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ABSTRACT
Debugging data processing logic in Data-Intensive Scalable
Computing (DISC) systems is a difficult and time consum-
ing effort. Today’s DISC systems offer very little tooling
for debugging programs, and as a result programmers spend
countless hours collecting evidence (e.g., from log files) and
performing trial and error debugging. To aid this effort,
we built Titian, a library that enables data provenance—
tracking data through transformations—in Apache Spark.
Data scientists using the Titian Spark extension will be able
to quickly identify the input data at the root cause of a po-
tential bug or outlier result. Titian is built directly into
the Spark platform and offers data provenance support at
interactive speeds—orders-of-magnitude faster than alterna-
tive solutions—while minimally impacting Spark job perfor-
mance; observed overheads for capturing data lineage rarely
exceed 30% above the baseline job execution time.

1. INTRODUCTION
Data-Intensive Scalable Computing (DISC) systems, like

Apache Hadoop [1] and Apache Spark [3], are being used
to analyze massive quantities of data. These DISC systems
expose a programming model for authoring data process-
ing logic, which is compiled into a Directed Acyclic Graph
(DAG) of data-parallel operators. The root DAG opera-
tors consume data from an input source (e.g., GFS [13],
or HDFS), while downstream operators consume the inter-
mediate outputs from DAG predecessors. Scaling to large
datasets is handled by partitioning the data and assigning
tasks that execute the operator logic on each partition.

Debugging data processing logic in DISC environments
can be daunting. A recurring debugging pattern is to iden-
tify the subset of data leading to failures, crashes, and ex-
ceptions. Another desirable pattern is trial-and-error debug-
ging, where developers selectively replay a portion of their
data processing steps on a subset of intermediate data lead-
ing to outlier or erroneous results. These features moti-
vate the need for capturing data provenance (also referred
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to as data lineage) and supporting appropriate provenance
query capabilities in DISC systems. Such support would en-
able the identification of the input data leading to a failure,
crash, exception, or outlier results. Our goal is to provide
interactive data provenance support that integrates with the
DISC programming model and enables the above debugging
scenarios.

Current approaches supporting data lineage in DISC sys-
tems (specifically RAMP [18] and Newt [21]) do not meet
our goals due to the following limitations: (1) they use
external storage such as a sharded DBMS or distributed
file systems (e.g., HDFS) to retain lineage information; (2)
data provenance queries are supported in a separate pro-
gramming interface; (3) they provide very little support for
viewing intermediate data or replaying (possibly alternative)
data processing steps on intermediate data. These limi-
tations prevent support for interactive debugging sessions.
Moreover, we show that these approaches do not operate
well at scale because they store the data lineage externally.

In this paper we introduce Titian, a library that enables
interactive data provenance in Apache Spark. Titian in-
tegrates with the Spark programming interface, which is
based on a Resilient Distributed Dataset (RDD) abstrac-
tion defining a set of transformations and actions that pro-
cess datasets. The data from a particular sequence of trans-
formations, leading to an RDD, can be cached in memory.
Spark maintains the program transformation lineage so that
it can reconstruct lost RDD partitions in the case of a fail-
ure.

Titian enhances the RDD abstraction with fine-grained
data provenance capabilities. From any given RDD, a Spark
programmer can obtain a LineageRDD reference, which en-
ables data tracing functionality i.e., the ability to transition
backward (or forward) in the Spark program dataflow. From
a given LineageRDD reference, corresponding to a position
in the program’s execution, any native RDD transforma-
tion can be called, returning a new RDD that will execute
the transformation on the subset of data referenced by the
LineageRDD. As we will show, this facilitates the ability
to trace backward (or forward) in the dataflow, and from
there execute a new series of native RDD transformations
on the reference data. The tracing support provided by
LineageRDD integrates with Spark’s internal batch operators
and fault-tolerance mechanisms. As a result, Titian can be
used in a Spark terminal session, providing interactive data
provenance support along with native Spark ad-hoc queries.

To summerize, Titian offers the following contributions:
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• A data lineage capture and query support system in
Apache Spark.

• Lineage capturing design that minimizes the overhead
on the target Spark program—most experiments ex-
hibit an overhead of less than 30%.

• We show that our approach scales to large datasets
with less overhead compared to prior work [18, 21].

• Interactive data provenance query support that ex-
tends the familiar Spark RDD programming model.

• A evaluation of Titian that includes a variety of design
alternatives for capturing and tracing data lineage.

The remainder of the paper is organized as follows. Sec-
tion 2 contains a brief overview of Spark, and discusses our
experience with using alternative data provenance libraries
with Spark. Section 3 defines the Titian programming in-
terface. Section 4 describes Titian provenance capturing
model, and its implementation. The experimental evalua-
tion of Titian is presented in Section 5. Related work is
covered in Section 6. Section 7 concludes with future direc-
tions in the DISC debugging space.

2. BACKGROUND
This section provides a brief background on Apache Spark,

which we have instrumented with data provenance capabil-
ities (Section 3). We also review RAMP [18] and Newt [21],
which are toolkits for capturing data lineage and support-
ing offline data provenance analysis of DISC programs. Our
initial work in this area leveraged these two toolkits for data
provenance support in Spark. During this exercise, we en-
countered a number of issues, including scalability (the
sheer amount of lineage data that could be supported in cap-
turing and tracing), job overhead (the per-job slowdown
incurred from lineage capture), and usability (both RAMP
and Newt come with limited support for data provenance
queries). RAMP and Newt operate externally to the target
DISC system, making them more general i.e., able to instru-
ment with Hyracks [9], Hadoop [1], Spark [27], for example.
However, this prevents a unified programming environment,
in which both data analysis and data provenance queries
can operate in concert. Moreover, Spark programmers are
accustom to an interactive development environment, which
we want to support.

2.1 Apache Spark
Spark is a DISC system that exposes a programming

model based on Resilient Distributed Datasets (RDDs) [27].
The RDD abstraction provides transformations (e.g., map,
reduce, filter, group-by, join, etc.) and actions (e.g., count,
collect) that operate on datasets partitioned over a clus-
ter of nodes. A typical Spark program executes a series of
transformations ending with an action that returns a result
value (e.g., the record count of an RDD, a collected list of
records referenced by the RDD) to the Spark “driver” pro-
gram, which could then trigger another series of RDD trans-
formations. The RDD programming interface can support
these data analysis transformations and actions through an
interactive terminal, which comes packaged with Spark.

