University of California

Los Angeles

Enforcing and Validating User-Defined Programming
Disciplines

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Shane Andrew Markstrum

2009

(© Copyright by
Shane Andrew Markstrum
2009

The dissertation of Shane Andrew Markstrum is approved.

D. Stott Parker

Jens Palsberg

Sorin Lerner

Todd Millstein, Committee Chair

University of California, Los Angeles

2009

To Joe and Phyllis for always supporting my educational misea

1

TABLE OF CONTENTS

Introduction 2

1.1 Programming Disciplines 2
1.1.1 DisciplineExamples 3

1.2 Thesis Proposal: Enforcing and Validating User-Deffremjramming
Disciplines e 8
1.2.1 Practical Implementations of My Approach 11

1.3 DissertationOutline 12

RelatedWork 14

2.1 Formal Specification o 14

2.2 Advanced Type Systems 15

2.3 Extensible Compiler Frameworks 16

2.4 Language Extensions 17

2.5 Standalone Discipline Checkers 7 1

2.6 Constraint Checking Frameworks 18

2.7 Type System Extension Frameworks 9 1

2.8 Program Property Inferencers, 20

2.9 Provably Correct Compiler Optimizations 21

JAvACOP. Pluggable TypesforJava. 22

3.1 Introduction 22
3.1.1 Overview of theAVACOP Framework 25

3.2

3.3

3.4

3.5

3.1.2 ChapterOrganization 27

The 3vACOP RuleLanguage 27
3.2.1 The Abstract Syntax Tree 28
3.2.2 RulelLanguage Overview. 29
3.23 ASTRules 30
3.24 SubtypeRules 0. 32
3.25 Constraints 33
3.2.6 Auxiliary Predicates 36
3.2.7 Pattern Matching and Conditional Assignment 38
3.2.8 Quantification. 41
AVACOP Language Semantics 43
331 Datalog 43
3.3.2 TranslationOverview 45
3.3.3 F&opPGrammar 47
3.3.4 Translation Judgment Notation 47
3.3.5 TranslationScheme 48
The JavaCOP Dataflow Framework 53
3.4.1 Specifying Dataflow Analyses 55
3.4.2 An Example Analysis for the Non-null Checker 75
3.4.3 Accessing Analysis Results from JavaCOP Rules 57
3.4.4 Flow Analysis Implementation 59
Type SystemTesting 60
3.5.1 Two-Stage TestingApproach 60

3.5.2 EXperience 66

3.6 Domain-Specific Checkers: Polyglot&SCJ 6 6
3.6.1 Design PatternsinPolyglot. 68
3.6.2 Safety Critical Java (SCJ) Checker 72

3.7 Advanced Type Checker: Non-null Types 7 7
3.7.1 Non-null Type System 77

3.8 Compiler Performance, 84

3.9 Summary 87

CLARITY: Semantic Type QualifiersforC. 88

4.1 Introduction 88

4.2 Semantic Type Qualifiers 91
42.1 ValueQualifiers. 91

4.3 Extensible Typechecking 110
4.3.1 Annotating Programs 102
4.3.2 Qualifier CheckingwithCIL 102
4.3.3 InteractingwithC 103

4.4 QualifierInference 104
4.4.1 Formal QualifierRules 105
442 TheTypeSystem 106
443 TheConstraintSystem 108

4.5 Automated Qualifier Verification 114
451 SoundnessChecking 114

Vi

4.5.2 Value Qualifier Proof Obligations 511

4.6 Experience 118

4.6.1 QualifierChecking 118

4.6.2 Qualifierinference 122

A7 SUMMANY . . . o e e e e e e e e e e 124
5 Conclusions. 125

5.1 FutureDirections 126
A Full FJcoprto Datalog™ Translation Scheme. 128
References L 132

Vil

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

LIST OF FIGURES

An overview of the &va COP system. Dashed lines indicate optional

inclusions; and document images with content represeatidgecode. 26
A selection of OpenJDK AST nodes classes and their mganin . . 28

A subset of theaAVA COP Syntax. Expression syntax is not presented
here, but handles most Java expressions and additiongiposis let

binding and pattern matching (Section3.2.7. 31
The F&orlanguage grammar. 46

Example code (b) demonstrating a false positive indathy our@NonNull
type system and how the code had to be modified (c) to appease th

type system. This is a false positive because the type syistem-

aware of the invariant which the methochEmpty() (a) ensures. . . 82
AVACOP CompilationTimes 86
Formal subtyping rules for qualified types. 107
Formal qualifier inferencerules. 107
Converting type constraints into set constraints for@aTY. 108

Formal constraint generation rules for qualifier infeein G ARITY. 109

An example constraintgraph. 121

viii

3.1

3.2

4.1

4.2

4.3

LIST OF TABLES

Results of running the Polyglot style checker. 70

@NonNull annotation results for Dijkstra’s algorithm implementati
and AvA COP. Additional code dependencies listed here include-wrap
per methods for library calls as well as additional annatatede. Nul-

lity checks inserted due to lack of Java support for annartaton en-

hanced for loops and generics are listed under Java lionisti. . . . 81
Results from theonnull experiment. 120
Results from thentainted experiment.. 121
Qualifier inferenceresults. 123

Acknowledgments

| would first like to thank my wife, Tingting. She has shown nemstant support and
patience as | ran around the world doing research. She retgemk lose sight of my

goals and always inspires me to do my best.

| am indebted to my advisor Todd Millstein for taking a chameeme when he
came to UCLA. He has constantly challenged me to think crelgtand to be rigorous

in my work.

| want to thank my other committee members Sorin Lerner, Batsberg, and Stott
Parker for forcing me to find how my work fits into the broadeecspum of computer

science research.

As collaborators, colleagues, and friends, | want to thargy®ne in the TERTL
and LASR labs at UCLA. | especially want to thank those unfoate few who shared
a cubicle with me and had to deal with my constant paper medEFisher, Nikitas
Liogkas, Dan Marino, and Manav Mital. | also want to thank RarG Xu and Roy
Shea for working with me on projects that did not prove fulith terms of papers, but

were still enlightening.

| want to thank Brian Chin, Todd Millstein, and Jens Palsbergteir collabora-
tion on the CARITY project. | still think it would have been better to call it B

Biscuit, though.

| want to thank Chris Andreae and James Noble at Victoria Usityeof Welling-
ton and Todd Millstein for their collaboration om\lh COP. James especially went
out of his way to put me up in New Zealand and introduced mee&d<ifwi research

experience: extreme distances and constant jetlag.

| am also indebted to Robert Fuhrer, Vijay Saraswat, and Fignlat IBM Re-

search for the research opportunities they afforded me lagid invaluable feedback

on CLARITY and AvACOP.

Finally, | want to thank my parents for their love and suppbfeel lucky to have
parents that have encouraged and inspired my interest ahitepand were patient

enough to let me go through the Ph.D. process at my own speed.

Xi

Vita

1980 Born, Orange, CA.

1994 First official language course—FORTRAN.

1996 Personal website published in Newsweek.

2002 Joint Bachelor of Science in Computer Science and Matiesna

Harvey Mudd College.

2002-2006 Substitute and summer school teacher in therfeuléoint Union
High School District.

2003-2004 Teaching Assistant, Computer Science Departtd©htA.

2003-2009 Graduate Student Researcher, Computer Sciencartidept,
UCLA.

2004 Masters of Science in Computer Science, UCLA.

2006 Research Intern, IBM T.J. Watson Research Labs.

2008 Grant awarded for research in New Zealand, NSF East ssla

Pacific Summer Institute.

PUBLICATIONS

Kevin Eustice, Leonard Kleinrock, Shane Markstrum, GeRgek, V. Ramakrishna,

xii

Peter Reiher. Enabling Secure Ubiquitous InteractionsProceedings of the 1st
International Workshop on Middleware for Pervasive and AoKComputing Rio de

Janiero, Brazil. June, 2003.

Kevin Eustice, Leonard Kleinrock, Shane Markstrum, GeRagek, V. Ramakrishna,
Peter Reiher. Securing WiFi Nomads: The Case for Quarantixemnkbation, and
Decontamination. IrProceedings of the New Security Paradigms Workshop .2003

Ascona, Switzerland. August, 2003.

