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Abstract of the Dissertation

Enforcing and Validating User-Defined Programming
Disciplines

by

Shane Andrew Markstrum

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2009

Professor Todd Millstein, Chair

Developing good software requires a large investment of time and money. Yet, production-

quality code often has lurking bugs and security vulnerabilities. To help manage the

complexity of building robust software systems, developers useprogramming disci-

plinesduring the creation process such as naming schemes for understandability, de-

sign patterns for extensibility, and lock ordering schemesto prevent program deadlock.

But these disciplines are only informally specified and lack tooling support that would

allow them to be enforced consistently on the code.

In this dissertation, I present a solution for creating frameworks for programming

disciplines that allows programmers to define how disciplines should be enforced. Fur-

ther, this solution allows users to validate that the disciplines they are using ensure

desired program properties in their code. This solution is built upon three insights: a

domain-specific language provides a standard way to specifya discipline; type systems

provide a scaffolding for automatic discipline checking; and explicit association of a

runtime invariant allows disciplines to be verified.

I present an overview of two instantiations of such programmer-defined discipline

frameworks that I developed and built: JAVA COP for Java, and CLARITY for C. I show

xv



how the use of these frameworks can be beneficial to programmers via case studies of

disciplines–including design pattern checkers, untainted types, and non-null types–

that find errors in real code. These frameworks further show atrade-off among the

desired properties of expressiveness, usability, and reliability. JAVA COP is expressive

in that the language can be used to write a wide variety of disciplines, but it cannot

automatically validate that a discipline is sound with respect to its invariant. On the

other hand, CLARITY has limited expressiveness but can automatically prove that a

discipline establishes an invariant on a program.
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Terminology

As my dissertation deals with metaprogramming–that is, programs that take other pro-

grams as input–it will help to define a few terms here that might otherwise be ambigu-

ous to the reader.

base type systemthe type system built into a target language.

pluggable type systeman optional type system or type system extension for a target

language which may be provided as an argument to a type checker.

target language the programming language whose programs are meant to implement

the discipline.

target program a program that is checked for proper use of a discipline.

type annotation a metadata tag that may be used to provide additional information

about the type of a program construct but is generally ignored by the base type

system. Also may be referred to as a program annotation.

type system extensiona set of rules that extends an already existing type system with-

out redefining the base type system. Also may be refereed to asa type refine-

ment.

user generally, the programmer who is using disciplines. May occasionally refer to

the person who is using software intended for the end-user.

user-defined programming discipline a programming discipline that the user has de-

fined outside a target language. Also may be referred to as a user-defined disci-

pline.
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CHAPTER 1

Introduction

1.1 Programming Disciplines

Software developers today face a difficult task in building and maintaining efficient,

reliable, and useful systems. To create good software, developers have to reason about

a vast panoply of potential problems. Examples of these problems include making

sure that null pointers are not dereferenced; being able to safely and successfully link

dynamic software components like device drivers at runtime; and properly using locks

to access shared data in a multi-threaded/concurrent runtime environment. Dealing

with each of these problems individually is a difficult task;the difficulty is only com-

pounded by having to handle all of them at once.

Current software best practices attempt to make this reasoning process manageable

by using what I callprogramming disciplinesduring development. Programming dis-

ciplines are syntactic program constraints that ensure programs have certain desirable

properties and meet certain design criteria. Examples of disciplines includenaming

schemessuch as Hungarian notation and CamelCase which help to clarifythe type and

intent of program components;non-null checksplaced before important pointer deref-

erences that help ensure accidental null pointer accesses do not cause a program to

terminate unexpectedly;design patternssuch as theState andVisitor patterns that

provide ways to capture desired program behaviors and can simplify future program

extension; andlocking schemeswhich ensure that harmful data races are prevented in
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a concurrent program.

Unfortunately, several problems currently limit the usefulness of programming dis-

ciplines. First, there is no standard way to specify how to enforce a discipline. Without

such a standard, disciplines are limited to being defined informally in the comments

of a program or in the project specification documents. Second, and related to the first

problem, there is no way of automating the enforcement of a discipline on a target

program. Current best practices establish that disciplinesare enforced upon manual

review of code. As manual enforcement of disciplines is imperfect, it is easy for vi-

olations of the disciplines to remain part of the code even after review. Thus, the

reviewed programs may exhibit bugs and vulnerabilities when run. Third, there is no

explicit way to state what program properties a discipline is meant to ensure. With-

out this ability, it is impossible to determine whether a discipline is really the correct

discipline for ensuring a particular set of program properties.

In this dissertation, I present a solution that allows programmers to define how dis-

ciplines will be enforced and effectively automates the enforcement of programming

disciplines on target programs. My solution ensures that intended bugs and vulnera-

bilities are reduced and/or prevented and helps verify thatintended program properties

are attained. This solution is scalable, as it supports the enforcement of any number of

disciplines at the same time; non-intrusive, as it does not dramatically alter a language;

and adaptable, in that programmers control how a disciplines should be enforced.

1.1.1 Discipline Examples

In this section, I present two examples of Java security vulnerabilities and explain how

disciplines can be used to prevent the creation and release of code exhibiting these

vulnerabilities. The first example focuses on SQL injectionattacks: well-known, yet

frequently-seen, security vulnerabilities for systems that interface with SQL databases.
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The second example discusses a classic Java security vulnerability related to leaked

private objects being manipulated in untrusted sections ofcode.

Both of these examples demonstrate that disciplines can be useful for preventing

mistakes and bugs. With manual enforcement of the disciplines, though, it remains

easy for the security vulnerabilities to elude detection.

SQL Injection Attacks SQL injection attacks [US 09] are a form of security vul-

nerability in programs that interact with SQL databases. Invulnerable programs, ma-

licious users can inject new commands into program-generated queries. The malicious

users accomplish this by providing unanticipated input which changes the nature of a

query embedded in the program. Since SQL databased have seenwide-spread use in

popular software like the Microsoft IIS web server, SQL injection attacks continue to

be disruptive to e-commerce and Internet communication.

Listing 1.1 defines a simple Java API for interacting with a SQL database. In this

API, the executeQuery method takes in aString which defines a SQL query and

returns the results of performing the query on an associateddatabase; and thegetName

method returns an unknownString from the user. Listing 1.2 shows a small code

snippet that demonstrates how SQL injections can be introduced into a program. In

this case, the query stringq is generated by inserting the string returned from the

getName method into a standard query template. If the returned string includes the’

character then it will terminate the string embedded in the query and allow arbitrary

new SQL operators to be included after that point. For example, if a user supplied the

string "’;DROP users;--" , then performing the query will result in the deletion of

theusers table from the database.

To prevent SQL injection attacks, developers can follow a very simple discipline:

only untaintedstrings may be used to generate SQL queries. A tainted stringis any

4



/* Executes a SQL query (given as a parameter) on the

* currently affiliated SQL database and returns the

* results.

*/
ResultSet executeQuery ( Str ing sql );

/* Returns a String provided by the user of this program.

*/
String getName ();

Listing 1.1: A small Java API for programs that receive user input for querying SQL
databases.

String name = o. getName ();
Str ing q = " SELECT * FROM users WHERE name=’"+name+" ’; " ;
result = db . executeQuery (q );

Listing 1.2: A code snippet using the API from Listing 1.1 that demonstrates a possible
SQL injection attack.

string that may have been manipulated or given as input from outside of the current

scope. Untainted strings are then strings that are known to be safe to the program.

Tainted strings in the case of SQL injection attacks can usually be made untainted

throughsanitizing: escaping errant’ characters and removing disallowed operations

from the strings. Listing 1.3 shows how this discipline can be applied to the code from

Listing 1.2 to prevent the SQL injection attack. In this codesnippet, the developer

calls thesanitize method on the user input, thereby changing the input from a tainted

string to an untainted one.

In a small excerpt of code, such as in Figures 1.2 and 1.3, it iseasy to see how care-

ful use of this discipline would result in code without SQL injection attacks. However,

in the context of a large body of code, there can be many different paths that contribute

to the generation of a query. Manually verifying that query component strings re-

main untainted on all paths to an invocation ofexecuteQuery is a difficult task. Even

5



String name = o. getName ();
Str ing q = " SELECT * FROM users WHERE name=’"

+ sanit ize (name )+" ’; " ;
result = db . executeQuery (q );

Listing 1.3: A modified version of the code from Listing 1.2 which demonstrates
proper use of anuntainteddiscipline for SQL query components.

public class Class {
...
private Ident i ty [] signers ;
public Ident i ty [] getSigners ( ) { return signers ; }
...

}

Listing 1.4: A snippet of the JavaClass class from the Java Development Kit (JDK)
1.1 relating to class signers that reveals a security vulnerability.

though the discipline itself is simple to understand and communicate, it is nevertheless

a non-trivial task to enforce.

Java Class Signing1 In version 1.1 of Java, applets were able to gain access to cer-

tain privileged operations on a user’s system by being signed by a trusted signer. Object

signing was meant to prevent applets from causing damage to an applet user’s system

by requiring particular signatures in order to delete or modify files or access informa-

tion. However, in the initial implementation of theClass class, there was a security

vulnerability that allowed applets to bypass the signing method. The relevant excerpt

of the JDK 1.1Class definition is shown in Listing 1.4.

The problem is ultimately a result of thegetSigners method returning an alias to

the privatesigners field. A malicious applet could ask the Java security framework

to give it the list of trusted signers for the system and add them to its own class’s

1Code excerpts in Listings 1.4 and 1.6 are modified snippets ofcode from [VB99].
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Enumerat ion trustedSigners =
Ident i tyScope . getSystemScope (). ident i t ies ();

Identi ty [] mySigners = this. getClass (). getSigners ();
for( int i =0; i< mySigners . length

&& trustedSigners . hasMoreElements (); ++ i ){
mySigners [ i ] = trustedSigners . nextElement ();

}
...
/* Do bad things with new privileged signatures */
...

Listing 1.5: Code excerpt that illustrates how applets couldexploit the JDK 1.1 signers
vulnerability.

signers array through the alias returned fromgetSigners . An example of this is

shown in Listing 1.5. As a result, when the applet attempted to perform privileged

actions on the user’s system, it would appear to be endorsed by the trusted signers.

A discipline for preventing this vulnerability can be stated as:references to secure

data should remain confined in the privileged scope of the defining package. Thiscon-

fineddiscipline requires methods never return direct references to secure, private data

to an unknown external scope. This restriction prevents outside tampering. Instead, a

reference to a copy of the data can be returned or some form of immutable reference

through which updates cannot occur. Applying the former option to theClass class

results in the code excerpt in Listing 1.6.

The confineddiscipline [VB99] explains how to solve this security problem, but

the discipline itself is not suitable for manual enforcement. Consider the case when

a previously non-secure field is changed to a confined field. Then all prior existing

references to that field are potential security holes. Manually checking all method

calls and dereferences in a Java program for proper confined reference usage in any

execution context is very tedious, especially for large programs. It is likely that such a
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public class Class {
...
private Ident i ty [] signers ;
public Ident i ty [] getSigners ( ) {

Identi ty [] pub = new Ident i ty [ signers . length ];
for ( int i = 0; i < signers . length ; i++)

pub [ i ] = signers [ i ];
return pub ;

}
...

}

Listing 1.6: A safe version of theClass class that returns a copy of the class’s signers.

search would result in the improper classification of certain references.

1.2 Thesis Proposal: Enforcing and Validating User-Defined Pro-

gramming Disciplines

In this dissertation, I present an approach to automatic enforcement ofuser-defined

disciplines. This approach gives developers control over the disciplines they want to

use on programs while still remaining scalable and adaptable. My approach is val-

idated through the creation of two practical frameworks that target the languages of

Java and C, respectively.

There are three key components that make user-defined discipline checking frame-

works practical: a domain-specific language for specifyingdisciplines, discipline en-

forcement via type system extensions, and discipline verification against a run-time

invariant.

1. Discipline Specification: The frameworks provide a domain-specific language

(DSL) that allows programmers to easily write their own disciplines. This en-

8



ables developers to leverage a wide variety of disciplines when building their

projects. Providing a language solves the issue of scalability as developers are

not limited by a fixed set of built-in discipline checkers butcan enforce the disci-

plines they want to enforce. It also solves the issue of adaptability since the users

can modify a discipline specification to enforce the discipline in the manner they

would like it to be enforced.

2. Discipline Enforcement: Static type systems already define and enforce a kind

of discipline on programs and are already familiar to most programmers. Ex-

tending a type system to enforce more properties is a naturalway to enforce

new disciplines. Type systems have an advantage in checkingdisciplines since

they are inherently modular and scalable. Thus, disciplines that are enforced

as type system extensions can be used to incrementally checkprogram compo-

nents while still providing guarantees about the overall semantics of a program.

Many programming languages also provide the ability to add metadata tags to

types which provides a simple way to introduce new discipline information into

a program.

3. Discipline Validation: Disciplines are used to ensure that programs exhibit cer-

tain desired program properties. These properties, in turn, can often be expressed

as run-time invariants. An invariant can further be used to validate that the disci-

pline actually establishes such properties. Specifying the invariant as a run-time

invariant enables a wide variety of techniques to use in verifying the discipline

including run-time testing, model checking, and proof assistance.

This definition of a discipline framework with the three components defined above

leads to the thesis of this dissertation:

A framework for user-defined programming disciplines enables declarative speci-
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fication and automated enforcement of many programming disciplines, both general-

purpose and domain-specific, that find important errors and ensure desirable program

properties.

I have further identified three characteristic properties of practical discipline frame-

works. The properties are defined as follows:

1. Expressiveness: The framework is capable of expressing and enforcing many

different disciplines. In particular, it handles disciplines that were outside of the

set of discipline examples that initially motivated the framework’s creation.

2. Usability: Developing discipline implementations in the framework feels fa-

miliar and/or natural to developers that use the target language. The framework

provides straightforward tools that are easy to use and can be added to a standard

toolchain. Discipline enforcement is scalable and adaptable.

3. Verifiability : Implementations enforce the program discipline which they are

intended to enforce. The framework provides support for determining whether a

discipline specification matches its design intent.

In practice, frameworks demonstrate a trade-off among these three properties. Each

framework can effectively maximize two out of the three properties defined here at

the expense of a reduction of the third property. In my implementations, I chose to

emphasize usability and varied the focus on the other two properties to show how this

trade-off works in practice. That the frameworks are usableis primarily driven by their

emphasis on type systems.

10



1.2.1 Practical Implementations of My Approach

To support my thesis statement, I have created two practicaluser-defined discipline

checking frameworks based on the approach described previously, written a variety of

disciplines for these frameworks, and used them to find real bugs in existing software.

These two frameworks represent two different points in the design space of discipline

checking frameworks: one focuses on maximizing expressiveness and usability, and

the other focuses on maximizing verifiability and usability.

The JAVA COP discipline framework for Java [ANM06, MME] focuses on expres-

siveness and usability. It provides a declarative rule and predicate language for spec-

ifying rules on Java programs, utilizing Java 1.5 metadata facilities for program an-

notation. I have implemented a number of interesting and non-trivial programming

disciplines with it, including non-null types, confined types, design pattern checkers,

and domain-specific checkers for Enterprise JavaBeans 3.0 and Safety Critical Java.

Because of the focus on expressiveness and usability, verifiability of JAVA COP dis-

ciplines provides a challenge. However, to meet this challenge, the JAVA COP frame-

work also incorporates a novel testing framework for practical validation of disciplines

which utilizes runtime instrumentation for dynamic invariant checking. The JAVA COP

framework was developed jointly with Chris Andreae and JamesNoble from Victoria

University of Wellington, New Zealand, and Dan Marino and Todd Millstein from

UCLA. JAVA COP is discussed further in Chapter 3.

The CLARITY discipline framework for C [CMM05a, CMM06] focuses on verifia-

bility and usability. It provides a declarative rule language for specifying type qualifier

rules that constrain the values of C expressions, includingboolean, arithmetic, and

pointer expressions. I was able to develop and validate a number of non-trivial integer

type qualifiers, such as non-zero, positive, negative, and tainted/untainted. CLARITY

also provides a soundness checker that uses an automated theorem prover to automati-
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cally validate the qualifier specifications against a semantic invariant. This automated

soundness checker would not be possible to reproduce for a system as expressive as

JAVA COP. CLARITY was the first implementation based on this new user-defined dis-

cipline checking framework model. The CLARITY framework was developed jointly

with Brian Chin, Todd Millstein, and Jens Palsberg at UCLA. A deeper exploration of

CLARITY can be found in Chapter 4.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2 presents related work to this dissertation and discusses why this previous

work does not solve the problems identified here.

Chapter 3 discusses JAVA COP, the pluggable type system framework for Java. In

this chapter I provide an example-driven overview of its rule language, highlighting

the constructs which stress the flexibility and expressiveness of the framework. I then

provide insight into the semantics of the JAVA COP language by providing a transla-

tion from JAVA COP into Datalog¬. This is followed an exploration of the advanced

features of JAVA COP that include a dataflow analysis framework and a pluggable type

unit-test framework. I then provide some of my experience using JAVA COP as a disci-

pline checker via a case study of a number of pluggable type system implementations.

Chapter 4 gives further details about the CLARITY semantic type qualifier frame-

work for C. In this chapter I overview the CLARITY rule language for defining type

qualifiers and explain how rules are checked on C programs. I then provide and an-

alyze a formal type system and constraint inference algorithm for the type qualifiers.

This is followed by an explanation of how rule specificationsare verified using an au-

tomatic theorem prover. I conclude the chapter with a discussion of my experience
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using a variety of CLARITY type qualifiers on real C code.

Chapter 5 concludes the paper with a look towards future extensions of this work.
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CHAPTER 2

Related Work

In this chapter, I present and discuss related work to this dissertation. This work in-

cludes: formal specification and advanced type systems which allow programmers to

precisely define their desired program properties but do notprovide general strate-

gies for how to establish such properties; language extensions that build support for a

fixed set of disciplines into their type systems; and type system extension frameworks

that allow programmers to define their own pluggable type systems but do not pro-

vide a discipline language for creating disciplines. I alsobriefly describe other work

that shows how discipline checking and user-defined discipline frameworks fit into the

context of broader research concerns.

2.1 Formal Specification

Formal specification is a common method of documenting the desired set of prop-

erties and behaviors of a program. Such specification is typically in the form of

pre-condition, post-condition, and invariant specifications in the manner of Hoare

Logic [Hoa69] or Design by Contract [Mey92]. A number of languages, such as Eif-

fel [ISO] and Spec# [BDF08], have built-in support for this kind of specification. Other

languages, like Java, can utilize externally defined languages such as JML [LLL99] to

allow programmers to write specifications in program comments. These specification

comments need to be specially parsed and handled by other tools as they will not be
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recognized by the target language.

While formal specification allows developers to precisely define desired program

properties, it is not practical to check such specifications. Many formal specifications

cannot be automatically checked against an actual program.However, languages like

Spec# and tools such as ESC/Java [FLL02] (which utilizes JML specifications) provide

support for automated reasoning over a limited domain of properties.

The formal specification approach is distinct from discipline checking in that spec-

ifications do not provide any guidelines to a programmer about how to write programs

that match the formal specification. In this fashion, specifications are akin to pro-

gramming goals, whereas programming disciplines describeprogramming strategies

for ensuring program properties. In other words, disciplines definehowto achieve cer-

tain program properties whereas formal specifications state whichprogram properties

are intended.

2.2 Advanced Type Systems

Some type systems, including the calculus of constructions[CH88], Nuprl [CAB86],

and type systems [SST02, CV02] for Proof-Carrying Code [Nec97]and Typed Assem-

bly Language [MWC99], use dependent types [Mar82] to encode program invariants

directly in a program’s types. However, dependent type checking is not as simple as

checking disciplines, which are syntactic program constraints: type checking means

that the invariants must be proved valid on their associatedprogram expressions. A

proof that an invariant holds on a program fragment cannot, in general, be produced

automatically. Many of the proofs need to be supplied by the programmer. However,

it is not reasonable to assume that the average programmer will have the knowledge to

create such proofs.
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Dependent type systems are very expressive, and since the programs contain their

own proofs of correctness, are also inherently verifiable. However, as programming

in a dependently-typed language is more complicated, usability is severely reduced.

With the discipline approach, I provide usability by separating the simple and purely

syntactic discipline checking from discipline verification.

Dependent types can be made more practical by limiting the grammar of the de-

pendent types. For example, Dependent ML [XP98, XP99] allows ML types to depend

upon integers with linear inequality constraints. This limited form of dependent types

can be used to automatically prove arithmetic program invariants, such as tracking the

length of lists or whether a variable contains a positive value.

2.3 Extensible Compiler Frameworks

Extensible compiler frameworks, such as JastAdd [EH04] andPolyglot [NCM03] for

Java and CIL [NMR02] for C, can be used to extend a language with new functionality.

This functionality can include new program analyses in the compiler and extensions

to the syntax and semantics of the language. A developer could use such an extensi-

ble compiler framework to directly implement a discipline checker. However, these

frameworks do not provide language-level support for writing disciplines. To create

a discipline checker in such a framework, the developer mustfirst be well-acquainted

with compiler construction. The average programmer does not have this compiler ex-

pertise. Extensible compiler frameworks are useful for creating discipline frameworks,

though. CLARITY , for instance, was developed on top of CIL.
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2.4 Language Extensions

Language extensions that support a fixed set of additional disciplines are commonly

built in the research community to allow researchers to apply new disciplines and

type systems to benchmarks and real-world programs. Examples of language exten-

sions include CCured [NMW02], which builds a pointer-safety discipline into C; Cy-

clone [GMJ02], which provides new syntax to support safe memory management in

C; and RCCJava [FF00], which provides a locking scheme discipline to prevent race

conditions in Java. I hope that discipline frameworks can provide the implementa-

tion platform for future development of new disciplines instead of creating a language

extension from scratch. This would encourage other programmers to use new disci-

plines in their code as they would not have to migrate their entire code base to a new

language.

2.5 Standalone Discipline Checkers

Standalone discipline checkers can be used to statically check a fixed set of disci-

plines on programs without requiring a language extension.Many of these tools have

seen widespread use in industry. For example, the FindBugs system [HP04] includes

a non-null type checker, and Ma and Foster provide a tool for detecting unique ref-

erences [FM07]. These standalone checkers are not as adaptable as the discipline

frameworks I propose in this dissertation. If a user wants tomodify how a discipline

is checked in a static analysis tool, he or she has to directlychange the source code

of the tool. In contrast, disciplines written in a discipline language can be more eas-

ily modified to suit a programmer’s preferences. Further, standalone checkers usually

require whole-program analysis in place of requiring programmers to annotate their

code. This approach is, thus, not suitable for modularly enforcing disciplines.
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2.6 Constraint Checking Frameworks

Constraint checking frameworks like XIRC [ESM05, EMO04], JQuery [JV03], Semm-

leCode [HVM06], CCEL [DMR92] and ASTLog [Cre97] provide programmers the

ability to statically check their own constraints on a program. These frameworks pro-

vide a domain-specific constraint language that treats the target program as a database

to be queried. Checking constraints in these frameworks requires whole program anal-

ysis and lacks interaction with the underlying type system.As a result, they are ill-

suited for discipline checking. Further, none of these frameworks provides any support

for verifying constraints against desired program properties.