Spark driver programs run at a central location and oper-
ate on RDDs through references. A driver program could be

a user operating through the Spark terminal, or it could be
a standalone Scala program. In either case, RDD references
lazily evaluate transformations by returning a new RDD ref-
erence that is specific to the transformation operation on the
target input RDD(s). Actions trigger the evaluation of an
RDD reference, and all RDD transformations leading up to
it. Internally, Spark translates a series of RDD transforma-
tions into a DAG of stages, where each stage contains some
sub-series of transformations until a shuffle step is required
(i.e., data must be re-partitioned). The Spark scheduler
is responsible for executing each stage in topological order,
with tasks that perform the work of a stage on each input
partition. Each stage is fully executed before downstream
dependent stages are scheduled i.e., Spark batch executes
the stage DAG. The final output stage evaluates the action
that triggered the execution. The action result values are
collected from each task and returned to the driver program,
which can initiate another series of transformations ending
with an action. Next, we illustrate the Spark programming
model with a running example used throughout the paper.

Running example: Assume we have a large log file stored in
a distributed file system such as HDFS. The Spark program
in Figure 1 selects all lines containing errors, counts the
number of error occurrences grouped by the error code, and
returns a report containing the description of each error,
together with its count.

1 lines = sc.textFile("hdfs://...")

2 errors = lines.filter(_.startsWith("ERROR"))

3 codes = errors.map(_.split("\t")(1))

4 pairs = codes.map(word => (word, 1))

5 counts = pairs.reduceByKey(_ + _)

6 reports = counts.map(kv => (dscr(kv._1), kv._2))

7 reports.collect.foreach(println)

Figure 1: Running example: log analysis

The first line loads the content of the log file from HDFS and
assigns the result RDD to the lines reference. It then applies
a filter transformation on lines and assigns the result RDD
to the errors reference, which retains lines with errors.1 The
transformations in lines 3 and 4 are used to (1) extract an
error code, and (2) pair each error code with the value one
i.e., the initial error code count. The reduceByKey trans-
formation sums up the counts for each error code which is
then mapped into a textual error description referenced by
reports in line 6.2 The collect action triggers the evalua-
tion of the reports RDD reference, and all transformations
leading up to it. The collect action result is returned to
the driver program, which prints each result record.

Figures 2 schematically represents a toy Spark cluster ex-
ecuting this example on a log file stored in three HDFS par-
titions. The top of the figure illustrates the stage DAG in-
ternally constructed by Spark. The first stage contains the
lines, errors, codes, and pairs reference transformations. The
second stage contains (1) the counts reference produced by
the reduceByKey transformation, which groups the records
by error code in a shuffle step, and (2) the final map trans-
formation that generates the reports reference.

1Note that the underscore ( ) character is used to indicate
a closure argument in Scala, which in this case is the indi-
vidual lines of the log file.
2dscr is a hash table mapping error codes to the related
textual description.
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Figure 2: Example Spark cluster running a job in-
stance executing tasks that run the stage logic on
input partitions.

The collect action triggers the execution of these two
stages in the Spark driver, which is responsible for instanti-
ating the tasks that execute the stage DAG. In the specific
case of Figure 2, three tasks are used to execute Stage 1 on
the input HDFS partitions. The output of Stage 1 is shuffled
into two partitions of records grouped by error code, which
is also naturally the partitioning key. Spark then schedules
a task on each of the two shuffled partitions to execute the
reduceByKey transformation (i.e., sum) in Stage 2, ending
with the final map transformation, followed by the collect

action result, which is sent back to the driver.

2.2 Data Provenance in DISC
RAMP [18] and Newt [21] address the problem of support-

ing data provenance in DISC systems through an external,
generic library. For example, RAMP instruments Hadoop
with “agents” that wrap the user provided map and reduce

functions with lineage capture capabilities. RAMP agents
store data lineage in HDFS, where toolkits like Hive [25] and
Pig [24] can be leveraged for data provenance queries. Newt
is a system for capturing data lineage specifically designed to
“discover and resolve computational errors.” Like RAMP,
Newt also injects agents into the dataflow to capture and
store data lineage; in this case, in a cluster of MySQL in-
stances running along side the target system e.g., the Newt
paper describes data provenance support in Hadoop and
Hyracks [9]. Data provenance queries are supported in Newt
by directly querying (in SQL) the data lineage that it stores
in the MySQL cluster.

Tracing through the evolution of record data in a DISC
dataflow is a common data provenance query. Newt also
references support for replaying the program execution on a
subset of input data that generated a given result e.g., an
outlier or erroneous value. Naturally, this first requires the
ability to trace to the input data leading to a final result.
We use the term trace to refer to the process of identifying
the input data that produced a given output data record
set. In the context of Spark, this means associating each
output record of a transformation (or stage, in Titian’s case)
with the corresponding input record. Tracing can then be

supported by recursing through these input to output record
associations to a desired point in the dataflow.

2.3 Newt and RAMP Instrumentation
Our first attempt at supporting data provenance in Spark

leveraged Newt to capture data lineage at stage boundaries.
However, we ran into some issues. To leverage Newt, we first
had to establish and manage a MySQL cluster along side
our Spark cluster. Second, we ran into scalability issues: as
the size of data lineage (record associations) grew large, the
Spark job response time increased by orders-of-magnitude.
Third, tracing support was limited: for instance, to perform
a trace in Newt we were required to submit SQL queries
records with corresponding input records, in an iterative
loop. This was done outside of the Spark interactive ter-
minal session in a Python script. Lastly, both Newt and
RAMP do not store the referenced raw data3, preventing us
from viewing any intermediate data leading to a particular
output result. It was also unclear to us, based on this issue,
how “replay” on intermediate data was supported in Newt.

Based on the reference Newt documentation, our instru-
mentation wraps Spark stages with Newt agents that cap-
ture data lineage. Newt agents create unique identifiers for
individual data records, and maintain references that associ-
ated output record identifiers with the relevant input record
identifiers. The identifiers and associations form the data
lineage, which Newt agents store in MySQL tables.
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500GB 2.6X inf

Figure 3: Run time of Newt and RAMP data lineage
capture in a Spark word count job. The table sum-
marizes the plot results at four dataset sizes, and
indicates the run time as a multiplier of the native
Spark job execution time.

Figure 3 gives a quantitative assessment of the additional
time needed to execute a word count job when capturing
lineage with Newt. The results also include a version of the
RAMP design that we built in the Titian framework. For
this experiment, only RAMP is able to complete the work-
load in all cases, incurring a fairly reasonable amount of
overhead i.e., RAMP is on average 2.3X the Spark execution
time. However, the overhead observed in Newt is consider-
ably worse (up to 86X the Spark run time), preventing the
ability to operate at 500GB. Simply put, MySQL could not
sustain the data lineage throughput observed in this job. A
more detailed description is available in Section 5.