Everett Anderson, Kevin Eustice, Shane Markstrum, MarkdeanPeter Reiher. Mo-
bile Contagion: Simulation of Infection and Disease. Aroceedings of the IEEE
Symposium on Measurement, Modeling, and Simulation of Malwdonterey, CA.

June, 2005.

Brian Chin, Shane Markstrum, Todd Millstein. Semantic Typal@wers. InProceed-
ings of the ACM SIGPLAN 2005 Conference on Programming LareyDeggign and

ImplementationChicago, IL. June, 2005.

Brian Chin, Shane Markstrum, Todd Millstein, Jens Palsbengferénce of User-
Defined Type Qualifiers and Qualifier Rules. Pnoceedings of the 15th European

Symposium on Programmingfienna, Austria. March, 2006.

Chris Andreae, James Noble, Shane Markstrum, Todd MillstéirFramework for
Implementing Pluggable Type Systems.Hroceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systeamguages, and Appli-
cations Portland, OR. October, 2006.

Xiii

Brian Chin, Daniel Marino, Shane Markstrum, Todd Millsteimf&cing and Validat-
ing User-Defined Programming Disciplines.Rroceedings of the 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools argingering San
Diego, CA. June, 2007.

Shane Markstrum, Robert Fuhrer, Todd Millstein. Towards Qomncy Refactoring

for X10. In Proceedings of the 14th ACM SIGPLAN Symposium on Principlds a
Practice of Parallel ProgrammingRaleigh, NC. February, 2009

Xiv

Abstract of the Dissertation

Enforcing and Validating User-Defined Programming
Disciplines

by

Shane Andrew Markstrum
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2009

Professor Todd Millstein, Chair

Developing good software requires a large investment af itmd money. Yet, production-
guality code often has lurking bugs and security vulnertadsl To help manage the
complexity of building robust software systems, develspeseprogramming disci-
plinesduring the creation process such as haming schemes foratadéability, de-
sign patterns for extensibility, and lock ordering schetogsevent program deadlock.
But these disciplines are only informally specified and laMdihg support that would

allow them to be enforced consistently on the code.

In this dissertation, | present a solution for creating fesrarks for programming
disciplines that allows programmers to define how discgdishould be enforced. Fur-
ther, this solution allows users to validate that the digogs they are using ensure
desired program properties in their code. This solutioruit bpon three insights: a
domain-specific language provides a standard way to spadifscipline; type systems
provide a scaffolding for automatic discipline checkinggaxplicit association of a

runtime invariant allows disciplines to be verified.

| present an overview of two instantiations of such programdefined discipline

frameworks that | developed and builzvd COP for Java, and QARITY for C. | show

XV

how the use of these frameworks can be beneficial to prograswigecase studies of
disciplines—including design pattern checkers, untdirtyges, and non-null types—
that find errors in real code. These frameworks further shavade-off among the
desired properties of expressiveness, usability, analiéty. JAsvA COP is expressive
in that the language can be used to write a wide variety ofiglises, but it cannot
automatically validate that a discipline is sound with egto its invariant. On the
other hand, CARITY has limited expressiveness but can automatically provieaha

discipline establishes an invariant on a program.

XVi

Terminology

As my dissertation deals with metaprogramming—that isygmms that take other pro-
grams as input—it will help to define a few terms here that magherwise be ambigu-

ous to the reader.

base type systenthe type system built into a target language.

pluggable type systeman optional type system or type system extension for a target

language which may be provided as an argument to a type ahecke

target language the programming language whose programs are meant to ireptem

the discipline.
target program a program that is checked for proper use of a discipline.

type annotation a metadata tag that may be used to provide additional infilema
about the type of a program construct but is generally igthbrethe base type

system. Also may be referred to as a program annotation.

type system extensiona set of rules that extends an already existing type systém wi
out redefining the base type system. Also may be refereed aaygse refine-

ment.

user generally, the programmer who is using disciplines. Mayasamnally refer to

the person who is using software intended for the end-user.

user-defined programming discipline a programming discipline that the user has de-
fined outside a target language. Also may be referred to asrade$ined disci-

pline.

CHAPTER 1

Introduction

1.1 Programming Disciplines

Software developers today face a difficult task in buildimgl anaintaining efficient,
reliable, and useful systems. To create good software Jaj@es have to reason about
a vast panoply of potential problems. Examples of thesel@nab include making
sure that null pointers are not dereferenced; being ablaefédysand successfully link
dynamic software components like device drivers at runtane properly using locks
to access shared data in a multi-threaded/concurrentmargnvironment. Dealing
with each of these problems individually is a difficult tastke difficulty is only com-

pounded by having to handle all of them at once.

Current software best practices attempt to make this reag@nocess manageable
by using what I calprogramming disciplineguring development. Programming dis-
ciplines are syntactic program constraints that ensurgraros have certain desirable
properties and meet certain design criteria. Examplessaiglines includenaming
schemesuch as Hungarian notation and CamelCase which help to cthafyype and
intent of program componentspn-null checkglaced before important pointer deref-
erences that help ensure accidental null pointer accessastdcause a program to
terminate unexpectedlglesign patternsuch as thé&tate andVisitor patterns that
provide ways to capture desired program behaviors and oaplifr future program

extension; andbcking schemewhich ensure that harmful data races are prevented in

a concurrent program.

Unfortunately, several problems currently limit the useéss of programming dis-
ciplines. First, there is no standard way to specify how foe a discipline. Without
such a standard, disciplines are limited to being defineatinélly in the comments
of a program or in the project specification documents. Sgicamd related to the first
problem, there is no way of automating the enforcement ofsaigline on a target
program. Current best practices establish that disciplmesnforced upon manual
review of code. As manual enforcement of disciplines is irfgm, it is easy for vi-
olations of the disciplines to remain part of the code evaarakview. Thus, the
reviewed programs may exhibit bugs and vulnerabilitiesm. Third, there is no
explicit way to state what program properties a disciplmenieant to ensure. With-
out this ability, it is impossible to determine whether acgptine is really the correct

discipline for ensuring a particular set of program projestrt

In this dissertation, | present a solution that allows paogmers to define how dis-
ciplines will be enforced and effectively automates theoezément of programming
disciplines on target programs. My solution ensures thanithed bugs and vulnera-
bilities are reduced and/or prevented and helps verifyititahded program properties
are attained. This solution is scalable, as it supportsif@eement of any number of
disciplines at the same time; non-intrusive, as it does ravhdtically alter a language;

and adaptable, in that programmers control how a discipl®uld be enforced.

1.1.1 Discipline Examples

In this section, | present two examples of Java securityenalbilities and explain how
disciplines can be used to prevent the creation and reldasede exhibiting these
vulnerabilities. The first example focuses on SQL injectadtacks: well-known, yet

frequently-seen, security vulnerabilities for systenad thterface with SQL databases.

The second example discusses a classic Java security atilitgrrelated to leaked

private objects being manipulated in untrusted sectiort®dé.

Both of these examples demonstrate that disciplines candfalder preventing
mistakes and bugs. With manual enforcement of the dis@glithough, it remains

easy for the security vulnerabilities to elude detection.

SQL Injection Attacks SQL injection attacks [US 09] are a form of security vul-
nerability in programs that interact with SQL databases:ulmerable programs, ma-
licious users can inject new commands into program-geeeieries. The malicious
users accomplish this by providing unanticipated inputolildhanges the nature of a
guery embedded in the program. Since SQL databased havevgkespread use in
popular software like the Microsoft IIS web server, SQL atjen attacks continue to

be disruptive to e-commerce and Internet communication.

Listing 1.1 defines a simple Java API for interacting with a_LSfatabase. In this
API, the executeQuery method takes in &tring which defines a SQL query and
returns the results of performing the query on an assoctgtbase; and tlgetName
method returns an unknowstring from the user. Listing 1.2 shows a small code
snippet that demonstrates how SQL injections can be intexdlinto a program. In
this case, the query string is generated by inserting the string returned from the
getName method into a standard query template. If the returnedgstnaludes thé
character then it will terminate the string embedded in therg and allow arbitrary
new SQL operators to be included after that point. For examph user supplied the
string";DROP users;--" , then performing the query will result in the deletion of

theusers table from the database.

