the fix required annotating a field as volatile. We
report the first 20 here: SOLR-13465, YARN-10185, SHIRO-762, CASSANDRA-2490, HDFS-
566, OAK-3638, YARN-8323, HDFS-4106, AMQ-6251, ARTEMIS-1945, SPARK-4282, SLIDER-
101, SPARK-3567, LOG4J2-247, POOL-11, HDFS-1207, CASSANDRA-11984, AMOQ-6495,
APEXMALHAR-1887, OWB-529. Each bug contains the project name and the bug ID. Its
details can be found at https://issues.apache.org/jira/browse/<ProjectName>-<BugID>. The 20
issues listed here are returned by a search in the issues tracker as of May 2020. These errors occur
in popular systems such as the Cassandra database, the HDFS distributed file system, and the
Spark system for big-data processing® and can thereby impact the applications that employ these
systems.

There are many different kinds of concurrency-related programming errors, and they are often
grouped together as race conditions. Examples include atomicity violations that arise from failing
to hold a lock or holding the wrong lock, and ordering violations that arise when threads fail to
signal one another properly. What distinguishes missing-annotation bugs from the others is that

4https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html.
Shttps://wiki.sei.cmu.edu/confluence/display/java/TSM03-].+Do+not+publish+partially+initialized +objects.
%Spark is implemented in Scala, which compiles to Java bytecode and inherits Java’s memory model.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://issues.apache.org/jira/browse/<ProjectName>-<BugID>
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html
https://wiki.sei.cmu.edu/confluence/display/java/TSM03-J.+Do+not+publish+partially+initialized+objects

10:8 L. Liu et al.

the only reason that they are bugs is because of the language’s weak memory model: They are
correct under SC. Yet as Boehm et al. [16] and our earlier examples point out, missing-annotation
bugs are far from “benign” but rather can cause surprising and harmful behaviors.

2.1.3 The Julia Memory Model. The Julia programming language is a recent and increasingly
popular language that aims to provide the flexibility of a dynamic language while retaining
performance comparable to traditional static languages. It is open source and is under active
development.

Recently, Julia announced the addition of composable multi-threaded parallelism to the lan-
guage [13]. Currently, however, there is no explicit memory model for Julia. Instead, the memory
model is implicitly determined by the optimizations that the Julia compiler as well as the underly-
ing hardware perform. Because Julia’s compiler is based on top of LLVM, in practice this means that
Julia’s memory model is similar to that of C++ [11]. Like Java, C++ provides SC for data-race-free
programs, and it provides an annotation called atomic that plays a similar role as Java’s volatile
annotation. Unlike Java, however, a C++ program with data races is considered to have undefined
behavior, with no guarantees whatsoever. As a result, the kinds of issues described above for Java
also exist in Julia today, and likely Julia’s implicit memory model is weaker than Java’s.

2.2 The HotSpot Java Virtual Machine

Oracle’s HotSpot JVM is an implementation of the Java Virtual Machine Specification [27]. It is
widely used and part of the OpenJDK—the official reference implementation of Java SE.”

To execute Java bytecode instructions, HotSpot employs just-in-time (JIT) compilation. In this
style, bytecodes are first executed in interpreter mode, with minimal optimizations. During execu-
tion, HotSpot identifies parts of the code that are frequently executed (“hot spots”) and compiles
them to optimized native code for better performance.

The HotSpot JVM has includes one interpreter and two just-in-time compilers. The client com-
piler, also called C1, is fast and performs relatively few optimizations. The server compiler, also
called C2 or opto, optimizes code more aggressively and is specially tuned for the performance of
typical server applications. In our implementation of the volatile-by-default semantics for Java,
we have modified the interpreter and the C2 compiler (and do not use the C1 compiler at all).

2.2.1 The HotSpot JVM Interpreter. The HotSpot JVM uses a template-based, or threaded code,
interpreter. Specifically, a TemplateTable maps each bytecode instruction to a template, which is
a set of assembly instructions (and hence platform-specific). The TemplateTable is used at JVM
startup time to create an interpreter in memory, whereby each bytecode is simply an index into
the TemplateTable.

Figure 1 illustrates how the template-based interpreter works. The bytecode pointer (BCP) is
currently pointing at the bytecode putfield (181). The interpreter uses this bytecode as an index
in the TemplateTable (right side of the figure) to find the address of the corresponding template.
The interpreter then jumps to this address to begin executing the template (left side of the figure).®
After writing to the field, the last four lines of the template show how the interpreter reads the
next BCP index, increments the BCP, and jumps to the next code section. In this example, we add
3 to BCP (%r13) to point to the next bytecode, because the length of the putfield instruction is 3
bytes: a 1-byte opcode and a 2-byte index representing the field.

7Qur work is based on OpenJDK 8u. All specific descriptions of any technical details in this article are based on this version.
8The labels (1) and (2) can be ignored and will be referenced in the next section.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:9

Bytecode Pointer

v

invokespecial |astore_1 | aload_1 |dup getfield iconst_1 iadd putfield

0x7ff804e04a20: | push %rax (nop) 0 | 0x7ff804dfa740

... // do the actual putfield (aconst_null) 1 | 0x7ff804dfa7c0
0x7ff804e04d69: | test %edx, %edx (1)
0x7ff804e04d6b: | je 0x00007ff804e04d76 (iconst_1) 4 | 0x7ff804dfa940
0x7ff804e04d71: | lock addl $0x0,(%rsp) (2)
0x7ff804e04d76: | movzbl 0x3(%r13),%ebx « (iadd) 96 |0x7ff804dfd8c0
0x7ff804e04d7b: | add $0x3, %ri13
0x7ff804e04d7f: | movabs $0x7fafc8f60300,%r10 (putfield) 181 | 0x7ff804e04a20 | <«
0x7ff804e04d89: | jmpg *(%r10,%rbx,8)

Template Code Template Table

Fig. 1. Interpretation example of bytecode putfield.

2.2.2 The HotSpot JVM Compiler. When the JVM identifies a “hot spot” in the code, it compiles
that portion to native code. As mentioned earlier, we have modified HotSpot’s high-performance
server compiler, which consists of several phases. First, a hot spot’s bytecode instructions are trans-
lated into a high-level graph-based intermediate representation (IR) called Ideal. The compiler
performs several local optimizations on Ideal-graph nodes as it creates them. It then performs
more aggressive optimizations on the graph in a subsequent optimization phase. Next the opti-
mized Ideal graph is translated to a lower-level platform-specific IR, and finally machine code is
generated in the code generation phase. Optimizations are performed during each of these last two
phases as well.

2.3 The Julia Compiler

Like Java, Julia also employs an interpreter along with JIT compilation. The Julia runtime uses
simple heuristics to decide when code should be compiled. To perform that compilation, Julia
employs the LLVM toolchain [36]. LLVM is a compiler infrastructure that provides a collection
of industrial-strength compiler capabilities. The Julia compiler functions as an LLVM front-end:
When it determines that some code should be compiled, the Julia compiler first generates a Julia-
level IR and performs some simple optimizations. After that, the Julia compiler translates the Julia
IR code into the LLVM IR. The LLVM execution engine then executes a sequence of LLVM passes
to analyze, optimize, and generate the native instructions to execute. The subset of passes and their
ordering are specified by the Julia compiler. The Julia compiler also includes some Julia-specific
passes that are executed during this stage.

3 A VOLATILE-BY-DEFAULT JAVA VIRTUAL MACHINE

This section describes the design, implementation, and evaluation of our baseline volatile-by-
default JVMs for both the x86-64 and ARM-v8 hardware platforms.

3.1 Design

As described in the previous section, under the JMM the onus is on programmers to employ
the volatile annotation everywhere that is necessary to protect the program from compiler
and hardware optimizations that can reorder instructions. By doing so, the JMM can allow most

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:10 L. Liu et al.

compiler and hardware optimizations. Our volatile-by-default semantics simply flips the default:
All variables are treated as if they were declared volatile. Therefore, missing-annotation bugs
cannot occur and all Java programs are guaranteed SC semantics by default. With this change, the
volatile annotation becomes semantically a no-op. Instead, we introduce a relaxed annotation
that allows a programmer to tag methods, fields, or classes that should employ the current JMM
semantics. Expert programmers can use this annotation in performance-critical code to explicitly
trade off program guarantees for increased performance.

Precisely defining the SC semantics requires one to specify the granularity of thread interleaving,
which has been identified as a weakness of the SC memory model [4]. The volatile-by-default
semantics does this in a natural way by providing SC at the bytecode level: bytecode instructions
(appear to) execute atomically and in program order. This also implies that all Java primitive values,
including (64-bit) doubles and longs, are atomic irrespective of the bit-width of the underlying
architecture. The volatile-by-default semantics provides a clean way for programmers to under-
stand the possible behaviors of their concurrent programs, provided they understand how Java
statements (such as increments) are translated to bytecode.

Of course, “safety” is in the eye of the beholder, and there are many possible definitions. We
argue that the volatile-by-default semantics is a natural baseline guarantee that a “safe” lan-
guage should provide for all programs. The volatile-by-default memory model clearly satisfies
the JMM’s desired programmability and safety goals. In terms of programmability, volatile-by-
default is strictly stronger than the JMM, so all program guarantees provided by the JMM are also
provided by volatile-by-default. In terms of safety, the volatile-by-default semantics prevents
optimizations that can cause out-of-thin-air reads. Moreover, volatile-by-default eliminates all
missing-annotation bugs.

Further, the volatile-by-default semantics provides a more general notion of safety by protect-
ing several fundamental program abstractions [43]. First, as mentioned above, all accesses to Java
primitive values are atomic. Second, sequential reasoning is valid for all programs. This ensures,
for example, that an object cannot be accessed until it is fully constructed (unless the program
explicitly leaks this during construction), and more generally that program invariants that rely
on program order are guaranteed regardless of whether the program has data races.

It is worth noting that the volatile-by-default guarantees are only provided by default; a pro-
gram that employs relaxed annotations may violate these properties. Further, in general it is
difficult to understand the precise semantic impact of a particular relaxed annotation, since it
has the effect of admitting weak behaviors that pertain to the interactions among multiple threads.
However, we argue that the volatile-by-default approach provides important benefits despite
these limitations.

First, this situation is exactly analogous to that for type and memory safety today. For example,
almost every Java program will invoke functionality implemented in native code. In the presence
of such code, it is possible that a Java program will violate type or memory safety. Yet the fact that
the language enforces type and memory safety by default provides huge benefits to security and
reliability in practice. Second, we can state a clear correctness requirement for relaxed code: that
code must not participate in any data races. If all relaxed code satisfies this property, then the
program as a whole will be data-race-free and hence will enjoy the guarantees of the volatile-by-
default memory model. While in general determining whether a piece of code can participate in a
data race is difficult, the JMM already requires programmers to do this if they want to ensure SC
for their programs. Under the volatile-by-default memory model, however, this hard work only
needs to be done for code that is declared relaxed. Third, no matter what, relaxed annotations
cannot introduce behaviors that violate the JMM, as by design relaxed code respects the JMM
(and so does non-relaxed code, as it has even stronger requirements than the JMM).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:11

Finally, we note that though the volatile keyword is semantically a no-op in the volatile-by-
default semantics, it is still useful as a means for programmers to document their intention to use
a particular variable for synchronization. Indeed, volatile annotations can make the code easier
to understand and can be used by tools to identify potential concurrency errors. However, under
the volatile-by-default semantics, and in sharp contrast to the JMM, an accidental omission or
misapplication of volatile annotations will never change program behavior.

3.2 Implementation

The most straightforward way to implement the volatile-by-default semantics is through a
source-to-source translation that adds the appropriate volatile annotations. The advantage of
this approach is that it is independent of the JVM, allowing us to evaluate the cost of volatile-
by-default semantics on various JVMs and hardware architectures. Unfortunately, neither Java nor
the Java bytecode language provides a mechanism to declare array elements as volatile. Thus,
such an approach fails to provide the desired semantics. We considered performing a larger-scale
source-to-source rewrite on array accesses, but it would be difficult to separate the cost of this
rewrite from the measured overheads. Finally, once we settled on changing an existing JVM imple-
mentation, we considered doing so in a research virtual machine [8]. But it was not clear how the
empirical observations from such a JVM would translate to a production JVM implementation.

Therefore, we opted to instead implement the volatile-by-default semantics through a mod-
ification to Oracle’s HotSpot JVM, which is widely used and part of the OpenJDK—the official
reference implementation of Java SE. In particular, we modified the version of HotSpot that is part
of the OpenJDK 8u for both x86-64 and aarch64 (64-bit ARM-v8). The modified version for x86-
64 is called VBD-HotSpot and the one for ARM-v8 is called VBDA-HotSpot. Both versions add a
flag -XX: +VBD that allows users to obtain volatile-by-default semantics.

As mentioned in Section 2.2, we have modified the HotSpot interpreter as well as the HotSpot
server compiler. Our modifications reuse the mechanisms already in place for handling volatile
variables, as described next.

3.2.1 volatile-by-default Interpreter. Since the interpreter is platform-specific, different fence
instructions are used for VBD-HotSpot and VBDA-HotSpot [29]. We will first talk about how we
make the interpreter volatile-by-default on x86-64 and then present our modifications to the
interpreter on ARM-v8.

x86-64. Figure 1 from the previous section shows how the HotSpot JVM handles accesses to
volatile variables on x86-64. The SC semantics for volatile accesses is achieved by inserting
the appropriate platform-specific fences before/after such accesses. In the case of x86-64, which
has the relatively strong total store order (TSO) semantics [50], a volatile read requires no
fences and a volatile write requires only a subsequent StoreLoad barrier, which ensures that
the write commits before any later reads [29]. In the figure, %edx is already loaded with the field
attribute for volatile. Instruction (1) tests if the field is declared volatile. If so, then the lock
addl instruction (2) will be executed, which acts as a StoreLoad barrier on x86-64; otherwise, the
lock addl instruction is skipped.

To implement our volatile-by-default semantics for x86-64, we therefore modified the tem-
plate for putfield to unconditionally execute the lock addl instruction. This is done by remov-
ing instruction (1) and the following jump instruction je. We also added the lock addl instruction
to the templates for the various bytecode instructions that perform array writes (e.g., aastore for
storing objects into arrays, bastore for storing Booleans into arrays).

We manually inspected the template instructions for the interpreter’s implementation of
all bytecodes that read from or write to memory: getfield, putfield, fast_xgetfield,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:12 L. Liu et al.

fast_xputfield, and fast_xaccess. The latter three bytecodes are used internally by the
HotSpot JVM as special, more efficient versions of getfield and putfield. The template code
for each bytecode checks the volatile attribute of the given field and adds the necessary fences
if the attribute is set. In VBD-HotSpot, we elide the check of the volatile attributes and always
add the necessary fences.

Inserting memory-barrier instructions ensures that the hardware respects SC, but it does not
prevent the interpreter itself from performing optimizations that can violate SC. The interpreter
performs optimizations through a form of bytecode rewriting, including rewriting bytecodes to
new ones that are not part of the standard Java bytecode language. For example, on encountering
aputfieldbytecode and resolving the field to which it refers, the interpreter rewrites the bytecode
into a “fast” version (fast_aputfield if the field is an Object, fast_bputfield if the field is a
Boolean, etc.) The next time the interpreter executes the enclosing method, it will execute the
faster version of the bytecode, avoiding the need to resolve the field again.