3Because doing so would be prohibitively expensive.
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3. DATA PROVENANCE IN SPARK
Titian is a library that supports data provenance in Spark

through a simple LineageRDD application programming in-
terface, which extends the familiar RDD abstraction with
tracing capabilities. This section describes the extensions
provided by LineageRDD along with some example prove-
nance queries that use those extensions in concert with na-
tive RDD transformations (e.g., filter). Since our design
integrates with the Spark programming model and runtime,
Titian extensions can be used in interactive Spark sessions
for exploratory data analysis.

Titian extends the native Spark RDD interface with a
method (getLineage) that returns a LineageRDD, represent-
ing the starting point of the trace. From there, LineageRDD
supports methods that travel through the transformation
dataflow at stage boundaries.

abstract class LineageRDD[T] extends RDD[T] {

// Full trace backward

def goBackAll(): LineageRDD

// Full trace forward

def goNextAll: LineageRDD

// One step backward

def goBack(): LineageRDD

// One step forward

def goNext(): LineageRDD

@Override

/* Introspects Spark dataflow

* for lineage capture */

def compute(split: Partition,

context: TaskContext): Iterator[T]

}

Figure 4: LineageRDD methods for traversing
through the data lineage in both backward and for-
ward directions. The native Spark compute method is
used to plug a LineageRDD instance into the Spark
dataflow (described in Section 4).

Figure 4 lists the transformations that LineageRDD sup-
ports. The goBackAll and goNextAll methods can be used
to compute the full trace backward and forward respectively.
That is, given some result record(s), goBackAll returns all
initial input records that contributed—through the trans-
formation series leading to—the result record(s); goNextAll
returns all the final result records that a starting input
record(s) contributed to in a transformation series. A single
step backward or forward is supported by the goBack and
goNext respectively.

These tracing methods behave similarly to a native RDD
transformation, in that they return a new LineageRDD cor-
responding to the traced point, without actually evaluating
the trace. The actual tracing occurs when a native Spark
RDD action, such as count or collect, is called; similar to
the lazy evaluation semantics of Spark. For instance, if a
user wants to trace back to an intermediate point and view
the data, then she could execute a series of goBack trans-
formations followed by a native Spark collect action. The
compute method, defined in the native RDD class, is used
to introspect the stage dataflow for data lineage capture.

Since LineageRDD extends the native Spark RDD inter-
face, it also includes all native transformations. Calling a

native transformation on a LineageRDD returns a new na-
tive RDD that references the (raw) data at the traced point
and the desired transformation that will process it. This
mode of operation forms the basis of our replay support.
Users can trace back from a given RDD to an intermedi-
ate point, and then leverage native RDD transformations
to reprocess the referenced data. We highlight these Titian
extensions in the example Spark program below.

Example 1: Backward Tracing - Titian is enabled by
wrapping the native SparkContext (sc in line 1 of Figure 1)
with a LineageContext. Figure 5 shows a code fragment
that takes the result of our running example in Figure 1 and
selects the most frequent error (via a native Spark sortBy

and take operations), then traces back to the input lines
containing such errors and prints them.

1 frequentPair = reports.sortBy(_._2, false).take(1)

2 frequent = reports.filter(_ == frequentPair)

3 lineage = frequent.getLineage()

4 input = lineage.goBackAll()

5 input.collect().foreach(println)

Figure 5: Input lines with the most frequent error

Next, we describe an example of forward tracing from
input records to records in the final result that the input
records influenced.

Example 2: Forward Tracing - Here, we are interested
in the error codes generated from the network sub-system,
indicated in the log by a “NETWORK” tag.

1 network = lines.filter(_.contains("NETWORK"))

2 lineage = network.getLineage()

3 output = lineage.goNextAll()

4 output.collect().foreach(println)

Figure 6: Network-related error codes

Again, assume the program in Figure 1 has finished exe-
cuting. Figure 6 selects log entries related to the network
layer (line 1), and then performs a goNextAll (line 3) on
the corresponding LineageRDD reference (obtained in line
2). Finally, the relevant output records containing the error
description and count are printed (line 4).

Provenance queries and actual computation can be in-
terleaved in a natural way. This unlocks the possibility to
interactively explore and debug Spark programs.

Example 3: Selective Replay - Assume that after com-
puting the error counts, we traced backward and notice that
many errors were generated by the “Guest” user. We are
then interested in seeing the errors distribution without the
ones caused by “Guest.” This can be specified by trac-
ing back to the input, filtering out “Guest”, and then re-
executing the computation, as shown in Figure 7. This is
made possible because native RDD transformations can be
called from a LineageRDD. Supporting this requires Titian
to automatically retrieve the raw data referenced by the lin-
eage and applying the native (replay) transformations to it.

4. TITIAN INTERNAL LIBRARY
Titian is our extension to Spark that enables interactive

data provenance on RDD transformations. This section de-
scribes the agents used to introspect Spark RDD transforma-
tions to capture and store data lineage. We also discuss how
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1 lineage = reports.getLineage()

2 inputLines = lineage.goBackAll()

3 noGuest = inputLines.filter(!_.contains("Guest"))

4 newCodes = noGuest.map(_.split("\t")(1))

5 newPairs = codes.map(word => (word, 1))

6 newCounts = pairs.reduceByKey(_ + _)

7 newRep = newCounts.map(kv => (dscr(kv._1), kv._2))

8 newRep.collect().foreach(println)

Figure 7: Error codes without “Guest”

we leverage native RDD transformations to support traces
through the data provenance via the LineageRDD interface.

4.1 Overview
Similar to other approaches [21, 18, 23], Titian uses agents

to introspect the Spark’s stage DAG to capture data lineage.
The primary responsibility of these agents are to (1) gener-
ate unique identifiers for each new record, and (2) associate
output records of a given operation (i.e., stage, shuffle step)
with relevant input records.

From a logical perspective, Titian generates new records
in three places:

1. Input: Data imported from some external source e.g.,
HDFS, Java Collection, etc.

2. Stage: The output of a stage executed by a task.

3. Aggregate: In an aggregation operation i.e., com-
biner, group-by, reduce, and join.

Recall that each stage executes a series of RDD transfor-
mations until a shuffle step is required. Stage input records
could come from an external data source (e.g., HDFS) or
from the result of a shuffle step. Input agents generate and
attach a unique identifier to each input record. Aggregate
agents generate unique identifiers for each output record,
and relate an output record to all input records in the aggre-
gation operation i.e., combiner, reduce, group-by, and join.
A Spark stage processes a single input record at a time, and
produces zero or more output records. Stage agents attach
a unique identifier to each output record of a stage and as-
sociates it with the relevant input record identifier.