To prevent SQL injection attacks, developers can follow iy eemple discipline:

only untaintedstrings may be used to generate SQL queries. A tainted s&iagy

/* Executes a SQ. query (given as a paraneter) on the
* currently affiliated SQU database and returns the
* results.

* |
ResultSet executeQuery(String sql);

/* Returns a String provided by the user of this program
* |
String getName();

Listing 1.1: A small Java API for programs that receive usgui for querying SQL
databases.

String name = o.getName();
String q = "SELECT * FROM users WHERE name=""+name+"";";
result = db.executeQuery(q);

Listing 1.2: A code snippet using the API from Listing 1.1ttdemonstrates a possible
SQL injection attack.

string that may have been manipulated or given as input frotside of the current
scope. Untainted strings are then strings that are knowre tsalfe to the program.
Tainted strings in the case of SQL injection attacks can llysbe made untainted
throughsanitizing escaping errarit characters and removing disallowed operations
from the strings. Listing 1.3 shows how this discipline carapplied to the code from
Listing 1.2 to prevent the SQL injection attack. In this caagppet, the developer
calls thesanitize method on the user input, thereby changing the input frorméetz

string to an untainted one.

In a small excerpt of code, such as in Figures 1.2 and 1.3g#3g to see how care-
ful use of this discipline would result in code without SQljgiction attacks. However,
in the context of a large body of code, there can be many diftgpaths that contribute
to the generation of a query. Manually verifying that queoynponent strings re-

main untainted on all paths to an invocatioresécuteQuery is a difficult task. Even

String name = o.getName();

String g = "SELECT * FROM users WHERE name=""
+sanitize(name)+"";";

result = db.executeQuery(q);

Listing 1.3: A modified version of the code from Listing 1.2 s demonstrates
proper use of anntainteddiscipline for SQL query components.

public class Class {

private Identity[] signers;
publ i ¢ lIdentity[] getSigners() { return signers; }

}

Listing 1.4: A snippet of the Jav@lass class from the Java Development Kit (JDK)
1.1 relating to class signers that reveals a security vakity.

though the discipline itself is simple to understand andmomicate, it is nevertheless

a non-trivial task to enforce.

Java Class Signing In version 1.1 of Java, applets were able to gain access+o cer
tain privileged operations on a user’s system by being sidpyea trusted signer. Object
signing was meant to prevent applets from causing damageadplet user’s system
by requiring particular signatures in order to delete or ifyoiiles or access informa-
tion. However, in the initial implementation of tli#ass class, there was a security
vulnerability that allowed applets to bypass the signinghmé. The relevant excerpt

of the JDK 1.1Class definition is shown in Listing 1.4.

The problem is ultimately a result of tlyetSigners method returning an alias to
the privatesigners field. A malicious applet could ask the Java security frant&wo

to give it the list of trusted signers for the system and addntho its own class’s

1Code excerpts in Listings 1.4 and 1.6 are modified snippetsaé from [VB99].

Enumeration trustedSigners =
IdentityScope.getSystemScope().identities();
Identity[] mySigners = t hi s.getClass().getSigners();
for(int i=0; i<mySigners.length
&& trustedSigners.hasMoreElements(); ++i){
mySigners[i] = trustedSigners.nextElement();

}

/+* Do bad things with new privileged signatures x/

Listing 1.5: Code excerpt that illustrates how applets cexlgoit the JDK 1.1 signers
vulnerability.

signers array through the alias returned frogatSigners . An example of this is
shown in Listing 1.5. As a result, when the applet attempteddrform privileged

actions on the user’s system, it would appear to be endogsttelirusted signers.

A discipline for preventing this vulnerability can be sthes:references to secure
data should remain confined in the privileged scope of thaihgfipackage Thiscon-
fineddiscipline requires methods never return direct referetaeecure, private data
to an unknown external scope. This restriction preventsidetampering. Instead, a
reference to a copy of the data can be returned or some formratitable reference
through which updates cannot occur. Applying the formeraopto theClass class

results in the code excerptin Listing 1.6.

The confineddiscipline [VB99] explains how to solve this security praflebut
the discipline itself is not suitable for manual enforcemeonsider the case when
a previously non-secure field is changed to a confined fieldenTdll prior existing
references to that field are potential security holes. Miynaehecking all method
calls and dereferences in a Java program for proper confefecence usage in any

execution context is very tedious, especially for largegpams. It is likely that such a

public class Class {

private Identity[] signers;

publ i c Identity[] getSigners() {
Identity[] pub = new ldentity[signers.length];
for (int i = 0; i < signers.length; i++)

pub[i] = signersJi];

return pub;

}

}

Listing 1.6: A safe version of th€lass class that returns a copy of the class’s signers.

search would result in the improper classification of cartaferences.

1.2 Thesis Proposal: Enforcing and Validating User-Defined Pro-

gramming Disciplines

In this dissertation, | present an approach to automatioreafment ofuser-defined
disciplines. This approach gives developers control dverdisciplines they want to
use on programs while still remaining scalable and adaptably approach is val-
idated through the creation of two practical frameworkg theget the languages of

Java and C, respectively.

There are three key components that make user-definedlahsaghecking frame-
works practical: a domain-specific language for specifydiggiplines, discipline en-
forcement via type system extensions, and discipline eatifin against a run-time

invariant.

1. Discipline Specification The frameworks provide a domain-specific language

(DSL) that allows programmers to easily write their own g8nes. This en-

ables developers to leverage a wide variety of disciplineembuilding their

projects. Providing a language solves the issue of scajabg developers are
not limited by a fixed set of built-in discipline checkers lbah enforce the disci-
plines they want to enforce. It also solves the issue of adlfiy since the users
can modify a discipline specification to enforce the disogin the manner they

would like it to be enforced.

2. Discipline Enforcement Static type systems already define and enforce a kind
of discipline on programs and are already familiar to mosgpgmmers. Ex-
tending a type system to enforce more properties is a naiaglto enforce
new disciplines. Type systems have an advantage in chedisoglines since
they are inherently modular and scalable. Thus, disciplth@t are enforced
as type system extensions can be used to incrementally gihhegkam compo-
nents while still providing guarantees about the overatfiastics of a program.
Many programming languages also provide the ability to a@tiawniata tags to
types which provides a simple way to introduce new discglifformation into

a program.

3. Discipline Validation: Disciplines are used to ensure that programs exhibit cer-
tain desired program properties. These properties, in tamoften be expressed
as run-time invariants. An invariant can further be usecal@ate that the disci-
pline actually establishes such properties. Specifyiegrtariant as a run-time
invariant enables a wide variety of techniques to use irfyiag the discipline

including run-time testing, model checking, and proof stssice.

This definition of a discipline framework with the three camnents defined above

leads to the thesis of this dissertation:

A framework for user-defined programming disciplines erabieclarative speci-

fication and automated enforcement of many programmingptiises, both general-
purpose and domain-specific, that find important errors amslee desirable program

properties.

| have further identified three characteristic propertiggractical discipline frame-

works. The properties are defined as follows:

1. Expressiveness The framework is capable of expressing and enforcing many
different disciplines. In particular, it handles discips that were outside of the

set of discipline examples that initially motivated thenfirework’s creation.

2. Usability: Developing discipline implementations in the framewoeels fa-
miliar and/or natural to developers that use the targetdagg. The framework
provides straightforward tools that are easy to use and ealtied to a standard

toolchain. Discipline enforcement is scalable and addgtab

3. Verifiability : Implementations enforce the program discipline whiclytaee
intended to enforce. The framework provides support foemheining whether a

discipline specification matches its design intent.

In practice, frameworks demonstrate a trade-off amongettiese properties. Each
framework can effectively maximize two out of the three mudjes defined here at
the expense of a reduction of the third property. In my img@atations, | chose to
emphasize usability and varied the focus on the other twpepties to show how this
trade-off works in practice. That the frameworks are usaypeimarily driven by their

emphasis on type systems.