The Structural Constraint Language (SCL) [HH06] for Java provides similar con-

straint checking capabilities to a subset of the JAVA COP language (described in Chap-

ter 3). The language provided by SCL is similar to a straightforward first-order logic

language, but distinguishes itself from the previous constraint checking frameworks

by checking constraints modularly. However, due to limitedintegration with the Java

type system and a lack of support for flow-sensitivity, it cannot check general purpose

type systems like non-null or confined types.

The CoffeeStrainer constraint framework for Java [Bok99] eschews a constraint

language in favor of having programmers write their constraints as Java methods inside

special program comments. When run through the CoffeeStrainer tool, these methods

will be extracted into a new visitor class. The visitor can then be used to check the

constraints during compilation of the class. Constraints inCoffeeStrainer may only

written at the class level, and cannot be written for fields ormethods. While such an

approach can handle class-level type systems likeconfinedfrom Chapter 1, which was

originally implemented using CoffeeStrainer [VB99], it would not be able to effec-

tively handle theuntainteddiscipline defined in the same chapter or any of the other

examples presented in this dissertation.
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2.7 Type System Extension Frameworks

Papiet al.created the Checker framework [PAC08] for developing pluggable type sys-

tems for Java. The goals of the Checker project are similar to the goals of this disserta-

tion: they want to allow developers to write their own type systems and automatically

type check them on their code. In the Checker framework, developers must use Java

to write visitors that traverse Java’sTree classes, while this dissertation advocates

providing a declarative rule language for such frameworks.The Checker framework

provides no special support for writing advanced type systems that require dataflow

analysis. It further lacks any facility for determining whether a pluggable type system

ensures desired program properties. The Checker framework does, however, support

inference of certain forms of information flow qualifiers, along the same lines as the

simple form of theuntainteddiscipline that was described in Chapter 1. Initial papers

on both the CLARITY and JAVA COP projects presented in this dissertation predate the

publication of the Checker framework.

The Vault language provides a type system that tracks temporal protocols in a safe

dialect of C [DF01]. A type in Vault can be augmented with atype guardthat tracks the

state of the value throughout the program. For example, a filetype could be augmented

with a guard that tracks whether the file is currently in an open or closed state at

any given point in a program. The states associated with a guard as well as state-

change conditions are defined by the programmer. Vault’s type system is well-suited

for checking simple temporal disciplines such as open/closed file states and device

driver states, but it is not expressive enough to handle other general-purpose or domain-

specific disciplines.

Fugue [DF04] is an adaptation and extension of Vault’s type system to perform

static checking of temporal protocols for C# [C02]. Fugue allows a class’s typestates,

which are the analogues of type guards, to be given an interpretation as a predicate
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over the class’s fields. Such predicates are used during static type checking to ensure

that each method in the class properly implements its declared specification. In this

way, the Fugue type checker directly ensures that typestates respect their predicates.

This is the same kind of verification of type checking againstinvariants that I propose

for user-defined discipline frameworks.

The CQUAL framework [FFA99, FTA02] allows programmers to define and en-

force partial orders oftype qualifierson C programs. Type qualifiers in this case are

lightweight type annotations. Such type qualifiers can be used to check simple forms

of disciplines such as the untainted discipline from Chapter1. However, CQUAL does

not support general syntactic constraints; a limited form of syntactic constraints may

be simulated in CQUAL via qualifier assertions and assumptions. CQUAL also does

not support any kind of reasoning about the validity of a qualifier with respect to its

intended invariant. More recently, the authors of the CQUAL project have extended

this notion of simple type qualifiers to object-oriented programming via the JQUAL

system [GF07]. CQUAL supports polymorphic, flow-sensitive qualifier inference.The

flow-sensitive version of CQUAL can be used to track similar kinds of temporal prop-

erties as Vault without requiring the same amount of programannotation.

2.8 Program Property Inferencers

Program property or invariant inferencers can be thought ofas the dual to discipline

checking frameworks. Whereas discipline checking ensures certain desired program

properties by enforcing syntactic constraints, invariantinference can find program in-

variants from otherwise undisciplined code. Such inference can occur either statically

or dynamically.

The Daikon [ECG01] and Diduce [HL02] systems both support dynamic program
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invariant inference. Both of these systems take a source program and instrument it to

gather data at runtime. Daikon infers invariants by runningthe instrumented program

on a large test suite and using the gathered data to determinethe strongest invariants for

integer and sequence variables. Diduce refines invariants on the fly and keeps track of

when inferred invariants are violated; these instances arereported as potential errors

in the program. The invariants that result from these inferencers can be useful for

adding or refining formal specifications to programs. Likewise, they might inspire a

programmer to use a discipline which ensures the invariantsremain valid with future

program updates.

2.9 Provably Correct Compiler Optimizations

One of the primary inspirations for this work comes from the Cobalt and Rhodium

systems [LMC03, LMR05]. These frameworks provide a domain-specific language

which allows compiler writers to write dataflow analyses andoptimizations. These

compiler analyses and optimizations can be automatically proved sound by discharg-

ing proof obligations with an automatic theorem prover. This overarching model was

adapted in this dissertation to allow general programmers to easily extend their type

systems to enforce new programming disciplines. In particular, the idea to separate

discipline specification and discipline validation comes from these earlier systems.
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CHAPTER 3

JAVA COP: Pluggable Types for Java

3.1 Introduction

In this chapter, I present the design, implementation, and evaluation of a practical

framework for pluggable type systems in Java, which I call JAVA COP. This framework

was built to demonstrate a user-defined programming discipline checking framework

that offers a high level of discipline expressiveness. To this end, I have designed a

declarative rule language in which programmers specify their pluggable type systems.

User-defined rules function over a rich abstract syntax tree(AST) representation for

Java programs and can use Java metadata annotations [Blo02] to introduce new type

information into the source code. JAVA COP enforces these user-defined rules on Java

programs as they are compiled.

As a simple example, consider the code in Listing 3.1 which uses an@Untainted

annotation to specify the additional type constraint that the field firstname (of Java

typeString ) is safe to use when constructing SQL queries. The assignment to first-

name in the methodsetFirstName potentially violates this constraint, since the pa-

rameternewname could be a taintedString . In the case that"Shane’;DROP TABLE

users;--" is passed as the argument, usingfirstname to construct a SQL query

could result in a difficult-to-trace SQL injection attack.

It is straightforward for a user to write a JAVA COP rule that would discover this

potential error. For example, the JAVA COP rule in Listing 3.2 requires the right-hand-
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class Person {
@Untainted String f irstname = " Chris " ;
void setFirstName ( String newname ) {

f i rstname = newname ;
}

}

Listing 3.1: A Java class demonstrating a potential vector for a SQL injection attack.

rule checkUntainted ( Assign a){
where( requiresUntainted (a. lhs )){

require( def in i te lyUntainted (a. rhs )):
error(a ," Possible tainted assignment "

+ " to @Untainted " );
}}

Listing 3.2: A JAVA COP rule which prevents assignment of a possibly tainted value
into an@Untainted reference.

side expression of each assignment statement to be demonstrably untainted whenever

the type of the left-hand-side variable or field is declared as such.

This rule relies on two user-defined helper predicates. TherequiresUntainted

predicate checks that the given variable or field was declared with the@Untainted

attribute. ThedefinitelyUntainted predicate inspects the given expression to de-

termine if it is definitely untainted. For example,definitelyUntainted would define

String literals to be definitely untainted as the literal is always under the control of

the developer. AssumingdefinitelyUntainted does not allow an arbitrary variable

to be considered untainted, the assignment tofirstname in setFirstName will fail

the rule, causing the compiler to output the error message below.

Person . java :4: Possible tainted assignment to @Untainted
f irstname = newname ;
ˆ

1 error
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JAVA COP provides a novel combination of features to support the development of

practical pluggable type systems:

• Declarative rule language.JAVA COP employs a declarative, rule-based lan-

guage for expressing the semantics of pluggable type systems. JAVA COP’s lan-

guage was created to be a simple yet highly expressive language for defining new

Java type system extensions that is easy for rule designers and programmers to

understand and to define correctly. The language has a natural correspondence

to the normal specification of syntax-directed typing rulesand to first-order logic

programming.

• Seamless integration with Java.JAVA COP naturally allows pluggable type sys-

tems to interact with Java’s existing type system, including information about

generics and annotations. It retains Java’s modular style of typechecking and

compilation. The typechecker is implemented as an extension of the standard

OpenJDKjavac compiler with a couple of new passes. This feature allows

the JAVA COP compiler to be used in place of the standard Java compilerin a

development toolchain.

• Support for flow sensitivity.Many pluggable type systems require the ability

to change the type of a variable based on its context. For example, a non-null

type system should allow a possibly-null variablex to be considered non-null

after a successful test of the formx != null ; if not, the type system will be

too inflexible for practical usage. To provide support for these pluggable type

systems, JAVA COP includes a generic dataflow engine that can be extended by

the user to generate necessary dataflow facts. These dataflowfacts can then be

referenced in JAVA COP rules as an addition to the type system.

• Pluggable type system validation.To address discipline verification, JAVA COP
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provides a novel two-stage framework for testing pluggabletype systems against

a test suite of Java programs. The first stage runs the JAVA COP checker on each

test program and compares against the expected typechecking outcomes, similar

to traditional unit testing. However, many pluggable type systems are meant to

enforce a simple set of runtime invariants. For example, a non-null type system

should ensure that a@NonNull variable or field never has the valuenull . The

second stage of JAVA COP’s testing framework executes instrumented versions

of successfully-compiled test programs to verify that the intended runtime in-

variants are not violated. Such testing is not complete, butit does provide some

idea of the soundness of the discipline for the given test suite.

I have built a diverse suite of complete and practical pluggable type systems in

JAVA COP and used them to detect real errors in existing Java software. Based on

JAVA COP compilation performance tests, I believe that use of JAVA COP checkers

causes minimal overhead, allowing it to be used during interactive development. JAVA -

COP and all associated tools were released under the open-source GNU General Pub-

lic License v2.0.

3.1.1 Overview of theJAVA COPFramework

Fig. 3.1 provides an overview of the structure of the JAVA COP system. The JAVA COP

type checker has two main components: a Java compiler extended with JAVA COP

pluggable type support and a JAVA COP language parser/compiler. In addition to the

main system, there are a few additional tools that make up theJAVA COP tool suite: a

dataflow analysis API, a Java runtime instrumenter (not shown in figure), and a plug-

gable type system unit test framework.

The JAVA COP engine is an extension of the OpenJDK Java compiler whichtakes

as input compiled JAVA COP rules and dataflow analyses as well as target programs.
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Figure 3.1: An overview of the JAVA COP system. Dashed lines indicate optional

inclusions; and document images with content represent Java bytecode.

JAVA COP then runs the dataflow analyses and does type enforcementon the target

Java programs. These passes occur after the Java AST has beenattributed with type

information but before any substantial optimizations or compilation has occurred. If

there are no errors signaled during either type attributionor the JAVA COP passes,

compilation continues as expected.

Dashed lines in Figure 3.1 indicate optional argument inclusions, including any

JAVA COP pluggable types and dataflow analyses. Compiled Java codeis shown as an

image of a document with text. One design choice for the JAVA COP framework was

to separate the parsing and compilation of the typing rules from enforcing the rules via

the JAVA COP Java compiler. This decision cuts down on the time required to do the

type system enforcement. Use of the JAVA COP test framework is always optional.

The pluggable type system engine is an extension of the OpenJDK javac com-

piler, version 1.7.0-ea. As a result, interfacing with the JAVA COP engine is simply an
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additional option to thejavac command which takes a set of compiled JAVA COP files

as its argument. The extended compiler still takes standardJava programs as input, but

prints the warnings and errors generated by the pluggable type systems in addition to

the standardjavac output.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 3.2introduces the design

of JAVA COP’s rule language through a number of examples. Section 3.3 provides

a formal semantics for JAVA COP through a translation of the core language to the

Datalog¬ language. Section 3.4 demonstrates JAVA COP’s facilities for flow-sensitive

reasoning. Section 3.5 describes the pluggable type systemtesting framework. Sec-

tion 3.6 shows how JAVA COP can be used to develop two domain-specific pluggable

type systems developed in JAVA COP, showcasing the expressiveness of JAVA COP’s

declarative rule language. Section 3.7 presents experience building and using a more

sophisticated general-purpose pluggable type system thatleverages flow-sensitivity.

Section 3.8 presents compiler performance test numbers.

3.2 TheJAVA COPRule Language

This section describes JAVA COP’s rule language in detail. The first part describes

some of the features of the AST representation of programs that the language employs.

The rest of the section describes the features of the JAVA COP rule language, and their

utility in implementing pluggable type systems, via several examples.
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Tree subclass Name Java example

JCMethodInvocation Method call meth(args)

JCAssign Assignment x=y

JCClassDecl Class definition class X{ .. }

JCIdent Identifier foo

JCIf Conditional if(cond).. [else ..]

JCMethodDecl Method definition void foo(){..}

JCNewClass Instance creation new World("hello")

JCReturn Return statement return false;

JCFieldAccess Field Selection s.field

JCSkip Empty statement ;

JCTypeCast Cast (String)s

JCVariableDecl Variable declaration String s = "hello";

Figure 3.2: A selection of OpenJDK AST nodes classes and their meanings

3.2.1 The Abstract Syntax Tree

The AST of a Java program is made up of linked nodes representing the program’s

structure: classes, methods, blocks, statements, expressions, identifiers, etc. JAVA -

COP’s AST is an abstraction of the OpenJDK compiler AST, in which all the node

types are subclasses of the abstract superclassJCTree . Figure 3.2 lists a selection of

these AST nodes and the Java code they represent. Each node provides methods and

fields to access its sub-nodes.

JAVA COP’s traversal of the AST occurs as a pass after Java typechecking has oc-

curred. This allows JAVA COP rules to make use of Java type information: this is criti-

cal for many kinds of type extensions. Every node in the AST contains atype field of

type Type , which is set during the typechecking pass and represents the Java type of
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the expression represented by the node. These types includeclass types (which may

be parametrized), array types, method types, and (bounded)type parameters; Java in-

terfaces are represented by class types internally. Types have methods that allow their

component types to be accessed, and class types have methodsthat allow their direct

superclass (supertype() ) and superinterfaces (interfaces() ) to be retrieved.

In order for a class to be compiled,javac requires information about each non-

local identifier — package, class, interface, method, and field name — that is refer-

enced in the class. Ifjavac were a whole-program compiler, each identifier could

simply be linked to the AST node for its associated definition. Givenjavac ’s modular

compilation, the source of some depended-upon program entities and the AST nodes

for those entities, may be unavailable. Thejavac compiler reconstructs necessary in-

formation about non-local entities from their bytecode representations, and stores it as

Symbol objects.

The JAVA COP AST is currently built on top of the AST representation injavac ,

but there is a separation between the two. For example, JAVA COP AST nodes include

several useful methods that are not directly available in the underlyingjavac nodes.

These methods provide a JAVA COP developer with information that might be difficult

or impossible to locate given only ajavac AST node or require the use of reflection.

Because of this extra layer of abstraction, it is possible to move the JAVA COP system

to other Java compilers without changing the core rule language.

3.2.2 Rule Language Overview

Figure 3.3 presents the syntax of the JAVA COP rule language. A pluggable type sys-

tem is implemented in JAVA COP as a set ofrules, which constrain classes via the AST

representation described in the previous subsection. Eachrule is declared to apply to

a particular kind of AST node and provides constraints on theusage of that node, de-
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pending on type information, user-defined annotations, andother context information

available at that node. To enforce user-defined rules, JAVA COP performs a depth-first

traversal of the AST of a given compilation unit (i.e., a Javafile). As each node is

traversed, any rules that apply to that type of node are evaluated on that node.

As shown in Figure 3.3, there are two kinds of “joinpoint” forJAVA COP rules

which determine when a rule is applicable:ASTjoinpoints andsubtypingjoinpoints.

These joinpoints are detailed in the next two subsections. Iwill then discuss the various

kinds of constraints that may be employed within a rule body,thedeclare construct

for defining helper predicates for use within a rule, and JAVA COP’s facilities for error

reporting.

3.2.3 AST Rules

The first kind of JAVA COP rule in Figure 3.3 is a function that starts with the keyword

rule and includes a name, a single parameter whose type is a (subtype of)Tree , and

a body containing a sequence of constraints. When JAVA COP’s AST traversal visits

a node, the node is passed to each rule that takes an argument of the node’s type. For

example, thecheckUntainted rule defined in Listing 3.2 will be passed each node

representing a Java assignment statement during JAVA COP’s traversal of an AST. As

a result, each assignment statement is forced to satisfy theconstraints in the body of

checkUntainted . There are several forms of constraints, which are discussed in detail

in later subsections.

Another simple example of this kind of rule is shown in Listing 3.3. This rule

ensures that a@NonNull annotation is only used on variables and fields which have

a reference type. While not necessary, using a rule like this prevents abuse of the

@NonNull annotation on fields and variables that cannot ever be null bydefinition.

The rule relies on the ability to look up the type of an AST nodedirectly from the node
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〈RuleFile〉 ::= (〈Rule〉 | 〈Declaration〉)+

〈Rule〉 ::= ‘ rule ’ 〈Identifier〉 ‘ ( ’ 〈Joinpoint〉 ‘ ) ’ 〈StatementList〉 〈FailureClause〉?

〈Declaration〉 ::= ‘declare ’ 〈Identifier〉 ‘ ( ’ 〈VarDefList〉 ‘ ) ’ 〈StatementList〉

〈StatementList〉 ::= ‘ { ’ 〈Statement〉+ ‘ } ’

〈JoinPoint〉 ::= 〈VarDef〉

| 〈Identifier〉 ‘<<: ’ 〈Identifier〉

〈VarDefList〉 ::= 〈VarDef〉 (‘ , ’ 〈VarDef〉)*

〈VarDef〉 ::= 〈TypeIdentifier〉 〈Identifier〉

〈FailureClause〉 ::= ‘ : ’ (‘ error ’ | ‘warning ’) ‘ ( ’ 〈Expression〉 ‘ , ’ 〈Expression〉 ‘ ) ’

〈Statement〉 ::= 〈Condition〉

| 〈Quantification〉

〈Condition〉 ::= ( ‘where ’ | ‘ require ’ ) ‘ ( ’ (〈VarDefList〉 ‘ ; ’)? 〈Expression〉 ‘ ) ’

〈ConditionRest〉

〈ConditionRest〉 ::= 〈FailureClause〉? ‘; ’

| 〈StatementList〉 〈FailureClause〉?

〈Quantification〉 ::= (‘ forall ’ | ‘exists ’) ‘ ( ’ 〈VarDef〉 ‘ : ’ 〈Expression〉 ‘ ) ’

〈StatementList〉 〈FailureClause〉?

Figure 3.3: A subset of the JAVA COP Syntax. Expression syntax is not presented here,

but handles most Java expressions and additionally supports let binding and pattern

matching (Section 3.2.7.
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rule checkNonNul lRef ( JCVariableDecl v ){
where( requiresNonNul l (v )){

require(! v . type . isPrimit ive ()):
error(v , " @NonNull can only annotate variables of "+

" reference type " );
}

}

Listing 3.3: A JAVA COP rule that ensures the@NonNull annotation is only used on
subtypes ofObject .

itself.

In a traditional type system, a program is considered to typecheck successfully if

there is some way to derive a type for the program through the given typechecking

rules. Because pluggable type systems in JAVA COP often impose only a few addi-

tional constraints onto the existing Java type system, JAVA COP enforces the opposite

convention. In particular, a program (or compilation unit)successfully typechecks by

default in JAVA COP, and JAVA COP rules are used to impose additional requirements

to be satisfied. However, it is easy for a JAVA COP user to implement the traditional

style if desired; an example is shown in Section 3.2.6.

3.2.4 Subtype Rules

A hallmark of most object-oriented type systems is the notion of subtyping. Static

typechecking ensures that this subtyping relation is respected, such that values of a

given type can only ever beviewedas that type or a supertype. For example, the

type of the right-hand side in an assignment statement must be a subtype of the type

of the reference being assigned into, and the actual arguments to a method call must

be subtypes of the corresponding formal argument types. Pluggable type systems for

object-oriented languages may need to extend the existing subtyping relation, in order
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to prescribe the ways in which the new user-defined type specifications interact with

other types–both Java types and user-defined ones.

JAVA COP’s rule language supports the declarative specificationof user-defined

subtyping relationships. For example, the rule in Listing 3.4 subsumes thecheckUnta-

inted rule in Section 3.1 by ensuring a potentially tainted expression can never be

treated as@Untainted . The only syntactic difference between writing a rule for sub-

typing and writing an AST rule, as described in Section 3.2.3, is the parameter list of

the forma <<: b . The rule applies to any AST node where a subtype relationship is

traditionally required, including assignment statements, return statements, parameter

passing, and type casts. JAVA COP subtyping rules receive the expressiona whose type

must be compatible with the type of the symbolb. At an assignment node, for exam-

ple, the right-hand-side expression will be checked against the symbol for the variable

or field being assigned into.

Subtyping rules can also be written that define supertypes ofan unqualified Java

type. For example, the goal of a type system for confinement [VB99] is to ensure that

instances of types that are marked asconfinedare only accessible within the type’s

defining package. To achieve this goal, such a type system imposes a number of re-

strictions on confined types. The rule in Listing 3.5 enforces one such restriction,

which prevents a value of confined type from being treated as an unconfined supertype.

The confined helper predicate used in the rule checks whether a type was declared

@Confined .

3.2.5 Constraints

The body of a JAVA COP rule consists of a sequence of constraints. The basic kind of

constraint has the form “require(<condition>); ”. Such a constraint is satisfied if

the associated boolean condition evaluates totrue ; otherwise the constraint fails. As a
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rule checkUntainted (node <<: sym ){
where( requiresUntainted (sym )){

require( def in i te lyUntainted (node )):
error(node , " Possibly tainted expression "+node

+" used where @Untainted expected " );
}}

Listing 3.4: A rule which enforces proper subtyping constraints for anuntaintedtype
system.

rule checkConf ined (a <<: b ){
where( conf ined (a. type )){

require( conf ined (b. type )):
error(a , " Confined expression may not be treated "

+"as a subtype of unconf ined type "
+b. type );

}}

Listing 3.5: A rule for aconfinedtype system which does not allow a confined type to
be converted into an unconfined type.

simple example, the rule in Listing 3.6 shows how JAVA COP can encode the semantics

of the final modifier for Java classes.