We manually inspected all of the interpreter’s bytecode-rewriting optimizations and found that
they never reorder the memory accesses of the original bytecode program. In other words, the
interpreter does not perform optimizations that violate SC. However, to ensure SC semantics, we
had to modify the templates for all of the fast_*putfield bytecodes to unconditionally execute
the lock addl instruction, as shown earlier for putfield.

Finally, the interpreter treats a small number of common and/or special methods, for example
math routines from java.lang.Math, as intrinsic: The interpreter has custom assembly code for
them. However, we examined the x86-64 implementations of these intrinsics and found that none
of them contain writes to shared memory, so they already preserve SC.

ARM-v8. Similar to the case for x86-64, we manually inspected the template instructions in the
ARM-v8 interpreter for the bytecodes that read from or write to memory, such as getfield and
putfield. The template code for each bytecode checks the volatile attribute of the given field
and adds the necessary fences if the attribute is set. In VBDA-HotSpot, we have modified this tem-
plate code to unconditionally add the necessary fences, thereby treating all memory reads and
writes as volatile. Interestingly, the template code for getfield already unconditionally adds
the necessary fences without checking the volatile attribute of the field, so it did not require
any modification. We also treat accesses to array elements as volatile by inserting the appro-
priate fences in the template code for the corresponding bytecodes, such as aaload and aastore.
Additionally, we examined and modified bytecode-rewriting optimizations and intrinsics in the
interpreter in VBDA-HotSpot the same way we treated VBD-HotSpot.

To implement the semantics of volatile on ARM-v8, the Java interpreter inserts a load-load
and load-store barrier after a volatile load, providing acquire semantics for the load; a store-store
barrier and a load-store barrier before a volatile write, providing release semantics for the write;
and a store-load barrier after a volatile write [29]. The interpreter uses ARM-v8’s dmb (data
memory barrier) instruction for this purpose. In particular, it uses a dmb ishld instruction to
enforce acquire semantics after a load, dmb ish to enforce release semantics before a store, and
dmb ish to enforce store-load dependencies after a store.

However, the baseline HotSpot JVM has a bug of inserting an overly weak barrier before
volatile writes in the interpreter. Specifically, it inserts a dmb ishst instruction, which performs
a store-store barrier but not also a load-store barrier; obtaining both barriers instead requires a dmb
ish instruction.” We have fixed this bug and use the fixed version of the baseline HotSpot JVM in
all of our experiments.

This bug has been confirmed and fixed by the developers: http://hg.openjdk java.net/jdk/jdk/rev/e2fc434ba10a.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

http://hg.openjdk.java.net/jdk/jdk/rev/e2fc434b410a

Safe-by-default Concurrency for Modern Programming Languages 10:13

B1

AN
50 MemBarRelease

L=

57emBarVolal|Ie

Fig. 2. Ideal graph sections for volatile loads (left) and stores (right).

3.2.2 volatile-by-default Compiler. When the JVM identifies a “hot spot” in the code, it
compiles that portion to native code. As mentioned earlier, we have modified HotSpot’s high-
performance server compiler, which has several phases. First a hot spot’s bytecode instructions are
translated into a high-level graph-based intermediate representation (IR) called Ideal, which
is platform-independent. The Ideal graph is then translated to a lower-level platform-specific IR,
and finally machine code is generated. Optimizations are performed during all of these phases.

At the Ideal graph level, the semantics of volatile is implemented by three kinds of memory-
barrier nodes, each of which represents a specific combination of the four basic memory barri-
ers: LoadLoad, LoadStore, StoreLoad, and StoreStore. Figure 2 shows snippets of the Ideal graph for
volatile loads and stores. Each volatile load is followed by a MemBarAcquire node, which en-
forces “acquire” semantics: Subsequent instructions (both load and store) cannot be reordered be-
fore the barrier node. Each volatile store is preceded by a MemBarRelease node, which enforces
“release” semantics: Prior instructions cannot be reordered after the barrier node. Each volatile
store is also followed by a MemBarVolatile node, which prevents subsequent volatile memory
accesses from being reordered before the barrier node.!°

The memory-barrier nodes in the Ideal graph are translated to their counterparts in the lower-
level IR. When generating machine code, they are finally translated into the appropriate assembly
instructions. On x86-64 both the MemBarAcquire and MemBarRelease nodes become no-ops, since
TSO already enforces those instruction orders. However, it is critical to keep these memory-barrier
nodes in the code until the point of code generation to prevent the compiler from performing
optimizations that violate their semantics. On ARM-v8, MemBarAcquire becomes a dmb ish 1d,
and both MemBarRelease and MemBarVolatile become dmb ish.

Given this structure, we chose to implement the volatile-by-default semantics by modifying
the phase that creates the Ideal graph. Specifically, we modified that phase to emit the appropri-
ate memory-barrier nodes around all loads and stores, rather than only volatile ones. As in the

190n the POWER processor [41], which is not multi-copy atomic, a MemBarVolatile also precedes each volatile load,
but this is not necessary for x86-64 or ARM-v8.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:14 L. Liu et al.

interpreter, this was done both for accesses to instance variables and to array elements. Modify-
ing the compiler at this early stage ensures that we need not worry about the potential for any
downstream compiler optimizations to violate SC, since those optimizations already respect the se-
mantics of memory-barrier nodes. Further, because the ideal graph is platform-independent, mod-
ifying the compiler at this stage suffices to handle both x86-64 and ARM-v8—we simply rely on
the existing backends for these platforms to compile the memory-barrier nodes appropriately. The
downside of this approach is that it is overly conservative. For example, under SC it is safe to elimi-
nate a load that is immediately preceded by a store to the same memory location, but surrounding
these accesses with memory-barrier nodes has the effect of preventing the optimization.

One complication is that the server compiler treats many methods as intrinsic, providing a cus-
tom Ideal graph for each one. We carefully examined the implementation and documentation of
these intrinsics to ensure volatile-by-default semantics. First, some intrinsics, for example math
routines from java.lang.Math, only access local variables and hence need not be modified. Sec-
ond, we added appropriate memory-barrier nodes in the implementations of many intrinsics that
perform memory loads and/or stores. For example, getObject from sun.misc.Unsafe loads an
instance variable or array element directly by offset. We modified its Ideal-graph implementation
to include a subsequent MemBarAcquire node, as is already done for the getObjectVolatile in-
trinsic from the same class. Finally, for some intrinsics, specifically certain string operations, we
simply set the flag -XX: -OptimizeStringConcat, which causes the methods to be compiled nor-
mally instead of using the intrinsic implementations.

3.2.3 Optimizations. Another important benefit of implementing the volatile-by-default se-
mantics in the Ideal graph is that it allows us to take advantage of the optimizations that the
server compiler already performs on memory-barrier nodes at different phases in the compilation
process. For example, the compiler performs an optimization to remove redundant memory-barrier
instructions. In this way, the optimizations that the server compiler already performs to optimize
volatile accesses are automatically used to lower the cost of SC semantics.

We also added an optimization to the compiler that removes memory barriers for accesses to ob-
jects that do not escape the current thread. The HotSpot JVM already performs an escape analysis,
which we simply reuse. In fact, earlier versions of the HotSpot JVM performed this optimization
for a subset of non-escaping objects called scalar-replaceable objects, but it seems to have been ac-
cidentally removed in version 8u: the code for the optimization is still there but it was modified
such that it never actually removes any memory barriers. We updated this code to properly remove
MemBarAcquire and MemBarVolatile nodes for all non-escaping objects.!!

Finally, the HotSpot JVM inserts a MemBarRelease node at the end of a constructor if the object
being constructed has at least one final field to ensure that clients only see the initialized values of
such fields after construction. In VBD-HotSpot, this MemBarRelease node is unnecessary, because
each individual field write in the constructor is already surrounded by appropriate memory-barrier
nodes. Therefore, VBD-HotSpot does not insert memory barriers after constructors.

3.24 relaxed Annotations. To implement relaxed annotations, we added a flag to specify
a list of methods that should be treated as relaxed. When a field access or an array access is
compiled, we check that the compiled method is not on the list before enforcing SC semantics.
We added similar flags to allow users to specify lists of fields and classes that should be treated
as relaxed. We check the list of classes as well as the list of fields before enforcing SC semantics
on a field access.

Removing MemBarRelease nodes is trickier to implement, so we have not done it, though it would be safe to do.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:15

3.25 Correctness. Our main implementation technique, in both the VBD-HotSpot and VBDA-
HotSpot interpreter and compiler, is to simply reuse the existing mechanisms for handling accesses
to volatile variables. Therefore, the correctness of VBD-HotSpot and VBDA-HotSpot largely
hinges on the correctness of those existing mechanisms, which have been in wide use as well as
refined and debugged over more than a decade. We also validated VBD-HotSpot’s correctness in
several ways. First, we added a VBDVerify phase in the server compiler after the creation of the
Ideal graph, which traverses the Ideal graph to check that all loads and stores are surrounded by
appropriate memory-barrier nodes. Second, we created a suite of more than 30 litmus tests that
can exhibit non-SC behavior under the unmodified HotSpot JVM, including many existing litmus
tests from the literature on weak memory models [55]. The litmus tests can be found on Github:
https://github.com/Lun-Liu/schotspot-aarch64/tree/master/litmustests. We ran these litmus tests
hundreds of thousands of times on the current VBD-HotSpot and VBDA-HotSpot compilers and
they have never exhibited a non-SC behavior, which helps lend confidence in our implementation.

3.2.6 volatile-by-default for Java and Scala. Finally, we note that VBD-HotSpot and VBDA-
HotSpot ensure volatile-by-default semantics for Java bytecode, but that does not immediately
provide a guarantee in terms of the original Java source program. However, we have manually
examined and tested the widely used javac compiler that is part of the Open]JDK, which compiles
Java source to bytecode, and found no optimizations that can violate SC. This is not surprising,
since by design javac performs only a few simple optimizations, which we detail below, defer-
ring sophisticated optimizations to the bytecode JIT compiler. Hence compiling a Java program
with javac and executing the resulting bytecode with VBD-HotSpot or VBDA-HotSpot provides
volatile-by-default semantics for the original program.

Specifically, we manually inspected each pass in javac, and for each pass, we also wrote one or
more small test programs to concretely see the bytecode produced as a result of the pass. There
are two kinds of passes. First, there are passes that perform desugarings of Java language features.
These include passes that eliminate usage of generic types, translate lambdas into methods, per-
form boxing/unboxing of primitives, and translate for-each loops into regular loops. Second, there
are passes that prepare for bytecode generation by making several things explicit that are other-
wise implicit. Most notably, inner classes must be hoisted to the top level, which requires many
other changes: The class name is mangled and then updated everywhere it is used, the class is
provided with extra fields to be able to refer to parent objects, and so on. Last, there is a final pass
that generates bytecode in a straightforward manner.

In terms of optimizations, the javac compiler has no support for general dataflow analyses
or transformations. Rather, the only optimizations are local ones pertaining to compile-time con-
stants. Specifically, the translation of conditionals performs branch folding when the guard of the
conditional is a known compile-time constant, the translation of logical operations like | | and &&
do the same, and an access to a variable that is a compile-time constant is replaced by its value.
Here a compile-time constant is either a constant value (e.g., true), an expression involving only
compile-time constants (e.g., 3+5), or a final variable or field that is initialized with a compile-
time constant. To potentially violate SC, an optimization must reorder accesses to heap memory.
(Reordering stack accesses with one another, and even reordering a stack access with a heap access,
cannot violate SC.) Of the javac optimizations, only the removal of a field access pertains to the
heap. However, the restrictions on that field ensure that all reads in the original program must see
the same constant value, so the optimization does not introduce any non-SC behaviors.

We similarly examined the scalac compiler that compiles Scala source to Java bytecode'? and
also found no optimizations that reorder memory accesses, so the same guarantees hold for Scala

Zhttp://www.scala-lang.org/download.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://github.com/Lun-Liu/schotspot-aarch64/tree/master/litmustests
http://www.scala-lang.org/download

10:16 L. Liu et al.

programs running on VBD-HotSpot or VBDA-HotSpot. Like javac, the scalac compiler has no
support for general dataflow analyses or transformations. In addition to optimizations on compile-
time constants, scalac also includes a few peephole optimizations specifically related to boxing
and unboxing. For example, an expression of the form new Integer(3) == new Integer(4) is
simplified to 3 == 4. We have manually inspected these optimizations and found that they do not
violate SC. Specifically, whenever the optimizations apply to heap accesses, the associated objects
are known to be thread local, as in the example shown above.

3.3 Performance Evaluation

We first present the performance evaluation of our x86-64 implementation VBD-HotSpot, and then
we present the performance evaluation of our ARM-v8 implementation VBDA-HotSpot.

3.3.1 Benchmarks and Methodology. We have used two benchmark suites for our performance
evaluation: the DaCapo benchmark and spark-perf.

The DaCapo benchmarks suite is a set of open-source Java applications that is widely used to
evaluate Java performance and represents a range of application domains [15]. We use the Da-
Capo 9.12 distribution for VBD-HotSpot evaluations. We exclude five of the benchmarks: batik
and eclipse are not compatible with Java 8; tradebeans and tradesoap fail periodically, apparently
due to an incompatibility with the -XX: -TieredCompilation flag,'* which VBD-HotSpot employs
(see below); and lusearch has a known concurrency error that causes it to crash periodically. We
use the latest maintenance release (9.12-MR1) of the DaCapo benchmarks from January 2018 for
VBDA-HotSpot evaluations. Among all tests, we remove batik, which fails on the baseline aarch64
port of OpenJDK 8u (even without any of our modifications); tradesoap, which fails periodically
as described earlier; and tomeat, due to a problem unrelated to DaCapo.'* We also replace lusearch
with the new lusearch-fix benchmark that includes a bug fix, as recommended by the authors of
the DaCapo benchmarks in their latest release.

For all DaCapo tests, we ran the DaCapo benchmarks on our server machine and used the de-
fault workload and thread number for each benchmark. We used no relaxed annotations whatso-
ever, including in the Java standard library, unless specified otherwise. Therefore, the experiments
represent extreme points and cases of sorts for the volatile-by-default memory model, since in
practice we expect that judicious usage of relaxed will be used to increase performance where
appropriate. We used an existing methodology for Java performance evaluation [25]. For each JVM
invocation, we ran each benchmark for 20 iterations, with the first 15 being the warm-up iterations,
and we calculated the average running time of the last five iterations. We ran a total of 10 JVM
invocations for VBD-HotSpot evaluations and 5 JVM invocations for VBDA-HotSpot evaluations
(since execution on our ARM-v8 machine is much slower) for each test and calculated the average
execution time of the averages, and calculated the 95% confidence interval using the averages from
the JVM invocations.

Big-data analytics and machine learning are two common and increasingly popular server-side
application domains. To understand the performance cost of the volatile-by-default semantics
for these domains, we evaluated VBD-HotSpot and VBDA-HotSpot on two benchmark suites
for Apache Spark [65], a widely used framework for data processing. Specifically, we employ
two sets of Spark benchmarks provided by Databricks as part of the spark-perf repository’®:
spark-tests includes several big-data analytics applications, and ml1lib-tests employs Spark’s

Bhttps://bugs.openjdk java.net/browse/JDK-8067708.

https://bugs.openjdk java.net/browse/JDK-8155588.