10

1.2.1 Practical Implementations of My Approach

To support my thesis statement, | have created two praaigatdefined discipline
checking frameworks based on the approach described psyjovritten a variety of

disciplines for these frameworks, and used them to find negé In existing software.
These two frameworks represent two different points in #sgh space of discipline
checking frameworks: one focuses on maximizing expresss® and usability, and

the other focuses on maximizing verifiability and usabhility

The AvA COP discipline framework for Java [ANM06, MME] focuses orpess-
siveness and usability. It provides a declarative rule aedipate language for spec-
ifying rules on Java programs, utilizing Java 1.5 metadatdifies for program an-
notation. | have implemented a number of interesting andtrneial programming
disciplines with it, including non-null types, confined g8 design pattern checkers,
and domain-specific checkers for Enterprise JavaBeans 8.Gafety Critical Java.
Because of the focus on expressiveness and usability, Vditfisof JAvA COP dis-
ciplines provides a challenge. However, to meet this chglethe &vA COP frame-
work also incorporates a novel testing framework for pcadtvalidation of disciplines
which utilizes runtime instrumentation for dynamic inari checking. TheaAyVa COP
framework was developed jointly with Chris Andreae and JaNmasle from Victoria
University of Wellington, New Zealand, and Dan Marino anddd@dMillstein from
UCLA. JAVACOP is discussed further in Chapter 3.

The QLARITY discipline framework for C [CMMO05a, CMMO06] focuses on verifia-
bility and usability. It provides a declarative rule langedor specifying type qualifier
rules that constrain the values of C expressions, inclubimgjean, arithmetic, and
pointer expressions. | was able to develop and validate deruof non-trivial integer
type qualifiers, such as non-zero, positive, negative, ammdetd/untainted. CARITY

also provides a soundness checker that uses an automateehthgrover to automati-

11

cally validate the qualifier specifications against a seroamiariant. This automated
soundness checker would not be possible to reproduce fostarsyas expressive as
JAvACOP. Q. ARITY was the first implementation based on this new user-defireed di
cipline checking framework model. TheL&RITY framework was developed jointly
with Brian Chin, Todd Millstein, and Jens Palsberg at UCLA. Amlreexploration of

CLARITY can be found in Chapter 4.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2 presents related work to this dissertation andssss why this previous

work does not solve the problems identified here.

Chapter 3 discusses\vh COP, the pluggable type system framework for Java. In
this chapter | provide an example-driven overview of iterldnguage, highlighting
the constructs which stress the flexibility and expressigsrof the framework. | then
provide insight into the semantics of thevdA COP language by providing a transla-
tion from JAvA COP into Datalog. This is followed an exploration of the advanced
features of &AvA COP that include a dataflow analysis framework and a pluggatpke
unit-test framework. | then provide some of my experienéegidava COP as a disci-

pline checker via a case study of a number of pluggable tygesyimplementations.

Chapter 4 gives further details about theARITY semantic type qualifier frame-
work for C. In this chapter | overview thel@RITY rule language for defining type
gualifiers and explain how rules are checked on C programisen provide and an-
alyze a formal type system and constraint inference alyoriior the type qualifiers.
This is followed by an explanation of how rule specificatiams verified using an au-

tomatic theorem prover. | conclude the chapter with a disiomsof my experience

12

using a variety of CARITY type qualifiers on real C code.

Chapter 5 concludes the paper with a look towards future sidas of this work.

13

CHAPTER 2

Related Work

In this chapter, | present and discuss related work to thasedtation. This work in-
cludes: formal specification and advanced type systemshwaliow programmers to
precisely define their desired program properties but dopnotide general strate-
gies for how to establish such properties; language exieaghat build support for a
fixed set of disciplines into their type systems; and typéesysextension frameworks
that allow programmers to define their own pluggable typeesys but do not pro-
vide a discipline language for creating disciplines. | dsiefly describe other work
that shows how discipline checking and user-defined dis>ameworks fit into the

context of broader research concerns.

2.1 Formal Specification

Formal specification is a common method of documenting tregret set of prop-
erties and behaviors of a program. Such specification i<#lgiin the form of
pre-condition, post-condition, and invariant specificasi in the manner of Hoare
Logic [Hoa69] or Design by Contract [Mey92]. A number of laages, such as Eif-
fel [ISO] and Spec# [BDF08], have built-in support for thia@iof specification. Other
languages, like Java, can utilize externally defined laggsauch as JML [LLL99] to
allow programmers to write specifications in program comisiehese specification

comments need to be specially parsed and handled by otHsramohey will not be

14

recognized by the target language.

While formal specification allows developers to preciselfirdedesired program
properties, it is not practical to check such specificatidany formal specifications
cannot be automatically checked against an actual progrlowever, languages like
Spec# and tools such as ESC/Java [FLLO02] (which utilizes Jp#ciications) provide

support for automated reasoning over a limited domain gbg@riies.

The formal specification approach is distinct from disciplchecking in that spec-
ifications do not provide any guidelines to a programmer thow to write programs
that match the formal specification. In this fashion, speaiions are akin to pro-
gramming goals, whereas programming disciplines desgribgramming strategies
for ensuring program properties. In other words, discgdidefindhowto achieve cer-
tain program properties whereas formal specificationg staich program properties

are intended.

2.2 Advanced Type Systems

Some type systems, including the calculus of construcicit88], Nuprl [CAB86],
and type systems [SST02, CV02] for Proof-Carrying Code [Nea@d|Typed Assem-
bly Language [MWC99], use dependent types [Mar82] to encodgrpm invariants
directly in a program’s types. However, dependent type kingcs not as simple as
checking disciplines, which are syntactic program comstsa type checking means
that the invariants must be proved valid on their associptedram expressions. A
proof that an invariant holds on a program fragment canmogeneral, be produced
automatically. Many of the proofs need to be supplied by ttogrmmmer. However,
it is not reasonable to assume that the average programrmhéawe the knowledge to

create such proofs.

15

Dependent type systems are very expressive, and sincedfgeprs contain their
own proofs of correctness, are also inherently verifiableweler, as programming
in a dependently-typed language is more complicated, lityaisi severely reduced.
With the discipline approach, | provide usability by sepiaugathe simple and purely

syntactic discipline checking from discipline verificatio

Dependent types can be made more practical by limiting taengrar of the de-
pendent types. For example, Dependent ML [XP98, XP99] alblk types to depend
upon integers with linear inequality constraints. Thisiled form of dependent types
can be used to automatically prove arithmetic program iamés, such as tracking the

length of lists or whether a variable contains a positiveigal

2.3 Extensible Compiler Frameworks

Extensible compiler frameworks, such as JastAdd [EHO4]Rwigtiglot [NCMO3] for

Java and CIL [NMRO02] for C, can be used to extend a language wittfungctionality.

This functionality can include new program analyses in thengiler and extensions
to the syntax and semantics of the language. A developedamd such an extensi-
ble compiler framework to directly implement a disciplineecker. However, these
frameworks do not provide language-level support for wgtdisciplines. To create
a discipline checker in such a framework, the developer fmsstoe well-acquainted
with compiler construction. The average programmer do¢fiane this compiler ex-
pertise. Extensible compiler frameworks are useful foating discipline frameworks,

though. QARITY, for instance, was developed on top of CIL.

16

2.4 Language Extensions

Language extensions that support a fixed set of additiosalgines are commonly
built in the research community to allow researchers toyapew disciplines and
type systems to benchmarks and real-world programs. Exagfllanguage exten-
sions include CCured [NMWO02], which builds a pointer-safetycgiline into C; Cy-
clone [GMJ02], which provides new syntax to support safe orgrmanagement in
C; and RCCJava [FF00], which provides a locking scheme diseipbrprevent race
conditions in Java. | hope that discipline frameworks caovigle the implementa-
tion platform for future development of new disciplinestaed of creating a language
extension from scratch. This would encourage other progrars to use new disci-
plines in their code as they would not have to migrate thetiregode base to a new

language.

2.5 Standalone Discipline Checkers

Standalone discipline checkers can be used to staticadlgkch fixed set of disci-
plines on programs without requiring a language extenditemy of these tools have
seen widespread use in industry. For example, the FindBggermy{HP04] includes
a non-null type checker, and Ma and Foster provide a tool &eating unique ref-
erences [FMO07]. These standalone checkers are not as hdaptathe discipline
frameworks | propose in this dissertation. If a user wantsalify how a discipline
is checked in a static analysis tool, he or she has to diretiéynge the source code
of the tool. In contrast, disciplines written in a discigitanguage can be more eas-
ily modified to suit a programmer’s preferences. Furthemdalone checkers usually
require whole-program analysis in place of requiring pasgmers to annotate their

code. This approach is, thus, not suitable for modularlypeairg disciplines.