This rule checks each class definition to ensure that the class does not inherit from

a class that has the@Final attribute. The constraint in the rule employs the rule lan-

guage’sSymbol objects to accessinterfaceinformation about a class’s declared super-

class. The JAVA COP rule language ensures that rules can be enforced modularly via

the API that it provides to users. For example, while it is possible to access a given

class’s superclass, it is not possible to access all subclasses of that class. This modular

style of checking can be seen in the construction of thefinalClass rule as the global

property that a@Final class must have no subclasses is ensured by individual checks

on each compiled class of a project.

Often a constraint should only be applied under certain circumstances. This can be
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rule f inalClass ( JCClassDecl c ){
require(! c . supertype .sym. hasAnnotat ion (" Final " )):

error(c , " Superclass has a @Final annotat ion !" );
}

Listing 3.6: A JAVA COP rule that enforces thefinal modifier on Java classes by
signaling an error when a subclass extends a final class.

accomplished through the use of awhere constraint. Likerequire , awhere constraint

has a boolean guard condition. In addition, awhere constraint has a body containing

a sequence of other constraints. Thewhere constraint is satisfied if either its guard

evaluates tofalse or all constraints in the body evaluate totrue . An examplewhere

constraint is shown in thecheckUntainted rule from Listing 3.4. In that rule, the

right-hand-side expression of an assignment need only be shown to be untainted if the

left-hand-side variable or field is annotated with@Untainted .

The language for constraint conditions is an extension of the language for Java

boolean -typed expressions. These expressions can invoke methods on any AST nodes,

types, and symbols in the scope of the constraint. JAVA COP also supports conditions

that perform let-binding type tests and structural patternmatching, which are discussed

in Subsection 3.2.7.

JAVA COP includes support for Java’s primitive types andString , and their as-

sociated operations and methods, as well as for aList type provided byjavac .

Constraints may also employ values of two new types: atraversal environmentEnv

holds information about the tree context surrounding a given node, and aglobal en-

vironmentGlobals is a repository for global constants, such as the type objects for

java.lang.Object and primitive types, and the symbols for the root and empty pack-

ages. An instance of each of these two types is implicitly in scope in each rule, with

the nameenv andglobals respectively. Some examples in the next section illustrate

their usage.

35



Finally, the developer may directly look up fields or invoke methods on Java objects

which are not natively supported by the JAVA COP API by using the# operator. While

I believe that the JAVA COP language and API suffice for most type systems, the ability

to use an API defined outside of the one provided by JAVA COP is occasionally useful.

For instance, the# operator is used to allow JAVA COP rules to call into a user-defined

dataflow API built on top of the JAVA COP flow-sensitive framework, discussed in

Section 3.4.

3.2.6 Auxiliary Predicates

In addition to rules, JAVA COP allows users to declare auxiliary predicates, analogous

to the auxiliary predicates sometimes used in formal type systems (e.g., Featherweight

Java’s override and downcast [IPW01]) and first-order logic,using thedeclare key-

word. These predicates are not tested directly during JAVA COP’s AST traversal but

instead are used simply as helpers for rule definitions. Predicates are invoked by the

bodies of rules and other predicates using a traditional function-call syntax. For exam-

ple, the rulecheckUntainted from Section 3.2.4 makes use of arequiresUntainted

predicate which is defined in Listing 3.7.

The requireUntainted predicate gets the given node’s associated symbol, if it

has one, and uses the symbol to check whether the node has the appropriate annotation.

Auxiliary predicates provide the usual benefits of procedural abstraction. In this case,

the requiresUntainted predicate serves to separate the logic that determines how

untainted-nessis annotated from the logic that determines the behavior of programs

employing such an annotation. This separation makes it easyto augment or modify

the annotation mechanism. For example, untainted-ness could be indicated by using a

naming scheme instead of Java’s metadata facility, simply by changing the definition

of therequiresUntainted predicate as in Figure 3.8.
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declare requiresUntainted ( JCTree t ){
require( t . holdsSymbol

&& t. getSymbol . hasAnnotat ion (" Untainted " ));
}

Listing 3.7: A predicate which returns true when the checkedtree has been marked
with the@Untainted annotation at declaration.

declare requiresUntainted ( JCTree t ){
require( t . getName . startsWith (" untainted_ " ));

}

Listing 3.8: A predicate which returns true when the checkedtree has been given a
name starting with theString "untainted " .

Rule and predicate bodies naturally support a form of conjunction for constraints,

by sequencing multiple constraints. Predicates themselves additionally provide a declar-

ative form of disjunction. Following the conventions of type system definitions, JAVA -

COP allows an auxiliary predicate to have multiple definitions; an invocation of the

predicate succeeds if at least one of the definitions’ bodiesis satisfied.

For example, thecheckUntainted rule from Listing 3.4 makes use of the

definitelyUntainted predicate, which checks whether a givenJCTree object is

definitely untainted. This predicate can be defined in JAVA COP as a case analysis on

different subtypes ofJCTree by providing multiple definitions of the predicate. A few

representative definitions are provided in Listing 3.9. Adeclare implicitly performs

a type test on a given node against the declared type of its argument. This type test de-

sugars into arequire constraint: thedeclare definition fails if the type test fails. For

example, the third definition in Listing 3.9 fails if the given node does not represent a

Java assignment expression.

As mentioned in Section 3.2.3, predicates also allow developers to define type

systems in a more traditional fashion where every type-correct expression must be
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/* A node is untainted if annotated as such */
declare def in i te lyUntainted ( JCTree t ){
require( requiresUntainted ( t ));

}

/* A literal is always untainted */
declare def in i te lyUntainted ( JCLiteral l ){
require( true );

}

/* The value of an assignment is untainted
if the value being assigned is untainted */

declare def in i te lyUntainted ( JCAssign a){
require( def in i te lyUntainted (a. rhs ));

}

Listing 3.9: Three definitions of a predicate which indicates whether an expression
should be considered untainted in all cases.

defined explicitly, as opposed to the allowed-by-default semantics of JAVA COP rules.

For instance, the developer could define a subtyping predicate for untainted that must

hold at all places where subtyping is required. Instead of defining the subtyping rule as

in Listing 3.4, the rule could instead be defined primarily via a predicate as shown in

Listing 3.10. Unless one of theisSubtype predicate definitions is satisfied, this rule

will fail.

3.2.7 Pattern Matching and Conditional Assignment

Type rules often depend on the ability to deconstruct the expressions, types, and envi-

ronments that they constrain, so it is imperative that a language designed for encoding

pluggable types also have this ability. To that end, JAVA COP supplies two new op-

erators:<- for type-conditional value binding, and=> for pattern matching on AST

nodes.
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rule checkUntainted (node <<: sym ){
require( isSubtype (node , sym ))

: error(node , " Subtyping constraints violated for "
+" untainted type system ");

}

declare isSubtype ( JCTree node , Symbol sym ){
require(! requiresUntainted (sym ));

}

declare isSubtype ( JCTree node , Symbol sym ){
require( requiresUntainted (sym)

&& def in i te lyUntainted (node ));
}

Listing 3.10: A replacement rule forcheckUntainted from Listing 3.4 which requires
thatall subtyping nodes satisfy the providedisSubtype predicate.

An expression of the formv <- e evaluates to true ife is found to be an instance

of the type of the variablev . If satisfied,e is cast to the type ofv , which is then

let-bound to this value. Otherwise, the type-conditional binding evaluates to false and

the value is not bound. A constraint condition may be preceded by a list of variable

declarations to be bound within its conditional expression. For example, the following

constraint binds the reference and field/method begin accessed at a explicit dereference

point (dref ) to therecv andmesg variables:

require(Tree recv , Str ing mesg ;
recv <- dref . selected && mesg <- dref . name ){.. .}

As another example, in many type systems, such as the non-null type system de-

scribed in Section 3.4, it is necessary to distinguish between the explicitthis receiver

and other receivers at method invocation sites. The predicate explicitThis in List-

ing 3.11 uses type-conditional assignment conditions in order to test this property.

Given a method invocation AST node, it uses conditional binding to first match only

receivers that do an explicit dereference and then to match only trees with a single ex-
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declare expl ic i tThisReceiver ( JCMethodInvocat ion m) {
require( JCFieldAccess s ; s <- m.meth ) {

require( JCIdent i ; i <- s. selected ) {
require( i . name . equals (" this " ));

}}}

Listing 3.11: A JAVA COP predicate that is satisfied when checked on a method call
with an explicit this as its receiver. This predicate is used in the non-null checker
further discussed in Section 3.4.

plicit dereference. If both conditional bindings succeed,then the explicit dereference

is required to be equal to thethis identifier.

JAVA COP also includes an expression sub-language for pattern matching on AST

nodes. Pattern matching allows for declarative testing of properties of an AST node,

while also deconstructing the node and giving names to its component nodes for use

in the rest of a constraint. A pattern match is aboolean expression:e => [ pat ] .

In this expression,e is an arbitrary expression of typeTree , and the pattern match

succeeds if the value ofe can successfully be matched against the patternpat .

Patterns are written as fragments of Java code which must be structurally equiva-

lent to a targeted expression in order for the match to succeed. Patterns may include

wildcard elements, which are writtenˆˆ to match any subtree,ˆ* to match any identi-

fier name, and... for any number of elements in a sequence, such as statements in a

block or parameters to a method. For example, the pattern:

v => [ @Untainted ˆˆ ˆ*(. . . ) ]

matches aJCTree nodev against a method declaration which has an@Untainted

annotation, has any return type, any name, and any number of arguments.

Patterns may also bindTree andString sub-components encountered in the pat-

tern structure to fresh variables declared in the constraint. Variable binding involves an

implicit type test: for a variable binding to succeed, the type of the component value
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must meet the declared type of the new variable. If one of these variables is used more

than once within the same expression, it is bound to the first instance, and the second

and subsequent instances are compared according to reference equality. For example,

variables can be bound to the subexpressions in the pattern described above as follows:

where(Tree typ , Str ing name ;
v => [ @Untainted typ name (.. .) ])

Patterns may also test whether a given subtree is equivalentto the result of evalu-

ating the JAVA COP expression between‘ markers. For example, ifn is a variable of

type JCTree , then the following constraint requiresn to be the first statement in the

current location’s enclosing block, which can be looked up from the context environ-

ment (env.next ). If the first statement in the enclosing block does not equaln, then

this pattern match will fail:

require(env .next => [{ ‘n ‘ ; . . . } ])

Pattern matching can significantly improve the readabilityand shorten the length

of rules that would otherwise require multiple type tests. For example, the rule from

Listing 3.11 can be rewritten using pattern matching as in Listing 3.12.

3.2.8 Quantification

JAVA COP provides quantification over two kinds of data structures. First, constraints

may universally or existentially quantify overjavac List s with forall andexists

quantifiers, respectively. The syntax is similar to the syntax of the enhancedfor in Java

1.5. For example, the predicate defined in Listing 3.13 requires thatconfinedclasses do

not haveunconfinedsupertypes through quantification over all supertypes. Theforall

iterates over a list of all types found on the list returned byc.supertypes() , binding

each to the names in turn. The variable used to bind each element of a list must

have the same type as the declared element type of the list. The syntax for existential
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declare shortExpl ic i tThisReceiver ( JCMethodInvocat ion m){
require( m.meth => [ this .ˆ*] );

}

Listing 3.12: A more succinct version of the JAVA COP rule from Listing 3.11, which
uses pattern matching.

rule ConfinedDef ( JCClassDecl c ){
where(! conf ined (c )){

forall(Type s : c. supertypes ()){
require(! conf ined (s )):

error(c ,. . .) ;
}}}

Listing 3.13: A JAVA COP rule–demonstrating quantification over lists–which requires
thatconfinedclasses do not extendunconfinedsuperclasses or implementunconfined
interfaces.

quantification is identical, except that it uses the keywordexists instead offorall .

Second, JAVA COP allows quantification over all nodes in a depth-first traversal

from a given AST node. During this traversal, only nodes thatmatch the declared

type of the quantified variable are considered. For example,the predicate defined

in Listing 3.14 determines if a field is used as the lock for another variable or field

in the same class The predicate uses existential quantification to iterate over every

variable and field declaration (JCVariableDecl ) in the body of the class currently

being visited (env.enclClass ). The predicate also shows interaction between the

advanced features of JAVA COP (quantification and pattern matching) to create concise

and readable definitions.
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declare isSynchLock ( JCVariableDecl v ){
exists( JCVariableDecl v2 : env . enclClass ){

/* don’t do pattern match if no lock declared */
require( declaresLock (v2 )){

require( Li teral n; v2 => [ @LockedBy (n) ˆˆ ˆ*]){
require(n. value . equals (v. name ));

}}}}

Listing 3.14: A JAVA COP predicate–demonstrating quantification over AST
nodes–which determines if a field is defined as a lock for another field or variable
for use in a race condition checking type system.

3.3 JAVA COPLanguage Semantics

In this section, I present a semantics for a core subset of theJAVA COP language

which I call FEATHERWEIGHTJAVA COP, or FJCOP, via a translation to the Datalog¬

language[CGT90]. Datalog¬ is one of the more widely used formal declarative query

languages for relational databases, and is, thus, a good reference point for the expres-

siveness of the language. The purpose of this presentation is to define more formally

what a JAVA COP program is and what kind of information about Java programs it

can provide. I hope that this formalism may lead to future insight into how to make

JAVA COP more efficient or how to automatically reason about JAVA COP programs

via proof assistants or automated theorem provers.

3.3.1 Datalog¬

To understand the translation from FJCOP to Datalog¬, I will first provide a small

overview of Datalog¬ that provides insight into its syntax and semantics. I use the

definition of Datalog¬ as defined by Ceri et al. [CGT90] as the basis for the translation.

In Datalog¬, there are three infinite alphabets that make up the basic elements of

Datalog¬ programs: variables, constants, and predicates. Predicates are simply an
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n-ary mapping from literals to truth values.

A term in Datalog¬ is either a variable or a constant, anatomis an n-ary predicate

and a list of arguments which are all terms, and aliteral is either an atom or a negated

atom. Aclauseis a set of literals. A Datalog¬ program is made up of a set of clauses

of which there are three kinds:facts, rules, andgoals. Facts consist of a single positive

literal, rules consist of a head literal and a body of literals and are written as in Prolog

head:−body, and goals contain only a body of literals written ? :−body.

There are two kinds of predicates in a Datalog¬ program:extensionalpredicates

andintensionalpredicates. Extensional predicates are defined by the extensional data-

base over which the Datalog¬ program will run; these predicates are defined before

execution of the program. Intensional predicates are defined by the program itself;

the execution of the program will generate facts regarding intensional predicates. For

FJCOP, the extensional predicates will consist of predicates related to the Java AST

and base type system whereas the intensional predicates will consist of the rules and

predicates defined in the FJCOPprogram.

As Datalog¬ is a query language, the semantics of Datalog¬ are defined by a map-

ping from the powerset of extensional predicate ground clauses to the powerset of all

predicate ground facts. It is easy to see that ground facts correspond to the values of

this model. As facts strictly define new information, they provide their own semantics;

a ground fact is already a value, and any fact with a variable is simply expanded into a

powerset from the literals defined in the extensional database. A rule is a fact generator

in that it can be used to derive new ground facts for an intensional predicate; thus, the

semantics of a rule is a mapping from the extensional database to the set of ground

facts for the predicate that the rule implicates. Adding a query to the program changes

the output of the program to the sets of extensional and intensional ground facts which

are subsumed by the query.
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checkUntainted (A) : - type(A , JCAssign) ,F1(A).
F1(A) : - lhs(A ,L) , type(L , JCTree) ,F2(A ,L ).
F1(A) : - ob ject(A) , lhs(A ,L) , ¬( type(L , JCTree)).
F2(A ,L) : - requiresUntainted (L) ,F3(A ,L ).
F2(A ,L) : - ob ject(A) , ob ject(L) , ¬( requiresUntainted (L )).
F3(A ,L) : - rhs(A ,R), type(R , JCTree) , def in i te lyUntainted (R).
F3(A ,L) : - ob ject(A) , ob ject(L) , rhs(A ,R), ¬( type(R , JCTree)).

Listing 3.15: Datalog¬ Translation of JAVA COP program from Listing 3.2.

For Datalog¬ programs with negation in the body of rules and goals, this mapping

is only well-defined for predicates with stratified negation(i.e., predicates that may

be partitioned into strata that do not allow recursive dependence on negation). Ceri et

al. [CGT90] provide more details on the Datalog¬ semantics as well as query execution

strategies.

3.3.2 Translation Overview

The FJCOP language allows users to define rules and predicates over Java AST classes

in a similar manner to a standard JAVA COP program. The translation scheme pre-

sented here shows this form of checking reduces to a satisfiability problem in Datalog¬.

The FJCOP framework can be thought of as an extensional database (EDB) generator

for a given Java AST. The FJCOP API provides the extensional predicates (EPred)

which the translated FJCOP rules and predicates will use. The translation itself cre-

ates the intensional predicates (IPred) which are a super set of the predicates and rules

explicitly defined in the FJCOP program. For example, Listing 3.15 shows a transla-

tion of the basic subtyping rule for assignment to an untainted reference as defined in

Listing 3.2.

It also outputs a set of Datalog goals of the form

? :- type(X , τ) , ¬( f (X )).

45



d ::= declare f ( x : τ+) {c}
| rule f ( x : τ) {c}

t ::= x | l

c ::= c; c
| require( eb);
| where( eb) {c}
| ∀L x : τ ∈ x. {c}
| ∀A x : τ ∈ x. {c}
| ∃L x : τ ∈ x. {c}
| ∃A x : τ ∈ x. {c}

ev ::= t | t. Fv( t*)

eb ::= ¬eb | f ( t+)
| t. Fb( t*) | x : τ← ev

Figure 3.4: The FJCOP language grammar.

These Datalog¬ goals are used to find AST nodes of typeτ that do not satisfy a rule

f . If execution of a Datalog¬ program augmented with a goal returns a non-empty set,

then this indicates the FJCOPprogram would generate at least one error for the given

AST node and the given FJCOP rule. If such an execution returns an empty set, then

the FJCOPprogram would not generate an error from that rule. For example, the goal

associated with the rule translated in Listing 3.15 would be

? :- type(X , JCAssign) , ¬( checkUntainted (X )).

To generate valid Datalog¬ programs, FJCOP must adopt the strategy of strati-

fied predicates with respect to negation. Ceri et al. [CGT90] present an algorithm to

determine stratification of a program. Application of this algorithm to the translated

Datalog¬ program can determine whether the FJCOPprogram was originally stratified.
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3.3.3 FJCOPGrammar

FJCOP is a subset of the actual JAVA COP language. This core subset of the JAVA -

COP language has been shown to be useful for a variety of non-trivial domain-specific

and general purpose type systems including forms of confinedtype, ownership types,

information flow systems, and design pattern checking [ANM06].

x, ℓ, andτ represent FJCOP variable names, Java literals, and Java type names,

respectively.Fv andFb represent functions from the FJCOP API which return non-

boolean results andboolean results, respectively. Since the translation scheme pre-

sented here has different judgments forboolean -valued and non-boolean -valued ex-

pressions, this distinction is important.f is the set of predicate and rule names defined

in the FJCOPprogram. Without loss of generality, this grammar assumes acanonical

form wherein all parameters to a predicate or FJCOP API function are only variables

or literals. A FJCOPprogram consists of one or mored elements.

3.3.4 Translation Judgment Notation

The Φ context found in many of the translation judgments represents the current

scope’s mapping from FJCOP variables to Datalog¬ variables; in other words,Φ is

a function from FJCOP variables to a Datalog¬ variables. This is a one-to-one map-

ping, although the translation scheme does not strictly enforce one-to-oneness (nor

does it enforce thatΦ remain a function in the face of variable shadowing). A fresh

Φ environment is generated for each FJCOPrule and predicate, thereby allowing local

name reuse between top-level entities in FJCOP.

FJCOPAPI functions are redefined over a flattened AST in Datalog¬ to fit a logic

programming style. For example, the FJCOPcall to retrieve the right-hand-side of an

assignment statement,a.rhs() , would correspond to the Datalog¬ expressionrhs(A,X)
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(as shown in Listing 3.15 whereX corresponds to the result of the FJCOPexpression.

The translation also uses a number of predicates which are not available from the

FJCOP API, but which an implementation of FJCOP in Datalog¬ would supply. The

typepredicate indicates if an object has a particular Java type;theob jectpredicate is

defined for every object in the AST (which is used to restrict the range of variables

used in negative literals); theconsandnil predicates define list relationships; and the

subnodespredicate defines a traversal ordering of an AST subtree as a list of those

nodes.

3.3.5 Translation Scheme

In this section, I present a subset of the judgments used in the translation scheme from

FJCOPto Datalog¬. The full set of translation judgments can be found in Appendix A.

3.3.5.1 Value Expressions⇒v

A translation rule of the form

Φ ⊢ ev⇒
v E | T ⊣Φ′

can be read as: Given the variable mapping contextΦ, the FJCOP value expression

ev translates to the Datalog¬ term or literalE with Datalog¬ termT that will hold the

result value that satisfiesE when evaluated. The translation also updates the mapping

context asΦ′. With value expressions, it is often important to refer backto the re-

sults of expressions in future evaluation. Thus, the translation rules for these kinds

of expression result in both a term or literal, which will be used to build a rule in the

Datalog¬ program, but also the term used to refer to the result of the evaluation for

further transformation.
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[TRANS-CONSTANT]

Φ ⊢ ℓ⇒v ℓ | ℓ ⊣Φ

[TRANS-VAR-KNOWN]

Φ(x) = X

Φ ⊢ x⇒v X | X ⊣Φ

[TRANS-VALUE-FN]

Φ ⊢ t⇒v T | T ⊣Φ0 ∀
|t|
i=1.Φi−1 ⊢ ti ⇒

v Ti | Ti ⊣Φi X fresh

Φ ⊢ t.Fv(t)⇒
v
Fv(T,T,X) | X ⊣Φ|t|

Translating constants and variables as shown in the TRANS-CONSTANTand TRANS-

VAR-KNOWN rules are straightforward. The rule for translating variables currently

not bound to a Datalog¬ variable is similarly straightforward and can be seen in Ap-

pendix A. The TRANS-VALUE-FN rule shown here simply flattens JAVA COP API

functions into Datalog¬ literals.

3.3.5.2 Boolean Expressions⇒b

A translation rule of the form

Φ ⊢ eb⇒
b E ⊣Φ′

can be read as: Given the variable mapping contextΦ, the FJCOPboolean expression

eb translates to the set of Datalog¬ literalsE and updates the mapping context asΦ′.