Associations are stored in a table on the local Spark stor-
age layer (i.e., BlockManager). The schema of the table
defines two columns containing the (1) input record identi-
fiers, and (2) output record identifiers. Tracing occurs by
recursively joining the tables.

Remark: Titian captures data lineage at the stage bound-
aries, but this does not prevent tracing to an RDD transfor-
mation within a stage. Such a feature could be supported
by tracing back to the stage input and re-running the stage
transformations, on the referenced intermediate data, up to
the RDD transformation of interest. Alternatively, we could
surface an API that would allow the user to mark RDD
transformation as a desirable trace point. Stage agents could
then be injected at these markers.

4.2 Capturing Agents
Titian instruments a Spark dataflow with agents on the

driver i.e., where the main program executes. Recall that
when the main program encounters an action, Spark trans-
lates the series of transformations, leading to the action, into
a DAG of stages. The LineageContext hijacks this step and
supplements the stage DAG with capture agents, before it
is submitted to the task scheduler for execution.

Capture Point LineageRDD Agent
Input HadoopLineageRDD

ParallelLineageRDD
Stage StageLineageRDD
Aggregate ReducerLineageRDD

JoinLineageRDD
CombinerLineageRDD

Table 1: Lineage capturing points and agents.

Table 1 lists the agents that Titian uses at each capture
point i.e., Input, Stage, and Aggregate. We have defined
two input agents. Both assign identifiers to records emitted
from a data source. The identifier should be meaningful to
the given data source. For instance, the HadoopLineageRDD
assigns an identifier that indicates the HDFS partition and
record position (e.g., line offset) within the partition. The
ParallelLineageRDD assigns identifiers to records based on its
location in a Java Collection Object e.g., java.util.ArrayList.

A Spark stage consists of a series of transformations
that process a single record at a time, and emit zero or
more records. At the stage output, Titian will inject a
CombinerLineageRDD when a combiner operation is present,
or a StageLineageRDD when a combiner is not present. Both
agents are responsible for relating output to input record(s).
In the case of a StageLineageRDD, for each output record
produced, it generates an identifier and associates that iden-
tifier with the (single) input record identifier. A combiner
pre-aggregates one or more input records, and generates a
new combined output record. For this case, Titian injects
a CombinerLineageRDD, which is responsible for generating
an identifier for the combined output record, and associating
that identifier with the identifiers of all related inputs.

The other two aggregate capture agents introspect the
Spark dataflow in the shuffle step used to execute reduce,
group-by, and join transformations. Similar to the com-
biner, these transformations take one or more input records
and produce a new output record; unlike the combiner,
join operations could produce more than one output record.
The reduce and group-by transformations operate on a sin-
gle dataset (i.e., RDD), while join operates on multiple
datasets. The ReducerLineageRDD handles the reduce and
group-by aggregates, while JoinLineageRDD handles the join
operation. The ReducerLineageRDD associates an output
record identifier with all input record identifiers that form
the aggregate group. While JoinLineageRDD associates an
output (join) record identifier with the record identifiers on
each side of the join inputs.

Remark: Joins in Spark behave similar to Pig [24] and
Hive [25]: records that satisfy the join are grouped together
based on the “join key.” For this reason, we have catego-
rized JoinLineageRDD as an aggregate, even though this is
not the case logically.

Example 4: Dataflow Instrumentation - Returning to
our running example, Figure 8 shows the workflow after
the instrumentation of capture agents. The Spark stage
DAG consists of two stages separated by the reduceByKey

transformation. The arrows indicate how records are passed
through the dataflow. A dashed-arrow means that records
are pipelined (i.e., processed one at a time) by RDD trans-
formations e.g., FilterRDD, and MapRDD in stage 1. A solid-
arrow indicates a blocking boundary, where input records
are first materialized (i.e., drained) before the given opera-
tion begins its processing step e.g., Spark’s combiner mate-
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Figure 8: Job workflow after adding the lineage cap-
ture points

rializes all input records into an internal hash-table, which
is then used to combine records in the same hash bucket.

The transformed stage DAG includes (1) a Hadoop
LineageRDD agent that introspects Spark’s native Hadoop
RDD and assigns an identifier to each record. It then
associates the record identifier to the record position in
the HDFS partition; (2) a CombinerLineageRDD assigns an
identifier to each record emitted from the combiner (pre-
aggregation) operation, and associates it with the (combiner
input) record identifiers assigned by HadoopLineageRDD;
(3) a ReduceLineageRDD that assigns an identifier to each
reduceByKey output record, and associates it with each
record identifier in the input group aggregate; and (4) a
StageLineageRDD that assigns an identifier to each stage
record output and relates that identifier back to the respec-
tive input (reducer) record identifier.

4.3 Lineage Capturing
Data lineage capture begins in the agent compute method

implementation, defined in the native Spark RDD class, and
overridden in the LineageRDD class. The arguments to this
method (Figure 4) include the input partition—containing
the stage input records—and a task context. The return
value is an iterator over the resulting output records. Each
agent’s compute method passes the partition and task con-
text arguments to its parent RDD(s) compute method, and
wraps the returned parent iterator(s) in its own iterator
module, which it returns to the caller.

Input to Output Identifier Propagation. Parent (up-
stream) agents propagate record identifiers to a child (down-
stream) agent. Two configurations are possible: (1) prop-
agation inside a single stage, and (2) propagation between
consecutive stages. In the former case, Titian exploits the
fact that stage records are pipelined one at a time through
the stage transformations. Before sending a record to the
stage transformations, the agent at the input to a stage
stores the single input record identifier in the task context.
The agent at the stage transformation output associates out-
put record identifiers with the input record identifier stored
in the task context. Between consecutive stages, Titian at-
taches (i.e., piggybacks) the record identifier on each outgo-
ing (shuffled) record. On the other side of the shuffle step,
the piggybacked record identifier is grouped with the other
record identifiers containing the same key (from the actual
record). Each group is assigned a new identifier, which will
be associated with all record identifiers in the group. Next,
we describe the implementation of each agent’s iterator.

• HadoopLineageRDD parent RDD is a native Hadoop
RDD. In its iterator, it assigns an identifier to each
record returned by the HadoopRDD iterator, and as-
sociates the identifier with the record position in the
(HDFS) partition. Before returning the raw record to
the caller, it stores the record identifier in the task
context, which a downstream agent uses to associate
with its record outputs.

• StageLineageRDD introspects the Spark dataflow on
the output of a stage that does not include a com-
biner. In each call to its iterator, it (1) calls the par-
ent iterator, (2) assigns an identifier to the returned
record, (3) associates that identifier with the input
record identifier stored in the task context e.g., by
HadoopLineageRDD, and (4) returns the (raw) record
to the caller.