5The original repository is at https://github.com/databricks/spark-perf; we used an updated version that is compatible
with Apache Spark 2.0 at https://github.com/a-roberts/spark-perf.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://bugs.openjdk.java.net/browse/JDK-8067708
https://bugs.openjdk.java.net/browse/JDK-8155588
https://github.com/databricks/spark-perf
https://github.com/a-roberts/spark-perf

Safe-by-default Concurrency for Modern Programming Languages 10:17

Execution Time of DaCapo with 95% Confidence Interval
10000
9000
8000
7000
6000
5000

400
3000
2000 I
1000
0 o ol BN II ..l III .II III o o i

avrora h2 jython luindex sunflow tomcat xalan
Tests

Execution Time (ms)
5]

M original JVM ® -XX:-TieredCompilation = ® VBD-HotSpot

Fig. 3. Execution time in milliseconds of VBD-HotSpot on the DaCapo benchmarks. “original JVM” means
running the baseline HotSpot JVM without additional flags; “~XX:-TieredCompilation” means running
the baseline HotSpot JVM with -XX: -TieredCompilation; “VBD-HotSpot” shows results of running VBD-
HotSpot.

MLIib library [46] to perform a variety of machine-learning tasks. These experiments also illus-
trate how VBD-HotSpot can extend the volatile-by-default semantics to languages other than
Java that compile to the Java bytecode language, since Spark is implemented in Scala.

For spark-perf, we ran Spark in standalone mode on a single machine: The driver and execu-
tors all run locally as separate processes that communicate through specific ports. Since running
Spark locally reduces the latency of such communication versus running Spark on a cluster, this
experimental setup allows us to understand the worst-case cost of the volatile-by-default se-
mantics. Further, as with the DaCapo experiments, we use no relaxed annotations, in either the
application code or the Spark library code. In our experiments, the executor memory is 4 GB and
the driver memory is 1 GB. The spark-perf framework runs each benchmark multiple times and
calculates the median execution time. Similar to the DaCapo tests, we ran spark-perf framework
for 10 invocations for VBD-HotSpot and 5 invocations for VBDA-HotSpot and calculated the av-
erage of the median execution time.

3.3.2 VBD-HotSpot. In this section, we describe our experiments that provide insight into the
performance cost of SC for JVM-based server applications on x86, which are a dominant use case
today. We compared the performance of VBD-HotSpot to that of the original HotSpot JVM on
several benchmark suites. The experiments are run on a 12-core machine with two Intel Xeon
E5-2620 v3 CPUs (2.40 GHz) with hyperthreading, which provides 24 processing units in total.

DaCapo Benchmarks. We used the methodology mentioned in Section 3.3.1 for DaCapo bench-
marks on our server machine. Figures 3 and 4, respectively, show the absolute and relative execu-
tion times of VBD-HotSpot versus the baseline HotSpot JVM. By default, the HotSpot JVM uses
tiered compilation, which employs both the client and server compilers. Since we only modified the
server compiler, VBD-HotSpot employs the -XX: -TieredCompilation flag to turn off tiered com-
pilation and employ only the server compiler. Therefore, we also present the results for running
the original HotSpot JVM with this flag.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:18 L. Liu et al.
Relative Execution Time of VBD-HotSpot

184 78

1.6 154
1.4 e pat 134 59 1.281.30
12 119 M 1.07%1.06 praar
0.8
0.6
0.4
0.2

0

fop pmd

h2 jython luindex
Tests

Relative Execution Time
(=

avrora sunflow tomcat xalan geomean

H VBD-HotSpot over original JVM W VBD-HotSpot over -XX:-TieredCompilation

Fig. 4. Relative execution time of VBD-HotSpot on the DaCapo benchmarks.

The geometric mean of all relative execution times represents a slowdown of 28% versus the
original JVM, and the maximum slowdown across all benchmarks is 81%. The results indicate that
SC incurs a significant cost on today’s JVM and hardware technology, though perhaps less than
is commonly assumed. The -XX:-TieredCompilation baseline is slightly slower than the default
configuration for all but one benchmark (jython), which has a significant speedup. Because of
Jython’s speedup, the geometric mean of the overhead of VBD-HotSpot increases by 2%. However,
the maximum overhead for any benchmark decreases by 3%. In the rest of our experiments, we
present results relative to the default configuration of HotSpot, with tiered compilation enabled.

Interestingly, the three benchmarks that are mostly single-threaded incur some of the highest
overheads. Specifically, fop is single-threaded, most of the tests for the jython benchmark are single-
threaded, and luindex is single-threaded except for a limited use of helper threads that exhibit
limited concurrency; all other benchmarks are multithreaded.!® Ignoring the three benchmarks
that are largely single-threaded, the geometric mean of VBD-HotSpot’s relative execution time
versus the original JVM is only 1.21 (i.e., a 21% slowdown) with a maximum overhead of 44%.

We conjecture that this difference in the cost of VBD-HotSpot for single-threaded and mul-
tithreaded programs is due to the fact that multithreaded programs already must use synchro-
nization, for example locks and volatile annotations, to ensure desired program invariants and
prevent data races. Hence, the overhead of such synchronization might mask the cost of additional
fences and also allow some of VBD-HotSpot’s inserted fences to be safely removed by HotSpot’s
optimizations.

Of course, if the programmer is aware that their program is single threaded (or has limited
concurrency such that it is obviously data-race-free), then they can safely run on the unmodified
JVM and still obtain volatile-by-default semantics. Programmers can choose to do that in VBD-
HotSpot simply by not setting the -XX:+VBD flag.

Spark Benchmarks. We used the methodology mentioned in Section 3.3.1 for spark-perf on
our server machine. Figure 5 shows the median execution times for the eight spark-tests

16http://dacapobench.org/threads.html.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

http://dacapobench.org/threads.html

Safe-by-default Concurrency for Modern Programming Languages 10:19

Execution Time of spark-tests

7
R
®
g ®
L
3
= 3
5
g 2 I
X
. | .l
A & & @ N & N
3 (N ® N X 9 »
& ® S
& ',bogo %:5\ 3 « <~ (&"6\ é‘@ ooo
«¥ ol £ & i £ X
» 9 »® >) PX o
oz & 0\ &
% = Tests
M Baseline JVM m VBD-HotSpot
Fig. 5. Median execution time in seconds for spark-tests.
Relative Execution of spark-tests
3.00
g 2.64
g 2.50 2.24 2.26
5 1.91
.g 2.00 : 1.82 1.79
-
(%]
% 1.50 135 1.39
i 121
Q
.; 1.00
8
[
o 0.50
0.00
N N S P OO
) oV <& & o & 'b,o° & £
> > X > 2
& &5 o & o o & S &
% g e 0 G & &
&\o > i %Q, @) %
» D) N 2) » of
¥ & »® o
& &
° ° Tests

Fig. 6. Relative execution time of VBD-HotSpot over the baseline JVM for spark-tests.

benchmarks when run on the original HotSpot JVM as well as on VBD-HotSpot, with 95% confi-
dence intervals. Figure 6 shows the same results but as a relative execution time of VBD-HotSpot
over the baseline HotSpot JVM. The geometric mean of the overhead of VBD-HotSpot is 79%,
which is significantly higher than the average overhead of VBD-HotSpot on the DaCapo bench-
marks. We surmise that the large overhead for Spark benchmarks is due Spark’s dataflow program-
ming model using the resilient distributed dataset (RDD) abstraction, which is an in-memory,
immutable data structure. Each Spark operation in a program potentially incurs many memory
operations to read its input RDDs and write its output RDDs.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:20 L. Liu et al.

Histogram and Cumulative % of Relative Execution Time
40 120.00%

35

100.00%100.00%
30
80.00%

25
>
3
b5
3 20 60.00%
g,' === Frequency
w

—=—Cumulative %

I
«

40.00%
10
20.00%
5 3
2
N .
1 1.2 14 1.6 18 2 3 More

Relative Execution Time

Fig. 7. Histogram and cumulative % of relative execution time for ml11ib-tests.

Figure 7 shows the results for the ml11ib-tests benchmarks, as a histogram. For example, the
third bar from the left indicates that there are 18 benchmarks that incur a relative execution time
between 1.4 (exclusive) and 1.6 (inclusive). Cumulatively, we see that 54.90% of the benchmarks
incur an overhead of 60% or less, and 95.10% of the benchmarks incur an overhead of 100% or
less. We excluded four benchmarks that failed on the original JVM (als, kmeans, gmm, and pic).
The geometric mean of VBD-HotSpot’s relative execution time is 1.67, or a 67% slowdown. These
results are consistent with those for the spark-tests benchmarks shown above.

Scalability Experiments. We performed an experiment to understand how the cost of the
volatile-by-default semantics changes with the number of threads/cores available. Since com-
mitting a memory operation involves inter-core communication (e.g., cache coherence messages)
and fences require a core to stall until all prior operations have committed, one may expect the
overhead of the volatile-by-default approach to increase with the number of cores. But, in fact,
we find that this is not the case.

Our server machine has six physical cores per socket and two sockets, for a total of 12 physical
cores. Further, the server has hyperthreading, which provides two logical cores per physical one,
for a total of 24 logical cores. For this experiment, we used the -t option in DaCapo to set the
number of driver threads for each test and Linux’s taskset command to pin execution to certain
cores. The -t option in DaCapo does not apply to the three largely single-threaded benchmarks
that were mentioned in Section 3.3.2. It also does not apply to avrora and pmd—though these
benchmarks use multithreading internally, they always use a single driver thread. Therefore, our
experiments only employed the remaining four DaCapo benchmarks.

We tested the overhead of the four benchmarks with 1, 3, 6, 9, 12, and 24 driver threads. For the
experiment with N driver threads, we pin the execution to run on cores 0 through N — 1, where
cores 0-5 are different physical cores on one socket, cores 6-11 are different physical cores on the
other socket, and cores 12-23 are the logical cores enabled by hyperthreading.

The results of our experiment are shown in Figure 8. The y-axis shows the relative execution
time of running on VBD-HotSpot versus the baseline HotSpot JVM on each benchmark, and the
x-axis provides this result for differing numbers of driver threads. Figure 9 provides the results

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:21

Relative Execution Time

2.5
(]
£ 2
=
s
= 1.5
3
o ~— e) e T D §
2
p 1
>
< 0.5
[-'4
0
0 3 6 9 12 15 18 21 24
Number of Threads

—--h2 -s-sunflow -+tomcat -e-xalan ---geomean

Fig. 8. Relative cost of VBD-HotSpot with different numbers of threads/cores.

Scalability Graph of Multithreaded DaCapo Tests

12000
g 10000
o
E 8000
=
5
S 6000
=
7]
%
w4000
2000
0
0 3 6 9 12 18 21 24
Number of Threads
-A-original JVM - h2 —+—\VBD-HotSpot - h2 -®-original JVM - sunflow
-#-VBD-HotSpot - sunflow ®-original JVM - tomcat #-VBD-HotSpot - tomcat
-X-original JVM - xalan —<VBD-HotSpot - xalan

Fig. 9. Scalability graph with different numbers of threads/cores.

in a different way, showing the absolute execution times in milliseconds with different numbers
of driver threads. As the number of driver threads/cores increases from 1 to 12, there is a trend
of improved performance for VBD-HotSpot relative to the original HotSpot JVM. The relative
execution time then is flat or decreases modestly at 24 driver threads. These results imply that SC
performance does not suffer with increased concurrency. They also accord with an experiment by
a previous work [17] showing that a lock-based version of a particular parallel algorithm scales
better than a version with no synchronization.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:22 L. Liu et al.
Relative Execution Time over Original JVM
2.00
1.80 -=—fop
1.60
GE’ ——luindex
iz 1.40
g \-
B 1.20 '/\ sunflow
@ 1.00
X
w
o 0.80
2
& 0.60
&
0.40
0.20

0.00

0 5 10 15 20 25
Number of "relaxed" methods

—e—avrora

Fig. 10. Cost of VBD-HotSpot with relaxed methods.

Relaxed Execution. We also performed experiments to gauge the potential for usage of relaxed
annotations to improve the performance of VBD-HotSpot. We profiled four of the five DaCapo
benchmarks that incur the most overhead for VBD-HotSpot'’ to determine the methods in which
each benchmark spends the most execution time. Figure 10 shows how the overheads of these
benchmarks are reduced when the top k methods in terms of execution time are annotated as
relaxed, for k ranging from 0 to 20. Declaring a method to be relaxed causes the method to be
compiled exactly as in the original HotSpot JVM, so memory-barrier nodes are only inserted for
accesses to variables that are explicitly declared volatile. Note that the interpreter still executes
these methods with volatile-by-default semantics, and any methods called by these methods are
both interpreted and compiled with volatile-by-default semantics.

The figure shows that annotating the top 20 or fewer methods as relaxed provides a large
reduction in the overhead of VBD-HotSpot. One benchmark has particularly dramatic reductions
in overhead: [uindex reduces from 1.82 to 1.17. Many of the top methods are in the Java standard
library and so could be declared relaxed once and then used by many applications. Overall, with
20 relaxed annotations each on the five benchmarks in Figure 10, the geometric mean of VBD-
HotSpot’s overhead reduces to 18% for the entire DaCapo suite (with a max overhead of 34% for
tomcat). These results indicate that targeted usage of relaxed annotations in performance-critical
code can be a valuable tool in making the volatile-by-default semantics a practical choice for
programmers today.

Consumer PCs. Finally, we also ran our benchmarks on several consumer PC machines, in ad-
dition to our server machine. PC1 is a six-core machine with an Intel Core i7-3930K CPU (3.20
GHz), which was released in the fourth quarter of 2011. PC2 is a four-core machine with an Intel
Core i7-4790 CPU (3.20 GHz), which was released in the second quarter of 2014. PC3 is a four-core
machine with an Intel Core i7-6700 CPU (3.40 GHz), which was released in the third quarter of

7We were not able to perform this experiment for tomcat, as our profiler crashes when running this benchmark.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:23

Relative Execution Time over Original JVM

2.50
[}
'§ 1.94. 9
E 2.00 e
o
150 22
§ 11 1212878 113.14 850
3 1.00
2
‘w 0.50
o]
o

0.00

‘oﬂ'b R R\ ~<~° obé‘. Q@ \\o &c \’l> @’b
& ¥ N "0 <0 ¥ O}O&
Tests

EPCl mPC2 mPC3

Fig. 11. Relative execution time of the DaCapo benchmarks.

2015. Hyperthreading is enabled on all three machines. Therefore, we have 12, 8, and 8 processing
units for PC1, PC2, and PC3, respectively.

We ran the DaCapo benchmarks on these machines using the same setup as in Section 3.3.1.
Figure 11 shows the relative execution time for VBD-HotSpot of the benchmarks on the three
machines, normalized to the execution time when run on the baseline HotSpot JVM. The geometric
mean of the overhead due to the volatile-by-default semantics is, respectively, 36%, 40%, and 50%
on machines PC1, PC2, and PC3, which is somewhat higher than the 28% overhead of VBD-HotSpot
on our server machine (Section 3.3.2).

Though not uniformly so, the results indicate an upward trend on the cost of the volatile-
by-default semantics over time, since PC1 is the oldest and PC3 the newest machine. It is hard to
identify the exact cause of this trend, or whether it is an actual trend, since the machines differ
from one another in several ways (number of processors, execution speed, microarchitecture, etc.).
However, the absolute performance of the benchmarks improves over time. Therefore, one possible
explanation is that the performance of fences is improving relatively less than the performance of
other instructions.

3.3.3 VBDA-HotSpot. We also compared the performance of VBDA-HotSpot to that of the base-
line JVM on several benchmark suites. We ran experiments on two multicore 64-bit ARM-v8
servers: Machine A has eight Cortex A57 cores, 16 G memory, and is running openSUSE Tum-
bleweed; machine B has two Cavium ThunderX CN8890 CPU (96 cores in total), 128 G memory,
running Ubuntu 16.04.