[TRANS-PRED-CALL ]

∀
|t|
i=1.Φi−1 ⊢ ei ⇒

v Ti | Ti ⊣Φi

Φ0 ⊢ f (t)⇒b f (T) ⊣Φ|t|
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[TRANS-BINDING-TYPE-TEST-1]

Φ ⊢ ev⇒
v E | T ⊣Φ′ E 6= T

Φ ⊢ x : τ← ev⇒
b E, type (T,τ) ⊣Φ′∪{(x,T)}

[TRANS-BOOL-FN]

Φ ⊢ t⇒v Φ0 ⊢ T | T ∀
|t|
i=1.Φi−1 ⊢ ti ⇒

v Ti | Ti ⊣Φi

Φ ⊢ t.Fb(t)⇒
b
Fb(T,T) ⊣Φ|t|

Rules TRANS-PRED-CALL and TRANS-BOOL-FN are straightforward reworkings

of the TRANS-VALUE-FN rule from the previous subsection. Rule TRANS-BINDING-

TYPE-TEST-1 makes use of thetype predicate defined in Section 3.3.4 to ensure that

the type test succeeds in order for the rule to be satisfied. One note of clarification

regarding TRANS-BINDING-TYPE-TEST-1, the test forE 6= T restricts this translation

rule to translating a value expression that translates intoa Datalog¬ literal and not in a

Datalog¬ term. The other case can be found in Appendix A.

3.3.5.3 Constraints⇒c

A translation rule of the form

Φ ⊢ c⇒c E |C

can be read as: Given the variable mapping contextΦ, the FJCOPconstraintc translates

to a set of Datalog¬ literalsE and a set of Datalog¬ rulesC.

[TRANS-SEQUENCE]

Φ ⊢ c1⇒
c E1 |C1 Φ ⊢ c2⇒

c E2 |C2

Φ ⊢ c1;c2⇒
c E1,E2 |C1∪C2
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[TRANS-WHERE-1]

F fresh T = range(Φ) Φ ⊢ eb⇒
b E ⊣Φ′ Φ′ ⊢ c⇒c Ec |C

Φ ⊢ where(eb){c}⇒
c F(T) |















F(T) :−E,Ec.

F(T) :−
|T|
^

i=1

object (Ti),¬(E).















∪C

[TRANS-FORALL-L IST]

F,X1,L,L′ fresh

Φ ⊢ x2⇒
v T2 | T2 ⊣Φ T = range(Φ) Φ∪{(x1,X1)} ⊢ c⇒c E |C

Φ ⊢ ∀L x1 : τ ∈ x2.{c}⇒
c

F(T,T2) |



















F(T,L) :−cons (X1,L
′,L), type (X1,τ),E,F(T,L′).

F(T,L) :−cons (X1,L
′,L),¬(type (X1,τ)),F(T,L′).

F(T,L) :−nil (L).



















∪C

[TRANS-EXISTS-L IST]

F,X1,L,L′ fresh

Φ ⊢ x2⇒
v T2 | T2 ⊣Φ T = range(Φ) Φ∪{(x1,X1)} ⊢ c⇒c E |C

Φ ⊢ ∃L x1 : τ ∈ x2.{c}⇒
c

F(T,T2) |







F(T,L) :−cons (X1,L
′,L), type (X1,τ),E.

F(T,L) :−cons (X1,L
′,L),F(T,L′).







∪C

The first rule here, TRANS-SEQUENCEdoes a straightforward translation of a se-

quence of FJCOPconstraints as the union (i.e., conjunction) of their respective transla-

tion elements. In Rule TRANS-WHERE-1, thewhere constraint is translated into two

rules defining a new auxiliary predicateF which either satisfies both the constraint

guard (E) and the body of the constraint (Ec) or does not satisfy the guard. When

negating the guard expression as a literal in Datalog¬, it is necessary to constrain the

clause by confining the possible objects to the known set of objects via theobject

predicate. Otherwise, Datalog¬ will define the predicate over all constants that are not

specifically defined in the program. Note that the TRANS-WHERE-1 rule handles the
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case when the boolean expression translates into a single Datalog¬ literal. The two

literal case is shown in Appendix A.

The Rules TRANS-FORALL-L IST and TRANS-EXISTS-L IST deal with quantifica-

tion over lists. The list is flattened using thecons andnil predicates. Unlike in Rule

TRANS-WHERE-1, constraining the negation in TRANS-FORALL-L IST does not re-

quire use of theobject predicate as thecons predicate already limits the domain of

the constants for the predicateF .

3.3.5.4 Predicate and Rule Definitions⇒d

A translation rule of the form

d⇒d C |G

can be read as: The FJCOP definition d translates to the Datalog¬ clausesC, and

corresponds to the Datalog¬ goalG.

[TRANS-PREDICATE]

Φ0 = /0 ∀
|x|
i=1.Φi−1 ⊢ xi ⇒

v Xi | Xi ⊣Φi Φ|x| ⊢ c⇒c E |C

declare f (x : τ){c}⇒d { f (X) :−
|x|
^

i=1

type (Xi,τi),E.}∪C | /0

[TRANS-RULE]

/0 ⊢ x⇒v X | X ⊣Φ Φ ⊢ c⇒c E |C

rule f (x : τ){c}⇒d

{ f (X) :−type (X,τ),E.}∪C | {? :−type (X,τ),not ( f (X)).}

As is expected, bothdeclare andrule constructs result in the definition of cor-

responding predicates in Datalog¬. The predicate definitions consist of the translated

constraints as well as type tests for the declared parameters.Therule translation also

produces a goal of the form ? :−type (X,τ),not ( f (X)). which, when added to a
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Datalog¬ program, will determine set of AST nodes of typeτ that do not satisfy the

rule f , therefore point to a violation of the FJCOP type system.

3.3.5.5 Program⇒p

A translation rule of the form

d⇒p C |G

can be read as: The FJCOPprogram defined via definitionsd translates to the Datalog¬

programC and a set of goalsG.

[TRANS-PROGRAM]

∀
|d|
i=1.di ⇒

d Ci |Gi

d⇒p
|d|
[

i=1

Ci |

|d|
[

i=1

Gi

As expected, the transformation of a FJCOP program is just the union (i.e., con-

junction) of all the transformedrule anddeclare constructs.

3.4 The JavaCOP Dataflow Framework

Some programming disciplines require flow-sensitive reasoning. For example, a pro-

grammer should never dereference an object unless it can be guaranteedat that pro-

gram pointthat the object is not null. A programmer might accomplish this by placing

an if statement checking for nullity around the dereference. Listing 3.16 illustrates

code that a practical, usablenon-nulldiscipline checker should allow. The JAVA COP

language can handle simple forms of flow-sensitivity by pattern matching against large

portions of code–such as in the case of anif statement–but pattern matching will not

work for the general case of flow-sensitivity.
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class Person {
@NonNull Str ing name = " Chris " ;

void setName ( String newname ) {
if ( newname == null)

name = "" ;
else

name = newname ;
}

}

Listing 3.16: Example code that requires flow-sensitive reasoning.

The need for flow-sensitive reasoning in building sound, expressive type systems

has been demonstrated in recent literature (e.g., [FL03, AKC02, Boy01]). The follow-

ing approach to providing users with a practical way to writethese kinds of checkers

was adopted in JAVA COP:

1. JAVA COP provides a generic dataflow framework that allows users to easily

define analyses that determine facts that hold at each program point.

2. JAVA COP performs user-defined flow analyses prior to enforcing a checker’s

core JAVA COP rules.

3. Results of the analyses are made available to the core JAVA COP rules via deco-

rations on the AST nodes allowing users to easily write checkers that accept or

reject programs based on flow-sensitive information.

This section describes JAVA COP’s support for defining checkers that involve flow-

sensitive reasoning. To illustrate how checkers can make use of this information, I

explain the framework in terms of anon-nulldiscipline checker with the goal of show-

ing how to allow the program in Listing 3.16 to successfully type check. A non-null

type system ensures that no null values are stored in references that are marked as non-

null. Non-null references are important because dereferencing them is always safe:
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doing so will never cause unexpected null pointer exceptions at runtime. The basic

rules of a non-null checker are very similar to those I previously defined for untainted

in Listings 3.2, 3.4, 3.7, and 3.9. A more detailed example ofthe non-null checker is

described in Section 3.7.

3.4.1 Specifying Dataflow Analyses

JAVA COP’s flow framework allows users to easily create forward, gen/kill style, in-

traprocedural dataflow analyses. In general, describing ananalysis of this type requires

specifying:

1. the dataflow facts being tracked (e.g., definition sites for a reachable definitions

analysis or program expressions for an available expressions analysis)

2. the sets of dataflow facts that are generated by program expressions

3. the sets of dataflow facts that are killed by program expressions

4. how to combine sets of dataflow facts at control flow merges

In the JAVA COP framework, this is accomplished by defining a Java class that imple-

ments an interface described below. In contrast to the declarative language for writing

type systems, JAVA COP gives users the full expressive power of Java to specify anal-

yses. In particular, this allows the user to choose a representation for sets of dataflow

facts that is appropriate for the analysis (e.g. a bit vectorversus a hash map). In the

future, the JAVA COP language may be extended to provide a declarative interface to

the dataflow framework (e.g., in the manner of bddbddb [WL04]). Such an extension

may fit nicely with the JAVA COP semantics given in Section 3.3.

To define a dataflow analysis in JAVA COP, the user provides a Java class that rep-

resents a set of dataflow facts and that implements theFlowFacts interface shown
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interface FlowFacts {
FlowFacts genSet ( JCTree node );
FlowFacts ki l lSet ( JCTree node );

//Allow branch-condition-sensitive analysis
FlowFacts genSetTrue ( JCTree node );
FlowFacts ki l lSetTrue ( JCTree node );
FlowFacts genSetFalse ( JCTree node );
FlowFacts ki l lSetFalse ( JCTree node );

//Operations for combining sets of FlowFacts
FlowFacts addSet ( FlowFacts f );
FlowFacts removeSet ( FlowFacts f );
FlowFacts meetWith ( FlowFacts f );

}

Listing 3.17: The interface for defining dataflow analyses.

in Listing 3.17. The user-definedgenSet andkillSet functions determine how to

change an incoming set of dataflow facts as a result of traversing the given expression.

TheaddSet andremoveSet functions respectively are used to update the current set

of facts with the gen and kill sets, and themeetWith function is used to combine

sets at control flow merges. Note that the user-definedgenSet and killSet func-

tions are consulted for individual program expressions, not for control flow statements

such asif /else , try /catch /finally , loops, and labeled breaks. These statements

are handled by the framework’s traversal code, shielding users from the complexi-

ties of Java’s control flow. For simple cases of path-sensitivity, such as distinguishing

between the then-branch and an else-branch of an if statement, the API provides the

methodsgenSetTrue , genSetFalse , killSetTrue , andkillSetFalse .
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3.4.2 An Example Analysis for the Non-null Checker

Listing 3.18 shows theFlowFacts implementation for an analysis that can determine

that newname is non-null when assigned toname in Listing 3.16. ThegenSetFalse

implementation checks if the given expression has the form"localVar == null" .

If so, it returns a set containing the fact thatlocalVar is non-null, since this clearly

holds when the expression evaluates to false. This fact might be invalidated by a reas-

signment tolocalVar . This is handled by thekillSet implementation. The imple-

mentations for the other gen and kill functions required by the FlowFacts interface

are not shown and simply return an empty set of dataflow facts.The implementation

distributed as part of the JAVA COP suite enhances this one by allowingnull to appear

on the left of an equality test and allowing for!= tests. The implementation addition-

ally generates non-null facts on certain assignments to local variables that are clearly

not null, such as string literals and (boxed) primitive literals.

3.4.3 Accessing Analysis Results from JavaCOP Rules

When using dataflow analysis, each expression node in the AST is decorated with

the set of facts valid before its evaluation. The JAVA COP rules can then query these

decorations in order to incorporate flow-sensitive reasoning. Listing 3.19 shows the

JAVA COP code that must be added to the non-null checker in order for JAVA COP to

accept the code in Listing 3.16. Theflowfact declaration allows the user to specify

that a particular implementation of theFlowFacts interface should be used during the

analysis pass. A JAVA COP file may indicate that several analyses should be performed

by including multipleflowfact declarations.

Incorporating flow sensitivity into a non-null checker onlyrequires adding one new

case to thedefinitelyNotNull predicate (similar to the one for untainted shown in

57



class NonNul lFacts implements FlowFacts {

HashSet <Symbol > nonnul ls = new HashSet ();

//Explicit non-null test generates non-null fact
FlowFacts genSetFalse ( JCTree node ){

NonNul lFacts gen = new NonNul lFacts ();
if ( node instanceof JCBinary

&& node . tag == JCTree .EQ) {
JCBinary b = ( JCBinary )node ;
Symbol s = getSymbol (b. lhs );
if (b. rhs . getKind () == Kind . NULL_LITERAL

&& isLocal (s ))
gen . nonnul ls .add (s );

}
return gen ;

}

//Re-assignment kills non-null fact for local variable
FlowFacts ki l lSet ( JCTree node ){

NonNul lFacts kil l = new NonNul lFacts ();
if ( node instanceof JCAssign ){

Symbol s = getSymbol ((( JCAssign )node ). lhs );
if ( isLocal (s ))

ki l l . nonnul ls .add (s );
}
return kil l ;

}

//Define the meet operation as intersection
FlowFacts meetWith ( FlowFacts f ){

nonnul ls . retainAl l ((( NonNul lFacts ) f ). nonnul ls );
return this;

}

//Rules can use this method to get non-null facts
boolean is IdentNonnul l ( JCIdent id ){
return nonnul ls . contains ( getSymbol ( id ));

}
}

Listing 3.18: FlowFacts for non-null analysis.
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flowfact nonnul l . NonNul lFacts ;

declare def in i te lyNotNul l ( JCIdent id ){
require( NonNul lFacts f ;

f <- id . getFlowFacts (" nonnul l . NonNul lFacts " )){
require( f# isIdentNonnul l ( id ));

}}

Listing 3.19: A JAVA COP declaration using non-null dataflow facts.

Listing 3.9), as shown in Listing 3.19. The case queries theNonNullFacts object

that decorates an identifier’s AST node in order to check whether or not the dataflow

analysis determined the identifier to be non-null at this point. Note that theFlowFacts

interface itself does not provide a means of accessing the dataflow facts. The user is

free to provide whatever methods are appropriate and convenient for querying a partic-

ular implementation. In this example, theisIdentNonnull method from Listing 3.18

serves this purpose1.

3.4.4 Flow Analysis Implementation

The goal of implementing the JAVA COP dataflow framework was to make it easy

for users to specify the kinds of analyses likely to be neededwhen building pluggable

type checkers – analyses similar to those required by the existing Java type system. The

javac compiler already performs a flow analysis in order to flag errors for uninitialized

local variables and final fields, unreachable code, and uncaught exceptions. This well-

tested, efficient code was generalized in JAVA COP to make calls to theFlowFacts

interface during traversal of the AST.

It is worth noting that although JAVA COP dataflow analyses operate on the AST

(as opposed to a control flow graph), users of the framework need not be concerned

1Recall that the# operator allows access to Java methods that are not part of the JAVA COP API.

59



with the complexities of Java’s control flow. This is all handled by the framework’s

traversal code. For example, the analysis defined by the simple NonNullFacts class

in Listing 3.18 not only handles the if-statement case from the motivating example

in Listing 3.16, but also correctly derives the dataflow information over all similar

constructs such as loop conditionals.

The decision to adapt the existing OpenJDK analysis imposessome limitations on

the analyses that JAVA COP supports. Only forward, gen/kill dataflow analyses are

permitted. But in practice, the flowfacts framework is able tohandle many useful

analyses. These analyses were built with minimal per-analysis implementation effort;

an average of 115 non-comment, non-whitespace lines of codesufficed for each.

3.5 Type System Testing

Just as Java programmers make mistakes in their programs, JAVA COP users may in-

troduce errors in their pluggable type systems. In this section we describe a practical

approach to giving JAVA COP users confidence in the correctness of their type sys-

tems. In Section 3.5.1 we describe the two-stage testing approach supported by our

framework and in Section 3.5.2 we report on our experience using the test harness.

3.5.1 Two-Stage Testing Approach

The first stage, thecompilationstage, of our testing framework leverages the fact that

type system developers will have an understanding of the kinds of programs that should

and should not successfully type check, much as unit test developers have a general

idea of what the results of their unit tests should be. Verifying that type checkers gen-

erate the expected compilation results requires three components from the developer:

the JAVA COP type system being tested, a test suite of Java programs, and the expected
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public abstract class RawTestParent {

public RawTestParent () {
m();

}

@RawThis abstract protected void m();

}

public class RawTest extends RawTestParent {
public @Nonnul l Integer f1 = new Integer (3);
public @Nonnul l Integer f2 = new Integer (4);

public RawTest () {
super();

}

@RawThis protected void m() {
f1 = f2 * 2;

}
}

Listing 3.20: A couple of Java classes defining a test from thenon-null test suite. This
test demonstrates a case where a potentially uninitialized@NonNull field could result
in a null dereference during construction.

outcome of compiling each test program with the JAVA COP type system. Each of the

programs in the test suite is then compiled using the specified JAVA COP type system

and the results are compared with the expected outcome.

An example from the non-null test suite is shown in Listing 3.20. This examples

demonstrates how virtual method dispatch, field initialization, and non-null references

interact during object initialization. At first glace, it may seem safe to do the assign-

ment from@Nonnull field f2 to @Nonnull field f1 in methodmof the classRawTest .

However, f2 may not have been initialized yet ifm is called from the superclass’s

(RawTestParent ’s) constructor. Thus, this test is expected tofail with respect to the
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Loading constraints class : javacop . nonnul l . Nonnul l
Done , loaded 1 constraint sets .
javacop / runt ime / test / examples2 / RawTest . java :14: Nonn ul l :
Possibly null value where a @Nonnul l value is expected

f1 = f2 ;
ˆ

1 error

Listing 3.21: The expected result of running the test shown in Listing 3.20.

non-null type system. JAVA COP stores the expected outcome as a text file containing

the expected output of the compiler. For the test in Listing 3.20, the expected outcome

is shown in Listing 3.21.

The compilation stage of the test framework allows JAVA COP users to test whether

the intended static programming discipline is being implemented correctly by the rules.

However, these tests do not provide feedback on whether the type system ensuresin-

tendedprogram properties, only theexpectedresults of type checking. The distinction

between intended and expected here is subtle: the developerof a test suite expects

the tests to provide certain type checking results, but may have nonetheless created a

test which she believes should type check but actually violates the intended runtime

invariants associated with the type system.

For example, consider again the non-null type system. A fieldor variable declared

@NonNull is intended to never have the valuenull at runtime, thereby preventing null

dereferences. However, suppose the developer had mistakenly denoted that the test in

Listing 3.20 shouldpasstype checking. A type system that does not flag this test as

an error would successfully meet the expectations of the type system according to the

developer, but fail to ensure the intended non-null properties.

The second stage ( theruntimestage), of JAVA COP’s testing framework allows

users to test whether theseintentionsare violated for programs that their type system
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accepts. I allow JAVA COP users to express the intended runtime properties with a

simple API that supports runtime instrumentation of Java bytecode with user-defined

checks. This approach offers an advantage over formal specification of an invariant

in that the invariant can be tested directly on the objects atruntime. Thus, instead

of having to reason about how Java deals with heaps, multithreading, dispatch, etc.,

developers can write simple code that examines the objects available at runtime.

With this instrumentation facility, the user optionally specifies a Java runtime-

check method for each type of bytecode instruction to be executed immediately be-

fore all instructions of that kind. This method can check properties of the bytecode

instruction and signal an error when an invariant is violated. If such an error is sig-

naled when executing a program that was accepted by a type checker, then a hole in

that type system is exposed. Using bytecode instructions asthe entry point for runtime

tests is a simple solution, but it does pose one problem. Javaprogrammers to do not al-

ways know which bytecode instructions correspond to the source code elements. This

could potentially be handled by adding more test entry points to the JAVA COP instru-

mentation facility such as at all method invocations, all dereferences, all field updates,

etc. While JAVA COP does not currently support this, it is something I am considering

adding in the future.

Listing 3.22 shows an excerpt from the runtime checker for non-null properties.

The excerpt defines three methods:test aux , testPutField , andtestGetField .

Both of the methodstestPutField and testGetField define define how their re-

spective bytecode instructions should be instrumented. The arguments to the methods

are references that are copied off of the virtual machine stack to ensure unintended

effects to these objects are minimized. Metadata annotations on each formal describe

the what each argument is meant to represent for that instruction.

Each instrumented bytecode instruction has its own set of parameters that can be
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accessed2. The testPutStatic method the type of the object whose field is being

updated (@ReceiverObject recv ), the name of the field (@FieldName name), and

the object being assigned to the field (@ActionObject o ) are all provided. In compar-

ison, thetestGetField method provides the actual object of the receiver instead of

the type of class@ReceiverObject recv and lacks the@ActionObject parameter.

As the methodtest aux does not correspond to any particular bytecode instruction,

it will result in no additional automated instrumentation.However, the instrumenta-

tion methods usetest aux for code reuse. ThegenerateError method generates a

JAVA COP runtime exception from the error message it is passed andshould be called

by all test methods. It will only generate errors if it is given a non-null string.

The test framework incorporates the user-defined runtime invariant tests as follows.

Runtime instrumentation classes, such as the one shown in Listing 3.22, are used to

build an adapter that instruments bytecode dynamically when a class is loaded by the

JVM. I implemented this on top of the ASM bytecode rewriting framework [BLC02].

Each program in the test suite that is accepted by the user’s JAVA COP checker in the

first stage of testing continues to the second stage, where itis compiled and executed

using the instrumenting adapter. Any violations are reported to the user and indicate

that a program satisfying the type system’s discipline nevertheless fails to meet the

desired runtime invariants.

Listing 3.23 shows, at the source code level, the result of instrumenting the test

from Listing 3.20 via the non-null runtime instrumenter from Listing 3.22. Running

this instrumented program will result in an exception beinggenerated before the as-

signment fromf2 to f1 in RawTest ’s methodmwhen called from the constructor of

RawTestParent . In practice, this instrumentation is done only at the levelof the byte-

code when the class is loaded, but is shown at the source code level for clarity and

2All test methods actually share two common parameters, the object in whose context the instruction
is executed and that object’s type, but these parameters areomitted for brevity.
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public class Nonnul lTestMethod {

/* common nullity test and message abstraction */
private static String test_aux ( Object o) {
return (o == null)? " Dereference of null object "

: null;
}

/* check for two properties: *
* 1. null assigned into @Nonnull field *
* 2. dereferenced object is null */
public static void testPutStat ic (

@ReceiverObject Class recv ,
@FieldName String name ,
@ActionObject Object o ){

Str ing message = null;
try{

if( recv . getField (name ). hasAnnotat ion ( Nonnul l . class)
&& o == null)

message = " Cannot assign null to f ield "+name ;
} catch ( Except ion e) {
/* exception cannot be generated */

}
generateError ( message );

}

/* the other tests all test for receiver nullity */
public static void testGetField (

@ReceiverObject Object recv ,
@FieldName String name) {

generateError ( test_aux ( recv ));
}

...
}

Listing 3.22: An excerpt from the Java class that specifies the runtime semantics for
a @NonNull type system. This excerpt signals an error when a null value is assigned
into a@NonNull field at runtime.
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brevity.