• CombinerLineageRDD and ReducerLineageRDD intro-
spect the combiner and reducer (also group-by) op-
erations, respectively. These are blocking operations
that drain the input iterator into a hash-table, using
the record key to assign a hash bucket, which form
the output group records. The agents introspect this
materialization to build an internal hash-table that as-
sociates the record key with the record identifier in
the task context (in the case of CombinerRDD, directly
from the shuffled record for the ReducerRDD), before
passing the raw record to the native RDD. After drain-
ing the input iterator, the native RDD iterator begins
to return resulting records. For each result record,
the agents assign it an identifier and lookup the result
record key in the internal hash-table, which returns the
list of input record identifiers that formed the group.
The agents then associate the result record identifier
with the list of input record identifiers.

• JoinLineageRDD behaves similarly to CombinerLineage
RDD and ReducerLineageRDD, except that it operates
on the two input iterators that join along a key. Each
input iterator returns a record that contains the join
key, which the agent uses to build an internal hash-
table that maps the key to the input record identifier
contained in the shuffled record. After draining the
input iterator, the native JoinRDD begins to return
join results. For each result record, the agent assigns
an identifier to it and associates that identifier with
the input record ids stored in its internal hash-table
by the join key.

4.4 Lineage Storage
Titian stores all data lineage in the BlockManager, which

is Spark’s internal storage layer for intermediate data. As
discussed, agents are responsible for associating the output
records of an operation (i.e., stage, combiner, join) with
the corresponding inputs. These associations are stored in
a BlockManager table, local to the Spark executor running
the agent. Titian agents batch associations in a local buffer
that is flushed to the BlockManager at the end of the oper-
ation i.e., when all input records have been fully processed.
We compact the lineage information (i.e., identifiers and
associations) into nested format exploiting optimized data
structures (such as RoaringBitmaps [10]) when possible. In
Section 5, we show that Titian maintains a reasonable mem-
ory footprint with interactive query performance. If the size
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Figure 9: A logical trace plan that recursively joins
data lineage tables, starting from the result with a
“Failure” code, back to the input log records con-
taining the error.

of the data lineage grows too large to fit in memory, Titian
materializes it to disk using native Spark BlockManager sup-
port. To decrease the cost of data materialization, Titian
flushes intermediate buffers asynchronously. Thanks to this,
even when lineage data is spilled to disk (in our experi-
ments this happens for dataset greater than 100GB during
the word count workload) the performance degradation is
negligible.

Finally, note that although Titian is specifically designed
for interactive querying of memory-stored lineage data, we
also allow users to dump the lineage information into an
external store (e.g., HDFS) for post-mortem analysis.

4.5 Querying the Lineage Data
The lineage captured by the agents is used to trace

through the data provenance at stage boundaries. From
a logical perspective, tracing is implemented by recur-
sively joining lineage association tables stored in the
BlockManager. A LineageRDD corresponds to a particular
position in the trace, referencing some subset of records at
that position. Trace positions occur at agent capture points
i.e., stage boundaries. Although our discussion here only
shows positions at stage boundaries, we are able to support
tracing at the level of individual transformations by simply
injecting a StageLineageRDD agent at the output of the tar-
get transformation. Next, we describe the logical plan that
performs a trace in our running example.

Example 5: Logical Trace Plan - Figure 9 is a logical
view of the data lineage that each agent captures in our
running example from Figure 2. At the top of the figure, we
show some example raw data corresponding to the HDFS
input log, intermediate data, and final results. Recall, in
the original running example, we were counting the number

of occurrences for each error code. Here, we would like to
trace back and see the actual log entries that correspond to
a “Failure” (code =4), as shown in the Spark program of
Figure 10.

1 failure = reports.filter(_._1 == "Failure")

2 lineage = failure.getLineage()

3 input = lineage.goBackAll()

4 input.collect().foreach(println)

Figure 10: Tracing backwards the “Failure” errors

The output is referenced by the reports RDD reference,
which we use to select all “Failure” record outputs, and
then trace back to the input HDFS log entries. Returning to
Figure 9, the goBackAll transformation (Figure 10 line 2)
is implemented by recursively joining the tables that asso-
ciate the output record identifiers to input record identifiers,
until we reach the data lineage at the HadoopLineageRDD
agent. Notice that the inter-stage record identifiers (i.e.,
between CombinerLineageRDD and ReducerLineageRDD) in-
clude a partition identifier, which we use in Figure 11 to opti-
mize the distributed join that occurs in the trace (described
below). The example shows three joins—along with the in-
termediate join results—used to (recursively) trace back to
the HDFS input.

The logical plan generated by recursively joining lineage
points is automatically parallelized by Titian. Figure 11
shows the distributed version of the previous example. Each
agent data lineage is stored across three nodes. The trace be-
gins at the Stage agent on node C, referencing result records
with error code = 4. Tracing back to the stage input involves
a local join (operation 1 in Figure 11). That join result will
contain record identifiers that include a partition identifier
e.g., identifier (0, 4) indicates that an error code = 4 occurs
in partition 0, which we know to be on node A. We use
this information to optimize the distributed join between
the Combiner and Reducer agents. Specifically, the partition
identifier routes (operation 2) the Reducer agent data lin-
eage to the node that stores the given data partition e.g.,
partition 0 → A and partition 1 → B. The tracing proceeds
on nodes A and B through two local joins (operations 3 and
4) that lead to the HDFS partition lines for error code = 4.

The optimized join described above required modifications
to the Spark join implementation. Without this change,
the Spark native join would shuffle both the Combiner and
Reducer data lineage (in operation 2), since it has no knowl-
edge of partitioning information. This would further impact
the subsequent join with the Hadoop data lineage, which
would also be shuffled. In Section 5, we show that our opti-
mized join improves the tracing performance by an order of
magnitude relative to a näıve join strategy.

4.6 Working with the Raw Data
LineageRDD references a subset of records produced by a

native RDD transformation. When a native RDD transfor-
mation is called from a LineageRDD reference, Titian returns
a native RDD that will apply the given transformation to
the raw data referenced by the LineageRDD.

1 failure = reports.filter(_._1 == "Failure")

2 input = failure.getLineage().goBackAll()

3 input.filter(_.contains("Zookeeper")

4 .collect().foreach(println)

Figure 12: Native transformations on LineageRDD s
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Figure 11: Distributed tracing plan that recur-
sively joins data lineage tables distributed over three
nodes. Each operation is labeled with a number.
Operation (2) is an optimized shuffle that leverages
the partition information in the record identifier to
route trace record identifiers to the node containing
the record in its output partition.