17

2.6 Constraint Checking Frameworks

Constraint checking frameworks like XIRC [ESMO05, EMO04], #8u[JV03], Semm-
leCode [HVMO06], CCEL [DMR92] and ASTLog [Cre97] provide programirs the
ability to statically check their own constraints on a peogr These frameworks pro-
vide a domain-specific constraint language that treatsafget program as a database
to be queried. Checking constraints in these frameworksnesjwhole program anal-
ysis and lacks interaction with the underlying type systeks.a result, they are ill-
suited for discipline checking. Further, none of these rawrks provides any support

for verifying constraints against desired program prapsrt

The Structural Constraint Language (SCL) [HHO06] for Java jgles similar con-
straint checking capabilities to a subset of theaAlC OP language (described in Chap-
ter 3). The language provided by SCL is similar to a straigitéwd first-order logic
language, but distinguishes itself from the previous aaivst checking frameworks
by checking constraints modularly. However, due to limitgggration with the Java
type system and a lack of support for flow-sensitivity, itiwaincheck general purpose

type systems like non-null or confined types.

The CoffeeStrainer constraint framework for Java [Bok99hewes a constraint
language in favor of having programmers write their comstsaas Java methods inside
special program comments. When run through the CoffeeStraniak these methods
will be extracted into a new visitor class. The visitor caerttbe used to check the
constraints during compilation of the class. Constraint€affeeStrainer may only
written at the class level, and cannot be written for fieldsnethods. While such an
approach can handle class-level type system<likginedrom Chapter 1, which was
originally implemented using CoffeeStrainer [VB99], it wduhot be able to effec-
tively handle theuntainteddiscipline defined in the same chapter or any of the other

examples presented in this dissertation.

18

2.7 Type System Extension Frameworks

Papiet al.created the Checker framework [PACO08] for developing plutgbipe sys-
tems for Java. The goals of the Checker project are simildretgoals of this disserta-
tion: they want to allow developers to write their own typstgyns and automatically
type check them on their code. In the Checker framework, dpeet must use Java
to write visitors that traverse Javalsee classes, while this dissertation advocates
providing a declarative rule language for such framewoikse Checker framework
provides no special support for writing advanced type systéhat require dataflow
analysis. It further lacks any facility for determining wher a pluggable type system
ensures desired program properties. The Checker frameweak tiowever, support
inference of certain forms of information flow qualifierspad) the same lines as the
simple form of theuntainteddiscipline that was described in Chapter 1. Initial papers
on both the CARITY and AvA COP projects presented in this dissertation predate the

publication of the Checker framework.

The Vault language provides a type system that tracks tesmhpostocols in a safe
dialect of C [DF01]. A type in Vault can be augmented witlype guardhat tracks the
state of the value throughout the program. For example, typlecould be augmented
with a guard that tracks whether the file is currently in anrope closed state at
any given point in a program. The states associated with adgamwell as state-
change conditions are defined by the programmer. Vault's ystem is well-suited
for checking simple temporal disciplines such as openétldile states and device
driver states, but it is not expressive enough to handle géneeral-purpose or domain-
specific disciplines.

Fugue [DF04] is an adaptation and extension of Vault's tyystesn to perform
static checking of temporal protocols for C# [C02]. Fuguevedi@ class’s typestates,

which are the analogues of type guards, to be given an imtifon as a predicate

19

over the class’s fields. Such predicates are used during stpe checking to ensure
that each method in the class properly implements its degtlapecification. In this
way, the Fugue type checker directly ensures that typestaspect their predicates.
This is the same kind of verification of type checking agaimgiriants that | propose

for user-defined discipline frameworks.

The GQuUAL framework [FFA99, FTAO02] allows programmers to define and en
force partial orders ofype qualifierson C programs. Type qualifiers in this case are
lightweight type annotations. Such type qualifiers can leslue check simple forms
of disciplines such as the untainted discipline from Chaptédowever, QUAL does
not support general syntactic constraints; a limited fofreymtactic constraints may
be simulated in QUAL via qualifier assertions and assumptionsQUAL also does
not support any kind of reasoning about the validity of a dealwith respect to its
intended invariant. More recently, the authors of theU&L project have extended
this notion of simple type qualifiers to object-oriented gnamming via the QUAL
system [GFO07]. QUAL supports polymorphic, flow-sensitive qualifier inferenthe
flow-sensitive version of QUAL can be used to track similar kinds of temporal prop-

erties as Vault without requiring the same amount of progaanotation.

2.8 Program Property Inferencers

Program property or invariant inferencers can be thouglatsahe dual to discipline
checking frameworks. Whereas discipline checking enswdain desired program
properties by enforcing syntactic constraints, invariafégrence can find program in-
variants from otherwise undisciplined code. Such infeesran occur either statically

or dynamically.

The Daikon [ECGO01] and Diduce [HLO2] systems both supportadyic program

20

invariant inference. Both of these systems take a sourcegmrognd instrument it to
gather data at runtime. Daikon infers invariants by runriveginstrumented program
on a large test suite and using the gathered data to detetimeistrongest invariants for
integer and sequence variables. Diduce refines invariantssofly and keeps track of
when inferred invariants are violated; these instanceseperted as potential errors
in the program. The invariants that result from these infeees can be useful for
adding or refining formal specifications to programs. Likssyithey might inspire a
programmer to use a discipline which ensures the invari@msin valid with future

program updates.

2.9 Provably Correct Compiler Optimizations

One of the primary inspirations for this work comes from theb@lo and Rhodium

systems [LMCO03, LMRO05]. These frameworks provide a domaecsj language

which allows compiler writers to write dataflow analyses apdimizations. These
compiler analyses and optimizations can be automaticatlyqul sound by discharg-
ing proof obligations with an automatic theorem prover. sTéwerarching model was
adapted in this dissertation to allow general programneesasily extend their type
systems to enforce new programming disciplines. In pddrcthe idea to separate

discipline specification and discipline validation comesi these earlier systems.

21

CHAPTER 3

JAvA COP. Pluggable Types for Java

3.1 Introduction

In this chapter, | present the design, implementation, amduation of a practical
framework for pluggable type systems in Java, which | calaXCOP. This framework
was built to demonstrate a user-defined programming diseighecking framework
that offers a high level of discipline expressiveness. Ts &md, | have designed a
declarative rule language in which programmers specifiy fileggable type systems.
User-defined rules function over a rich abstract syntax (1) representation for
Java programs and can use Java metadata annotations [Bdo@Rjoduce new type
information into the source codeavh COP enforces these user-defined rules on Java

programs as they are compiled.

As a simple example, consider the code in Listing 3.1 whicsuws@Untainted
annotation to specify the additional type constraint thatfieldfirstname (of Java
typeString) is safe to use when constructing SQL queries. The assigrtofnst-
name in the methodsetFirstName potentially violates this constraint, since the pa-
rametemewname could be a tainte®tring . In the case thdiShane’;DROP TABLE
users;--" is passed as the argument, usfimginame to construct a SQL query

could result in a difficult-to-trace SQL injection attack.

It is straightforward for a user to write avA COP rule that would discover this

potential error. For example, thevl COP rule in Listing 3.2 requires the right-hand-

22

cl ass Person {
@Untainted String firstname = "Chris";
voi d setFirstName(String newname) {
firsthame = newname;

}
}

Listing 3.1: A Java class demonstrating a potential veaoafSQL injection attack.

rul e checkUntainted(Assign a){
wher e(requiresUntainted(a.lhs)){
requi r e(definitelyUntainted(a.rhs)):
error (a,"Possible tainted assignment”
+ " to @Untainted");

1

Listing 3.2: A AvA COP rule which prevents assignment of a possibly taintedeval
into an@Untainted reference.

side expression of each assignment statement to be desdagsintainted whenever

the type of the left-hand-side variable or field is declareguch.