3.5.2 Experience

Runtime Instrumentation I implemented four non-trivial runtime instrumenters for

use with the test framework. The non-null checker is 36 LOC, instrumenting four

bytecode instructions. It replicates the behavior of the Java virtual machine’s nullity

checking and extends this to include a test to ensure anull value is never stored in

a @NonNull reference. Theconfinedtype system [VB99] instrumenter consists of 37

LOC and instruments seven bytecode instructions. Confined type systems are meant

to ensure that confined objects are encapsulated by their package, so the instrumenter

checks for illegal dereferences and assignments of those objects outside of their pack-

ages. I also implemented runtime instrumenters for arace-condition detectiontype

system [FF00] (43 LOC, four bytecode instructions), which determines if a field is

accessed without its lock being held, and for our implementation of Java’sfinal class

modifier (17 LOC, one bytecode instruction), which checks if asubclass of a@Final

type is ever instantiated at runtime.

3.6 Domain-Specific Checkers: Polyglot & SCJ

This section illustrates how JAVA COP can be used to enforce domain-specific prop-

erties on Java projects. These kinds of domain-specific checkers point to the core

motivation for the work presented in this dissertation. Building such checkers from

scratch requires a non-trivial amount of time and a grasp on the fundamentals of Java

compiler architecture. By abstracting away the details of the compiler, the disciplines

can be developed quickly and maintain a close correspondence with their intent.

Although I have used JAVA COP to write a number of these pluggable type systems,
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public class RawTest extends RawTestParent {

public @Nonnul l Integer f1 ;
public @Nonnul l Integer f2 ;

public RawTest () {
super();
if ( this == null)

throw new JavaCOPExcept ion ( . . .);
Integer temp = new Integer (3);
if ( temp == null)

throw new JavaCOPExcept ion ( . . .);
f1 = temp ;
temp = new Integer (4);
if ( temp == null)

throw new JavaCOPExcept ion ( . . .);
f2 = temp ;

}

@RawThis protected void m() {
if ( this == null)

throw new JavaCOPExcept ion ( . . .);
if ( f2 == null)

throw new JavaCOPExcept ion ( . . .); // throws exception
f1 = f2 ;

}
}

Listing 3.23: An updated version of theRawTest classes from Listing 3.20 that shows
how runtime instrumentation would affect the code. Instrumentation actually occurs
at the bytecode level when the class is loaded.
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I chose to examine two particularly compelling domain-specific examples here. One of

the reasons I find these examples so compelling is how they show even simple project-

specific disciplines can be useful for building better software. The first checker is

for the Polyglot extensible compiler framework from Cornell[NCM03]. This checker

determines whether projects based on Polyglot appropriately use the design patterns

which provide Polyglot with its extensible behavior. The second example is a checker

for Safety Critical Java Technology from the Java Specification Request 302 team. The

discipline of this checker is very straightforward, but anymistakes in implementing the

discipline can cause program errors that result in catastrophic physical damage. Thus,

it is vitally important to follow the discipline to create safe programs.

There are a number of other domain specific disciplines that Ihave implemented

which are not discussed here but can be found in the JAVA COP papers [ANM06,

MME]. These disciplines include a very large checker for Enterprise JavaBeans 3.0

conformance [DeM04], adegenerate classesmicropatterns detector [GM05], PMD

Java style checkers [Cop05], and a checker for determining whether JUnit tests [Jt00]

provide useful feedback.

3.6.1 Design Patterns in Polyglot

Polyglot [NCM03] is an extensible compiler framework for Java from Cornell, written

in Java. Polyglot has been publicly available since 2004 andused by many researchers

to implement Java language extensions [Pt04]. Polyglot employs a number of design

patterns that are not checked by the standard Java type system, so programmers must

manually ensure that their code conforms. The Polyglot typesystem in JAVA COP tests

for proper adherence to the following idioms:

1. Polyglot employs the factory design pattern [GHJ95] for both AST nodes and

for “type objects” that hold the type information about a class. The checker
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requires that any expression of the formnew C( . . .) , whereC is a subtype of the

Node interface, appear only in classes that subtypeNodeFactory , and similarly

for type objects.

2. Each AST node in Polyglot is represented by both a class andan interface. The

intent is that clients of a Polyglot extension should only manipulate AST nodes

through their associated interfaces. The checker requiresthat a node class is

never used as the type of a public or package-level field or as the argument or

result type of a public or package-level method.

3. Polyglot uses a variant of the visitor design pattern [GHJ95] to allow imple-

menters to traverse the AST. Each node class must have avisitChildren

method that implements the traversal behavior for that kindof node. The checker

requires that each node class overrides thevisitChildren method if it adds at

least one new field of typeNode (or a subtype).

4. Polyglot employs a notion ofdelegates[NCM03] that allows the behavior of

an AST node to be modified modularly without requiring the creation of a sub-

class. Each AST node has a pointer to a delegate object, and clients should

always invoke certain operations of a node (defined in theNodeOps interface)

through the node’s delegate (e.g.,n.del().typecheck() instead of simply

n.typecheck() ). The checker enforces this rule.

The entire Polyglot checker consists of 80 lines of (non-blank, non-comment)

JAVA COP rules and auxiliary predicates. JAVA COP’s declarative nature makes each

rule relatively straightforward to understand. For example, Listing 3.24 enforces the

factory design pattern for AST nodes. The rule directly corresponds to the English

description provided above. The auxiliary user-defined predicateisSubtype checks

whether a type (represented by its symbol) has a particular supertype.
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rule nodeFactory ( JCNewClass nc) {
where( isSubtype (nc . constructor .owner ,

" polyglot . ast .Node " )) {
require( isSubtype (env . enclClass ,

" polyglot . ast . NodeFactory " )):
error(nc , " Nodes cannot be direct ly instant iated "+

" outside of the node factory !" );
}}

Listing 3.24: A JAVA COP rule enforcing Polyglot’s factory design pattern.

Table 3.1: Results of running the Polyglot style checker.

Compiler LOC Errors

signaled actual

Polyglot-1.3.4 20910 7 7

Polyglot-2.3.0 25154 7 7

Polyglot5 7800 3 3

JPred 3343 0 0

eJava 2458 2 2

jet-0.9.0 921 0 0

jif-3.1.1 22020 14 12
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The Polyglot style checker was then run on seven Polyglot compilers/extensions;

the results are shown in Table 3.1. The first two compilers arethe Polyglot 1.x and 2.x

branches from Cornell, respectively. The next three compilers in the table are Poly-

glot extensions from UCLA to respectively support Java 1.5 features [Pt07], predicate

dispatch [Mil04], and expanders [WSM06]. The last two compilers are Polyglot ex-

tensions from Cornell to respectively support nested intersection [NQM06] and secure

information flow [Mye99].

The second column in the table lists the (non-blank, non-comment) lines of Java

code in the compiler or extension, ignoring generated code (e.g., from the parser gen-

erator) and other special files. For each compiler, the number of errors signaled by the

checker is listed. These error messages were provided to thedevelopers of the compil-

ers and the developers were asked to verify which were (in their opinion) actual errors.

As the last column in the table shows, of the 33 errors signaled across all compilers,

31 of them were actual errors.

All 14 errors in the two Polyglot base compilers were violations of the fourth idiom

described above, related to delegates. These 14 errors represent 12 distinct errors: two

errors from the 1.3.4 version were duplicated in the 2.3.0 version. All of these errors

have been fixed by the developer in the latest releases of the 1.x and 2.x Polyglot

branches.

Nine of the 14 errors signaled for Jif were violations of the first idiom described

above, related to factories. these nine errors were considered false positives by the

developer. One involved a temporary node class used only during parsing, which was

deliberately not given an associated factory method and so is always directly instanti-

ated. The other pertained to a class that was being used as a factory for certain type

objects, even though it was not a subtype of the standard Polyglot interface for type

factories. A user could easily employ an annotation like@TypeFactory , along with a
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rule nodeFactory ( JCNewClass nc) {
where( isSubtype (nc . constructor .owner ,

" polyglot . ast .Node " )) {
require( isSubtype (env . enclClass ,

" polyglot . ast . NodeFactory ") ||
env . enclClass . hasAnnotat ion (" NodeFactory " )):

error(nc , " Nodes cannot be direct ly instant iated "+
" outside of the node factory !" );

}}

Listing 3.25: A JAVA COP rule enforcing an extension of Polyglot’s factory design
pattern.

simple modification to our JAVA COP rule, to eliminate this false positive. A modified

version of the Polyglot rule from Figure 3.24 with this effect is shown in Figure 3.25.

3.6.2 Safety Critical Java (SCJ) Checker

Safety Critical Java (SCJ) [SCJ] is a subset of the Java language, along with a new set

of dedicated Java services, that can be used for creating safety critical applications in

Java. Such applications require that they must have good performance and reliability

because of their use in situations where failure can result in damage to human life. As

a result, numerous standards bodies have defined what it means for a program to be

certified as safety critical. The SCJ team chooses to adhere closely to the definition

of safety critical as required for certification using the Software Considerations in Air-

borne Systems and Equipment Certification (DO-178B) [RTC92] Standard. This is the

same standard used by the US Federal Aviation Administration.

SCJ programs are meant to ease the process of certification under the DO-178B

standard by reducing the complexity of the programs. The reduction in complexity

is achieved through the definition of three conformity levels to safety critical stan-

dards defined in the SCJ specification document: levels 0, 1, and 2. Level 0 is used
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for simpler applications that have low complexity and little difficulty meeting mem-

ory constraints and real-time deadlines. Levels 1 and 2 allow the use of more Java

libraries and thus increase the complexity of the applications. Java virtual machines

are similarly built to run at these levels to ensure that complexity is not added in at

runtime.

Level information is introduced in the code via the use of the@SCJAllowed anno-

tation. This annotation can take the name of the defining level as a metadata argument.

Thus, a class declared at level 0 would be annotated with an@SCJAllowed(Level -

0) annotation. For the Java virtual machine, the compliance level is specified as a

command line argument.

The key to retaining the modularity and code reuse benefits ofJava in SCJ is in

allowing programs defined at lower levels to remain valid programs for the higher

levels. Simple and universal classes, such asObject , would be defined at level 0, and

thus be usable in any level’s programs. However, a complicated class likeThread

would be defined at a higher level to prevent its use in a lower level program. If a Java

virtual machine is run at a particular level, then it will refuse to load a class defined at

a higher level.

The SCJ JAVA COP type system enforces the following idioms:

1. The default annotation for an otherwise unannotated class is

@SCJAllowed(Level 0) .

2. When a class is annotated with an@SCJAllowed(Level n) annotation, its

members assume a default annotation of@SCJAllowed(Level n) . Members

of a class may override the default behavior by declaring a higher level than

their owning class.

3. All annotations must be preserved through subclassing and method overriding.
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4. Nested non-static classes must be at least as restrictiveas their enclosing classes.

Nested static classes may be given any level of compliance.

5. Fields, methods, and constructors may only be accessed ina context with a level

at least as high as the level with which they are annotated.

The JAVA COP implementation of this discipline consists of 65 (non-blank, non-

comment) lines of code. There are 10 predicate declarationsand 5 rules in the type

system. Because the rules and predicates remain relatively small, they are easy to read

and modify. Listing 3.26 shows a predicate and rule from thisset. The rule codifies

that fields declared in a class may only broaden the compliance level specified by

its enclosing class. The predicate declaration defines theallowedSubtype predicate

used in the rule. This predicate makes use of the ability to reconstruct annotations from

declarations to directly compare theLevel s of two entities.

The type system was used by the SCJ developers to test their spec implementa-

tion. This spec implementation consists of an annotated versions of thejava.lang

package and theVector class from thejava.util package from standard Java; an

annotated version of thejavax.realtime package from the Real-Time Specification

for Java [BBD00]; and a proposed new packagejavax.safetycritical . In total,

this amounts to just under 130 Java files.

Type checking these classes resulted in the detection of 29 errors related to SCJ in

the spec implementation3. 17 of these errors related to missing annotations on classes

and methods related to subtyping. 8 of the errors related to method and constructor

invocations in a lower compliance level context. Listing 3.27 shows one such error.

Lastly, 4 of the errors were a result of a subclass defining a higher level than their

parent. Based on the detection of these 4 errors, it was recommended to change the

3The presence of other Java errors unrelated to SCJ may have resulted in under-reporting of actual
errors.
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/* Fields must be declared at the same or higher level of

* compliance as their enclosing class.

*/
rule f ie ldDef ( JCVariableDecl v ){

where(! v . isLocal && hasSCJAl lowed (v )){
where ( hasSCJAl lowed (env . enclClass )){

require( al lowedSubtype (env . enclClass .sym , v. sym ))
: error(v , . . .);

}
}

}

/* One declared entity is a subtype of another if it has a

* lower declared @SCJAllowed level.

*/
declare al lowedSubtype ( Symbol x , Symbol y ){

require( SCJAl lowed x_annot ;
x_annot <- x. getAnnotat ion (" SCJAllowed " )){

require( SCJAl lowed y_annot ;
y_annot <- y. getAnnotat ion (" SCJAllowed " )){

require( Level x_value ; x_value <- x_annot # value ()){
require( Level y_value ; y_value <- y_annot # value ()){

require( x_value # compareTo ( y_value ) <= 0);
}}}}}

Listing 3.26: A rule and predicate declaration from the SCJ type system. The rule
requires members declare the same level of or higher compliance as their enclosing
class. The predicate defines a subtype relationship among@SCJAllowed annotations.
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public abstract class EventHandler
extends BoundAsyncEventHandler {
...
private Runnable task_ = new Runnable () {

public void run () {
// LEVEL_1 method accessed in LEVEL_0 context!
handleEvent ();

}
};
...
@SCJAllowed ( LEVEL_1 )
public abstract void handleEvent ();
...

}

Listing 3.27: A Java class demonstrating an error in the specimplementation of Safety
Critical Java caught by the JAVA COP SCJ checker: the methodhandleEvent() , de-
fined atLevel 1, is used in a default context ofLevel 0 in the anonymousRunnable
instance assigned to fieldtask .

SCJ specification to allow this kind of definition; the virtualmachine of leveln will

not load a class defined at a level higher thann, so suchunsafesubclasses cannot affect

performance on a virtual machine running at the level of the parent.

Looking at the results points out that even domain experts adhering to a simple

discipline can easily make mistakes in their code. While the 17 errors related to miss-

ing annotations were likely the results of incremental porting from the original Java

versions, the 8 errors related to method and constructor invocations are more serious.

It is unlikely that a developer will remember the compliancelevel of every method or

constructor in a project, so these kinds of mistakes are bound to happen occasionally,

even with expert programmers.
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3.7 Advanced Type Checker: Non-null Types

This section demonstrates JAVA COP’s ability to express state-of-the-art type systems

by focusing on an in-depth description of a non-null checkerfor preventing null pointer

dereferences in Section 3.7.1. Recent literature (e.g., [FL03, AKC02, Boy01]) has

shown that type systems for these properties that are both sound and expressive enough

to be usable in practice employ reasoning that is subtle and complex. By using JAVA -

COP’s declarative rule language introduced in Section 3.2 in concert with the dataflow

framework presented in Section 3.4, it is possible to build robust, usable checkers for

these properties.

While not presented here, numerous other research type systems have been imple-

mented in JAVA COP including confined types [VB99] as described in Section 1.1.1,

scoped types [ZNV04], race condition detection types [FF00], island types for object

encapsulation [Hog91], Javari-style reference immutability types [BE04, TE05], types

for generic ownership in Java (OGJ) [PNC06], and unique reference types [AKC02,

Boy01]. More details about these type systems can be found in prior JAVA COP publi-

cations [ANM06, MME].

3.7.1 Non-null Type System

As stated previously in Section 3.4, a non-null type system ensures that no null values

are stored in references that are marked as non-null. Non-null references are important

because dereferencing them is always safe: doing so will never cause unexpected null

pointer exceptions at runtime. The basic rules of a non-nullchecker are very similar to

those I previously defined for untainted in Listings 3.2, 3.4, 3.7, and 3.9. In particular,

it is essential thatnon-nulltypes be treated as a subtype of an unannotated type just as

in the case for untainted. Using the JAVA COP dataflow framework, explicit runtime
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checks in the source code can be used to ensure non-nullity ofa reference before

dereferencing it or storing it into a location annotated with @NonNull .

3.7.1.1 Adding Raw Types

Due to the semantics of Java object construction, it is impossible to guarantee that a

field annotated with@NonNull nevercontainsnull – even if it is initialized at the

declaration site. The code in Listing 3.28 shows how a field can be accessed before it

is initialized. SinceA’s constructor is executed before subclassB’s field initializers are

run, the overriddeninit method inB will dereference fieldf before it is initialized.

The Java runtime will have storednull in f and a null pointer exception will result.

As this example shows, it would not be sound for a non-null checker to simply en-

force that a field annotated with@NonNull have a non-null initializer in its declaration.

To handle this situation, my checker supports theraw typesapproach invented by oth-

ers [FL03]. I assume that fields declared as non-null may in fact be null while the object

is under construction, orraw. I introduce two new annotations,@Rawand@RawThis,

that indicate that a method parameter or the receiver of a method call, respectively,

may be under construction. JAVA COP rules are used to enforce that a constructor only

invokes@RawThis methods on the object being constructed and only passesthis to a

method as a@Rawparameter. Listing 3.29 fixes the erroneous code from Listing 3.28

so that the checker accepts it. The type system requiresinit to have the@RawThis

annotation, since it is called while the object is under construction. Once the method is

marked as having a potentially raw receiver, the checker requires that a runtime nullity

check is inserted before dereferencing fieldf , since it may containnull despite its

@NonNull annotation.

Once the raw types mechanism is in place, it is overly restrictive to insist that a

@NonNull field be initialized at its declaration site. It is sufficientto check that all
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class A {

A() {
init ();

}

void init () { }
}

class B extends A {

@NonNull Str ing f = "not null " ;

void init () {
// Executes before f is initialized
System .out . pr int ln ( f . length () ); //null deref!

}
}

Listing 3.28: Java fields may be accessed before their initializer is run.

class A {
A() {

init ();
}

@RawThis void init () { }
}

class B extends A {
@NonNull Str ing f = "not null " ;

@RawThis void init () {
if ( f != null)

System .out . pr int ln ( f . length () );
}

}

Listing 3.29: Using raw types to guard against null dereferences during object con-
struction.
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@NonNull fields have been assigned a non-null value by the end of construction. This

check requires dataflow information, since it must reason about all paths through the

constructors. This definite assignment analysis was easilyadded to the checker by

defining a FlowFacts class using our dataflow framework.

The entire non-null checker, including raw types, required136 lines of JAVA COP

code consisting of 7 predicates and 12 rules. The two flow analyses used by the JAVA -

COP rules were built using our dataflow framework in a total of147 lines of Java

code.

3.7.1.2 Experience Using the Non-Null Checker

In Table 3.2 we present results of applying our non-null checker to two existing Java

programs to make them safe from null dereferences. The first column contains re-

sults pertaining to an undergraduate project by one of the authors that uses Dijkstra’s

algorithm for determining shortest path on a given street map. The second column

contains results from applying JAVA COP to itself, namely the pass that we added to

the OpenJDK compiler for JAVA COP’s rule enforcement. The table lists the size of

each application and the number of object dereferences thatthe non-null type system

must prove safe.

The table also lists the number of annotations required, both within the application

itself and within depended-upon code: the Java standard library and (for JAVA COP)

the rest of thejavac compiler implementation. The number of annotations could

be significantly reduced through the use of appropriate defaults [CJ07]. Such a non-

null-by-default type system could be adapted from the non-null type system discussed

here by changing the predicaterequiresNonNull , which defines the non-null type,

to require the lack of a@Nullable annotation instead of the presence of a@NonNull

annotation.
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Table 3.2:@NonNull annotation results for Dijkstra’s algorithm implementation and

JAVA COP. Additional code dependencies listed here include wrapper methods for li-

brary calls as well as additional annotated code. Nullity checks inserted due to lack of

Java support for annotations on enhanced for loops and generics are listed under Java

limitations.

Dijkstra JavaCOP

LOC 629 948

(add’l code dependency) ∼1000

Derefs 206 628

@NonNull annotations 83 92

(add’l code dependency) 43 100

@RawThis annotations 1 0

(add’l code dependency) 1 1

Nullity checks 46 93

bugs 7 7

false positives 0 22

unknown 0 14

Java limitations 39 50
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(a)
public class JCList <T extends Object > {

...
public boolean nonEmpty (){
return tai l != null;

}
}

(b)
@NonNull JCList <String > list = ...;
for ( ; l ist . nonEmpty (); l ist = l ist . tai l ) {
/* loop body */

}

(c)
@NonNull JCList <String > list = ...;
for ( ; l ist . nonEmpty (); ) {
/* loop body */
JCList <String > tail = l ist . tai l ;
if ( tai l == null)
throw new Runt imeExcept ion ( . . .);

l ist = tai l ;
}

Figure 3.5: Example code (b) demonstrating a false positiveindicated by our

@NonNull type system and how the code had to be modified (c) to appease the type

system. This is a false positive because the type system is unaware of the invariant

which the methodnonEmpty() (a) ensures.
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The “Nullity checks” category indicates the number of places in which we had to

add an explicit test for non-nullness in order to typecheck successfully. These checks

have been partitioned into several categories. The seven bugs in the Dijkstra applica-

tion all have to do with improper handling of input files. If the files are not in the correct

format, the implementation generates null pointers withinits data structures, which can

later be dereferenced. Seven bugs were also found in the JAVA COP source. For exam-

ple, the expressionfilename.getParentFile().toURL() contains an error, since

the methodgetParentFile() may returnnull for a malformed file descriptor. We

list 14 nullity checks as “unknown”. These checks all pertain to references tojavac

Scope objects. Our inspection of thejavac code leads us to believe that theScope

objects are phased: initialized tonull but, at some time before the JAVA COP pass, set

to a non-null value. However, we found no conclusive evidence to support this belief

and so left the checks uncategorized.

The code in Figure 3.5(b) illustrates an example false positive. The type system

complains that the potentially null fieldtail is being assigned to the@NonNull vari-

able list. However, the loop guard ensures thattail is non-null, as shown in Fig-

ure 3.5(a). We satisfy the type system by inserting a nullitycheck, as shown in Fig-

ure 3.5(c). This code also illustrates the need to introducelocal variables, since the type

system only supports flow sensitivity for local variables. Flow sensitivity for fields is

more challenging due to the potential for aliasing and the possibility of concurrent

access by multiple threads.

Finally, “Java limitations” lists nullity checks due to limitations in Java’s annota-

tion syntax. Most notably, type parameters cannot have annotations, so for example

it is not possible to have aList of @NonNull strings. Therefore each time we access

and use an element from such a list, a spurious nullity check is required. A current

proposal would resolve this and related limitations in Java7.0 [Ern07].
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Testing the Checker After updating the non-null type system to support flow sensi-

tivity, but before extending it to properly handle object initialization via raw types, I

created a runtime checker for the non-null type system. I then created a test suite con-

sisting of 79 unit tests and verified via the test harness thatthe pluggable type system

and runtime checker agree on the results of all tests. The test harness was then further

used during development of an extension to the type system tohandle raw types.