DaCapo Benchmarks. We used the methodology mentioned in Section 3.3.1 for DaCapo bench-
marks. By default, HotSpot performs an optimization to identify volatile loads and stores in
the Ideal graph and implement them with aarché64’s 1dar and stlr instructions, which, respec-
tively, perform a load with acquire semantics and a store with release semantics. Indeed, these
one-way fence instructions [9] were introduced in ARM-v8 in part to support volatile ac-
cesses more efficiently. If the backend cannot identify that a memory-barrier node is part of a
volatile read or write, then it employs the regular two-way fence instruction (dmb) for that

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:24 L. Liu et al.

Execution Time Of DaCapo Benchmark (1)
160000

140000
120000

100000
80000
60000

40000
20000
o mmilln -l _— --.'

avrora eclipse jython tradebeans
Tests

Execution Time in ms

M Baseline JVM M Baseline JVM with -XX:+UseBarriersForVolatile
m VBDA-HotSpot VBDA-HotSpot with -XX:+UseBarriersForVolatile

Fig. 12. Absolute execution time of VBDA-HotSpot and baseline JVM for DaCapo benchmarks on machine A.

Execution Time Of DaCapo Benchmark (2)

12000
10000
g
£ 8000
[
£
= 6000
c -
o
s
2 4000
£
w -
- I I I I I
o WM l ' . [1] I []|
luindex lusearch-fix sunflow xalan
Tests
M Baseline JVM m Baseline JVM with -XX:+UseBarriersForVolatile
m VBDA-HotSpot VBDA-HotSpot with -XX:+UseBarriersForVolatile

Fig. 13. Absolute execution time of VBDA-HotSpot and baseline JVM for DaCapo benchmarks on machine A.

node, as we do for the VBDA-HotSpot interpreter (Section 3.2.1). The HotSpot JVM also includes a
flag -XX: +UseBarriersForVolatile to turn off the optimization and force the compiler to always
use dmb instructions to implement memory barriers. VBDA-HotSpot’s implementation is indepen-
dent of the backend and so we employ and evaluate both approaches.

Figures 12 and 13 show the execution time in ms for the baseline JVM and VBDA-HotSpot on ma-
chine A. The error bars show 95% confidence intervals. We use the flag -XX: -TieredCompilation
in all versions to turn off tiered compilation, as described earlier for the VBD-HotSpot experiments.
We have verified that for the baseline HotSpot JVM, there is very little performance difference with
and without tiered compilation on the DaCapo benchmarks.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:25

Relative Execution Time over Baseline HotSpot

8.00
Q
£
£ 4.00 3.53.53
S
3 67 2 3963
%
w
£ 200
2
< 3

1.00

& & vs Q k\° s &
\\ & 'o &
& & R S v
& &)

H VBDA-HotSpot
m VBDA-HotSpot - Fix One Way Fence
¥ VBDA-HotSpot with -XX:+UseBarriersForVolatile (Two Way Fences)

Fig. 14. Relative execution time of VBDA-HotSpot, VBDA-HotSpot with bug fix for one way fences, VBDA-
HotSpot with two way fences on machine A, y-axis in logarithmic scale.

For the baseline JVM, the performance with or without the -XX:+UseBarriersForVolatile
flag is almost the same (1% difference). However, VBDA-HotSpot is much faster with the flag than
without it, even though the new one-way fences are intended to improve the performance of
volatile accesses. On further investigation, we identified two causes for this counter-intuitive
behavior. First, we ran some microbenchmarks and were not able to identify any performance im-
provement of the acquire-release operations over the use of memory barriers. So it appears that the
ARM-v8 hardware that we use is still not exploiting the release-acquire semantics of the one-way
fence instructions in their implementation.

Second, HotSpot’s support for these instructions does not seem to be mature. For instance, these
new instructions do not (yet) support offset-based addressing, so the compiler often requires an
additional register to use these instructions. As has been reported by others, this adversely interacts
with the current register-allocation heuristics of HotSpot.!® Fixing those heuristics as suggested in
the bug report makes a dramatic difference, as shown in Figure 14, reducing the average overhead
of VBDA-HotSpot versus the baseline HotSpot JVM from 195% to 109%. However, the version with
two-way fences is still significantly faster, with an average overhead of 73%. Therefore, in the rest of
the article, we report numbers with the -XX:+UseBarriersForVolatile flag for VBDA-HotSpot.

The first series in Figures 15 and 16, respectively, shows the relative execution time of VBDA-
HotSpot over the baseline HotSpot JVM on machine A and machine B (for machine A, these are
the same numbers as shown in the last series in Figure 14). The geometric mean of the relative
execution time shows an average overhead of 73% for DaCapo benchmarks, with a maximum
overhead of 129% for luindex on machine A, and an average overhead of 57% with a maximum
overhead of 157% for machine B.

To better understand the overhead of VBDA-HotSpot, we also implemented an “x86-like” ver-
sion of VBDA-HotSpot that inserts the store-load barriers after each store but removes all other
barriers in the interpreter, in the intrinsics implementations, and in the Ideal graph for the

8https://bugs.openjdk.java.net/browse/JDK-8183543.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://bugs.openjdk.java.net/browse/JDK-8183543

10:26 L. Liu et al.

Relative Execution Time over Baseline JVM

4.00
Q
£
5 229 5
g 200 2.05
3 1.69 178
9 - 1.65
% 141
Q
S 1.28 1.24 1.20
[1.181 . I I
I |
J N + o >) o>
R . Q o © 2 N & \o ~ N e,
& &8 . X S &
N & N & < S & £ s
& & @

m Machine A VBDA-HotSpot m Machine A x86-like

Fig. 15. Relative execution time of VBDA-HotSpot and x86-like VBDA-HotSpot over baseline JVM for Da-
Capo on machine A, y-axis in logarithmic scale.

Relative Execution Time over Baseline JVM

4.00
@
£
E
s
S
2 2.00
g 2 1.84
w
@ 161
2
k]
[
e« 121120 I 125 1.221.22
1.091.09 I I I
[| |
o & S
& Q \\ & & 3 3 &
N N & - ~o Q & 'b
N & $ \Q\(‘ e?é‘ Q S 6‘59 + eoé‘
& & %
Tests

W Machine B VBDA-HotSpot B Machine B x86-like

Fig. 16. Relative execution time of VBDA-HotSpot and x86-like VBDA-HotSpot over baseline JVM for Da-
Capo on machine B, y-axis in logarithmic scale.

compiler. This version of VBDA-HotSpot does not guarantee SC and so is only introduced as a
way to better understand the costs of the full VBDA-HotSpot implementation. The second series
in Figures 15 and 16, respectively, shows the relative execution time of this x86-like VBDA-HotSpot
over the baseline JVM on machine A and machine B.

The x86-like VBDA-HotSpot results in average and maximum overheads of 35% and 78% for
DaCapo on machine A, and average and maximum overheads of 46% and 132% for machine B. In
other words, the additional fences on reads required by VBDA-HotSpot only double the overhead

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:27

Relative Execution Time of VBDA-HotSpot

4
—e—h2
—e—|usearch
—eo—sunflow
uEa) xalan
= S o S P S / - — —e
c _'/ o i)
2
§ WH"\
%
wi
[
2
&
2 1
0 20 40 60 80 100 120
Threads
0.5

Fig. 17. Relative cost of VBDA-HotSpot with different numbers of threads/cores on machine B. lusearch
does not support running with 96 threads, y-axis in logarithmic scale.

versus the x86-like version, despite the fact that reads dominate writes in typical programs. The
x86-like implementation must insert a full fence, dmb ish, after a volatile write to implement
the store-load barrier, so it seems that additional fences do not incrementally add much overhead.

Scalability Experiments. We also performed experiments on both machine A and machine B
to understand how the overhead of VBDA-HotSpot changes with the number of threads/cores
available, as we did for VBD-HotSpot above. There, we saw that the relative overhead of volatile-
by-default decreases or stays the same as the number of cores increases on x86-64, apparently
because of the additional cost of regular loads and stores, but we were interested to investigate
whether the same would hold true on the weaker ARM-v8 platform.

Machine A has four sockets, each with 2 cores. Machine B has two sockets, each with 48 cores.
For these experiments, we used the -t option in DaCapo to set the number of driver threads for
each test and Linux’s taskset command to pin the execution the same way we did for the scala-
bility experiments in Section 3.3.2. We choose the benchmarks in DaCapo which exhibit external
concurrency, namely, h2, lusearch-fix, sunflow, xalan.

Experiments on both machines show a similar trend as for VBD-HotSpot: As the number of dri-
ver threads/cores increases, the relative overhead of VBDA-HotSpot stays the same or decreases
modestly. The results of our experiment on machine B are shown in Figure 17; the results for ma-
chine A are similar. The figure shows how the relative execution time of VBDA-HotSpot changes
with different numbers of driver threads. Interestingly, VBDA-HotSpot is faster than the baseline
HotSpot JVM for the xalan benchmark at 36 and 48 threads. By examining the absolute execution
times, we observe the reason: The baseline JVM stops scaling for xalan at 24 threads, with perfor-
mance remaining flat or slightly degraded after that, while VBDA-HotSpot continues scaling until
48 threads on the benchmark.

Spark Benchmarks. Finally, we tested VBDA-HotSpot’s performance on the spark-tests and

mllib-tests benchmarks for Apache Spark, as we did for VBD-HotSpot. Again, we used the same
methodology.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:28 L. Liu et al.

Histogram and Cumulative % of Spark tests

50 4 - 120.00%
45 -
+ 100.00% s Machine A
40 Frequency
35
- 80.00% = Machine B
30 - Frequency
g
3
325 - 60.00% Machine A
2 Cumulative %
'S
20 -
15 [40.00% ~#=Machine B
Cumulative %
10 -~
- 20.00%
5 -
0 - + 0.00%

1.00 1.25 1.50 1.75 2.00 3.00 5.00 More
Relative Execution Time

Fig. 18. Histogram and cumulative % of relative execution time of VBDA-HotSpot for Spark benchmarks.

Figure 18 summarizes the results in a histogram. For example, the second gray bar from the
left indicates that on Machine A there are five benchmarks that incur a relative execution time
between 1.00 (exclusive) and 1.25 (inclusive). We omitted four benchmarks that failed on the
original JVM (als, kmeans, gmm, and pic). The geometric mean of VBDA-HotSpot’s relative exe-
cution time on Machine A and Machine B is 2.03 and 1.85, respectively, representing a 103% and
85% overhead over the baseline HotSpot JVM. These results are consistent with those found for
VBD-HotSpot on x86-64. As mentioned earlier, we suspect that the high overhead for Spark tests
versus the DaCapo benchmarks is due to the many memory reads and writes that are necessary
to implement Spark’s key data structure, the resilient distributed dataset (RDD) [65], which
is implemented using arrays. Indeed, on a version of VBDA-HotSpot that (unsoundly) omits
fences for array-element accesses, the average overhead of the Spark benchmarks on Machine A
is reduced from 103% to 46%.

3.3.4 Performance Evaluation Summary. These results show that, while there is a non-trivial
cost to enforcing sequential consistency by default, it is arguably much less than has been assumed
until now. Even with zero relaxed annotations, which represents an extreme point in the way that
the volatile-by-default memory model could be used, overheads on even the very weak ARM-v8
hardware platform are roughly a factor of two on average for our worst-performing benchmark
suite. In practice, relaxed annotations would provide users with fine-grained control over the
performance vs. safety tradeoff. Finally, on both x86-64 and ARM-v8, we see that concurrent code
scales as well or better under volatile-by-default as it does under the Java memory model.

4 VOLATILE-BY-DEFAULT FOR JULIA

Thanks to its high-level syntax, script-like features such as dynamic typing, and good perfor-
mance through aggressive optimization, the Julia language [12] is gaining popularity in fields
such as scientific computation and data analysis. To illustrate the generality of our proposed

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:29

volatile-by-default memory model, as well as to obtain more data on its performance, we have
built a volatile-by-default version of Julia as a modification to its compiler.'’

As mentioned earlier, Julia does not have a memory model for its recently added multi-threading
support [13]. However, Julia uses LLVM as the backend for the compiler and does not put additional
work into enforcing a stronger memory model. Since the LLVM memory model is inspired by the
C++0x memory model [2], it is reasonable to conclude that the Julia’s memory model is weaker
than SC. In fact, simple litmus tests like Dekker’s algorithm do exhibit SC-violating behaviors in
Julia.

However, like Java, we believe that Julia’s design philosophy makes it an excellent candidate
for the volatile-by-default memory model. Specifically, Julia is designed to be an accessible and
easy-to-use language for programmers of varying backgrounds, and it already employs a safe by de-
fault, performance by choice approach to other forms of safety. For example, Julia performs bounds
checking by default to ensure memory safety when accessing arrays. However, programmers
can annotate critical loops with the @inbounds macro, indicating that all array accesses within
these loops should be treated as in-bounds, and hence no bounds checks will be performed during
execution.

4.1 Design

Our design of the volatile-by-default memory model for Julia largely follows that of Java, as
described in the previous section. Since Julia employs the LLVM compiler infrastructure to compile
functions, our memory model provides sequential consistency by default at the level of the LLVM
intermediate representation (IR). That is, by default all memory operations in the LLVM IR are
sequentially consistent, in the same way that our design for Java ensures SC at the level of Java
bytecode.

Following the performance by choice part of our philosophy, we also introduce a linguistic mech-
anism for programmers to trade off some safety guarantees for increased performance. Following
the existing Julia style, we introduce a new macro called @drf, which a programmer can use to
indicate that some portion of code should be considered data-race-free. A volatile-by-default ver-
sion of Julia can safely perform all of the optimizations that the current Julia compiler performs for
@drf-annotated code, and similarly there is no need to insert additional hardware fences during
code generation. Our implementation supports @drf annotations on loops, functions, and entire
modules in Julia.

4.2 Implementation

We have implemented a volatile-by-default version of the just-in-time compiler within the stan-
dard Julia implementation, with the x86-64 backend, and we call our version of this compiler
SC-Julia. Our implementation is based on the v1.4.1 release of the Julia runtime on GitHub [30].
Additionally, we have changed the LLVM version used to 9.0.1 because of a patch needed to handle
atomic operations correctly.?’

Our implementation of SC-Julia has a few caveats that can potentially cause Julia programs to
violate SC by default. First, we have modified Julia’s just-in-time compiler to ensure SC by default,
but we have not modified its interpreter. Second, our approach does not prevent optimizations
within the Julia compiler itself, before translation to LLVM, from violating SC, and we have not
inspected that part of the compiler. Despite these limitations, we believe that our implementation

YThe source code of the compiler can be found on GitHub: https://github.com/JuliaLang/julia.
Dhttps://github.com/llvm/llvm-project/commit/c5830f5f05a4ecb6ac0db0aa386af733f6113b77#diff-77f3e79090addeb629c
840b569aee5803ca93afe78e2e7e7a40c6bdba7be59b6.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://github.com/JuliaLang/julia
https://github.com/llvm/llvm-project/commit/c5830f5f05a4ecb6ae0db0aa386af733f6113b77#diff-77f3e79090addeb629c840b569aee5803ca93afe78e2e7e7a40c6bdba7be59b6

10:30 L. Liu et al.

is useful for understanding the cost of SC for Julia. In particular, Julia uses simple JIT heuristics and
so most of the code ends up being compiled rather than interpreted, and we expect that, as is the
case with javac and scalac (see Section 3.2.6), there are few if any SC-violating transformations
outside of LLVM.