This rule relies on two user-defined helper predicates. rétperesUntainted
predicate checks that the given variable or field was detlaitgh the @Untainted
attribute. ThedefinitelyUntainted predicate inspects the given expression to de-
termine if itis definitely untainted. For examptifinitelyUntainted would define
String literals to be definitely untainted as the literal is alwaysier the control of
the developer. AssumirggfinitelyUntainted does not allow an arbitrary variable
to be considered untainted, the assignmerirgmame in setFirstName will fail

the rule, causing the compiler to output the error messalgavbe

Person.java:4: Possible tainted assignment to @Untainted
firstname = newname;

1 error

23

Java COP provides a novel combination of features to support éveldpment of

practical pluggable type systems:

e Declarative rule language.JAvACOP employs a declarative, rule-based lan-
guage for expressing the semantics of pluggable type sgst@éwn COP’s lan-
guage was created to be a simple yet highly expressive lgedoadefining new
Java type system extensions that is easy for rule designdrgragrammers to
understand and to define correctly. The language has a haturaspondence
to the normal specification of syntax-directed typing raed to first-order logic

programming.

e Seamless integration with Javdava COP naturally allows pluggable type sys-
tems to interact with Java’s existing type system, inclgdimformation about
generics and annotations. It retains Java’s modular stytgpechecking and
compilation. The typechecker is implemented as an extarsfiche standard
OpenJDKjavac compiler with a couple of new passes. This feature allows
the AvACOP compiler to be used in place of the standard Java compiker

development toolchain.

e Support for flow sensitivityMany pluggable type systems require the ability
to change the type of a variable based on its context. For gbeara non-null
type system should allow a possibly-null varialéo be considered non-null
after a successful test of the form!= null ; if not, the type system will be
too inflexible for practical usage. To provide support foegl pluggable type
systems, &vA COP includes a generic dataflow engine that can be extended by
the user to generate necessary dataflow facts. These dataéitsxcan then be

referenced inAvA COP rules as an addition to the type system.

e Pluggable type system validatiomo address discipline verificationas\lh COP

24

provides a novel two-stage framework for testing plugg&jge systems against

a test suite of Java programs. The first stage runsafeQOP checker on each
test program and compares against the expected typechemkicomes, similar

to traditional unit testing. However, many pluggable tygstesms are meant to
enforce a simple set of runtime invariants. For example,ramdl type system
should ensure that @NonNull variable or field never has the valaell . The
second stage ofaya COP'’s testing framework executes instrumented versions
of successfully-compiled test programs to verify that thiemded runtime in-
variants are not violated. Such testing is not completeitlilgtes provide some

idea of the soundness of the discipline for the given tes¢sui

| have built a diverse suite of complete and practical plidgaype systems in
JAvACOP and used them to detect real errors in existing Java a@twBased on
JAvA COP compilation performance tests, | believe that useagh COP checkers
causes minimal overhead, allowing it to be used during&ut&re development AJA -
COP and all associated tools were released under the opecesBNU General Pub-

lic License v2.0.

3.1.1 Overview of theJava COPFramework

Fig. 3.1 provides an overview of the structure of tagaAlCOP system. TheadACOP
type checker has two main components: a Java compiler extewtth JvA COP
pluggable type support and avd COP language parser/compiler. In addition to the
main system, there are a few additional tools that make ugaireCOP tool suite: a
dataflow analysis API, a Java runtime instrumenter (not shiovigure), and a plug-

gable type system unit test framework.

The Ava COP engine is an extension of the OpenJDK Java compiler vihlas

as input compiled Ava COP rules and dataflow analyses as well as target programs.

25

Test Framework

M‘J

. _)l JAVACOP

Q—} Java Compiler

A A
Java COP Engine . ! 1
Java - Compiled 1 1
~
Programs ' Se Programs : :
: S 1 '
© ~
Compiled - =
JavaCOP J |
Rules =5
JAVACOP Expected Runtime
JavA COP Parser Dataflow Compile Checks
x Analyses Results

Java COP
Rules

Figure 3.1: An overview of theA¥ACOP system. Dashed lines indicate optional

inclusions; and document images with content represeatidgecode.

Java COP then runs the dataflow analyses and does type enforcemehée target
Java programs. These passes occur after the Java AST haattémrried with type
information but before any substantial optimizations ampdation has occurred. If
there are no errors signaled during either type attributothe AvACOP passes,

compilation continues as expected.

Dashed lines in Figure 3.1 indicate optional argument siols, including any
Java COP pluggable types and dataflow analyses. Compiled Javassedewn as an
image of a document with text. One design choice for thesCOP framework was
to separate the parsing and compilation of the typing rutas £nforcing the rules via
the AvA COP Java compiler. This decision cuts down on the time reduw do the

type system enforcement. Use of th@aAJCOP test framework is always optional.

The pluggable type system engine is an extension of the @yefalac com-

piler, version 1.7.0-ea. As a result, interfacing with tagAlCOP engine is simply an

26

additional option to th@vac command which takes a set of compileddCOP files
as its argument. The extended compiler still takes stanttara programs as input, but
prints the warnings and errors generated by the pluggapkegystems in addition to

the standarghvac output.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. Sectionirrdduces the design

of JAVACOP’s rule language through a number of examples. Sect®mprdvides

a formal semantics foraya COP through a translation of the core language to the
Datalog’ language. Section 3.4 demonstrategAlC OP'’s facilities for flow-sensitive
reasoning. Section 3.5 describes the pluggable type sysi&ting framework. Sec-
tion 3.6 shows howAlA COP can be used to develop two domain-specific pluggable
type systems developed invh COP, showcasing the expressivenessmhLOP’s
declarative rule language. Section 3.7 presents experiemtding and using a more
sophisticated general-purpose pluggable type systemdhatages flow-sensitivity.

Section 3.8 presents compiler performance test numbers.

3.2 TheJavaCOPRule Language

This section describesasda COP'’s rule language in detail. The first part describes
some of the features of the AST representation of prograatshbk language employs.
The rest of the section describes the features of skie GOP rule language, and their

utility in implementing pluggable type systems, via seVeramples.

27

Tree subclass Name Java example

JCMethodInvocation Method call meth(args)
JCAssign Assignment X=y

JCClassDecl Class definition class X{ .. }
JCldent Identifier foo

JCIf Conditional if(cond).. [else ..]
JCMethodDecl Method definition void foo(){..}
JCNewClass Instance creation new World("hello")
JCReturn Return statement return false;
JCFieldAccess Field Selection s.field

JCSkip Empty statement ;

JCTypeCast Cast (String)s
JCVariableDecl Variable declaration String s = "hello";

Figure 3.2: A selection of OpenJDK AST nodes classes andrtieanings

3.2.1 The Abstract Syntax Tree

The AST of a Java program is made up of linked nodes repreggtiie program’s
structure: classes, methods, blocks, statements, eigmes&lentifiers, etc. AVA -
COP’s AST is an abstraction of the OpenJDK compiler AST, inclhall the node
types are subclasses of the abstract superd{@isse . Figure 3.2 lists a selection of
these AST nodes and the Java code they represent. Each mvt#eprmethods and

fields to access its sub-nodes.

Java COP'’s traversal of the AST occurs as a pass after Java typidolgehas oc-
curred. This allowsAA COP rules to make use of Java type information: this is criti-
cal for many kinds of type extensions. Every node in the ASTtaios aype field of

type Type, which is set during the typechecking pass and represeatdata type of

28

the expression represented by the node. These types indasketypes (which may
be parametrized), array types, method types, and (bounygee parameters; Java in-
terfaces are represented by class types internally. Tyaesrnethods that allow their
component types to be accessed, and class types have m#tabdiow their direct

superclassspipertype()) and superinterfaceserfaces()) to be retrieved.

In order for a class to be compile@yac requires information about each non-
local identifier — package, class, interface, method, and fiame — that is refer-
enced in the class. [hvac were a whole-program compiler, each identifier could
simply be linked to the AST node for its associated definiti@ivenjavac ’s modular
compilation, the source of some depended-upon progrartiesrgind the AST nodes
for those entities, may be unavailable. Téeac compiler reconstructs necessary in-
formation about non-local entities from their bytecoderesgntations, and stores it as

Symbol objects.

The AvACOP AST is currently built on top of the AST representatiofauac |,
but there is a separation between the two. For exampia,JOP AST nodes include
several useful methods that are not directly available enuhderlyingjavac nodes.
These methods provide avh COP developer with information that might be difficult
or impossible to locate given onlyjavac AST node or require the use of reflection.
Because of this extra layer of abstraction, it is possible ¢oerthe dva COP system

to other Java compilers without changing the core rule laggu

3.2.2 Rule Language Overview

Figure 3.3 presents the syntax of theyAICOP rule language. A pluggable type sys-
tem is implemented inA¥A COP as a set oliles which constrain classes via the AST
representation described in the previous subsection. Edels declared to apply to

a particular kind of AST node and provides constraints oruege of that node, de-

29

pending on type information, user-defined annotations,adiher context information
available at that node. To enforce user-defined rukesy GOP performs a depth-first
traversal of the AST of a given compilation unit (i.e., a J&l&). As each node is

traversed, any rules that apply to that type of node are ateduon that node.