First, a test case similar to the one in Listing 3.28 was created. It passed the static

checker but failed the runtime checker, thus illustrating the unsoundness mentioned

earlier. This test case was used during development to ensure that the resulting raw

types checker indeed plugged the type hole. This process wasrepeated when adding

flow sensitivity to check for definite assignment of@NonNull fields. Upon removing

the JAVA COP rule requiring@NonNull fields to have initializers, the type system be-

came unsound until the flow-sensitive checks were in place. The testing framework

made it easy to concretely understand the type holes being fixed and to gauge progress

toward these goals. In total, an additional 10 test cases were created when developing

and testing the raw types extension to the first non-null checker.

3.8 Compiler Performance

To demonstrate that JAVA COP is a practical implementation, I measured its perfor-

mance compiling a range of sample programs using a few rule sets. The sample pro-

grams include several well-known open source examples, as well as a simple Hello

World example and the Java code generated to check the rules for the JAVA COP non-

null type systems implementation. I compiled each program first with no rule sets,

then with a confined type system, unique reference type system, and a non-null type

system individually, and then finally with JAVA COP checking all three of these rule

sets simultaneously.
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The measurements were taken on a Dell Optiplex GX270, with anIntel Pentium

IV 2.8GHz and 1.5GB RAM, running Fedora 8 in a KDE Konsole terminal. JAVA -

COP was run using the Sun Java HotSpot(TM) Client VM (build 1.6.0 05-b13, mixed

mode, sharing). Each test was run five times and timed using the time command from

the bash shell. The wall clock (’real’) time was measured, the highest and lowest

values were discarded, and the remaining three averaged to produce the final figure.

Because the confined type system rules rely on annotations notpresent in most of the

examples, I modified the rules so thateveryclass would be checked as if it were con-

fined. All numbers include the time required to print warnings, errors, andant output

to the screen.

Fig. 3.6 presents the results. For each configuration the upper row is time in sec-

onds, while the lower row is the percentage slowdown over thebaseline performance

caused by using the given type system(s)—in each case lower is better. The key point

from this table is that even when using multiple complex typesystems, performing

JAVA COP rule checking in addition to standard Java typecheckingtakes less than 1.7

times as long as Java typechecking alone. Closer inspection shows that most of the

time is spent in the two type systems which use flow-sensitivity: the non-null and

unique type systems. This is not surprising as those rules must make multiple visits

over the AST and create a number of objects representing dataflow facts. The simpler

confined type system only imposes overhead of between one andfifteen percent. I have

not performed any optimizations on JAVA COP, nor investigated any kind of incremen-

tal compilation support, in order to obtain these numbers. Nonetheless, JAVA COP’s

performance demonstrates the practicality of its design.
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System Classes No rule set Confined Unique Nonnull All

Hello World 1 0.6557 .7487 .7343 .7107 .7647

14.2% 8.4% 12.0% 16.6%

Non-null rule set 4 1.2930 1.4603 1.4493 1.5610 1.8147

12.9% 12.1% 20.7% 40.3%

Polyglot5 161 6.1060 7.0577 8.1930 7.4580 9.3163

15.6% 34.2% 22.1% 52.6%

PMD 786 18.1073 19.0110 20.2160 20.6807 22.9273

4.2.4 5.0% 11.6% 14.2% 26.6%

JEdit 1085 10.8970 11.4950 14.6067 13.5540 18.1417

4.3 pre 15 5.5% 34.1% 24.5% 66.6%

Jython 1191 19.2883 20.8210 24.4997 25.4143 31.6790

2.5 7.9% 27.0% 31.8% 64.2%

OpenJDK 1281 11.0743 11.9663 14.9040 13.6270 17.4420

7-ea-src-b36 8.1% 34.6% 23.1% 57.5%

Figure 3.6: JAVA COP Compilation Times

86



3.9 Summary

In this chapter, I presented the JAVA COP framework for pluggable types in Java. The

JAVA COP language allows developers to declaratively specify numerous non-trivial

programming disciplines for both domain-specific disciplines and general-purpose type

systems from the research literature. JAVA COP additionally provides a simple dataflow

analysis API to let programmers utilize flow-sensitivity intheir type systems when the

JAVA COP language itself is not sufficient. The JAVA COP compiler enables these pro-

gramming disciplines to be automatically enforced on Java programs. Via the Polyglot,

SCJ, and non-null checker case studies, I showed how JAVA COP discipline checking

can find bugs in real code. To ensure that JAVA COP programs also guarantee desir-

able program properties, I created the type system testing framework. This practical

approach allows developers to specify desirable properties as runtime invariants which

are used to instrumenting code and find programs from a test suite which successfully

type check but still violate the invariants.
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CHAPTER 4

CLARITY : Semantic Type Qualifiers for C

4.1 Introduction

While the JAVA COP framework provides a very expressive framework for defining

disciplines, it does so to the detriment of automatic reasoning about the validity of

a discipline. Using a test framework for validating a discipline against an intended

invariant is a practical solution, but it does not guaranteecomplete coverage of the

program space. Satisfying the expected and intended results of a discipline for a test

suite is only a hint, not a proof, that the discipline is correct. In order to automate the

verification process, the discipline language must be restricted so that theorem provers

and constraint solvers can reason more directly about the rules of a discipline checker.

In this chapter, I present the CLARITY framework for semantic type qualifiers for

the C programming language. The intent behind CLARITY ’s development was to show

how a framework can be built which addresses automated invariant checking of disci-

plines. It offers developers an automated way of enforcing and validating disciplines

via type qualifiers. Type qualifiers, in their simplest form, are lightweight type system

refinements denoted in syntax via an annotation on a type. These qualified types are

treated as subtypes of their respective unqualified types.

CLARITY supportssemantictype qualifiers by providing a restrictive DSL focused

on pattern matching over C expressions and statements. The intended semantic invari-

ant of a discipline is supplied by the type system developer as a part of the discipline
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specification using a stylized predicate syntax with built-in reasoning about program

state information. The simplicity of the language and predicates allows qualifiers to

be type checked, or even inferred; programs to be automatically instrumented for safe

casting; and, sometimes, rules themselves to be inferred from the invariant predicate.

The type qualifier specifications in CLARITY enforce disciplines that restrict the

values of C expressions. The type systems that can be defined in CLARITY are, thus,

a strict subset of those that can be defined in JAVA COP. For instance, CLARITY can

check simple versions of the non-null and untainted disciplines, but not the SCJ or

Polyglot disciplines defined in Chapter 3. However, the CLARITY framework auto-

matically enforces a subtyping strategy that allows rules to be more succinct. That

is, at every point in a C program where a subtyping relationship is expected between

two expressions–such as assignments, return statements, arguments to functions, etc.–

CLARITY requires that the qualifiers on the subtype be a superset of the qualifiers on

the supertype. This is the same behavior that had to be hand-coded in JAVA COP in

Listing 3.4, but that is built-in to CLARITY . The listing below shows how a simple

form of theuntainteddiscipline would be specified in CLARITY .

value qualifier untainted (T Expr E)

The specification defines a new qualifier,untainted . As there are no other rules

provided in the definition, only expressions explicitly annotated with theuntainted

qualifier will be considered untainted. As a result, CLARITY will automatically enforce

that only expressions that have anuntainted qualified type can be used when an

untainted qualified type is expected.

CLARITY provides a novel combination of features to support the development of

these semantic type qualifiers:

• Declarative rule language.CLARITY employs a declarative, pattern matching-

based language for defining semantic type qualifiers. CLARITY ’s language was
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created to be a simple, restricted language for defining new Ctype refinements

that is easy for qualifier designers and programmers to understand and to define

correctly and enables automated verification of qualifier rules against a semantic

invariant. The language has a natural correspondence to thenormal specification

of syntax-directed typing rules and closely resembles pattern matching schemes

found in languages such as ML.

• Seamless integration with C.CLARITY naturally allows type qualifiers to inter-

act with C’s existing type system. To enable efficient inference of qualifiers, it

does whole program checking, as opposed to the modular styleshown in JAVA -

COP. The typechecker is implemented as an module extension to the CIL infras-

tructure for C program analysis and transformation from Berkeley [NMR02].

This feature allows the CLARITY to be used in place of the standard C compiler

in a development toolchain.

• Support for inference.Programmers often find it burdensome to fully annotate a

program with necessary type qualifiers. To ease this burden,CLARITY provides

whole program type inference for all expressions in a C program. This infer-

ence identifies all places where type qualifiers are necessary and can be used to

statically identify invariants about program entities. CLARITY also supports au-

tomatic inference of type qualifier rules, which can enable adeveloper to make

a more precise type system.

• Automated qualifier validation.To address discipline verification, CLARITY

provides a novelsoundnesschecker that uses an off-the-shelf automatic theo-

rem prover to prove that qualifier rules ensure an associatedsemantic invariant.

The soundness results are known to be valid given certain assumptions that are

made about the C runtime states.
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While not as diverse a set of disciplines as with JAVA COP, I have defined and

verified a number of non-trivial type qualifiers in CLARITY and used them to detect

real errors and infer interesting invariants about open-source C programs. CLARITY

performs reasonably well when inferring multiple type qualifiers, although it shows

some expected scaling issues with larger programs.

The rest of this chapter is organized as follows. Section 4.2introduces the design

of CLARITY ’s rule language through a number of examples and introducesthe con-

cepts ofvalueandflow type qualifiers. Section 4.3 explains the basic type checking

scheme of CLARITY without inference. Section 4.4 discusses the extension to the basic

type checking scheme necessary to support inference ofvaluequalifiers. Section 4.5

describes the automated validation scheme of type qualifierrules,and Section 4.6 de-

scribes the experience using CLARITY qualifier checking and inference on open-source

C projects.

4.2 Semantic Type Qualifiers

The CLARITY framework supports the definition of a common class of qualifiers

known asvaluequalifiers. Value qualifiers, such aspos andnonnull , pertain only

to the value of an expression.

4.2.1 Value Qualifiers

Listing 4.1 illustrates a definition of the value qualifierpos in the CLARITY frame-

work, which can be used to statically track positive integers. Line 1 of the listing

declarespos to be a new value qualifier applicable to expressions of typeint . It also

declares a variableE, which is used in the rest of the qualifier’s definition. Each vari-

able declaration includes a type and aclassifier. The declared classifierExpr for E
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1 value qualifier pos ( int Expr E)
2 case E of
3 decl int Const C:
4 C, where C > 0
5 | decl int Expr E1 , E2:
6 E1 * E2 , where pos (E1) && pos (E2)
7 | decl int Expr E1:
8 -E1 , where neg(E1)
9 invariant value(E) > 0

Listing 4.1: A user-defined type qualifier specification (i.e., declaration and associated
type rules) for positive integers.

int pos gcd ( int pos n , int pos m);
int pos lcm( int pos a , int pos b) {
int pos d = gcd (a , b );
int pos prod = a * b;
return ( int pos ) (prod / d );

}

Listing 4.2: Example code using thepos type qualifier.
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indicates that during typechecking of a C program,E will be instantiated with side-

effect-free program expressions. The declared type forE constrains such expressions

to have typeint . In addition to the classifierExpr , the CLARITY framework supports

the classifiersConst , LValue , andVar , which represent C constants, l-values, and

variables, respectively. As CLARITY is implemented as an extension to the CIL in-

frastructure for C program analysis and transformation [NMR02], it performs qualifier

checking over programs in CIL’s intermediate language, which cleanly distinguishes

expressions, which are side-effect-free, from instructions.

Given the declaration on line 1 of Listing 4.1, programmers may now annotate

their programs with thepos qualifier, as shown in the C code in Listing 4.2. Thelcm

procedure in the figure computes the least-common multiple of two integers. Thepos

qualifier is used to specify that the two arguments should be positive integers and to

ensure that the return value is also positive. To handle nested qualifiers unambiguously,

we use a postfix notation, whereby a qualifier qualifies the entire type to its left. A type

may be annotated with multiple user-defined qualifiers; their order is irrelevant.

4.2.1.1 Type Rules

Line 1 of Listing 4.1 declares the newpos qualifier, but it does not indicate how this

qualifier should be used during typechecking. This is the role of thecase block be-

ginning on line 2, which uses a form of pattern matching to indicate a subset of ex-

pressions that can be given the typeint pos . For example, the clause in lines 3-4

indicates that a positive integer constant may be given the type int pos . The clause

first declares the variableC, which ranges over integer constants from the underlying

program, for use in the rest of the clause. It then specifies the patternC, to indicate

the syntactic form of the expression. Finally, the predicateC > 0 further constrains an

expression that matches the pattern.
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value qualifier neg( int Expr E)
case E of

decl int Const C:
C, where C < 0 \\

| decl int Expr E1 , E2:
E1 * E2 , where neg(E1) && pos (E2)

| decl int Expr E1 , E2:
E1 * E2 , where pos (E1) && neg(E2)

| decl int Expr E1:
-E1 , where pos (E1)

invariant value(E) < 0

Listing 4.3: A user-defined type qualifier specification for negative integers. This spec-
ification demonstrates a mutually recursive relationship with thepos qualifier defined
in Listing 4.1.

Type rules like the firstcase clause of Listing 4.1 can be simulated in simpler type

qualifier systems like CQUAL [FFA99] by annotating all positive integers in a program

with a pos assumption. However, thecase clauses in CLARITY are more general.

For example, the clause on lines 5-6 specifies that an expression that is a product

of two expressions of typeint pos can also be given the typeint pos . This kind of

recursive type rule would be quite difficult to manually encode usingpos assumptions.

The finalcase clause illustrates that the definition of a qualifier can depend on other

qualifiers. That clause specifies that a negation expressioncan be given typeint pos

if the negated expression can be given typeint neg , whereneg is another user-defined

qualifier. In fact, qualifier definitions can be mutually recursive. For example, the

definition ofneg has rules that refer topos , as shown in Listing 4.3.

The syntax for expression patterns incase clauses is defined by the following

grammar:

P ::= X | ∗X | &X | new | uop P| P bop P| return P

HereX ranges overvariable patterns, which have a declared type and classifier (e.g.,
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int Expr ) restricting the kinds of program fragments that may match.The patternnew

matches against calls to memory allocation routines likemalloc Various unary and bi-

nary operations may also be matched against. Finally, thereturn patternallows users

to specify special-purpose type rules for the expression returned from a procedure. The

predicate after (the optional)where in a case clause may include operations on con-

stants and on variable patterns with classifierConst , qualifier checks on expressions

and patterns, and conjunctions and disjunctions of these kinds of predicates.

Each clause of acase block can be viewed as anintroductiontype rule for a qual-

ified type, since the clause specifies conditions under whichan expression may be

assigned that qualified type. For example, the second clausein Listing 4.1 is akin to

the following type system rule:

Γ ⊢ E1 : int pos Γ ⊢ E2 : int pos

Γ ⊢ E1∗E2 : int pos

The semantics of thecase clauses are formalized in a companion tech report [CMM04].

The CLARITY typechecker uses the type rules defined bycase blocks, along with

a set of standard rules for typechecking constructs like variable references, procedure

calls, and assignments, to perform qualifier checking. Suchchecking validates the

qualifier annotations supplied by the programmer, which represent the programmer’s

assumptions about when particular invariants hold. For example, if a variable’s type

is annotated with qualifierq, then qualifier checking only succeeds if every expression

used as the right-hand side in an assignment to that variablecan be determined to have

that same type.

Consider again thelcm procedure in figure 4.2. As usual, typechecking an as-

signment statement involves obtaining the types of each side and checking that they

match. The assignment tod typechecks successfully because both sides of the assign-

ment have typeint pos : the right-hand side is shown to have this type by the standard
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value qualifier nonzero ( int Expr E)
case E of

decl int Const C:
C, where C != 0

| decl int Expr E1:
E1 , where pos (E1)

| decl int Expr E1:
E1 , where neg(E1)

| decl int Expr E1 , E2:
E1 * E2 , where nonzero (E1) && nonzero (E2)

restrict
decl int Expr E1 , E2:

E1 / E2 , where nonzero (E2)
invariant value(E) != 0

Listing 4.4: A CLARITY type qualifier specification for nonzero integers.

type rule for procedure calls, given the declared type signature ofgcd . The assignment

to prod also typechecks successfully, because thecase clause on lines 5-6 allowsa *

b to be given the typeint pos . Because of their declared types, we statically know

that bothprod andd are positive, but this information is not sufficient to show that the

expression(prod / d) is also positive. Indeed, the type rules forpos are not able to

derive the typeint pos for that expression. Therefore, the programmer must inserta

cast to satisfy the typechecker, because of the declared return type oflcm .

A case block specifies when an expression may be given a qualified type. Specifi-

cation developers may also want enhance the precision of existing typing rules from the

base C type system using type qualifier expressions. CLARITY provides arestrict

block for this purpose, an example of which is shown in the definition for anonzero

qualifier in Listing 4.4. The syntax of arestrict clause is identical to that of a

case clause. Arestrict clause specifies that any expression in a given program that

matches the clause’s pattern must also satisfy the clause’spredicate. Therestrict

clause fornonzero overrides the base rule for typechecking division expressions to
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require that the denominator have the typeint nonzero (rather than simplyint ).

In this way, potential divide-by-zero errors can be detected statically instead of being

found at runtime.

For example, consider again thelcm procedure in Listing 4.2. If the extensible

typechecker is given the definition ofnonzero in addition to that ofpos , it will use

nonzero ’s restrict clause to check the division in the last statement oflcm ’s body.

Therestrict clause requires thatd have the typeint nonzero . By the secondcase

clause fornonzero in Listing 4.4, any expression of typeint pos also has the type

int nonzero . Sinced is declared to have the typeint pos , thatcase clause allows

therestrict check to succeed.

The restrict clause is analogous to qualifier assertions in CQUAL [FFA99]. For

example, therestrict type rule in Listing 4.4 could be simulated by annotating the

denominator in each division in a program with anonzero assertion. However, the

restrict clause is more general. For example, the predicate in arestrict clause

may contain conjunctions and disjunctions of qualifier checks.

4.2.1.2 Subtyping

It is natural to considerint pos to be a subtype ofint . For example, this subtyping

relationship would allow the following code snippet to typecheck:

int pos x = 3;
int y = x;

The CLARITY typechecker considersall value-qualified types to be subtypes of their

associated unqualified types. More precisely, ifq is a value qualifier andτ is a (possibly

qualified) type, thenτ q is considered to be a subtype ofτ.

The rest of the supported subtyping rules are standard. As usual, care must be taken

in the presence of pointers [FFA99]. For example, it would beunsound to considerint
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pos* to be a subtype ofint* , because that would allow the following code, which

stores a negative number in a variable of typeint pos , to typecheck:

int pos x = 3;
int* p = &x;
*p = -1;

A companion technical report contains the formal definitionof the subtyping relation

in CLARITY [CMM04].

CLARITY does not support explicit subtype declarations between twouser-defined

qualifiers. However, such subtype relationships can be encoded using thecase block.

For example, the second clause in thecase block ofnonzero ’s definition in Listing 4.4

effectively declarespos to be a subtype ofnonzero : any expression of typeint pos

may also be considered to have typeint nonzero .

4.2.1.3 Semantic Invariants

Line 9 of Listing 4.1 uses aninvariant clause to define thepos qualifier’s associated

run-time invariant. The invariant is a predicate that is implicitly defined in the context

of an arbitrary run-time execution state. Let us denote thisexecution state byρ. The

value predicate is provided by our framework and represents the value of a given ex-

pression inρ. Therefore, the invariant forpos indicates that the value of an expression

of type int pos should be greater than zero, in any run-time execution state.

The limitations of the CLARITY language for writing type rules, and of static type-

checking in general, sometimes requires programmers to insert casts in order for qual-

ifier checking to succeed. To retain soundness with respect to a specified invariant in

these cases, CLARITY ’s typechecker instruments programs with a run-time check for

each cast to a value-qualified type. Each run-time check tests whether the expression

being cast satisfies the cast-to qualifier’s invariant. In the implementation, a fatal error
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is signaled if the test fails. For example, consider the castin the last statement oflcm

in Listing 4.2. At run time, a check ensures that the value of(prod / d) is in fact

greater than zero.

4.2.1.4 Flow Qualifiers

Some common kinds of qualifiers are used solely to restrict the flow of values in a

program. For example, theuntainteddiscipline used as a running example throughout

this dissertation essentially tracks the flow of data comingfrom trustworthy and po-

tentially untrustworthy sources. For soundness, the only requirement is thattainted

data never flows whereuntainted data is expected. Theuntainted qualifier can help

to statically detect SQL injection attacks, as discussed inChapter 1, but it is equally

useful for tracking format-string vulnerabilities in calls to C’sprintf and related pro-

cedures [STF01]. Another example of flow qualifiers include the qualifiersuser and

kernel which can be used to statically ensure that user pointers arenever dereferenced

in kernel space [JW04].

The listing below shows a CLARITY specification for a simple untainted analysis

in the CLARITY framework.

value qualifier untainted (T Expr E)

As the specification is defined, theuntainted qualifier can qualify any typeT. Flow

qualifiers likeuntainted are a degenerate form of value qualifier in CLARITY : since

the untainted qualifier has nocase block, the only way to introduce an expression

of type T untainted is with a cast, to explicitly mark the expression as being trust-

worthy. The qualifier also lacks an explicit run-time invariant as the invariant language

is not expressive enough to capture runtime properties associated with the discipline.

Proper value flow is guaranteed “for free” becauseT untainted is a subtype ofT but

not vice versa. Therefore, untainted data can flow where arbitrary data is expected, but

99



not vice versa.

As discussed earlier, theuntainted qualifier can help find errors in calls to vari-

ous SQL APIs for C. For example, the DB2 database management system from IBM

provides a functionSQLExecDirect() for directly executing a SQL statement on a

database. The second argument toSQLExecDirect is the SQL statement that will be

executed on the database. C itself does not verify, either atcompile time or run time,

that callingSQLExecDirect with an arbitrary SQL statement will not have unintended

effects on the database. To ensure that only well-behaved statements are executed on

the database, a programmer can use a type signature forSQLExecDirect that requires

the second formal parameter to have typechar* untainted .

For example, supposeunsafe stmt is a SQL statement which has been completed

by getting input from an arbitrary user via thegetName function. Also, suppose that

safe stmt uses the same SQL statement fragment but fills it with a known safe string

literal. Then typechecking with the simple untainted type system defined above on the

following code allows the first safe call toSQLExecDirect , but signals an error for the

unsafe second call:

char unsafe_stmt [ MAX_SQL_SIZE ];
sprintf ( unsafe_stmt ,

" SELECT * FROM users WHERE name = ’%s ’; " ,getName ());
char* untainted safe_stmt =

( char* untainted ) " SELECT * FROM users WHERE name=’ shane ’; " ;

result = SQLExecDirect (hstmt , safe_stmt , .. .); // OK
result2 = SQLExecDirect (hstmt , unsafe_stmt , .. .); // ERROR

It may be useful to explicitly annotate some expressions as being possiblytainted

for code readability. For example, it might be helpful to declare the header for themain

function of a program as follows, to explicitly indicate that command-line arguments

should not be trusted:

int main ( int argc , char* tainted argv []);
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The definition oftainted in the listing below allows thetainted qualifier to be given

to any expression.

value qualifier tainted (T Expr E)
case E of E

The lonecase clause allows any expression to be consideredtainted , effectively

makingT tainted a supertype ofT (and hence also ofT untainted ). Because of

the implicit subtyping relation for value qualifiers, it is also the case thatT tainted

is a subtype ofT, so those types are essentially equivalent.