As in our Java-based implementations of the volatile-by-default memory model, our main task
is to transform all loads and stores in the LLVM IR to have SC semantics. To implement this trans-
formation, we have created a new LLVM pass that rewrites each load and store to ensure sequential
consistency. We considered instead performing this transformation inside the Julia compiler itself,
when it generates the LLVM IR from its lowered-form IR. The potential advantage of that approach
is access to higher-level program information that could be used for optimization. However, in turn,
that approach would not be able to leverage the existing LLVM analyses for optimization. Further,
as we describe later, the Julia compiler preserves some semantic information as metadata in the
LLVM IR, which our pass can still exploit. Finally, our approach is more modular and hence less
invasive, and it can potentially apply to other languages that employ LLVM as a backend.

In the rest of this subsection, we describe our implementation in detail. We first overview the
structure of our new LLVM pass. Then, we discuss the LLVM instructions that we use to rewrite
loads and stores to ensure SC. Finally, we describe optimizations that we implemented to reduce
the performance cost.

4.2.1 LLVM Pass. We implemented our own LLVM pass called “AddSC.” We install this pass as
the first optimization pass in the pipeline specified by the Julia JIT compiler. This ensures that
the following passes will respect the SC semantics when trying to optimize the IR. AddSC iterates
through every basic block and rewrites each load and store instruction within each basic block. We
detail the rewriting of loads and stores below. Our implementation of @drf annotations introduces
metadata into the LLVM IR, which we use to skip rewriting for basic blocks that are within loops,
functions, and modules that have been declared @drf.

4.2.2 Rewrite Loads and Stores. By default, LLVM loads and stores provide no guarantees be-
yond those of a weak memory model like that of C++: If there is a race on a given memory location,
then loads from that location can have undefined behavior [1]. Standard single-threaded compiler
and hardware optimizations are allowed on these memory accesses, which can lead to non-SC be-
haviors. The Julia compiler generates these default LLVM loads and stores for ordinary reads and
writes in Julia programs and hence inherits this weak semantics.

However, to implement various forms of synchronization, LLVM supports multiple forms of
atomic memory accesses [1], which provide different guarantees. For example, Acquire atomic-
ity ensures that a load has lock-acquire semantics, Release atomicity ensures that a store has
lock-release semantics and makes a store to have lock-release semantics, SequentiallyConsistent
atomicity provides both Acquire semantics for loads and Release semantics for stores, and it also
guarantees a total order among all SequentiallyConsistent accesses.

The obvious way to enforce the volatile-by-default semantics is then simply to rewrite every
load and store in the LLVM IR to be SequentiallyConsistent atomic. And indeed, this is what our
AddSC pass does. Unfortunately, it is not that simple, as some loads and stores in the LLVM IR
are not allowed to be declared atomic [2]. For example, the pointee of atomic loads and stores
must either be an integer, a pointer, or a floating-point, while non-atomic loads and stores are
additionally allowed to point to aggregate types such as arrays and structures. The LLVM code
generation process will fail if such accesses are declared to be atomic.

Hence, we need a new approach to ensure that loads and stores that cannot be declared
atomic nonetheless have sequentially consistent behavior. We still mark these loads and stores as

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:31

SequentiallyConsistent during the AddSC pass, to ensure that downstream compiler optimizations
treat them as such. In addition, we have implemented a second LLVM pass called SCExpand, which
we install as the last optimization in the pipeline, right before code generation. During SCExpand,
every load and store that cannot be declared atomic is converted back into a non-atomic access.

However, we are still left with the problem of ensuring that the hardware respects SC for these
accesses. Therefore, during SCExpand, we add an Acquire fence after each non-atomic load, a Re-
lease fence before each non-atomic store, and a SequentiallyConsistent fence after each non-atomic
store. This approach is analogous to the memory-barrier nodes that we inserted in the Java com-
piler to ensure SC, as detailed in Section 3.2.2. On x86-64 hardware, the Acquire and Release fences
will become no-ops, and the SequentiallyConsistent fence will become an MFENCE instruction to
prevent loads from being reordered before stores.

Finally, there is one last wrinkle. According to the specification of LLVM [2], compiler optimiza-
tions do not have to respect the semantics of fences for regular (non-atomic) loads and stores. To
ensure that the code generation pass nonetheless does not perform any optimizations on these
memory accesses, during SCExpand, we also annotate all of these accesses as volatile, which has
a similar semantics to the volatile keyword in C/C++ (and is notably different from volatile
in Java). In particular, the compiler will not perform any optimizations on volatile memory ac-
cesses. This approach is conservative, as some optimizations that are allowed under SC will not
be performed on volatile accesses.

An alternative approach to addressing this problem of non-atomic loads and stores is to rewrite
the Julia compiler to only generate LLVM memory accesses that are able to be declared Sequential-
lyConsistent. For example, a load of a structure could instead be compiled to individually load each
field. Of course, there is potentially a performance cost with this approach, and it also requires
invasive changes to the Julia compiler, which our approach avoids.

4.2.3 Optimizations. Simply rewriting every load and store in the LLVM IR to have SC seman-
tics will lead to huge slowdown. However, many loads and stores are already guaranteed to have
SC semantics and can be safely ignored by our transformation pass.

If the data being loaded is immutable, then it cannot participate in a data race, so it is already guar-
anteed to have SC semantics. Our pass accordingly does not transform loads of immutable
data. Stores to immutable data (i.e., its initialization) need not be declared SequentiallyCon-
sistent, but they must use some form of atomicity to ensure that they will respect later fences
and hence will not be reordered after the write of the pointer to the data. Our implementation
declares these stores as Release atomic.?!

If the data is only visible to the runtime, it will not affect the semantics of the language and so can
be ignored by our pass. The compiler developers already have to ensure there is no data race
for such data to have a correct implementation of the runtime. For example, Julia optimizes
the implementation of Union by storing small unions inline. It uses a “type tag byte” to signal
the type of the actual value stored inline. It is the compiler developers’ responsibility that
reading and writing this byte will not cause data races, and thus we do not need to rewrite
those loads and stores.

If the data is on the stack, then it is already guaranteed to have SC semantics. The Julia compiler
performs an optimization to stack-allocate objects that it can determine are either immutable
or non-escaping, and we leverage this optimization to avoid unnecessary fences. Theoreti-
cally, it is possible to get a pointer to an object on the stack in Julia, but this is clearly an

21However, it should suffice to use a lower level of atomicity.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:32 L. Liu et al.
Table 2. A List of Thaa Types in Julia and if They Need SC Rewriting

tbaa name what it represents SC rewriting?
jtbaa Everything Yes
jtbaa_gcframe GC frame; exists after FinalLowerGC pass
jtbaa_stack stack slot
jtbaa_data Any user data that “pointerset/ref” are allowed to alias Yes
jtbaa_binding a Julia binding to a global variable Yes
jtbaa_value Runtime data structure of a Julia value that is not an array Yes
jtbaa_mutab mutable type Yes
jtbaa_immut immutable type
jtbaa_ptrarraybuf |Data in an array of boxed values Yes
jtbaa_arraybuf Data in an array of POD Yes

jtbaa_unionselbyte
jtbaa_array
jtbaa_arrayptr
jtbaa_arraysize
jtbaa_arraylen
jtbaa_arrayflags
jtbaa_arrayoffset
jtbaa_arrayselbyte
jtbaa_const

a selector byte in isbits Union struct fields

Runtime data structure of a Julia array (jl_array_t)

The pointer inside a jl_array_t

A size in ajl_array_t

The len in a jl_array_t

The flags in a jl_array_t

The offset in a jl_array_t

a selector byte in a isbits Union jl_array_t

Memory that is immutable by the time LLVM can see it

“unsafe” operation, so we ignore it. This operation also does not play well with Julia’s
garbage collection (GC).

To implement these optimizations, we leverage the type-based alias analysis (tbaa) metadata
of memory in LLVM IR. Memory in LLVM IR does not have types, so LLVM relies on the tbaa
metadata in the IR to do type-based alias analysis. Such metadata describes the type system of
the higher-level language [3]. When the Julia compiler generates the LLVM IR, it will “decorate”
each load and store instruction with a MetaData node that specifies the tbaa type of the address
accessed accessed by the load or store instruction. We manually examined all thaa types that Julia
uses and identified the types that are “safe” for SC, following the above description. During our
transformation pass, for each candidate load or store instruction, we check the tbaa information
and ignore the ones that are accessing “safe” locations. Table 2 lists all the tbaa types used by Julia
and if they need SC rewriting.

However, the tbaa information sometimes is overly conservative. Specifically, not all stack-
allocated objects will be identified as such in the tbaa information. Hence, we implement an addi-
tional optimization to identify loads and stores to stack locations. This is not immediately obvious
in the LLVM IR, as memory accesses to both stack and heap locations use the same instructions.
Luckily, the Julia compiler uses LLVM’s custom address spaces to identify GC-tracked pointers and
their uses, and we can use this information to identify stack locations. Specifically, stack locations
are allocated in address space 0, and no other locations use that address space. Therefore, our
rewriting pass ignore loads and stores for addresses in address space 0.

Finally, some Julia functions are implemented directly as “builtins” in C++. While these functions
are also compiled by LLVM, their loads and stores do not have Julia specific tbaa information. We
manually inspected the C++ source code of builtin functions and rewrote them to ensure SC, using
C++ atomic accesses where necessary.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:33

Sometimes doing this rewriting required judgment calls on our part regarding the intended se-
mantics. A good example are the memset, memmov, and memcpy functions. These functions do not
guarantee that their memory accesses to move/copy bytes will occur in order. They also do not
prevent earlier/later memory operations in the thread from being reordered with their memory
operations. In our versions of these functions, we chose to still not provide any ordering guaran-
tee among the bytes being moved/copied, as arguably callers should not expect such guarantees.
However, we would like all of these accesses to be “atomic” relative to memory accesses before or
after them in the program, to preserve the per-thread program order when viewing these calls as
single instructions. To achieve this semantics, we rewrote all memset, memmov, or memcpy calls
to our own versions that perform the memory operations in a loop. We inserted fences before
and after the loop to prevent reorderings with code outside of the function. Further, each memory
operation in the loop is declared to be Unordered atomic, which is the lowest level of atomicity in
LLVM [1], to ensure that it will respect the fences.

4.3 Experiments

We performed several performance experiments for our SC-Julia compiler on x86-64 hardware. We
ran all the evaluations on a eight-core (four physical cores with hyper-threading enabled) Intel(R)
Core(TM) 17-6700 machine. We compared the performance of our implementation to that of the
original v1.4.1 Julia but switched its LLVM version to v9.0.1.

4.3.1 BaseBenchmarks. The BaseBenchmarks benchmark suite is a collection of single-
threaded Julia benchmarks available for CI tracking, available on GitHub?? and used by the Julia
developers to track the performance of the Julia language. There are more than 3,000 benchmarks
in the benchmark suite categorized into different groups. Many of the benchmarks in BaseBench-
marks are microbenchmarks, but there are also some larger benchmarks.

The BaseBenchmarks benchmark suite uses Julia’s BenchmarkTools benchmarking framework.
The framework will tune each test to find the correct test parameters for each test, run the test
with the tuned test parameters, and record the results. We calculate the overhead of the tests using
the median execution time reported for each test. We then compute the relative execution time of
SC-Julia over the baseline Julia for each test and finally calculate the geometric mean of relative
execution times for the tests in each test group as well as for the whole benchmark suite.

Figure 19 shows the results. The x-axis divides the tests into different groups, and the y-axis
shows the geometric mean of the relative execution time of tests in each group. The numbers in
parenthesis are the numbers of tests in the test groups. Figure 19 also shows the results of two
different test settings. The orange bars on the right show the results when both the baseline and
our SC-Julia are running with the O2 optimization level, which is the default optimization level
for the Julia compiler, while the blue bars on the left show the results when both are running with
OO0 optimization level for the Julia compiler.

From the figure, we can see that with the O2 optimization level, 10 out of 18 groups of tests have
an average overhead of more than 100%. The average overhead across the whole benchmark suite
is 76%, with the maximum overhead of any single test being 25,642%. But with the O0 optimiza-
tion level, all groups have an average overhead of less than 100%. The average overhead across
the whole benchmark suite is 22%, with the maximum overhead of any single test being 26,154%.
While it may be consistent with people’s intuition that SC would have a higher cost for a higher
optimization level, we performed an experiment to better understand why, discussed next.

Zhttps://github.com/JuliaCl/BaseBenchmarks.jl.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://github.com/JuliaCI/BaseBenchmarks.jl

10:34 L. Liu et al.

Geomean of Relative Execution Time of Tests by Test Groups

Geomean of Relative Execution Time
© B N W & U1 O N ® ©

IIII|||||I|||||‘I|I|| lII|||I|| 1
L

PSSP DS & & &S
OIS R N R R A A S N)
© &N R ¥ & NS & & & & A ¥ &N
3 & & N JF S N ¥ & &g ¥
& D) R & & & R B © 2> 2
B K o ¢ R &
&
Q'
5

Test Groups

m Opt Level: 00 m Opt Level: 02

Fig. 19. Geometric mean of relative execution time of SC-Julia over the baseline Julia. Each bar represents a
test group in BaseBenchmarks, the number in the parentheses after each test group name is the number of
tests in that group. The last bar represents the whole benchmark suite.

4.3.2 Understanding the Performance Impact of SC. At a high level, enforcing SC has two
sources of performance overhead, respectively, due to lost compiler optimizations and the need
to execute additional fence instructions in the hardware. To isolate these costs, we modified
LLVM such that all fence instructions in the IR will turn into no-ops during code generation. For
this experiment alone, we also modified the implementation of SC-Julia so all atomic loads and
stores are translated just before code generation to volatile accesses with associated fences (see
Section 4.2.2), so SC is enforced in the hardware solely through fence instructions.

Figure 20 shows the results. With fence instructions being in the IR but not generated to hard-
ware fences, the average cost of SC is negligible for all test groups with O0 optimization level,
and the maximum overhead of any single test is also reduced to 1,633%. For O2, the cost for all
test groups is also much lower than SC-Julia. The average cost with O2 is 23%, and the maximum
overhead of any single test is 6,746%. Comparing with the results in Section 4.3.1, we conclude
that most of the cost of enforcing SC comes from the cost of the hardware fences. Hence, the main
reason for the higher relative cost of SC with O2 versus OO is that the baseline execution of a pro-
gram with O2 is much faster than the baseline execution with OO0, so the relative cost of hardware
fences under O2 is higher than under O0.

4.3.3 @drf annotations. The experiments above constitute a worst-case, and unrealistic, usage
of the volatile-by-default memory model, as there are no @drf annotations whatsoever. And
indeed, certain tests (mostly microbenchmarks) in the benchmark suite have a very high overhead
with SC-Julia. For example, the benchmarks ["array", "bool", "boolarray_true_fill!"]
and ["array", "bool", "bitarray_true_fill!"] test the performance of calling fill! to set
all 1,000,000 elements in a bool or bit array to true, and they have overheads of 256.42x and 41.24X,
respectively.