As shown in Figure 3.3, there are two kinds of “joinpoint” fdxvACOP rules
which determine when a rule is applicabl&STjoinpoints andsubtypingjoinpoints.
These joinpoints are detailed in the next two subsectiongl| then discuss the various
kinds of constraints that may be employed within a rule bélgydeclare construct
for defining helper predicates for use within a rule, amerhICOP’s facilities for error

reporting.

3.2.3 AST Rules

The first kind of &AvA COP rule in Figure 3.3 is a function that starts with the kesdvo
rule and includes a hame, a single parameter whose type is a ffgubf)Tree , and

a body containing a sequence of constraints. When GOP’s AST traversal visits

a node, the node is passed to each rule that takes an arguitieatnode’s type. For
example, theheckUntainted rule defined in Listing 3.2 will be passed each node
representing a Java assignment statement durvwgCOP’s traversal of an AST. As

a result, each assignment statement is forced to satisfyaingtraints in the body of
checkUntainted . There are several forms of constraints, which are disclLiss#etail

in later subsections.

Another simple example of this kind of rule is shown in LigfiB.3. This rule
ensures that @NonNull annotation is only used on variables and fields which have
a reference type. While not necessary, using a rule like ttegemts abuse of the
@NonNull annotation on fields and variables that cannot ever be nudddinition.

The rule relies on the ability to look up the type of an AST nddectly from the node

30

(RuleFile ::= ((Rule | (Declaration)+
(Rule = ‘rule ’ (ldentifien) ‘(* (Joinpoin} ‘)’ (StatementList(FailureClause?
(Declaration) ::= ‘declare ' (ldentifier) ‘(* (VarDefLis} ‘)’ (StatementList
(StatementList::= ‘{’ (Statement+ ‘}’
(JoinPoint ::= (VarDef)

| (ldentifier) ‘<<:’ (Identifier)

(VarDefLis) ::= (VarDef) (*,* (VarDef))*
(VarDef) ::= (Typeldentifiey (Identifier)
(FailureClause ::= *:’ (“error ' |‘warning ") ‘(' (Expressioh‘,’ (Expressioh‘)’
(Statement::= (Condition)
| (Quantification
(Condition) ::= (‘where’ | ‘require ') ‘(' ((VarDefLis}h ‘;")? (Expressioh ‘)’
(ConditionRest

(ConditionRest::= (FailureClause? *;’
| (StatementList(FailureClausé?
(Quantification) ::= (‘forall ’

‘exists) ‘(' (VarDef) ‘:’ (Expressioh ‘)’
(StatementList(FailureClausé?

Figure 3.3: A subset of thewda COP Syntax. Expression syntax is not presented here,
but handles most Java expressions and additionally supf@irbinding and pattern

matching (Section 3.2.7.

31

rul e checkNonNullRef(JCVariableDecl v){
wher e(requiresNonNull(v)){
require(lv.type.isPrimitive()):
error (v,"@NonNull can only annotate variables of "+
"reference type");

}
}

Listing 3.3: A AvACOP rule that ensures ti@NonNull annotation is only used on
subtypes oDbject .

itself.

In a traditional type system, a program is considered todigpek successfully if
there is some way to derive a type for the program through tengypechecking
rules. Because pluggable type systemsAamaIL_OP often impose only a few addi-
tional constraints onto the existing Java type systewy COP enforces the opposite
convention. In particular, a program (or compilation usitcessfully typechecks by
default in AvACOP, and A&vA COP rules are used to impose additional requirements
to be satisfied. However, it is easy for a/d COP user to implement the traditional

style if desired; an example is shown in Section 3.2.6.

3.2.4 Subtype Rules

A hallmark of most object-oriented type systems is the motd subtyping. Static
typechecking ensures that this subtyping relation is r&sple such that values of a
given type can only ever be@ilewedas that type or a supertype. For example, the
type of the right-hand side in an assignment statement neuatsubtype of the type
of the reference being assigned into, and the actual argsnea method call must
be subtypes of the corresponding formal argument typeggRhle type systems for

object-oriented languages may need to extend the exigiintysing relation, in order

32

to prescribe the ways in which the new user-defined type Bpatidns interact with

other types—both Java types and user-defined ones.

JAvACOP'’s rule language supports the declarative specificatfamser-defined
subtyping relationships. For example, the rule in Listingubsumes theheckUnta-
inted rule in Section 3.1 by ensuring a potentially tainted exgi@s can never be
treated ag@Untainted . The only syntactic difference between writing a rule folb-su
typing and writing an AST rule, as described in Section 3.B.3he parameter list of
the forma <<: b . The rule applies to any AST node where a subtype relatiprshi
traditionally required, including assignment statemgrdgurn statements, parameter
passing, and type castava COP subtyping rules receive the expressiavhose type
must be compatible with the type of the symbolAt an assignment node, for exam-
ple, the right-hand-side expression will be checked ag#iessymbol for the variable

or field being assigned into.

Subtyping rules can also be written that define supertypes afnqualified Java
type. For example, the goal of a type system for confinemeBOpJ is to ensure that
instances of types that are markedcasfinedare only accessible within the type’s
defining package. To achieve this goal, such a type systerasegpa number of re-
strictions on confined types. The rule in Listing 3.5 enfsrome such restriction,
which prevents a value of confined type from being treatedhasmaonfined supertype.
Theconfined helper predicate used in the rule checks whether a type wdsrdd
@Confined .

3.2.5 Constraints

The body of a &AvA COP rule consists of a sequence of constraints. The basicokin
constraint has the fornr‘equi r e(<condition>); ”. Such a constraint is satisfied if

the associated boolean condition evaluatési®o ; otherwise the constraint fails. As a

33

rul e checkUntainted(node <<: sym){
wher e(requiresUntainted(sym)){
requi r e(definitelyUntainted(node)):
error (node, "Possibly tainted expression "+node
+" used where @Untainted expected");

1}

Listing 3.4: A rule which enforces proper subtyping constiafor anuntaintedtype
system.

rul e checkConfined(a <<: b){
wher e(confined(a.type)){
requi r e(confined(b.type)):
error (a, "Confined expression may not be treated "
+"as a subtype of unconfined type "
+b.type);
1}

Listing 3.5: A rule for aconfinedype system which does not allow a confined type to
be converted into an unconfined type.

simple example, the rule in Listing 3.6 shows howalCOP can encode the semantics

of thefinal modifier for Java classes.

This rule checks each class definition to ensure that the diass not inherit from
a class that has th@Final attribute. The constraint in the rule employs the rule lan-
guage’sSymbol objects to accesaterfaceinformation about a class’s declared super-
class. The &vaCOP rule language ensures that rules can be enforced miydvikar
the API that it provides to users. For example, while it isgdole to access a given
class’s superclass, it is not possible to access all sugsdad that class. This modular
style of checking can be seen in the construction ofitiaClass rule as the global
property that @Final class must have no subclasses is ensured by individual €heck

on each compiled class of a project.

Often a constraint should only be applied under certairuonstances. This can be

34

rul e finalClass(JCClassDecl c){
require(!c.supertype.sym.hasAnnotation("Final")):
error(c, "Superclass has a @Final annotation!");

}

Listing 3.6: A AvACOP rule that enforces thmal modifier on Java classes by
signaling an error when a subclass extends a final class.

accomplished through the use ofllzere constraint. Likeequire , awhere constraint
has a boolean guard condition. In additionyrere constraint has a body containing
a sequence of other constraints. Tiere constraint is satisfied if either its guard
evaluates tdalse or all constraints in the body evaluatettae . An examplewhere
constraint is shown in theheckUntainted rule from Listing 3.4. In that rule, the
right-hand-side expression of an assignment need onlydyersto be untainted if the

left-hand-side variable or field is annotated w@untainted .