Although the versions oftainted anduntainted shown above are degenerate,

they could easily be augmented. For example, a user could decide that all constants

should be trusted, adding acase clause to the definition ofuntainted as follows:

case E of decl T Const C: C

This rule would, for example, obviate the need for the cast inthe assignment tosafe -

stmt in the previous C code snippet usingSQLExecDirect . This is also equivalent

to one of the predicate declarations from the JAVA COP rules for untainted shown in

Listing 3.9.

4.3 Extensible Typechecking

The CLARITY typechecker takes as arguments a C program and a set of qualifier spec-

ifications in the language described in the previous section. The typechecker then

performs qualifier checking on the program as directed by thequalifier specifications’

type rules. The extensible typechecker also uses value qualifiers’ declared invariants

to instrument the program with run-time checks for casts involving value qualifiers, as

mentioned in Section 4.2.1.3.

The CLARITY typechecker is implemented as a module in CIL [NMR02], a front
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end for C written in OCaml [Rem98]. CIL parses C code into an abstract syntax

tree (AST) format and provides a framework for performing passes over this AST.

After qualifier checking, the AST is output as C code and thegcc compiler performs

ordinary C typechecking and code generation.

4.3.1 Annotating Programs

CLARITY makes use ofgcc attributes, which are tags that can be associated with types

(and other program entities) similar, but more flexible than, Java metadata annotations

as seen in Chapter 3, to introduce qualifiers into C programs. CIL supportsgcc at-

tributes and maintains them in the generated AST for a program. A type attribute

follows the type name and has the following syntax:

__attr ibute__ (( attribute name))

Instead of directly using this rather unwieldy syntax, users can define C macros to

replace the name of the qualifier with the full syntax. Such macros are used in the C

language examples of Section 4.2. For example, the qualifierpos used in Listing 4.2

is defined as follows:

#define pos __attr ibute__ (( pos ))

4.3.2 Qualifier Checking with CIL

To enforce a qualifier specification, the CLARITY typechecker traverses the provided

CIL AST, applying user-defined type rules to applicable program fragments. Any type

errors found during qualifier checking are provided to the programmer as warnings,

but compilation is allowed to continue.

To implement qualifier checking, I created a set of OCaml datatypes to represent

the expression patterns and predicates that are allowed in user-defined type rules. For
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example, consider thecase clause on lines 5-6 in Listing 4.1. The expression pattern

is represented internally as follows:

Binop (Mult , Expr ("E1") , Expr ("E2" ))

The clause’s predicate is similarly represented as follows:

And(Qual ("pos " , Expr ("E1")) ,
Qual ("pos " , Expr ("E2" )))

Consider the application of this type rule to the right-hand side of the assignment

to prod in Listing 4.2. First, the typechecker matches the expression pattern against

the CIL AST for a * b . The match succeeds and produces bindings for variables

in the pattern:E1 is bound to the expressiona andE2 is bound to the expressionb.

Finally, the rule’s predicate is evaluated, after replacing each pattern variable with the

C program fragment to which it is bound. In this example, the predicate is satisfied

if a andb can recursively satisfy the qualifierpos . The other kinds of type rules are

represented and checked similarly.

4.3.3 Interacting with C

CLARITY allows types to be annotated with qualifiers wherever they appear. For ex-

ample, the types ofstruct fields may be qualified, and the typechecker will check

that they obey the user-defined type rules. Fields of unions may also be given qualified

types, but the usual unsoundness for C unions makes qualifierchecking in this case

unsound as well.

As is often the case for C program analyses, CLARITY assumes a logical model

of memory. In particular, the type ofp+i , wherep is a pointer andi is an integer, is

assumed to be the same as the type ofp. This assumption is unsound, but in practice

it removes a large source of spurious type errors; for example arising from pointer

arithmetic for array indexing.
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Another source of spurious type errors arises from invokingprocedures in the C

standard library, since their argument and result types arenot annotated with user-

defined qualifiers. A CLARITY user can mitigate this problem by writing header files

that contain alternate signatures for library procedures,which replace the procedures’

ordinary signatures viagcc command-line macros. Macros from the standard library

are also problematic. When these macros are expanded by the C pre-processor, CLAR-

ITY produces type errors because the macros’ bodies are not properly annotated. Short

of creating new external versions of these macros, there is little recourse in prevent

such spurious errors. Typechecking can also be unsound because it allows variables

to be used before being initialized (according to C conventions) and does not model

arithmetic overflow.

4.4 Qualifier Inference

Up to this point I have discussed CLARITY ’s qualifiercheckingcapabilities: that is, all

variables have had to be explicitly annotated with their qualifiers in order to typecheck

correctly. In this section, I show how CLARITY supports qualifierinferencein the

presence of user-defined qualifier rules. I formalize qualifier inference for a simply-

typed lambda calculus with references and user-defined qualifiers, as defined by the

following grammar:

e ::= c | e1 +e2 | x | λx : τ.e | e1 e2 | ref e | e1 := e2 |!e | assert(e,q)

τ ::= int | τ1→ τ2 | ref τ

Let Q be the set{q1, . . . ,qn} of user-defined qualifiers in a program. Sets of quali-

fiers fromQ form a natural lattice, with partial order⊇, least-upper-bound function∩,

and greatest-lower-bound function∪. I denote elements of this lattice by metavariable
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l ; qualified types are ranged over by metavariableρ and are defined as follows:

ρ ::= l φ φ ::= int | ρ1→ ρ2 | ref ρ

I present both a type system and a constraint system for qualifier inference and

describe an algorithm for solving the generated constraints. The type system defines

what type qualifiers are necessary in order for a program to bewell-typed, while the

constraint system provides an efficient implementation strategy for determining those

qualifiers. I assume that bound variables in expressions areannotated with unqualified

typesτ. It is possible to combine qualifier inference with type inference, but separating

them simplifies the presentation.

4.4.1 Formal Qualifier Rules

I formalize thecase rules as defining two kinds of relations. First, somecase clauses

have the effect of declaring a specificity relation between qualifiers. I formalize these

rules as defining axioms for a relation of the formq1 ⊲ q2. For example, the second

case clause in Listing 4.4 would be represented by the axiompos⊲nonzero. I use⊲∗

to denote the reflexive, transitive closure of the user-defined⊲ relation, and we require

⊲∗ to be a partial order.

The other kind ofcase clause uses a pattern to match on a constructor (e.g., +),

and the clause determines the qualifier of the entire expression based on the qualifiers

of the immediate subexpressions. I formalize these rules asdefining relations of the

form Rq
p, whereq is a qualifier andp represents one of the constructors in the formal

language, ranging over integer constants and the symbols+, λ, andref . The arity of

each relationRq
p is the number of immediate subexpressions of the constructor repre-

sented byp, and the domain of each argument to the relation isQ. Eachcase clause

is formalized through axioms for these relations. For example, the fourthcase clause
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in Listing 4.4 would be represented by the axiomRnonzero
∗ (nonzero,nonzero) (if the

formal language contained the* operator). The firstcase clause in Listing 4.4 would

be formalized through the (conceptually infinite) set of axiomsRnonzero
1 (), Rnonzero

2 (),

etc. For simplicity of presentation, I assume that each sub-expression is required to

satisfy only a single qualifier. In fact, the implementationallows each sub-expression

to be constrained to satisfy a set of qualifiers, and it is straightforward to update the

formalism to support this ability.

Finally, I formalize therestrict rules with an expression of the formassert(e,q),

which requires the type system to ensure that the top-level qualifier on expressione’s

type includes qualifierq. For example, therestrict rule in Listing 4.4 is modeled

by replacing each denominator expressione in a program withassert(e,nonzero).

Theassert expression can also be used to model explicit qualifier annotations in pro-

grams.

4.4.2 The Type System

In this section I formalize qualifier inference as a type system over the simply-typed

lambda calculus with references and user-defined qualifiersas defined previously. The

previous section provided some insight into how CLARITY interacts with C via pattern

matching, but this formalism defines how to infer the qualifier necessary for a well-

typed program.

The qualifier type system is presented in Figure 4.2, and the set of axiomsA repre-

senting the user-defined qualifier rules are implicitly considered to augment this formal

system. As usual, metavariableΓ ranges over type environments, which map variables

to qualified types. The rule forassert(e,q) infers a qualified type fore and then

checks thatq is in the top-level qualifier of this type. Thestrip function used in the

rule for lambdas removes all qualifiers from a qualified typeρ, producing an unquali-
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l1⊇ l2

l1int≤ l2int

l1⊇ l2 ρ≤ ρ′ ρ′ ≤ ρ

l1 ref ρ≤ l2 ref ρ′

l1⊇ l2 ρ2≤ ρ1 ρ′1≤ ρ′2

l1(ρ1→ ρ′1)≤ l2(ρ2→ ρ′2)

Figure 4.1: Formal subtyping rules for qualified types.

l = {q | Rq′
c ()∧q′ ⊲∗ q}

Γ ⊢ c : l int

Γ ⊢ e1 : l1 int Γ ⊢ e2 : l2 int

l = {q | Rq′
+(q1,q2)∧q1 ∈ l1∧q2 ∈ l2∧q′ ⊲∗ q}

Γ ⊢ e1 +e2 : l int

Γ(x) = ρ

Γ ⊢ x : ρ

strip(ρ1) = τ1 Γ,x : ρ1 ⊢ e : ρ2 ρ2 = l2 φ2

l = {q | Rq′

λ (q2)∧q2 ∈ l2∧q′ ⊲∗ q}

Γ ⊢ λx : τ1.e : l(ρ1→ ρ2)

Γ ⊢ e1 : l(ρ2→ ρ) Γ ⊢ e2 : ρ2

Γ ⊢ e1 e2 : ρ

Γ ⊢ e : ρ ρ = l0 φ0

l = {q | Rq′

ref(q0)∧q0 ∈ l0∧q′ ⊲∗ q}

Γ ⊢ ref e : l ref ρ

Γ ⊢ e1 : l ref ρ Γ ⊢ e2 : ρ

Γ ⊢ e1 := e2 : ρ

Γ ⊢ e : l ref ρ

Γ ⊢!e : ρ

Γ ⊢ e : ρ ρ = l φ q∈ l

Γ ⊢ assert(e,q) : ρ

Γ ⊢ e : ρ′ ρ′ ≤ ρ

Γ ⊢ e : ρ

Figure 4.2: Formal qualifier inference rules.
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α1int⊑ α2int ≡ {α1⊇ α2}

α1ref δ1⊑ α2ref δ2 ≡ {α1⊇ α2}∪δ1⊑ δ2∪δ2⊑ δ1

α1(δ1→ δ′1)⊑ α2(δ2→ δ′2) ≡ {α1⊇ α2}∪δ2⊑ δ1∪δ′1⊑ δ′2

Figure 4.3: Converting type constraints into set constraints for CLARITY .

fied typeτ.

The main novelty in the type system is the consultation of theaxioms inA to

produce the top-level qualifiers for constructor expressions. For example, consider the

first rule in Figure 4.2, which infers the qualifiers for an integer constantc using a

set comprehension notation. The resulting setl includes all qualifiersq′ such that the

Rq′
c () relation holds (according to the axioms inA), as well as all qualifiersq that are

“less specific” than such aq′ as defined by the⊲∗ relation. In this way, the rule finds

all possible qualifiers that can be proved to hold given the user-definedcase clauses.

The subsumption rule at the end of the figure can then be used toforget some of these

qualifiers, via the subtyping rules in Figure 4.1. The inference of top-level qualifiers is

similar for the other constructors, except that consultation of theR relation makes use

of the top-level qualifiers inferred for the immediate subexpressions.

4.4.3 The Constraint System

While the formal type system presented previously clearly defines how type qualifiers

and their associated axioms can be integrated into the base type system, it is not an

effective approach for implementing qualifier inference. In this section I describe a

constraint-based algorithm for qualifier inference. The key novelty is the use of a spe-

cialized form ofconditional constraintsto represent the effects of user-defined quali-

fier rules. The metavariableα representsqualifier variables, and generated constraints

have the following forms:
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α′ fresh δ′ = α′ int δ = refresh(δ′)

κ ⊢ c : δ | δ′ ⊑ δ∪{Cq
c(α
′) | q∈Q}

κ ⊢ e1 : α1 int |C1 κ ⊢ e2 : α2 int |C2

α′ fresh δ′ = α′ int δ = refresh(δ′)

κ ⊢ e1 +e2 : δ |C1∪C2∪δ′ ⊑ δ∪{Cq
+(α1,α2,α′) | q∈Q}

κ,x : δ1 ⊢ e : δ2 |C δ1 = embed(τ1) δ2 = α2 ϕ2

α′ fresh δ′ = α′(δ1→ δ2) δ = refresh(δ′)

κ ⊢ λx : τ1.e : δ |C∪δ′ ⊑ δ∪{Cq
λ(α2,α′) | q∈Q}

κ(x) = δ′ δ = refresh(δ′)

κ ⊢ x : δ | δ′ ⊑ δ

κ ⊢ e1 : α(δ2→ δ′) |C1 κ ⊢ e2 : δ′2 |C2

δ = refresh(δ′)

κ ⊢ e1 e2 : δ |C1∪C2∪δ′2⊑ δ2∪δ′ ⊑ δ

κ ⊢ e : δ0 |C δ0 = α0 ϕ0

α′ fresh δ′ = α′ ref δ0 δ = refresh(δ′)

κ ⊢ ref e : δ |C∪δ′ ⊑ δ∪{Cq
ref(α0,α′) | q∈Q}

κ ⊢ e1 : α ref δ′ |C1 κ ⊢ e2 : δ′′ |C2

δ = refresh(δ′)

κ ⊢ e1 := e2 : δ |C1∪C2∪δ′′ ⊑ δ′∪δ′ ⊑ δ

κ ⊢ e : α ref δ′ |C

δ = refresh(δ′)

κ ⊢!e : δ |C∪δ′ ⊑ δ

κ ⊢ e : δ′ |C δ′ = α φ

δ = refresh(δ′)

κ ⊢ assert(e,q) : δ |C∪{q∈ α}∪δ′ ⊑ δ

Figure 4.4: Formal constraint generation rules for qualifier inference in CLARITY .
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α⊇ α q∈ α q∈ α⇒
W

(
V

q∈ α)

Given a setC of constraints, letSbe a mapping from the qualifier variables inC to sets

of qualifiers.S is said to be asolutiontoC if Ssatisfies all constraints inC. S is said to

be theleast solutionto C if for all solutionsS′ and qualifier variablesα in the domain

of SandS′, S(α)⊇ S′(α). It is easy to show that if a set of constraintsC in the above

form has a solution, then it has a unique least solution.

4.4.3.1 Constraint Generation

I formalize constraint generation by a judgment of the formκ ⊢ e : δ |C. HereC is a

set of constraints in the above form, and the metavariableδ represents qualified types

whose qualifiers are all qualifier variables:

δ ::= α ϕ ϕ ::= int | δ1→ δ2 | ref δ

The metavariableκ denotes type environments that map program variables to qualified

types of the formδ.

The inference rules defining this judgment are shown in Figure 4.4. Theembed

function adds fresh qualifier variables to an unqualified type τ in order to turn it into a

qualified typeδ, andrefresh(δ) is defined asembed(strip(δ)). To keep the constraint

generation purely syntax-directed, subsumption is “builtin” to each rule: therefresh

function is used to create a fresh qualified typeδ, which is constrained by a subtype

constraint of the formδ′ ⊑ δ. Subtype constraints are also generated for applications

and assignments, as usual. Subtype constraints are treatedas a shorthand for a set of

qualifier-variable constraints, as shown in Figure 4.3.

Each rule for an expression with top-level constructorp produces one conditional

constraint per qualifierq in Q, denotedCq
p. Informally, the constraintCq

p inverts the

user-defined qualifier rules, indicating all the possible ways to prove that an expression
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with constructorp can be given qualifierq according to the axioms inA. For example,

both the second and thirdcase clauses in Listing 4.4 can be used to prove that a

producta*b has the qualifiernonzero , so our implementation of constraint generation

in CLARITY produces the following conditional constraint:

nonzero ∈ αa∗b⇒ ((nonzero ∈ αa∧nonzero ∈ αb)∨ (pos ∈ αa∗b))

More formally, letzip(Rq
p(q1, . . . ,qm),α1, . . . ,αm) denote the constraintq1 ∈ α1∧

. . .∧ qm ∈ αm. Let {a1, . . . ,au} be all the axioms inA for the relationRq
p, and let

{q1, . . . ,qv} = {q′ ∈ Q | q′ ⊲ q}. ThenCq
p(α1, . . . ,αm,α′) is the following conditional

constraint:

q∈ α′⇒ (
_

1≤i≤u

zip(ai ,α1, . . . ,αm)∨
_

1≤i≤v

qi ∈ α′)

This constraint system is actually equivalent to the type system presented in the

previous subsection; details of the proof of the systems’ equivalence are presented in

a companion technical report [CMM05b].

Theorem: /0 ⊢ e : ρ if and only if /0 ⊢ e : δ |C and there exists a solutionS to C such

thatS(δ) = ρ.

4.4.3.2 Constraint Solving

The qualifier inference constraints are solved by a graph-based propagation algorithm,

which either determines that the constraints are unsatisfiable or produces the unique

least solution. Figure 4.5 shows a portion of the constraintgraph generated for the

statementint prod = a*b; . On the left side, the graph includes one node for each

qualifier variable, which is labeled with the correspondingprogram expression. Each

node contains a bit string of length|Q| (not shown in the figure), representing the

qualifiers that may be given to the associated expression. All bits are initialized to
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Figure 4.5: An example constraint graph.

true, indicating that all expressions may be given all qualifiers. If bit i for nodeα ever

becomes false during constraint solving, this indicates that α cannot include theith

qualifier in any solution.

Because this algorithm propagates theinability for an expression to have a qualifier,

the direction of flow is opposite what one might expect. For each generated constraint

of the formα1 ⊇ α2, the graph includes an edge fromα1 to α2. For each conditional

constraint, the graph contains a representation of itscontrapositive. For example, the

right side of Figure 4.5 shows anand-ortree that represents the following constraint:

((nonzero 6∈ αa∨nonzero 6∈ αb)∧ (pos/∈ αa∗b))⇒ nonzero /∈ αa∗b

The tree’s root has an outgoing edge to thenonzero bit of the nodea*b , and the leaves

similarly have incomingnonzero -bit edges. In the figure, edges to and from individual

bits are dotted. The root of each and-or tree maintains a counter of the number of sub-

trees it is waiting for before it can “fire.” This example treehas a counter value of

2.

To solve the constraints, the root of each and-or tree is visited once. If its counter
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is greater than 0, CLARITY does nothing. Otherwise, the outgoing edge from its root

is traversed, which falsifies the associated bit and propagates this falsehood to its suc-

cessors recursively until quiescence. For example, if the and-or tree in Figure 4.5 ever

fires, that will falsify thenonzero bit of a*b , which in turn will falsify thenonzero

bit of prod .

After the propagation phase is complete, CLARITY employs the constraints of the

form q∈ α to check for satisfiability. For each such constraint, if thebit corresponding

to qualifierq in nodeα is false, then this points out a contradiction and the constraints

are unsatisfiable. Otherwise, the least solution is formed by mapping each qualifier

variableα to the set of all qualifiers whose associated bit in nodeα is true. For ex-

ample, the least solution to the constraints in Figure 4.5 isαa∗b = αprod = {nonzero}

andαa = αb = {nonzero,pos}.

4.4.3.3 Complexity Analysis

Let n be the size of a program,m be the size of the axioms inA, andq be the number

of user-defined qualifiers. There areO(n) qualifier variables,O(n2) constraints of the

form α ⊇ α, O(qn) constraints of the formq∈ α, andO(qn) conditional constraints

generated, each with sizeO(m). Therefore, the constraint graph hasO(n2) edges be-

tween qualifier-variable nodes, each of which can be propagated acrossq times. There

areO(qnm) edges in total for the and-or trees, and there areO(qnm) edges between the

qualifier-variable nodes and the and-or trees, each of whichcan be propagated across

once. Therefore, the total number of propagations, and hence the total time complexity,

is O(qn(n+m)).
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4.5 Automated Qualifier Verification

Up to this point in my discussing of CLARITY , I have focused on defining the language

of type qualifier specifications, the semantics of the type systems in the language, and

how the qualifiers could be checked and/or inferred. This clearly establishes how

CLARITY tackles expressiveness and usability, but does not provideinsight on how it

addressesreliability. In this section, I outline how CLARITY uses the definedsemantic

invariant of the specification to automatically prove that the typing rules are sound

using CLARITY ’s soundness checker.

The approach described here is in contrast with the approachshown for JAVA -

COP in Section 3.5. Because the JAVA COP language is so expressive, reliability is

expressed using the incomplete method of unit testing. In the case of CLARITY , the

restricted expressiveness of the language allows the type systems to be formally vali-

dated against an invariant using an automated theorem prover. Results from such vali-

dation provide a much stronger guarantee of soundness in CLARITY than can easily be

achieved by hand in JAVA COP. This provides a clear illustration of the trade-offs that

are necessary to make practical discipline checking frameworks as defined in Chap-

ter 1.

4.5.1 Soundness Checking

A user-defined qualifier and its associated type rules constitute a typing discipline,

which is enforced by the CLARITY typechecker. Often such typing disciplines are

intended to ensure a particular run-time invariant. For example, the typing discipline

defined by thepos qualifier and associated type rules in Listing 4.1 is intended to

guarantee that certain expressions only evaluate to positive integers at run time.

However, the extensible typechecker enforces user-definedtyping disciplines in a
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purely syntactic manner, without knowledge of the intendedinvariants. For example,

suppose the pattern in the secondcase clause in the definition ofpos in Listing 4.1

were erroneously specified asE1 - E2 instead ofE1 * E2 . In that case, CLARITY ’s

typechecker would happily use this revised type rule to check programs, even though

this can causepos ’s intended invariant to be violated at run time.

Rather than forcing users to take responsibility for the correctness of their qual-

ifiers, CLARITY supportsautomated soundness checking. A qualifier definition may

optionally specify the qualifier’s associated invariant, as discussed in Section 4.2.1.3.

The framework’ssoundness checkercan then be used to automatically proves that the

qualifier’s type rules establish this invariant.