Figure 21 illustrates how @drf annotations can help. The majority of the overhead in these
benchmarks comes from the fact that the existence of the atomic instructions/fence instructions
in the IR prevents the compiler to optimize the whole loop to a memset call. Adding the @drf

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:35

Geomean of Relative Execution Time of Tests by Test Groups
45

Time

015
1
o-s|||||I||||||||||||| N
0
o) A &(&b

& &\4} QQ,‘o\ \e@\ @\é@ -\°\\~, & =>‘\o\ b&w& § S (&@5’
R N Q N P’ o N
i R I F FF eSS S
&8 4 F© & «
(\(4
o'
&

Test Groups

HOpt Level: 00 m Opt Level: 02

Fig. 20. Geometric mean of relative execution time of SC-Julia without hardware fences over the baseline
Julia without hardware fences. Each bar represents a test group in BaseBenchmarks, the number in the
parentheses after each test group name is the number of tests in that group. The last bar represents the whole
benchmark suite.

1 @noinline function fill!(dest::Array{T}, x) where T
2 xT = convert (T, x)

3 @drf for i in eachindex(dest)

4 @inbounds dest[i] = xT

5 end

6 return dest

7 end

Fig. 21. Implementation of the library function fill! in Julia and with @drf annotation.

annotation to the loop body tells SC-Julia not to rewrite any load and store in the loop body,
thereby allowing the memset optimization. Accordingly, the performance cost goes away, but in
exchange now the program may not have SC semantics if there is a data race on the array elements
during a call to fill!.

To gauge the potential effectiveness of @drf annotations in reducing the performance cost of
SC-Julia, we added a few @drf annotations to the BaseBenchmarks tests. First, we treat loops that
already have been annotated as @simd as if they are also annotated as @drf. The @simd annota-
tion in Julia tells the compiler to use special SIMD instructions to implement the loop, implicitly
promising that the loop iterations are independent and may be reordered. It is also unlikely that
such an optimization would preserve behavior in the presence of data races. Hence, these loops
are also naturally candidates for the @drf annotation. Additionally, we marked the Base module
in Julia, which contains standard library functions such as functions and macros appropriate for
performing scientific and numerical computing, as @drf.

Figure 22 shows the average overhead of SC-Julia over the baseline Julia on BaseBenchmarks
with these @drf annotations. The average overhead reduces by roughly 50%. Specifically, the aver-
age overhead for BaseBenchmarks with OO0 is reduced from 22% to 13%, and with O2 it is reduced
from 76% to 36%. These results illustrate the potential for @drf annotations to significantly reduce
the overhead of the volatile-by-default memory model.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:36 L. Liu et al.

Geomean of Relative Execution Time of Tests by Test Groups

»
(L]

w
w o

N

Geomean of Reltive Execution Time
- N

=]
w0

0
@ PN
’\« ")
\ \'\’ N

S & © & & & N N & O N
& & 2 sz’ K LSS FFHE P I T LS
O &S & P R PG & ~°\° & & & @
S & ¢ p: £ & S & S T &
S < = & < &é‘
®°
&
Q'
g

Test Groups

m Opt Level: 00 = Opt Level: 02

Fig. 22. Geometric mean of relative execution time of SC-Julia over the baseline Julia for BaseBenchmarks,
with @drf behaviors for @imd and Base module. O0 and O2 represent different optimization levels.

1 using BenchmarkTools

2

3 arr = zeros(Int32, 100000)
4 function perf_loop(arr)

5 for i = 1:100000

6 arr[i] = 1

7 end

8 end

9

10 @btime perf_loop (arr)

Fig. 23. A microbenchmark that uses a loop to set every element in an array.

4.3.4 Hardware Instruction Selection. Another interesting finding we discovered is that the
hardware barrier instruction used greatly affects the cost of SC. On x86-64, both a sequentially
consistent load and a non-SC load are mapped to a MOV instruction. A sequentially consistent store
could be mapped to either an XCHG instruction or a sequence of MOV; MFENCE on x86-64.

In LLVM, if a store has the SequentiallyConsistent atomicity level, then it will be translated into
an XCHG instruction. To measure the impact different hardware barriers have on the cost of SC, we
implemented another version of SC-Julia and call it mSC-Julia. In this alternate implementation,
instead of rewriting loads and stores to have the SequentiallyConsistent atomicity level when pos-
sible, we always rewrite loads and stores to be surrounded by fence instructions. Therefore, at the
hardware level, SC-Julia will try to use XCHG for SC stores whenever possible, while mSC-Julia will
always use the sequence of MOV; MFENCE.

We first tested the performance with a microbenchmark that uses a loop to set every element in
an array, as shown in Figure 23. The execution time is 52.795 ys using the baseline Julia, 511.825 us
using SC-Julia, and 1,300 ps using mSC-Julia. In other words, using the MFENCE instruction rather
than an XCHG instruction more than doubles the overhead of enforcing SC for a tight loop. Figure 24
shows the performance overhead of mSC-Julia over the baseline Julia for the BaseBenchmark suite.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:37

Geomean of Relative Execution Time of Tests by Test Groups

of Relatii
)

II||....||||||I|I|||| |II|||||| 1
:

PP PP P ISP AP PP PSP PSS
& & & F & & E e R S NP O Pt A G
& & M & K & N & & & & & o N & &8
S & E < & N & L & & ¥ P & o ¥
&€ S KX O & & &6‘
o
'_)0
Q’b

Test Groups

HOpt Level: 00 m Opt Level: 02

Fig. 24. Geometric mean of relative execution time of mSC-Julia over the baseline Julia. 00 and O2 represent
different optimization levels.

The mSC-Julia compiler has an average overhead of 50% for O0 and 130% for O2, which again is
roughly twice the overhead of SC-Julia.

This experiment illustrates the importance of hardware fence performance on the cost of SC.
We also saw the importance of fences in the experiment described in Section 4.3.2. Hence, future
improvements in the hardware implementation of fences have the most potential for reducing the
cost of the volatile-by-default memory model.

5 OPTIMIZING THE IMPLEMENTATION OF VOLATILE-BY-DEFAULT SEMANTICS

The baseline implementation of the volatile-by-default semantics, described in the previous two
sections, may have less overhead than is generally expected, but it is still significant, particularly
for Java on the weak ARM-v8 platform and for the dynamic, array-heavy Julia language. While
we showed that judicious choices of relaxed and @drf annotations can significantly reduce the
overhead, the results also argue for the need to explore optimization techniques for language-level
SC on stock hardware.

We take the first steps in this direction by proposing a speculative approach to enforcing the
volatile-by-default semantics. The basic idea is to modify the JIT compiler to treat each object
as safe initially, meaning that accesses to its fields can be compiled without fences. If an object
ever becomes unsafe during execution, then any speculatively compiled code for the object is
removed, and future JITed code for the object will include the necessary fences to ensure SC. We
have implemented this approach as a modification to our VBDA-HotSpot JVM for ARM-v8, and
we call this version S-VBD.

5.1 Design Decisions

Several design decisions must be made to turn the above high-level idea into a concrete approach
that in fact provides performance improvements.

First, the notion of safe must be instantiated. It must capture a large percentage of objects at
runtime to reduce the overhead of volatile-by-default semantics, but the cost of checking safety
should not mask the achieved savings. The most precise approach would be to convert an object

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:38 L. Liu et al.

from safe to unsafe only when a data race is detected on that object. However, dynamic data-
race detection is quite expensive, so employing it would erase any performance advantage of this
approach over the implementation of volatile-by-default described in the previous section.

Instead, we treat an object as safe if it is thread-local: All accesses to the object’s fields occur on
the thread that created the object. This definition is motivated by the expectation that many objects
will be single-threaded throughout their lifetime. These include non-escaping objects that are not
allocated in the stack due to the imprecision in HotSpot’s escape analysis, and objects that are
reachable from global data structures but are nevertheless logically thread-local. VBDA-HotSpot
unnecessarily incurs the cost of fences for these objects.

To track this notion of safety, it suffices to record the ID of the thread that creates each object.
Whenever an object’s field is accessed, we compare the recorded ID to the ID of the current thread
to decide whether the object can still be treated as safe or not. Once an object becomes unsafe it
remains so for the rest of its lifetime, so no more checking is required.

Even though checking thread locality is much less expensive than checking for data races, the
runtime overhead would be prohibitive if we do this check on every field access. However, a
key property of the way we define thread locality is that many of these checks can be statically
eliminated. Specifically, the check whether an object is created by the current thread is invariant
throughout a method, since all accesses in a method are executed by the same thread. Therefore,
we can safely replace multiple per-access checks to an object with a single check at the beginning
of the method. Note that this is sound even if an object becomes non-thread-local in the middle of a
method—the second thread that accesses the object will force decompilation of this method (see be-
low). We have implemented an intraprocedural analysis in S-VBD that performs this optimization
for the receiver object this of each method.

Second, speculative compilation requires that we have both a slow and fast version of each
method, respectively, with and without fences inserted. The most precise approach would be to
keep track of the appropriate version on a per-object basis. However, to vastly simplify our im-
plementation, we instead switch on a per-class basis. That is, as soon as any instance of class C
becomes unsafe, we switch to the slow version of C’s compiled methods, and this version is used
for all instances of the class. This approach ensures that only a single version of C’s compiled
code is active at any given point in time, which accords with a constraint in the original HotSpot
JVM.

Third, we must decide how to switch from safe to unsafe mode in a correct and low-complexity
way. We observe that the HotSpot JVM already has support for deoptimization of compiled meth-
ods, which is used when an assumption about a method (e.g., that no method overrides it) is vio-
lated (e.g., when a new class is dynamically loaded). We show how to leverage this capability for
our purpose. Specifically, we use HotSpot’s dependency tracking mechanism to record the specu-
latively compiled fast methods that may access fields of objects of a given class C. The first time
that some instance of C is found to be unsafe, S-VBD invokes HotSpot’s deoptimization facility to
safely pause all threads and remove the compiled versions of all methods that depend on C before
resuming execution. If JIT compilation is later triggered on any of these methods, then the slow
versions will be used.

Finally, we have described our design for accesses to the fields of an object. Conceptually this
speculative approach could also be used for accesses to static fields and array elements. However, to
reduce implementation complexity, we currently treat these accesses exactly as in VBDA-HotSpot.
Specifically, we unconditionally insert the appropriate memory barriers for these accesses to en-
sure the volatile semantics. We also unconditionally insert fences for intrinsics as in VBDA-
HotSpot.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:39

1 compile(m) {

2 if (m. class .mode==fast) {

3 compile fast_version (m);

4 atomic {

5 if (m. class .mode != fast)
6 abort_compilation ();

7 else

8 register_compiled_method ();
9 }

10 }

11 else {

12 compile slow_version (m);

13 register_compiled_method ();
14 }

15}

Fig. 25. Just-in-time compilation of a method.

5.2 Implementation

Implementing this design is non-trivial: Both the JIT compiler and the interpreter must be updated
to perform safety checks, and fast code must never be executed after a relevant safety check fails,
even when that failure happens on another thread. This subsection describes our implementation
in detail.

To simplify the presentation, we first describe our implementation under the assumption that
all field accesses are of the form this.f. If that is the case, then it suffices to replace all per-
field-access checks with a single check of the this object at the beginning of each method. We
have implemented an intraprocedural analysis at class-load time that performs this optimization.
We then describe the more general case where per-field-access checks are required in the next
subsection.

To determine whether an object is safe, we add another word in each object header that contains
the ID of the thread that created the object. Therefore, the safety check simply compares this value
to the ID of the current thread. We also must remember whether a class is using the fast or slow
versions of its methods; we add a flag to HotSpot’s VM-level representation of each class for this
purpose.

Figure 25 shows what happens when a method gets “hot” enough and is chosen to be compiled.
We check whether the method’s class is in fast or slow mode and compile the corresponding version
of the method. After compilation of the fast version, we check the class’s mode again. If the class’s
mode has changed, then it means that some object of the class has been found to be unsafe on
another thread in the meanwhile, so we abort the compilation. Otherwise, we register the compiled
method for subsequent execution. (If there are inlined methods, then we also need to re-check their
classes’ modes before registering the compiled method.) The process of checking the mode again
and registering the compiled method is atomic, so there is no potential for time-of-check time-of-
use errors.

Figure 26 provides pseudocode for the two versions of each compiled method. The slow version
is simply the method with all fences added, as in the baseline volatile-by-default approach. The
fast version first performs the safety check. If the method’s receiver object is still safe, then its
method body is executed without requiring any added fences. Otherwise, all compiled methods of
this’s class must be invalidated to be recompiled in their slow versions.

The switch_to_slow pseudocode in the figure illustrates the latter process. We first change
the mode of the given class C to slow. The deoptimize_to_slow function (definition not shown)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:40 L. Liu et al.

1 slow_version(m) {

2 vbd (m. body);

33

4

5 fast_version(m) {

6 if (curr_thread == this.creator_thread)
7 m. body ;

8 else

9 switch_to_slow (this.class);
10 }

11

12 switch_to_slow (C) {

13 atomic {

14 if (C.mode == slow)

15 return;

16 C.mode = slow;

17 deoptimize_to_slow (C);

18 }

19 }

Fig. 26. The slow and fast versions of a method.

interpreter_version(m) {
if (this.class.mode == fast &&
curr_thread != this.creator_thread) {

switch_to_slow (this.class);

}

slow_version (m);

N O G W =

}

Fig. 27. The interpreted version of a method.

then leverages the HotSpot JVM’s existing mechanism for deoptimization to invalidate all com-
piled methods that depend upon C, which includes the methods of C and its superclasses, as well
as any methods in which one of these methods is inlined. This function also changes the mode of
all of C’s superclasses to slow. The deoptimize_to_slow function is implemented as a “VM oper-
ation” in the HotSpot JVM, which causes all other threads to be stopped before its execution so it
can safely invalidate compiled methods. Also, we make the switch_to_slow function shown in
Figure 26 atomic to prevent multiple threads from deoptimizing the same methods and to prevent
the compile function in Figure 25 from concurrently registering any fast methods for class C.

Finally, we describe modifications to the HotSpot interpreter. As in VBDA-HotSpot, the inter-
preter always includes the additional fences necessary to ensure the volatile-by-default seman-
tics. However, we additionally must perform the check at the beginning of each method that the
receiver object is safe, and if not then all compiled methods that depend on the object’s class must
be deoptimized. Pseudocode is shown in Figure 27.

5.3 Implementing Per-access Checks

The above description assumed that all field accesses are of the form this. f, but Java allows field
accesses to arbitrary objects (i.e., for fields that not declared private). For objects other than this
S-VBD performs safety checks on a per-field-access basis. This subsection describes how such
checks are implemented.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages

10:41

Table 3. The Implementation for volatile Accesses on ARM-v8 in HotSpot (First Two Rows) and an
Optimized Implementation for Memory Accesses on ARM-v8 in S-VBD (Last Two Rows)

Barriers Needed Before | Barriers Needed After | Aarch64 Instruction Sequences
. ldr
volatile load | None LoadLoad and LoadStore dmb ish 1d ; wait for load
dmb ish ; full fence
volatile store | LoadStore and StoreStore | StoreLoad str
dmb ish ; full fence
ldr
VBD Load None LoadLoad and LoadStore dmb ish 1d ; wait for load
str
VBD Store None StoreLoad and StoreStore dmb ish : full fence

As mentioned earlier, at class-load time an intraprocedural analysis identifies field accesses
whose receiver object is definitely this, so we can avoid checks on these accesses. The analy-
sis also rewrites all other getfield bytecodes in the method to a new check_getfield bytecode
that we have defined in S-VBD, and similarly for all other putfields in the method. Later, when-
ever a check_getfield bytecode is encountered during interpretation or compilation, we simply
treat it as if it were an inlined call to a getter method on the receiver object. That is, we follow
exactly the scheme shown in the previous subsection, except that the various checks are inlined
into the method containing the check_getfield bytecode. Similarly, a check_putfield bytecode
is treated as an inlined call to a setter method.