Figure 12 illustrates this feature by tracing back to log
files that contain a “Failure”, and then selecting those that
are specific to “Zookeeper” before printing.
As before, we start the trace at reports and select the result
containing the “Failure” error code. We then trace back
to the HDFS log file input, which is referenced by the input
LineageRDD. Calling filter on the input reference returns a
native Spark FilterRDD that executes over the HDFS log file
records that contain “Failure” codes 4, and from that selects
the ones containing “Zookeeper” failures. These are then
collected at the driver by the collect action and printed.

The ability to move seamlessly between lineage data and
raw data, in the same Spark session, enables a better interac-
tive user experience. We envision this new Spark capability
will open the door to some interesting use cases e.g., data
cleaning and debugging program logic. It also provides ele-
gant support for transformation replay from an intermediate
starting point, on an alternative collection of records.

4.7 Discussion
Fault-tolerance: Our system is completely transparent to
the Spark scheduler and in fact does not break the fault-
tolerance model of Spark. During the capturing phase prove-
nance data is materialized only when a task has completed
its execution. In case of failure, no provenance is durably
saved. During the tracing phase, LineageRDDs behave as a
normal RDD and, as such, are resilient to failures.

Alternative Designs: Debugging systems such as IG [24]
and Arthur [12] tag data records with a unique transforma-
tion id, and piggyback each tag downstream with its related
record. This strategy can be easily implemented in Titian:
each capturing agent generates the lineage data without
storing it; lineage references are instead appended to a list
and propagated downstream. The final stage capture point
will then store the complete lineage data. In Section 5 we
will compare this strategy (labeled as Titian-P, for Propa-
gation) against the (distributed) Titian (Titian-D), and a

4We optimize this HDFS partition scan with a special
HadoopRDD that reads records at offsets provided by the
data lineage.

näıve strategy that saves all the lineage into a unique cen-
tralized server (Titian-C). In Titian-C, agents write data
lineage over an asynchronous channel to a centralized lin-
eage master, which stores the data lineage in its local file
system. The lineage master executes tracing queries, using
a centralized version of LineageRDD, on the local data lin-
eage files. Both Titian-C and Titian-P tradeoff space over-
heads, by aggregating lineage data into a more centralized
storage, for a faster tracing time. An interesting area of fu-
ture work would be an optimizer that is able to estimate the
lineage size and select a version of Titian to use (centralized,
decentralized, or propagated).

5. EXPERIMENTAL EVALUATION
Our experimental evaluation measures the added over-

head in a Spark job caused by data lineage capture and
the response time of a trace query. We compare Titian to
Newt [21] and RAMP [18]. This required us to first integrate
Newt with Spark. We also developed a version of RAMP in
Spark using part of the Titian infrastructure. As in the
original version, our version of RAMP writes all data lin-
eage to HDFS, where it can be processed off-line. Moreover,
in order to show the raw data in a trace, RAMP must also
write intermediate data to HDFS. We report the overhead
of RAMP when writing only the data lineage. Saving only
the data lineage might be relevant when a user simply wants
to trace back to the job input e.g., HDFS input.

5.1 General Settings
Datasets and Queries: We used a mixed set of work-
loads as suggested by the latest big data benchmarks [26].
All datasets used were generated to a specific target size.
Following [18], we generated datasets of sizes ranging from
500MB to 500GB seeded by a vocabulary of 8000 terms
that were selected from a Zipf distribution. We used these
datasets to run two simple Spark jobs: grep for a given term
and word count. We ported eight PigMix “latency queries”
(labeled “L#”) to Spark for evaluating more complex jobs.
These queries are categorized into three groups: aggregate
queries (L1, L6, L11), join queries (L2, L3, L5), and nested
plans queries (L4, L7). Due to space limitations, we re-
port on a representative query from each class based on the
worst-case performance. The input data for these queries
was created by the PigMix generator, set to produce dataset
sizes ranging from 1GB to 1TB.

Hardware and Software Configurations: The experi-
ments were carried out on a cluster containing 16 i7− 4770
machines, each running at 3.40GHz and equipped with
4 cores (2 hyper-threads per core), 32GB of RAM and
1TB of disk capacity. The operating system is a 64bit
Ubuntu 12.04. The datasets were all stored in HDFS ver-
sion 1.0.4 with a replication factor of 3. Titian is built on
Spark version 1.2.1, which is the baseline version we used to
compare against. Newt is configured to use MySQL version
5.5.41. Jobs were configured to run two tasks per core, for
a potential total of 120 tasks running concurrently.

We report on experiments using three versions of Titian:

1. Titian-D stores data lineage distributed in the
BlockManager local to the capture agent.

2. In Titian-P all agents, other than the last, propagate
data lineage downstream. The final agent stores on
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the local Spark BlockManager the complete lineage of
each individual data record as a nested list.

3. Titian-C agents write the lineage to a central server.

We expect Titian-P and -C to be less efficient than Titian-
D during the capturing phase, but more effective in the trac-
ing when the lineage data remains relatively small. Titian-P,
in fact, propagate downstream the full lineage data of each
individual record. This design is expensive when the size of
the lineage is large. Conversely, executing a tracing query
is as fast as recursively traversing a nested list. This opera-
tion can be faster than executing a (distributed) join while
the size of the list remains reasonable. Concerning Titian-C,
lineage data is uploaded to a centralized server, therefore we
expect this version to have limited scalability.

As one might expect, Titian-D is the best strategy for
big data lineage. It is also the plan strategy followed by
Newt and RAMP. Therefore, in our evaluation, we com-
pare Titian-D to Newt and RAMP, and separately compare
Titian-D to Titian-P and Titian-C.

5.2 Data Lineage Capture Overheads
Our first set of experiments evaluate the overhead of cap-

turing data lineage in a Spark program. We report the ex-
ecution time of the different lineage capturing strategies in
relation with the native Spark run time assumed as base-
line. We executed each experiment ten times, and among the
ten runs, we computed the trimmed mean by removing the
top two and bottom two results and averaging the remaining
six. In Titian(-D and -P) we store the data lineage using the
Spark BlockManager with setting memory and disk, which
spills the data lineage to disk when memory is full.

Grep and WordCount: Figure 13(a) reports the time taken
to run the grep job on varying dataset sizes. Both axes are in
logarithmic scale. Under this workload Titian and RAMP
incur similar overheads, exhibiting a run time of no more
than a 1.35X the baseline Spark. However, Newt incurs a
substantial overhead: up to 15X Spark. Further investiga-
tion led to the discovery of MySQL being a bottleneck when
writing significant amounts of data lineage. Figure 13(b)
compares the three versions of Titian executing the same
job. On dataset sizes below 5GB, the three versions compare
similarly. Beyond that, the numbers diverge considerably,
with Titian-C not able to finish beyond 20GB.