With a qualifier’s invariant, CLARITY ’s soundness checker generates one proof

obligation for eachcase clause of a qualifier specification and automatically dis-

charges these obligations via Simplify [DNS03], a Nelson-Oppen-style automatic the-

orem prover [NO79]. Simplify contains decision proceduresfor several decidable

theories, including linear arithmetic and equality for uninterpreted function symbols.

Simplify’s input language accepts first-order formulas over these theories.

4.5.2 Value Qualifier Proof Obligations

Eachcase clause’s proof obligation simply requires that if an expression matches

the clause’s syntactic pattern and satisfies the clause’s predicate, interpreted in the

context of an arbitrary run-time execution stateρ, then the qualifier’s invariant also

holds inρ. For example, consider the firstcase clause forpos in Listing 4.1. The

soundness checker generates the following proof obligation: if an expressionE is an

integer constant that is greater than zero, then the value ofE in an arbitrary execution

stateρ is greater than zero. This obligation is easily proved, given the evaluation

semantics of integer constants.
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Now consider the secondcase clause forpos . The soundness checker generates

the following proof obligation: if an expressionE has the formE1 * E2 and bothE1

andE2 satisfypos ’s invariant in an arbitrary execution stateρ, thenE also satisfies

pos ’s invariant inρ. This obligation is easily proved by the semantics of multiplica-

tion. On the other hand, if the pattern in that clause were erroneously specified asE1 -

E2, the soundness checker would catch the error and warn the programmer, since the

associated proof obligation would fail: it is not possible to prove that the difference of

two arbitrary positive integers is also positive.Restrict clauses do not help in deter-

mining if an expression of qualified type satisfies its qualifier’s invariant, sorestrict

clauses are ignored by the soundness checker.

4.5.2.1 Axioms

CLARITY employs logical axioms to formalize the dynamic semantics of programs in

CIL’s intermediate language. The state of a program is represented by an execution

stateρ = (π, ι,ε,σ), whereπ is a program,ι is an index pointing to the statement about

to be executed,ε is the environment, which maps variable names to memory locations,

andσ is the store, which maps locations to values.

CLARITY also defines several function symbols for constructing and manipulating

execution states. Thestatefunction symbol takes a program, index, environment, and

store, and it constructs an execution state. The function symbolsgetStmt, getEnv, and

getStoretake a state and respectively return the statement about to be executed, the

environment, and the store. Environments and stores are represented asmaps. Sim-

plify has built-in function symbols that represent operations on maps. For example,

the built-inselectfunction symbol takes a map and a key and returns the key’s associ-

ated value. Finally, C program expressions and statements themselves are represented

using additional function symbols. For instance, the statement∗x := &y is encoded as
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assign(deref(var(x)),addr(var(y))).

Given this representation, CLARITY defines axioms for a function symboleval-

Expr, which evaluates an expression in a given state. For instance, the following axiom

formalizes evaluation of variable references

∀ρ,e,x.(e= var(x)⇒

evalExpr(ρ,e) = select(getStore(ρ),select(getEnv(ρ),x)))

CLARITY similarly defines axioms for a functionlocation, which takes an l-value and

returns its address, and a functionstepState, which takes a program state and returns

the state resulting from executing the current statement.

The axioms only formalize the subset of the CIL intermediate language necessary

for reasoning about expression patterns. For example, CLARITY does not axioma-

tize the semantics of procedure calls, since they cannot be pattern-matched against.

However, CLARITY does explicitly model memory allocation, via thenew function

symbol.

4.5.2.2 Producing Proof Obligations

To produce a qualifier’s proof obligations, first CLARITY defines a predicate to repre-

sent the qualifier’s invariant. Built-in function symbols like value in qualifier defini-

tions are translated to their counterpart function symbolsin the axioms. For example,

the invariant forpos from Listing 4.1 is defined as follows:

pos(ρ,e) = (evalExpr(ρ,e) > 0)

Proving the soundness of a qualifierq also requires access to the invariants of all qual-

ifiersq′ that are referred to inq’s type rules.

Given these invariants it is straightforward to represent proof obligations in Sim-

117



plify. For example, the obligation for the secondcase clause ofpos in Listing 4.1 is

defined as follows:

∀ρ,e1,e2.(pos(ρ,e1)∧pos(ρ,e2))⇒ pos(ρ,multExpr(e1,e2))

4.6 Experience

This section reports on experience using the CLARITY framework for user-defined

type qualifiers. I describe experience using the framework to do typechecking on pro-

grams both without qualifier inference and with qualifier inference. The experience

reported without inference focuses on statically detecting NULL dereferences, viola-

tions of uniqueness invariants, and improper format strings. These three examples

demonstrate all three type qualifier categorizations: value, reference, and flow, respec-

tively. The experience with inference similarly reports onuse of a suite of type systems

on six open-source C programs. Four of these open-source programs are seen in both

sets of experiments.

4.6.1 Qualifier Checking

In all of the experiments described below that do typechecking without inference, the

extra compile time for performing qualifier checking in CIL isunder one second. Thus,

times are omitted from discussion until the next subsection.

4.6.1.1 Null Dereferences

Listing 4.5 shows the definition of anon-nullvalue qualifier in CLARITY , which can be

automatically proved sound by the CLARITY soundness checker. The solecase clause

indicates that the address of an l-value can be considerednonnull . The restrict
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value qualifier nonnul l (T* Expr E)
case E of

decl T LValue L:
&L

restrict
decl T* Expr E:

*E, where nonnul l (E)
invariant value(E) != NULL

Listing 4.5: Anonnull value qualifier specification in CLARITY .

clause requires all dereferences in a program to be tononnull expressions.

I used thisnonnull qualifier to statically ensure the absence ofNULLdereferences

in thegrep search utility program (version 2.5). I annotated the filesdfa.c anddfa.h ,

which comprise the core string-matching algorithm and related data structures. The

files consist of 2287 non-blank, non-comment lines of code.

I applied nonnull annotations to variables in an iterative fashion. Running the

extensible typechecker on the unannotated files produced anerror message for each

dereference, due to thenonnull qualifier’s restrict clause. For example, the type-

checker indicated arestrict violation for d in the following code, leading to a

nonnull annotation:

static void bui ld_state ( int s , struct dfa *d) {
· · ·
if (d -> trcount >= 1024) {
· · ·

}
}

These errors were removed by annotating some variables withnonnull , which could

in turn cause error messages on assignments to the newly-annotated variables, leading

to more annotations. In addition to formal parameters and local variables, I docu-

mented several fields of structures as beingnonnull through this process.
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Table 4.1: Results from thenonnull experiment.

program: grep

files: dfa.c , dfa.h

lines: 2287

dereferences: 1072

annotations: 114

casts: 59

errors: 0

There were situations where the type rules fornonnull were insufficient and I had

to insert casts. The major source of such imprecision is due to the flow-insensitivity of

the CLARITY framework. An example of such imprecision fromgrep follows:

if (( t = d-> trans [ works ]) != NULL ) {
works = t [*p ];
· · ·

}

The index into arrayt is safe because it is guarded by the check forNULL, but the

type system cannot deduce this fact. Simple forms of such flow-sensitive reasoning

could be incorporated by extending the CLARITY framework with a dataflow analysis

framework, such as the one from JAVA COP presented in Section 3.4.

A related source of imprecision occurs when access to aNULL-terminated array

is guarded by a test that the index is less than the value of a variable holding the

array’s length. Statically deducing the invariant betweenthe array and that variable

may be difficult. One possibility would be to piggyback the qualifier checker on top of

CCured [NMW02], which (among other things) can sometimes statically deduce array

bounds.

Table 4.1 summarizes the results of this non-null experiment. In order for the
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Table 4.2: Results from theuntainted experiment.

program: bftpd mingetty identd

lines: 750 293 228

printf calls: 134 23 21

annotations: 2 1 0

casts: 0 0 0

errors: 1 0 0

restrict clause innonnull to succeed on all 1072 dereferences, I had to insert 114

nonnull annotations and 59nonnull casts.

4.6.1.2 Untainted Format Strings

While the running examples throughout this dissertation have focused on using an un-

tainted discipline for preventing SQL injection attacks, as mentioned in Section 4.2.1.4,

this discipline is general useful for tracking program directives embedded in strings.

This section provides experience using theuntainted qualifier for ensuring proper

format-string arguments toprintf . For these experiments, I used the simple version

of untainted defined in Section 4.2.1.4, augmented with acase clause that defines

all constants to beuntainted :

case E of decl T Const C: C

This form of the qualifier was used to annotate and check threeof the programs

tested by Shankaret al. [STF01], who performed a taintedness analysis using CQUAL.

The programs arebftpd (version 1.0.11), an FTP server;mingetty (version 0.9.4),

a remote terminal utility; andidentd (version 1.0), a network identification service.

For all three programs, I was able to reproduce the results ofShankaret al.
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These results are shown in table 4.2. Running theuntainted qualifier checker

on bftpd indicated two procedure parameters that must be annotated as untainted ,

since they are used as format strings forprintf . Re-running the qualifier checker

then reveals an exploitable error that had been previously identified [Bai, STF01]. The

offending code is shown below:

int sendstrf ( int s , char * untainted format , . . .);
· · ·
sendstrf (s , entry ->d\ _name );

Thed namefield of entry is a file name and should not be considered a proper format

string. The extensible typechecker appropriately signalsan error since the field has not

been declareduntainted .

The other two test programs were verified to have no format-string vulnerabili-

ties. In addition, no casts were required for any of the threetest programs; the simple

case clause defined above was sufficient to infer the untaintedness of all format-string

arguments.

4.6.2 Qualifier inference

To test CLARITY ’s qualifier inference scheme, I used four different qualifier specifica-

tions on six open-source C programs, ranging from a few hundred to over 50,000 lines

of code: the user identification programidentd , the terminal programmingetty , the

regular expression matching programgrep , the Linux FTP serverbftpd , the calcula-

tor programbc , and the intrusion detection systemsnort . Their size and number of

variables are shown in the first section of Table 4.3.

Each test case was run through the inferencer twice. The firsttime, the inferencer

was given a definition only for a version ofnonnull , with a case clause indicating

that an expression of the form&E can be considerednonnull and arestrict clause
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Table 4.3: Qualifier inference results.

qualifier sets nonnull nonnull/pos/neg/nz

program kloc vars cons gen solv cons gen solv

(s) (s) (s) (s)

identd-1.0 0.19 624 1381 0.09 0.01 2757 0.15 0.01

mingetty-0.9.4 0.21 488 646 0.04 0.01 1204 0.06 0.01

bftpd-1.0.11 2.15 1773 3768 0.39 0.05 6426 0.58 0.08

bc-1.04 4.75 4769 14913 1.21 0.13 27837 5.78 0.18

grep-2.5 10.43 4914 15719 0.75 0.55 28343 7.84 0.71

snort-2.06 52.11 29013 99957 36.39 46.81 176852 290.24 58.07

requiring dereferences to be tononnull expressions, as shown in Listing 4.5. The

second time, the inferencer was additionally given versions of the qualifierspos , neg ,

andnonzero for integers, each with 5 case rules similar to those in Listings 4.1, 4.3,

and 4.5. For each run, the table records the number of constraints produced as well as

the time in seconds for constraint generation and constraint solving.

Several pointer dereferences fail to satisfy therestrict clause fornonnull , caus-

ing qualifier inference to signal inconsistencies. I analyzed each of the signaled errors

for bc and inserted casts tononnull where appropriate to allow inference to succeed.

In total, I found no real errors and inserted 107 casts. Of these, 98 were necessary

due to a lack of flow-sensitivity in CLARITY ; this is the same limitation shown in the

tests without inference. Despite this limitation, the qualifier rules were often powerful

enough to deduce interesting invariants. For example, onbc , 37% (163/446) of the

integer lvalues were able to be given thenonzero qualifier and 5% (24/446) thepos

qualifier. Forsnort , 8% (561/7103) of its integer lvalues were able to be given the

nonzero qualifier, and 7% (317/4571) of its pointer lvalues were ableto be given the

nonnull qualifier (without casts).
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As the program size increases, inference becomes too slow toeasily use as part

of an interactive development process, especially when allfour qualifiers are inferred

simultaneously. However, at around 6 minutes for a 40,000-line program, it would be

feasible to perform global qualifier inference once or occasionally, and use the results

to do standard typechecking without inference. This hybridapproach provides the

precision and reduced manual annotation requirements of the inference engine with

the speed of the standard typechecking engine.

4.7 Summary

In this chapter, I presented the CLARITY framework for semantic type qualifiers in

C. The CLARITY language allows developers to create value qualifier specifications

via pattern matching over C expressions. While not as expressive as the JAVA COP

language, the CLARITY language shows proficiency for developing type qualifiers that

constrain integer values such asnonzero , pos , andneg , as well as other simple qual-

ifiers like untainted and nonnull . This simplified language enables CLARITY to

support a number of automated features including standardized qualifier typechecking

and inference as well as discipline verification. I presented a formal type system and

inference algorithm for qualifiers that clearly defines how qualifiers are enforced on C

programs. I also presented the automated soundness checking algorithm that ensures

a qualifier’s typing rules establish its associated invariant.
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CHAPTER 5

Conclusions

In this dissertation, I have shown that syntactic guidelines which I callprogramming

disciplinescan be used to write better software. This is made possible bytaking ad-

vantage of three key insights that allow programming disciplines to beautomatically

enforced on target programs via frameworks for programmer-defined discipline check-

ing. First, the frameworks provide a domain-specific language for defining a discipline

specification. This allows users to reuse and adapt previously defined disciplines as

well as write their own disciplines and encourages enforcement of multiple disciplines

on a project. Second, the frameworks leverage static type systems for discipline check-

ing. Type systems often have annotation facilities associated with them that allow users

to specify more information about the type of a program element in the source code.

The ability to use the built-in annotation facilities, as well as standard idioms of type

systems such as subtyping, remove the need to replicate suchfeatures in the discipline.

The discipline implementations can take advantage of building on top of these under-

lying base mechanisms, thus significantly simplifying discipline development. Third,

the frameworks provide some means by which discipline specifications can be vali-

dated against the program invariants they intend to ensure.This third feature elevates

discipline enforcement from simply constraint checking toconstraint checking for a

semantic purpose.

I have developed and presented two practical implementations of this approach:

JAVA COP, a pluggable type system for Java; and CLARITY , a semantic type qualifier
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framework for C. These implementations demonstrate the usefulness of the approach

by showing how a variety of discipline implementations can detect and prevent bugs

in real code. However, they also show trade-offs among the desired properties of

discipline checking frameworks. JAVA COP has a very expressive language for writing

disciplines but has limited faculty for automated verification of disciplines against their

intended program invariants. Instead, JAVA COP includes a unit test framework which

allows developers to provide test suites looking for violations of a discipline’s intent.

CLARITY , on the other hand, provides a language with limited expressiveness but more

automated verification of the discipline. Limiting the expressiveness of the language

also allows CLARITY to provide support for type inference, which is not feasiblein

JAVA COP.

5.1 Future Directions

While this dissertation has shown the utility of disciplines, there are still a number of

interesting directions that it suggests in which research can go towards enabling the

development of better software.

One of the key challenges in both formal specification and type systems is auto-

mated verification of the soundness. This applies equally well to discipline frame-

works shown here. Expressive frameworks like JAVA COP are much more difficult to

formally reason about in an automated fashion than simpler systems like CLARITY .

However, an increasingly large research focus has shown breakthroughs in both the

automatic generation of test suites [BKM02, DDG07] and on model checking of type

systems [RHD08]. Such work suggests that it might be possibleto provide more auto-

mated support for verifying disciplines in more expressiveframeworks like JAVA COP.

The translation scheme from JAVA COP to Datalog¬ is a first step in this direction as it

should allow more formal reasoning about the disciplines themselves.
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As more programming migrates to platforms that support interaction of multiple

languages, discipline frameworks that focus on disciplines for a single target language

like CLARITY and JAVA COP will not be sufficient for discipline checking. Instead,

new models must be investigated to find the appropriate balance between language-

agnostic and language-specific discipline specification. Some possible platforms to

target with this work include web platform languages like JavaScript, SQL, and PHP;

and languages that run on top of the .NET Common Language Runtime like C# and

F#. Recent work in this area includes type safety checking over foreign function

calls [FF08] and the Boogie language which multiple languages can be translated into

and verified with the Boogie tool [DL05, BCD05].
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APPENDIX A

Full FJCOP to Datalog¬ Translation Scheme

In this appendix, I present the full translation scheme fromFJCOP to Datalog¬. Dis-

cussion of the translation can be found in Chapter 3, Section 3.3. This full translation

includes a number of translation scheme judgments that werenot found in previous

discussion, including alternate rules for effectively handling negation, multiple literals

instead of a single literal created via translation

Value Expression→v

[TRANS-CONSTANT]

Φ ⊢ ℓ⇒v ℓ | ℓ ⊣Φ

[TRANS-VAR-KNOWN]

Φ(x) = X

Φ ⊢ x⇒v X | X ⊣Φ

[TRANS-VAR-FRESH]

Φ(x) = /0 X fresh

Φ ⊢ x⇒v X | X ⊣Φ∪{(x,X)}

[TRANS-VALUE-FN]

Φ ⊢ t⇒v T | T ⊣Φ0 ∀
|t|
i=1.Φi−1 ⊢ ti ⇒

v Ti | Ti ⊣Φi X fresh

Φ ⊢ t.Fv(t)⇒
v
Fv(T,T,X) | X ⊣Φ|t|
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Boolean Expressions⇒b

[TRANS-PRED-CALL ]

∀
|t|
i=1.Φi−1 ⊢ ei ⇒

v Ti | Ti ⊣Φi

Φ0 ⊢ f (t)⇒b f (T) ⊣Φ|t|

[TRANS-BINDING-TYPE-TEST-1]

Φ ⊢ ev⇒
v E | T ⊣Φ′ E 6= T

Φ ⊢ x : τ← ev⇒
b E, type (T,τ) ⊣Φ′∪{(x,T)}

[TRANS-BINDING-TYPE-TEST-2]

Φ ⊢ ev⇒
v T | T ⊣Φ′

Φ ⊢ x : τ← ev⇒
b type (T,τ) ⊣Φ′∪{(x,T)}

vspace.1in

[TRANS-NEG-1]

Φ ⊢ eb⇒
b E,E ⊣Φ′ E 6= ¬(E′)

Φ ⊢ ¬eb⇒
b E,¬(E) ⊣Φ′

[TRANS-NEG-2]

Φ ⊢ eb⇒
b E,¬(E) ⊣Φ′

Φ ⊢ ¬eb⇒
b E,E ⊣Φ′

[TRANS-BOOL-FN]

Φ ⊢ t⇒v Φ0 ⊢ T | T ∀
|t|
i=1.Φi−1 ⊢ ti ⇒

v Ti | Ti ⊣Φi

Φ ⊢ t.Fb(t)⇒
b
Fb(T,T) ⊣Φ|t|

Constraints⇒c

[TRANS-SEQUENCE]

Φ ⊢ c1⇒
c E1 |C1 Φ ⊢ c2⇒

c E2 |C2

Φ ⊢ c1;c2⇒
c E1,E2 |C1∪C2

[TRANS-REQUIRE]

Φ ⊢ eb⇒
b E ⊣Φ′

Φ ⊢ require(eb)⇒c E | /0
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[TRANS-WHERE-1]

F fresh T = range(Φ) Φ ⊢ eb⇒
b E ⊣Φ′ Φ′ ⊢ c⇒c Ec |C

Φ ⊢ where(eb){c}⇒
c F(T) |















F(T) :−E,Ec.

F(T) :−
|T|
^

i=1

object (Ti),¬(E).















∪C

[TRANS-WHERE-2]

F fresh T = range(Φ) Φ ⊢ eb⇒
b E1,E2 ⊣Φ′ Φ′ ⊢ c⇒c Ec |C

Φ ⊢ where(eb){c}⇒
c F(T) |















F(T) :−E1,E2,Ec.

F(T) :−
|T|
^

i=1

object (Ti),E1,¬(E2).















∪C

[TRANS-FORALL-L IST]

F,X1,L,L′ fresh

Φ ⊢ x2⇒
v T2 | T2 ⊣Φ T = range(Φ) Φ∪{(x1,X1)} ⊢ c⇒c E |C

Φ ⊢ ∀L x1 : τ ∈ x2.{c}⇒
c

F(T,T2) |



















F(T,L) :−cons (X1,L
′,L), type (X1,τ),E,F(T,L′).

F(T,L) :−cons (X1,L
′,L),¬(type (X1,τ)),F(T,L′).

F(T,L) :−nil (L).



















∪C

[TRANS-FORALL-TREE]

F,X1,L,L′ fresh

Φ ⊢ x2⇒
v T2 | T2 ⊣Φ T = range(Φ) Φ∪{(x1,X1)} ⊢ c⇒c E |C

Φ ⊢ ∀A x1 : τ ∈ x2.{c}⇒
c subnodes (T2,L),F(T,L) |



















F(T,L) :−cons (X1,L
′,L), type (X1,τ),E,F(T,L′).

F(T,L) :−cons (X1,L
′,L),¬(type (X1,τ)),F(T,L′).

F(T,L) :−nil (L).



















∪C
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[TRANS-EXISTS-L IST]

F,X1,L,L′ fresh

Φ ⊢ x2⇒
v T2 | T2 ⊣Φ T = range(Φ) Φ∪{(x1,X1)} ⊢ c⇒c E |C

Φ ⊢ ∃L x1 : τ ∈ x2.{c}⇒
c

F(T,T2) |







F(T,L) :−cons (X1,L
′,L), type (X1,τ),E.

F(T,L) :−cons (X1,L
′,L),F(T,L′).







∪C

[TRANS-EXISTS-L IST]

F,X1,L,L′ fresh

Φ ⊢ x2⇒
v T2 | T2 ⊣Φ T = range(Φ) Φ∪{(x1,X1)} ⊢ c⇒c E |C

Φ ⊢ ∃L x1 : τ ∈ x2.{c}⇒
c subnodes (T2,L),F(T,L) |







F(T,L) :−cons (X1,L
′,L), type (X1,τ),E.

F(T,L) :−cons (X1,L
′,L),F(T,L′).







∪C

Predicate and Rule Definitions⇒d

[TRANS-PREDICATE]

Φ0 = /0 ∀
|x|
i=1.Φi−1 ⊢ xi ⇒

v Xi | Xi ⊣Φi Φ|x| ⊢ c⇒c E |C

declare f (x : τ){c}⇒d { f (X) :−
|x|
^

i=1

type (Xi,τi),E.}∪C | /0

[TRANS-RULE]

/0 ⊢ x⇒v X | X ⊣Φ Φ ⊢ c⇒c E |C

rule f (x : τ){c}⇒d

{ f (X) :−type (X,τ),E.}∪C | {? :−type (X,τ),not ( f (X)).}

Program⇒p

[TRANS-PROGRAM]

∀
|d|
i=1.di ⇒

d Ci |Gi

d⇒p
|d|
[

i=1

Ci |

|d|
[

i=1

Gi
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