Making this approach work requires one addition to the scheme shown earlier. If a field of class
D is accessed by method m of class C, then we must make sure to deoptimize C.m whenever class
D is deoptimized. Otherwise, the compiled version of C.m will still be using the fast version of the
field access even after D has been switched to slow mode. To do this, we record a dependency of
the method C.m on class D whenever we encounter such a field access, extending the dependency-
tracking mechanism that HotSpot uses for deoptimization as described earlier.

5.4 Optimizing Fence Insertion

In addition to speculative compilation, we implemented an orthogonal optimization that reduces
the number of fences required to enforce the volatile-by-default semantics for ARM-v8. The first
two rows of Table 3 show the memory barriers required before and/or after a volatile memory
access in Java, as described in the JMM Cookbook [29], and the corresponding ARM-v8 instructions
used to achieve those barriers in HotSpot. For example, a volatile load requires a LoadLoad and
LoadStore barrier after it, which is implemented by a dmb ish 1d instruction in ARM-v8.

The baseline implementation of VBDA-HotSpot, which uses the approach of VBD-HotSpot, sim-
ply inherits this implementation strategy for volatiles from HotSpot. However, we observe that
some of the barriers are only there to prevent reorderings between volatile and non-volatile
accesses. Hence, in the volatile-by-default setting, where all accesses are treated as volatile,
it is safe to eliminate some of these barriers, which in turn eliminates some unnecessary fence
instructions in the generated code.

The last two rows in Table 3 show our optimized approach. The implementation of VBD loads
is the same as that for volatile loads in Java. However, a VBD store does not require a preceding
LoadStore fence, due to the LoadStore fence after each VBD load. Further, in place of the StoreStore
fence that precedes a volatile store, it is equivalent in VBD to move this fence after each store,
since there are no non-volatile stores. The result is that we have eliminated the need for any
memory barriers before a VBD store. Further, while we have added a StoreStore barrier after a

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:42 L. Liu et al.

Relative Execution Time over Baseline JVM

1.85 188

2
178 .
174 174 173
168 169
159 || 168 166 o 165
[—— 153 151
145 142 .41 102 .

128 128 4 55 1.26

I I I i i T

avrora eclipse jython luindex lusearch-fix sunflow tradebeans xalan geomean
Tests

Relative Execution Time
~
o
8

mVBDA mVBDA + Speculative Compilation VBDA+VBD-Opt ~ mS-VBD

Fig. 28. Relative execution time of VBDA + speculative compilation, VBDA + VBD-Opt, S-VBD over the
baseline JVM compared to VBDA-HotSpot on machine A, y-axis in logarithmic scale.

Relative E ion Time over Baseline JVM

4.00

166 165

257
236
185
179 e
167
159
‘“”9 135 136
ns 124 127

o

|] l l l l l I
100 II 1

avrora eclipse Jjython luindex lusearch-fix sunflow tradebeans xalan geomean

Relative Exe(minn Time

Tests

WVBDA-HotSpot ~ m VBDA + Speculative Compilation VBDA +VBD-Opt mS-VBD

Fig. 29. Relative execution time of VBDA + speculative compilation, VBDA + VBD-Opt, S-VBD over the
baseline JVM compared to VBDA-HotSpot on machine B, y-axis in logarithmic scale.

VBD store, the corresponding implementation of the required barriers in ARM-v8 remains the
same, namely, the use of a full fence dmb ish.

We implemented this optimized strategy, which we call VBD-Opt, in S-VBD. For the interpreter,
we changed the barriers inserted as described above. For the server compiler, for simplicity of im-
plementation, we keep the original VBD design at the IR level, so compiler optimizations must
respect all of the original memory barriers. However, during the code generation phase, we elimi-
nate the dmb ish instruction before each store.

5.5 Performance Evaluation

5.5.1 DaCapo Benchmarks. We measured the peak performance of S-VBD for the DaCapo
benchmarks using the same methodology as for the earlier experiments for Java. The fourth se-
ries in Figures 28 and 29 shows the overhead of our approach over the baseline HotSpot JVM on
machine A and machine B. The geometric mean overhead of the S-VBD approach is, respectively,
51% and 37% for the two machines, which is a significant improvement over the geometric mean
overheads of the original VBDA-HotSpot (the first series in the figures) at 73% and 57%. Also, the
maximum overhead across all benchmarks, respectively, reduces from 129% to 78% and from 157%
to 73%.

Figures 28 and 29 also isolate the effect of each of our optimizations: The second series shows
the relative performance when using just speculative compilation, and the third series shows the
relative performance when using just the VBD-Opt fence optimization. On its own each optimiza-
tion provides a considerable performance improvement, but speculative compilation clearly is the

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:43

Relative Start-up Execution Time of VBDA-HotSpot and S-VBD over Baseline

2
o
3

Relative Start-up Execution Time
~

214 222 216
201
190
135 182 182 185
161 161 162 te 10 166 16
152 154 150
146 147 145 145 144 146
139 138 139 138
a8 132 128
= 123 [123 126 124 123 [127 . 122
N 113
I 107 [108 ol oL I H “ . i
| | - -
fop h2

avrora eclipse jython luindex lusearch-fix pmd sunflow tradebeans xalan geomean

Tests

Machine A-VBDA ~ ®MachineA-S-VBD ®Machine B-VBDA mMachine B - S-VBD

Fig. 30. Relative startup execution time of VBDA-HotSpot and S-VBD over the baseline JVM, y-axis in loga-
rithmic scale.

more effective optimization. As the fourth series shows, together they are even more beneficial in
terms of reducing the overhead of the volatile-by-default semantics.

Finally, speculative compilation’s use of deoptimization is likely to impair startup performance.
The first iterations of the same benchmark within a single JVM invocation are slower than later iter-
ations, as they need to perform class loading and JIT compilation as well as deoptimization/recom-
pilation before reaching steady-state performance. Our speculative compilation scheme introduces
more deoptimizations and therefore can further slow down the initial iterations. We measured the
startup performance of both VBDA-HotSpot and S-VBD using an existing methodology [25]. We
run n invocations of each benchmark, each time measuring the execution time of one iteration,
until either the confidence interval for the sampled times is less than 2% of the average execu-
tion time or until n is 30. We discard the first JVM invocation of each benchmark, because it might
change some system state such as dynamically loaded libraries or the data cache. Finally, we report
the average execution time and confidence interval for each benchmark and calculate the relative
execution time of each benchmark using these averages.

The relative startup performance of VBDA-HotSpot and S-VBD compared to the baseline
HotSpot JVM is shown in Figure 30. The confidence interval of each benchmark is less than 5%
of the average execution time after 30 invocations. As expected, the use of deoptimization causes
S-VBD to have a significantly higher impact on startup performance than VBDA-HotSpot.

5.5.2 CheckOnly Overhead. To further understand the overheads of S-VBD, we implemented
a check-only version, which performs all of the safety and mode checks as described above but
never deoptimizes any methods. Note that this check-only version also keeps all barriers for array
accesses and intrinsics. Figure 31 shows the relative execution time of this version versus the
baseline HotSpot JVM on machine A and machine B. The experiment shows that the cost of the
checks required by the speculative approach is considerable, on its own incurring well over half
of the overhead incurred by S-VBD. These results also validate the thread-local hypothesis that
underlies our speculative compilation technique. Specifically, the large overhead of the checks
implies that the overhead due to fences on field accesses is relatively modest, meaning that the
thread-locality hypothesis is effective at removing many fences.

5.5.3 Spark Benchmarks. We also measured the peak performance of S-VBD for the
spark-perf benchmarks using the same methodology as in the previous section. Figure 32 sum-
marizes the results of spark-tests and mllib-tests in a histogram. The geometric mean of
S-VBD'’s relative execution time on Machine A and Machine B is 2.01 and 1.86, respectively, repre-
senting a 101% and 86% overhead over the baseline HotSpot JVM. Comparing these results to the

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:44 L. Liu et al.

Relative Execution Time of Check-Only S-VBD

2.00
g
= 1.601.59
L= 154156 154
s
] 144 143 1.42
[~
134
2 131132 132 133
o 126
2 123125 [r2s 126
S
]
& 110 12
1.09 X 108
1.00 u
& £ R & N o+ o+ > K & N S
$ 9 T &Sy S
? & S O & N O o
& ° & &
W &

Tests

W Check-Only Machine A m Check-Only Machine B

Fig. 31. Relative execution time of check-only S-VBD over baseline JVM on machine A and machine B, y-axis
in logarithmic scale.

Histogram and Cumulative % of Spark tests

40 + - 120.00%
35 -
- 100.00% s Machine A
Frequency
30 4
- 80.00% m Machine B
25 4 Frequency
- 60.00% Machine A

Cumulative %

Frequency
N
o
L

15 -
r 40.00% === Machine B
Cumulative %
10 -
- 20.00%
5 -
0 - . - 0.00%
100 125 150 175 200 3.00 500 More
Relative Execution Time
Fig. 32. Histogram and cumulative % of relative execution time of S-VBD for Spark benchmarks.

ones for VBDA-HotSpot from Figure 18, we see that our speculative compilation strategy provides
little to no benefit for these benchmarks. We suspect this is due to the fact mentioned earlier that
these benchmarks have many array accesses. Since S-VBD does not speculate on array accesses, it
incurs the same cost as VBD-HotSpot for these accesses.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:45

5.5.4 Performance Evaluation Summary. Our experimental results indicate that there is signifi-
cant scope for optimizing the performance overhead of the volatile-by-default memory model.
On the DaCapo benchmarks for Java, our speculative implementation technique substantially re-
duces the average cost of enforcing volatile-by-default on the weak ARM-v8 platform, and it
has an even more dramatic reduction to the maximum cost. Further, our implementation is fully
compatible with modern just-in-time compilation techniques as well as features such as dynamic
class loading. We are optimistic that, just as the costs of enforcing type and memory safety have re-
duced over time due to better optimizations, language implementers and researchers will continue
to identify ways to reduce the cost of enforcing sequential consistency by default.

6 RELATED WORK

Language-level Sequential Consistency. We have proposed the volatile-by-default memory
model for multithreading and have implemented and evaluated it for both Java and Julia. There
have been other implementations of SC for Java (see below), but ours is the first in the context of
a production JVM and hence the first to provide a realistic performance evaluation. Finally, ours
is, to the best of our knowledge, the first comprehensive study of the cost of providing SC for any
language on ARM-v8, which is a much weaker memory model than x86-64.

Prior work has evaluated the cost of SC for Java in the context of an offline whole-program
compiler, which admits more opportunities for optimization than our approach but is incompat-
ible with modern JVMs. Shasha and Snir [60] propose a whole-program delay-set analysis for
determining the barriers required to guarantee SC for a given program. Sura et al. [63] implement
this technique for Java, and Kamil et al. [32] do the same for a parallel variant of Java called Tita-
nium. These works demonstrate low performance overhead for SC on both x86-64 and POWER.
Alglave et al. [7] implemented SC for C programs in a similar manner.

Other work has achieved language-level SC guarantees for Java [6, 20] and for C [45, 62] through
a combination of compiler modifications and specialized hardware. These works show that SC can
be comparable in efficiency to weak memory models with appropriate hardware support. The
technique of Singh et al. [62] is similar to our speculative approach in identifying safe and unsafe
memory accesses. However, they rely on specialized hardware as well as operating system support
to perform the speculation, while we speculate purely at the JVM level.

Vollmer et al. [64] implement the SC semantics for the Haskell programming language and
demonstrate negligible overheads on x86-64. They also demonstrated low overheads for some
benchmarks on ARM-v8 but did not do an extensive study due to the limited portability of Haskell
libraries. The key takeaway is that a pure, functional programming language like Haskell naturally
limits conflicting memory accesses among threads and so can support SC with low overhead. As
such, these results do not extend to imperative languages like Java.

Marino et al. [45] created an SC-preserving version of the LLVM compiler, meaning that the com-
piler preserves SC if the resulting assembly code is run on SC hardware. They did so by inspecting
the various optimizations in LLVM to classify them as SC-preserving or not, and either disabling
or modifying the ones that can violate SC. Their experimental results indicate that the cost of SC
due to lost compiler optimizations is very low—4% on average on several C benchmark suites—and
this result was independently confirmed by others subsequently [22]. Our work similarly indicates
that the cost of hardware fences dominates the overhead of ensuring SC.

Finally, several works demonstrate testing techniques to identify errors in Java and C code
that can cause non-SC behavior (e.g., References [24, 26]). However, such techniques are inher-
ently incomplete and so do not provide any guarantees that a program execution is sequentially
consistent.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

10:46 L. Liu et al.

Language-level Region Serializability. Other work strives to efficiently provide stronger guaran-
tees than SC for programming languages through a form of region serializability. In this style, the
code is implicitly partitioned into disjoint regions, each of which is guaranteed to execute atom-
ically. Therefore, SC is a special case of region serializability where each memory access is in its
own region. Several works have explored a form of region serializability for Java [14, 57, 58, 66].
These approaches are implemented in the Jikes research virtual machine [8] and evaluated only
on x86-64. Work on region serializability for C has achieved good performance either through
special-purpose hardware [40, 44, 61] or by requiring 2N cores to execute an application with N
threads [49].

Memory Model Safety. The notion of “safety” in the JMM disallows out-of-thin-air values [42],
but it has proven difficult to ensure while also admitting desired optimizations [10]. Several recent
works have defined new memory models that attempt to resolve this tension [18, 28, 33, 34, 48, 51].
Many of these works formalize the new memory model along with compilation strategies to com-
mon hardware platforms, allowing them to prove properties such as the absence of thin-air reads.
To our knowledge, only the work by Ou and Demsky provides an empirical evaluation [48]; they
demonstrate low overheads for C/C++ programs running on ARM-v8 hardware. Our work adopts
and empirically evaluates a significantly stronger notion of safety for Java than these works [43],
as it additionally preserves the program order of instructions and the atomicity of primitive types.

Compiler Testing. We incidentally found compilation errors in the JVM during the creation of our
volatile-by-default version. In contrast, prior work has developed techniques to automatically
identify compilation errors related to concurrency. Morisset et al. [47] create a theory of sound
optimizations for the C11/C++11 memory model and use it to build a tool that finds compiler
errors through a form of differential random testing. An earlier work by Eide and Regehr also
used random testing, in that case to identify miscompilations of the volatile keyword in C [23],
which was used to communicate between threads before the advent of an official memory model
for C.

Weak Memory Model Performance for Java. Demange et al. [21] define an x86-like memory
model for Java. They present a performance evaluation that uses the Fiji real-time virtual ma-
chine [53] to translate Java code to C, which is then compiled with a modified version of the LLVM
C compiler [45] and executed on x86-64 hardware. Ritson and Owens [54] modified the HotSpot
compiler’s code-generation phase for both ARM-v8 and POWER to measure the cost of different
instruction sequences to implement the JMM.

7 CONCLUSION

Languages like Java and Julia follow the principle of safety by default and performance by choice
when it comes to type and memory safety. However, today their memory consistency models,
which define the semantics of multithreading, follow the opposite approach, providing a complex
and error-prone semantics that breaks fundamental programming abstractions by default, in the
name of performance. Our volatile-by-default memory model is a conceptually simple alterna-
tive that follows the safety-by-default and performance-by-choice principle. We have provided a
low-complexity implementation strategy for the volatile-by-default semantics and instantiated
it for both Java and Julia. We have also demonstrated the potential for optimized implementation
strategies to improve performance through our novel speculative technique.