Figure 13(c) reports the execution time for the word count
job. For this workload, Titian-D offers the least amount of
overhead w.r.t. normal Spark. More precisely, Titian-D
is never more than 1.3X Spark for datasets smaller than
100GB, and never more than 1.67X at larger dataset sizes.
The runtime of RAMP is consistently above 1.3X Spark ex-
ecution time, and it is 2 − 4X slower than normal Spark
for dataset sizes above 10GB. Newt is not able to complete
the job above 80GB, and is considerably slower then the
other systems. Moving to Figure 13(d), Titian-P perfor-
mance is similar to RAMP, while Titian-C is not able to
handle dataset sizes beyond 2GB.

Table 2 summarizes the time overheads in the grep and
word count jobs for Titian-D, RAMP and Newt. Inter-
estingly, for the WordCount workload, the run time of
RAMP is 3.2X Spark at 50GB and decreases to 2.6X at
500GB. From Figure 13(c) we can see that is because Spark
performance decreases. After an in depth analysis, we
found that scheduler-time increases considerably for dataset
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Figure 13: Lineage Capturing Performance for Grep
and WordCount

Titian− D RAMP Newt
dataset grep wc grep wc grep wc
500MB 1.27X 1.18X 1.40X 1.34X 1.58X 1.72X

5GB 1.18X 1.14X 1.18X 1.32X 1.99X 4X
50GB 1.14X 1.22X 1.18X 3.2X 8X 29X
500GB 1.1X 1.29X 1.18X 2.6X 15X inf

Table 2: Runtime of Titian-D, RAMP and Newt for
grep and word count jobs as a multiplier of Spark
execution time.

greater than 100GB. Conversely, in RAMP the computation
is bounded by the offload of the lineage data to HDFS.

Space Overhead: In general, the size of the lineage increases
proportionally with the size of the dataset. More specifi-
cally, we found that the lineage size is usually within 30%
of the size of the input dataset, with the exception of word
count on datasets bigger than 90GB, where the lineage size
is on average 50% of the size of the initial dataset. In com-
puting the space overhead, we took into account both the
size of the actual lineage, and the overhead introduced by
the provenance data into the shuffle. For big datasets, in
some uses case (e.g., word count) lineage data does not com-
pletely fit into memory, and therefore a part of it is spilled
to disk. Note that lineage data going to disk does not in-
troduce slowdown during lineage capturing because lineage
is materialized asynchronously.

PigMix Queries: The results for Titian-D on the three Pig-
Mix queries are constantly below 1.26X the baseline Spark
job. Figures 14(a), (b) and (c) show the running times for
queries L2, L6, and L7. We summarize the results for each
query below.

L2: We observe that Titian-D exhibits the least amount of
overhead for all dataset sizes, with Titian-P adding slightly
more (up to 40%) overhead. Titian-C is only able to exe-
cute dataset size 1GB at around 2.5X Spark execution time.
RAMP is on par with Titian-P for 1GB and 10GB datasets.
Its running time degrades at 100GB (around 2.4X the Spark
runtime) and it is not able to complete on the 1TB dataset.
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Figure 14: Lineage Capturing Performance for Pigmix queries

Newt incurs significant overhead throughout, and is not able
to complete on the 100GB and 1TB datasets.

L6: Titian-D-P are able to complete this query for all
dataset sizes. Titian-D is constantly less that 1.2X Spark
execution time, while the execution time for Titian-P goes
up to 2X in the 1TB case. Titian-C is able to complete up
to the 100GB dataset with a run time ranging from 1.1X
(at 1GB) to 1.95X (at 100GB). RAMP and Newt are able
to complete up to the 100GB case, with an average running
time of 1.16X Spark in RAMP, and in Newt we see a 7X
slowdown w.r.t. Spark.

L7: The general trend for this query is similar to L2: Titian-
D-P and RAMP have similar performance on the 1GB and
10GB datasets. For the 100GB dataset, RAMP execution
time is 2.1X the baseline Spark. Titian-C can only execute
the 1GB dataset with an execution of 2.6X Spark. Newt can
only handle the 1GB and 10GB datasets at an average time
of 3.6X over baseline Spark.

5.3 Tracing
We now turn to the performance of tracing data lineage,

starting from a subset of the job result back to the input
records. We compare against two configurations in Newt:
(1) that indexes the data lineage for optimizing the trace,
and (2) no indexes are used. The later configuration is rele-
vant since indexing the data lineage can take a considerable
amount of time e.g., upwards of 10 minutes to one hour,
depending on the data lineage size.

The experiments described next were conducted as fol-
lows. First, we run the capturing job to completion. For
Newt, the first step also includes building the index (when
applicable). We do not report these times in our plots. Next,
we randomly select a subset of result records, and from there
trace back to the job input. The trace from result to input
is repeated 10 times, on the same selected result, and we re-
port the trimmed mean. We only report on backward traces
since the forward direction, from input to output, exhibits
similar results. We do not report the results for tracing
queries taking more that 10 minutes. Also, for the Newt
case with indexes, we do not report results when the index
building time exceeds 1 hour.

Optimizing Spark Join for Tracing: In Section 4.5 we have
described our modification to the Spark join operator to
leverage the partition identifier information embedded in the
record identifier.

This optimization avoided the näıve join strategy, in which
the data lineage, stored in the BlockManager, would be fully
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Figure 16: Tracing time for grep and word count

shuffled in every join. Figure 15 shows the benefits of this
optimization when tracing the data lineage from the word
count job. The näıve join is around one order of magnitude
slower than the optimal plan up to 80GB. Beyond that, the
näıve performance degrades considerably, with the trace at
200GB taking approximately 15 minutes, compared to the
optimal 5 seconds. The näıve join strategy is not able to
complete traces above 200GB.

Trace Grep and WordCount: The time to trace backward
one record for grep is depicted in Figure 16(a). In the Newt
case, the query to compute the trace backward is composed
of a simple join. Not surprisingly, when relations are indexed
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Figure 17: Lineage Tracing Performance for PigMix Queries

the time to compute a full trace is small. When the rela-
tions are not indexed, the time to execute the query increases
to 10 minutes. Tracing queries over Titian-D scale linearly
from 0.07 seconds (at 500MB) to 1.5 seconds (at 500GB).
Figure 16(b) compares the three versions of Titian. As ex-
pected, Titian-P and -C are slightly faster than Titian-D
since the data lineage is more localized and not large.