Our performance results show that the cost of enforcing sequential consistency by default is per-
haps less than has been previously assumed. At the same time, it is still significant. The volatile-
by-default memory model explicitly allows programmers to trade off safety guarantees for

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

Safe-by-default Concurrency for Modern Programming Languages 10:47

performance via annotations such as relaxed and @drf, in the same manner that they make these
tradeoffs today for type and memory safety. Finally, our experimental results demonstrate that the
lion’s share of the cost of enforcing SC is the overhead of hardware synchronization instructions
such as fences. Hence, future architectural improvements for fences and for special synchronized
load and store instructions, as well as improvements in the compiler’s usage of these instructions,
can potentially have a dramatic positive impact on the cost of stronger language-level memory
models.

ACKNOWLEDGMENTS

Thanks to Nobuko Yoshida and the anonymous reviewers for their constructive feedback on this
article; the Works on ARM team, especially Edward Vielmetti, for setting up and providing access
to an ARM server; Xiwei Ma for help implementing our litmus tests; and Jeff Bezanson and Jameson
Nash for discussion and pointers to Julia benchmarks.

REFERENCES

[1] [n.d.]. LLVM Atomic Instructions and Concurrency Guide: Atomic orderings. Retrieved on June 2021 from https:
//Mlvm.org/docs/Atomics.html#atomic-orderings.

[2] [n.d.]. LLVM Language Reference Manual. Retrieved on June 2021 from https://releases.llvm.org/3.3/docs/LangRef.
html.

[3] [n.d.]. “tbaa” Metadata. Retrieved on June 2021 from https://llvm.org/docs/LangRef html#tbaa-metadata.

[4] Sarita V. Adve and H.-J. Boehm. 2010. Memory models: A case for rethinking parallel languages and hardware. Com-
mun. ACM 53, 8 (Aug. 2010), 90-101. DOI: https://doi.org/10.1145/1787234.1787255

[5] S. V. Adve and M. D. Hill. 1990. Weak ordering-A new definition. In Proceedings of the 17th International Symposium
on Computer Architecture. ACM, 2-14.

[6] Wonsun Ahn, Shanxiang Qi, Jae-Woo Lee, Marios Nicolaides, Xing Fang, Josep Torrellas, David Wong, and
Samuel Midkiff. 2009. BulkCompiler: High-performance sequential consistency through cooperative compiler and
hardware support. In Proceedings of the 42nd International Symposium on Microarchitecture.

[7] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014. Don’t sit on the fence—A static analysis ap-
proach to automatic fence insertion. In Proceedings of the 26th International Conference on Computer-aided Verification.
508-524.

[8] Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria A. Butrico, Anthony Cocchi, Perry Cheng, Julian Dolby,
Stephen J. Fink, David Grove, Michael Hind, Kathryn S. McKinley, Mark F. Mergen,]. Eliot B. Moss, Ton Anh Ngo,
Vivek Sarkar, and Martin Trapp. 2005. The Jikes research virtual machine project: Building an open-source research
community. IBM Syst. 7. 44, 2 (2005), 399-418.

[9] ARMv8 2018. ARM Cortex-A Series Programmer’s Guide for ARMv8-A Version: 1.0, Section 13.2.1. Retrieved on June
2021 from http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CHDCJBGA.html.

[10] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The problem of
programming language concurrency semantics. In Programming Languages and Systems24th European Symposium on
Programming (Lecture Notes in Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 283-307.

[11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. SIG-
PLAN Not. 46, 1 (Jan. 2011), 55-66. DOI: https://doi.org/10.1145/1925844.1926394

[12] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A fresh approach to numerical comput-
ing. SIAM Rev. 59, 1 (2017), 65-98. DOI: https://doi.org/10.1137/141000671

[13] Jeff Bezanson, Jameson Nash, and Kiran Pamnany. [n.d.]. Announcing Composable Multi-threaded Parallelism in Julia.
Retrieved on June 2021 from https://julialang.org/blog/2019/07/multithreading/.

[14] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. 2015. Valor: Efficient, software-only region
conflict exceptions. In Proceedings of the ACM SIGPLAN International Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA’15). ACM, 241-259.

[15] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. In
Proceedings of the 21st ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Applications.
ACM Press, New York, NY, 169-190.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://llvm.org/docs/Atomics.html#atomic-orderings
https://releases.llvm.org/3.3/docs/LangRef.html
https://llvm.org/docs/LangRef.html#tbaa-metadata
https://doi.org/10.1145/1787234.1787255
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CHDCJBGA.html
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1137/141000671
https://julialang.org/blog/2019/07/multithreading/

10:48 L. Liu et al.

[16] Hans-J. Boehm. 2011. How to miscompile programs with “Benign” data races. In Proceedings of the 3rd USENIX Con-
ference on Hot Topic in Parallelism (HotPar’11). USENIX Association, Berkeley, CA.

[17] Hans-J. Boehm. 2012. Position paper: Nondeterminism is unavoidable, but data races are pure evil. In Proceedings of
the ACM Workshop on Relaxing Synchronization for Multicore and Manycore Scalability (RACES’12). ACM, 9-14.

[18] Hans-J. Boehm and Brian Demsky. 2014. Outlawing ghosts: Avoiding out-of-thin-air results. In Proceedings of the
Workshop on Memory Systems Performance and Correctness (MSPC’14). ACM.

[19] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. 2007. The Java memory model: Operationally, denotation-
ally, axiomatically. In Programming Languages and Systems, 16th European Symposium on Programming (Lecture Notes
in Computer Science), Rocco De Nicola (Ed.), Vol. 4421. Springer, 331-346.

[20] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007. BulkSC: Bulk enforcement of sequential consis-
tency. In Proceedings of the 34th International Symposium on Computer Architecture. 278—-289.

[21] Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David Pichardie, and Jan Vitek. 2013. Plan B:
A buffered memory model for Java. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’13). ACM, New York, NY, 329-342.

[22] Yuelu Duan, Abdullah Muzahid, and Josep Torrellas. 2013. WeeFence: Toward making fences free in TSO. In Proceed-
ings of the 40th International Symposium on Computer Architecture (ISCA’13), Avi Mendelson (Ed.). ACM, 213-224.
Retrieved on June 2021 from http://dl.acm.org/citation.cfm?id=2485922.

[23] Eric Eide and John Regehr. 2008. Volatiles are miscompiled, and what to do about it. In Proceedings of the International
Conference on Embedded Software (EMSOFT’08), Luca de Alfaro and Jens Palsberg (Eds.). ACM, 255-264.

[24] Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory for detecting destructive races. In Proceedings of
the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’10). ACM, 244-254.

[25] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In Pro-
ceedings of the 22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications (OOPSLA’07).
ACM, 57-76.

[26] Mohammad Majharul Islam and Abdullah Muzahid. 2016. Detecting, exposing, and classifying sequential consistency
violations. In Proceedings of the 27th IEEE International Symposium on Software Reliability Engineering (ISSRE’16). IEEE
Computer Society, 241-252. DOI: https://doi.org/10.1109/ISSRE.2016.48

[27] Java Virtual Machine Specification 2017. Retrieved on June 2021 from https://docs.oracle.com/javase/specs/jvms/se8/
html.

[28] Alan Jeffrey and James Riely. 2016. On thin air reads towards an event structures model of relaxed memory. In Pro-
ceedings of the 31st ACM/IEEE Symposium on Logic in Computer Science (LICS’16). ACM, New York, NY, 759-767. DOIL:
https://doi.org/10.1145/2933575.2934536

[29] JSR133 2018. JSR-133 Cookbook for Compiler Writers. Retrieved on June 2021 from http://g.oswego.edu/dl/jmm/
cookbook.html.

[30] JuliaLang. 2020. The Julia Language. Retrieved on June 2021 from https://github.com/JuliaLang/julia/commits/v1.4.1.

[31] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong logic for weak mem-
ory: Reasoning about release-acquire consistency in iris. In Proceedings of the 31st European Conference on Object-
Oriented Programming (ECOOP’17) (Leibniz International Proceedings in Informatics (LIPIcs)), Peter Miiller (Ed.), Vol. 74.
17:1-17:29.

[32] A. Kamil, J. Su, and K. Yelick. 2005. Making sequential consistency practical in Titanium. In Proceedings of the
ACM/IEEE Conference on Supercomputing. IEEE Computer Society.

[33] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-
memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL’17). ACM, 175-189.

[34] OriLahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency
in C/C++11.1In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI'17). ACM, New York, NY, 618-632. DOI: https://doi.org/10.1145/3062341.3062352

[35] L.Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans.
Comput. 100, 28 (1979), 690-691.

[36] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In
Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime Op-
timization. IEEE Computer Society.

[37] Lun Liu. 2020. Safe and Efficient Concurrency for Modern Programming Languages. Ph.D. Dissertation, University of
California, Los Angeles.

[38] Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2017. A volatile-by-default JVM for server applications. Proc. ACM
Program. Lang. 1, OOPSLA (Oct. 2017).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

http://dl.acm.org/citation.cfm?id=2485922
https://doi.org/10.1109/ISSRE.2016.48
https://docs.oracle.com/javase/specs/jvms/se8/html
https://doi.org/10.1145/2933575.2934536
http://g.oswego.edu/dl/jmm/cookbook.html
https://github.com/JuliaLang/julia/commits/v1.4.1
https://doi.org/10.1145/3062341.3062352

Safe-by-default Concurrency for Modern Programming Languages 10:49

[39] Lun Liu, Todd D. Millstein, and Madanlal Musuvathi. 2019. Accelerating sequential consistency for Java with specu-
lative compilation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’'19), Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 16-30.

[40] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans Boehm. 2010. Conflict exceptions: Providing simple
parallel language semantics with precise hardware exceptions. In Proceedings of the 37th International Symposium on
Computer Architecture.

[41] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo
M. K. Martin, Peter Sewell, and Derek Williams. 2012. An axiomatic memory model for POWER multiprocessors. In
Proceedings of the 24th International Conference on Computer-aided Verification, P. Madhusudan and Sanjit A. Seshia
(Eds.), Vol. 7358. Springer, 495-512.

[42] J. Manson, W. Pugh, and S. Adve. 2005. The Java memory model. In Proceedings of the ACM SIGPLAN Symposium on
Principles of Programming Languages. ACM, 378-391.

[43] Daniel Marino, Todd Millstein, Madanlal Musuvathi, Satish Narayanasamy, and Abhayendra Singh. 2015. The silently
shifting semicolon. In Proceedings of the 1st Summit on Advances in Programming Languages (SNAPL’15) (Leibniz
International Proceedings in Informatics (LIPIcs)), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S.
Lerner, and Greg Morrisett (Eds.), Vol. 32. 177-189.

[44] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2010. DRFx: A
simple and efficient memory model for concurrent programming languages. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 351-362.

[45] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011. A case for
an SC-preserving compiler. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation.

[46] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman,
D. B. Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael]J. Franklin, Reza Zadeh, Matei Zaharia, and
Ameet Talwalkar. 2015. MLlib: Machine learning in apache spark. CoRR abs/1505.06807 (2015).

[47] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler testing via a theory of sound optimi-
sations in the C11/C++11 memory model. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’13) Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 187-196.

[48] Peizhao Ou and Brian Demsky. 2018. Towards understanding the costs of avoiding out-of-thin-air results. Proc. ACM
Program. Lang. 2, OOPSLA (Oct. 2018). DOI: https://doi.org/10.1145/3276506

[49] Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2013. ...And region serializability for all. In Pro-
ceedings of the 5th USENLX Workshop on Hot Topics in Parallelism (HotPar’13), Emery D. Berger and Kim M. Hazelwood
(Eds.). USENIX Association.

[50] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model: x86-TSO. In Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics (TPHOLs 09) (Lecture Notes in Computer Science),
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.), Vol. 5674. Springer, 391-407.

[51] Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for relaxed atomics that permits optimisa-
tion and avoids thin-air executions. In Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’16). ACM, New York, NY, 622-633. DOI: https://doi.org/10.1145/2837614.2837616

[52] Benjamin Pierce. 2002. Types and Programming Languages. The MIT Press. Retrieved on June 2021 from http://www.

cis.upenn.edu/~bcpierce/tapl/index.html.

Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek. 2010. High-level programming of embedded hard

real-time devices. In Proceedings of the 5th European Conference on Computer Systems (EuroSys’10). 69-82.

[54] Carl G. Ritson and Scott Owens. 2016. Benchmarking weak memory models. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’16).

[55] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multipro-
cessors. SIGPLAN Not. 46, 6 (June 2011), 175-186. DOI: https://doi.org/10.1145/1993316.1993520

[56] Douglas C. Schmidt and Tim Harrison. 1997. Double-checked locking: An optimization pattern for efficiently initial-
izing and accessing thread-safe objects. In Pattern Languages of Program Design 3, Robert C. Martin, Dirk Riehle, and
Frank Buschmann (Eds.). Addison-Wesley Longman Publishing Co., Inc., 363-375.

[57] Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Milind Kulkarni. 2015. Hybrid static—

dynamic analysis for statically bounded region serializability. In Proceedings of the 20th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS’15). 561-575.

Aritra Sengupta, Man Cao, Michael D. Bond, and Milind Kulkarni. 2015. Toward efficient strong memory model sup-

port for the Java platform via hybrid synchronization. In Proceedings of the Principles and Practices of Programming

on the Java Platform (PPP}’15), Ryan Stansifer and Andreas Krall (Eds.). ACM, 65-75.

(53

—_

(58

=

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

https://doi.org/10.1145/3276506
https://doi.org/10.1145/2837614.2837616
http://www.cis.upenn.edu/~bcpierce/tapl/index.html
https://doi.org/10.1145/1993316.1993520

10:50 L. Liu et al.

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

Jaroslav Sevcik and David Aspinall. 2008. On validity of program transformations in the Java memory model. In
Proceedings of the 31st European Conference on Object-oriented Programming (ECOOP’ 08). 27-51.

D. Shasha and M. Snir. 1988. Efficient and correct execution of parallel programs that share memory. ACM Trans. Prog.
Lang. Syst. 10, 2 (1988), 282-312.

Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, and Madan Musuvathi. 2011. Efficient pro-
cessor support for DRFx, a memory model with exceptions. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’11). ACM, 53-66.

Abhayendra Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi. 2012. End-to-end Sequential Consis-
tency. In Proceedings of the 39th International Symposium on Computer Architecture. 524 —535.

Z. Sura, X. Fang, C. L. Wong, S. P. Midkiff, J. Lee, and D. Padua. 2005. Compiler techniques for high performance
sequentially consistent Java programs. In Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. 2—13.

Michael Vollmer, Ryan G. Scott, Madanlal Musuvathi, and Ryan R. Newton. 2017. SC-Haskell: Sequential consistency
in languages that minimize mutable shared heap. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’17). ACM, 283-298.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh
Rosen, Shivaram Venkataraman, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016. Apache Spark: A
unified engine for big data processing. Commun. ACM 59, 11 (2016), 56—-65.

Minjia Zhang, Swarnendu Biswas, and Michael D. Bond. 2017. Avoiding consistency exceptions under strong mem-
ory models. In Proceedings of the ACM SIGPLAN International Symposium on Memory Management (ISMM’17). ACM,
115-127.

Received September 2020; revised March 2021; accepted April 2021

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 10. Publication date: August 2021.