Figure 16(c) shows the execution time for retrieving the
full lineage of a single record for word count. Newt without
indexes is not able to complete any trace in less than 10
minutes. When the data lineage is indexed, Newt is able
to trace up to the 5GB dataset, after which the index build
time reached one hour. Titian-D executed the 1GB dataset
trace in 0.08 seconds, and it took no more than 18 sec-
onds for larger datasets. In Figure 16(d) Titian-D-P-C have
similar performances for small dataset sizes, while Titian-P
outperform Titian-D by a factor of 4 for bigger sizes.

PigMix Queries: Figures 14(a), (d) and (e) show the tracing
time for PigMix queries L2, L6 and L7 respectively.

L2: We were able to execute the non-indexed Newt trace
only for the 1GB (13 seconds) and 10GB datasets (more
than 200 seconds). The indexed version maintains constant
performance (5 milliseconds) up to 100GB, but failed to
build the index in less than one hour for 1TB dataset. All the
Titian versions exhibit similar performance, executing the
trace in a few hundreds of milliseconds for smaller datasets
(Titian-P has the best result with 0.1 seconds for the 1GB
dataset), and few seconds for the bigger one (Titian-P has
again the best result with 2.1 seconds for the 1TB dataset).

L6: For this aggregate query, Newt is not able to complete
any tracing query under the threshold of 600 seconds. The
indexed version still maintains constant performance and up
to 100GB. Titian-C is able to complete both the 1GB and
10GB workloads with a tracing time respectively of 0.25 and
0.57 seconds. Titian-D and -P have comparable performance
up to 10GB. For 100GB Titian-P performs relatively better
than Titian-D (0.6 seconds versus 0.8), while for the 1TB
Titian-D is 6 times faster (55 against 337 seconds).

L7: The trend for this query follows the one of query L6,
although the tracing time is in general two time faster. For
instance, Titian-D takes 25 seconds for tracing one record
over the 1TB dataset, while Titian-P takes 150 seconds.

Discussion: Compared to query L2, tracing one record for
the 1TB dataset in L6 and L7 is more than an order of mag-
nitude slower since these are aggregate queries. Recall, to
minimize the the memory footprint, Titian-D and -P save
lineage in nested format i.e., a single top-level identifier is
used to reference the set of identifier corresponding to the

record group. The un-nesting (dereferencing) of the data
lineage is an expensive operation for tracing through aggre-
gate operators, especially in the Titian-P case.

5.4 Show me the Data
Measuring the efficiency of replay includes the perfor-

mance of tracing, retrieving the data records referenced by
the lineage, and the cost of re-computation. In this section,
we focus on the performance of the second step i.e., raw
data retrieval.
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Figure 18: Data retrieval performance

Figure 18 depicts the time of retrieving an intermediate
data record from its lineage identifier. This operation in-
volves reading the intermediate data partition, then scan-
ning to the data record location. As the figure shows, for
datasets less than 70GB, this operation takes less than one
second. Beyond 70GB, the time increases up to 27 seconds
for the 500GB case. This increase in access time is due to
the increased size of the intermediate data partitions as we
scale up the experiment. As future work, we plan to miti-
gate this effect by subdividing intermediate data partitions
and embedding a reference pointer in the lineage identifier.

6. RELATED WORK
There is a large body of work that studies techniques for

capturing and querying data lineage in data-oriented work-
flows [5, 6, 8, 11, 17, 22]. Data provenance techniques
have also been applied in other fields such as fault injec-
tion [4], network forensics [28], and distributed network sys-
tems analysis [29]. In this paper we have compared Titian
against the approaches relevant to DISC workflows [18, 21].

Inspector Gadget (IG) [23] defines a general framework
for monitoring and debugging Apache Pig programs [24].
IG introspects the Pig workflow with monitoring agents. It
does not come with full data lineage support, but rather it
provides a framework for tagging records of interest as they
are passed through the workflow. In this setting, program-
mers embed code in the monitoring agents that tag records
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of interest, while IG is responsible for passing those tags
through to the final output.

Arthur [12] is a Spark library that can re-execute (part
of) the computation to produce the lineage information on
demand. Although such an approach introduces zero over-
head on the target dataflow, it sacrifices the ability to pro-
vide interactive analysis capabilities of tracing queries, as all
queries are done in post-mortem sessions. Similarly to IG
(and to Titian-P) Arthur uses tagging techniques to gener-
ate and propagate lineage data, but it requires re-running
queries after instrumentation.

A common pattern for provenance systems is to use differ-
ent languages for querying the data and querying the lineage
[20, 6]. In our system instead we provide a lightweight ex-
tension of the transformations already provided by Spark.
In this way we are able to provide users with a uniform lan-
guage for data and lineage analysis. To our knowledge only
[14] provides a similar feature, in the context of relational
database systems.

7. CONCLUSION AND FUTURE WORK
We began this work by leveraging Newt for data prove-

nance support in Apache Spark. During this exercise, we
ran into some usability and scalability issues, mainly due
to Newt operating separately from the Spark runtime. This
motivated us to build Titian, a data provenance library that
integrates directly with the Spark runtime and program-
ming interface. Titian provides Spark programmers with
the ability to trace through the intermediate data of a pro-
gram execution, at interactive speeds. Titian’s program-
ming interface extends the Spark RDD abstraction, making
it familiar to Spark programmers and allowing it to oper-
ate seamlessly through the Spark interactive terminal. We
believe the Titian Spark extension will open the door to a
number of interesting use cases, including program debug-
ging [16], data cleaning [19], and exploratory data analysis.

In the future, we plan to further integrate Titian with
the many Spark high-level libraries, such as GraphX (graph
processing) [15], MLlib (machine learning) [2], and Spark
SQL (database-style query processing) [7]. We envision each
high-level library will motivate certain optimization strate-
gies and data lineage record requirements e.g., how machine
learning features and models associate with one another.

Acknowledgements
We thank Mohan Yang, Massimo Mazzeo and Alexander
Shkapsky for their discussions and suggestions on early
stages of this work. Titian is supported through grants NSF
IIS-1302698 and CNS-1351047, and U54EB020404 awarded
by the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB) through funds provided by the trans-
NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.
nih.gov). We would also like to thank our industry partners
at IBM Research Almaden and Intel for their generous gifts
in support of this research.

REFERENCES
[1] Hadoop. http://hadoop.apache.org.

[2] Mllib. http://spark.apache.org/mllib.

[3] Spark. http://spark.apache.org.

[4] P. Alvaro, J. Rosen, and J. M. Hellerstein. Lineage-driven
fault injection. In SIGMOD, pages 331–346, 2015.

[5] Y. Amsterdamer, S. B. Davidson, D. Deutch, et al. Putting
lipstick on pig: Enabling database-style workflow prove-
nance. VLDB, 5(4):346–357, 2011.

[6] M. K. Anand, S. Bowers, and B. Ludäscher. Techniques for
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