The language for constraint conditions is an extension eflémguage for Java
boolean -typed expressions. These expressions can invoke meth@ig/dAST nodes,
types, and symbols in the scope of the constraimta COP also supports conditions
that perform let-binding type tests and structural patteatching, which are discussed

in Subsection 3.2.7.

JavA COP includes support for Java’'s primitive types &tohg , and their as-
sociated operations and methods, as well as faisia type provided byjavac .
Constraints may also employ values of two new typesragersal environmenEnv
holds information about the tree context surrounding argivede, and global en-
vironmentGlobals is a repository for global constants, such as the type abject
java.lang.Object and primitive types, and the symbols for the root and emptkpa
ages. An instance of each of these two types is implicitlyciope in each rule, with
the nameenv andglobals respectively. Some examples in the next section illustrate

their usage.

35

Finally, the developer may directly look up fields or invoketitods on Java objects
which are not natively supported by thevd COP API by using thé operator. While
| believe that thedva COP language and API suffice for most type systems, theyabilit
to use an API defined outside of the one providedAsn L OP is occasionally useful.
For instance, thé operator is used to allonaya COP rules to call into a user-defined
dataflow API built on top of the AvACOP flow-sensitive framework, discussed in

Section 3.4.

3.2.6 Auxiliary Predicates

In addition to rules, &/A COP allows users to declare auxiliary predicates, ana®gou
to the auxiliary predicates sometimes used in formal typeesys (e.g., Featherweight
Java’'s override and downcast [IPWO01]) and first-order logging thedeclare key-
word. These predicates are not tested directly durivg TOP’s AST traversal but
instead are used simply as helpers for rule definitions. i€agzbs are invoked by the
bodies of rules and other predicates using a traditionaitfon-call syntax. For exam-
ple, the rulecheckUntainted from Section 3.2.4 makes use akguiresUntainted

predicate which is defined in Listing 3.7.

The requireUntainted predicate gets the given node’s associated symbol, if it
has one, and uses the symbol to check whether the node haptiopaate annotation.
Auxiliary predicates provide the usual benefits of procatlabstraction. In this case,
the requiresUntainted predicate serves to separate the logic that determines how
untainted-nesss annotated from the logic that determines the behaviorognams
employing such an annotation. This separation makes it ®agaygment or modify
the annotation mechanism. For example, untainted-nesd beundicated by using a
naming scheme instead of Java’s metadata facility, simplghanging the definition

of therequiresUntainted predicate as in Figure 3.8.

36

decl are requiresUntainted(JCTree t){
requir e(t.holdsSymbol
&& t.getSymbol.hasAnnotation("Untainted"));

}

Listing 3.7: A predicate which returns true when the checked has been marked
with the @Untainted annotation at declaration.

decl are requiresUntainted(JCTree t){
requir e(t.getName.startsWith("untainted_"));

}

Listing 3.8: A predicate which returns true when the checked has been given a
name starting with th8tring "untainted "

Rule and predicate bodies naturally support a form of cotjondor constraints,
by sequencing multiple constraints. Predicates themseldditionally provide a declar-
ative form of disjunction. Following the conventions of &/pystem definitions AVA -
COP allows an auxiliary predicate to have multiple defimgpan invocation of the

predicate succeeds if at least one of the definitions’ badisatisfied.

For example, theheckUntainted rule from Listing 3.4 makes use of the
definitelyUntainted predicate, which checks whether a givéeilree object is
definitely untainted. This predicate can be definedavn OP as a case analysis on
different subtypes aiCTree by providing multiple definitions of the predicate. A few
representative definitions are provided in Listing 3.9de&lare implicitly performs
a type test on a given node against the declared type of isreagt. This type test de-
sugars into aquire constraint: theleclare definition fails if the type test fails. For
example, the third definition in Listing 3.9 fails if the givéode does not represent a

Java assignment expression.

As mentioned in Section 3.2.3, predicates also allow dpezkto define type

systems in a more traditional fashion where every typeecbrexpression must be

37

/* A node is untainted if annotated as such x/
decl ar e definitelyUntainted(JCTree t){
requi r e(requiresUntainted(t));

}

/= Aliteral is always untainted */
decl ar e definitelyUntainted(JCLiteral I){
requi re(true);

}

/* The val ue of an assignnent is untainted

if the value being assigned is untainted */
decl ar e definitelyUntainted(JCAssign a){

requi r e(definitelyUntainted(a.rhs));

}

Listing 3.9: Three definitions of a predicate which indicatehether an expression
should be considered untainted in all cases.

defined explicitly, as opposed to the allowed-by-defautiaetics of AvA COP rules.
For instance, the developer could define a subtyping predioa untainted that must
hold at all places where subtyping is required. Instead fahithg) the subtyping rule as
in Listing 3.4, the rule could instead be defined primarilgt & predicate as shown in
Listing 3.10. Unless one of theSubtype predicate definitions is satisfied, this rule

will fail.

3.2.7 Pattern Matching and Conditional Assignment

Type rules often depend on the ability to deconstruct theesgions, types, and envi-
ronments that they constrain, so it is imperative that adagg designed for encoding
pluggable types also have this ability. To that end/aAICOP supplies two new op-
erators:<- for type-conditional value binding, angb for pattern matching on AST

nodes.

38

rul e checkUntainted(node <<: sym){
requi r e(isSubtype(node, sym))
:error(node, "Subtyping constraints violated for
+"untainted type system");

}

decl are isSubtype(JCTree node, Symbol sym){
requi re(!requiresUntainted(sym));

}

decl are isSubtype(JCTree node, Symbol sym){
requi r e(requiresUntainted(sym)
&& definitelyUntainted(node));
}

Listing 3.10: A replacement rule feaheckUntainted from Listing 3.4 which requires
thatall subtyping nodes satisfy the provids8ubtype predicate.

An expression of the form <- e evaluates to true ¥ is found to be an instance
of the type of the variable. If satisfied,e is cast to the type of, which is then
let-bound to this value. Otherwise, the type-conditioriatling evaluates to false and
the value is not bound. A constraint condition may be preddaea list of variable
declarations to be bound within its conditional expresskor example, the following
constraint binds the reference and field/method begin aedest a explicit dereference

point (dref) to therecv andmesg variables:

requi re(Tree recv, String mesg;
recv <- dref.selected && mesg <- dref.name){...}

As another example, in many type systems, such as the nbhypelsystem de-
scribed in Section 3.4, it is necessary to distinguish betwbe explicithis receiver
and other receivers at method invocation sites. The prekzglicitThis in List-
ing 3.11 uses type-conditional assignment conditions depto test this property.
Given a method invocation AST node, it uses conditional iigdo first match only

receivers that do an explicit dereference and then to matlyhtiees with a single ex-

39

decl are explicitThisReceiver(JCMethodlnvocation m) {
requi re(JCFieldAccess s ; s <- m.meth) {
requi re(JCldent i ; i <- s.selected) {
requi re(i.name.equals("this"));

1

Listing 3.11: A AvACOP predicate that is satisfied when checked on a method call
with an explicitthis as its receiver. This predicate is used in the non-null cleck
further discussed in Section 3.4.

plicit dereference. If both conditional bindings succethén the explicit dereference

is required to be equal to thids identifier.

Java COP also includes an expression sub-language for patteiching on AST
nodes. Pattern matching allows for declarative testingroperties of an AST node,
while also deconstructing the node and giving names to fispoment nodes for use
in the rest of a constraint. A pattern match isoalean expressione => [pat]

In this expressione is an arbitrary expression of typeee , and the pattern match

succeeds if the value efcan successfully be matched against the pafigrn

Patterns are written as fragments of Java code which mustustgally equiva-
lent to a targeted expression in order for the match to sacceatterns may include
wildcard elements, which are writtéh to match any subtre& to match any identi-
fier name, and. for any number of elements in a sequence, such as statements i

block or parameters to a method. For example, the pattern:
v => [@Untainted ™ "*(...)]

matches alCTree nodev against a method declaration which has@untainted
annotation, has any return type, any name, and any numbeguhants.

Patterns may also binttee andString sub-components encountered in the pat-
tern structure to fresh variables declared in the congtreariable binding involves an

implicit type test: for a variable binding to succeed, thpetyf the component value

40

must meet the declared type of the new variable. If one okthiesables is used more
than once within the same expression, it is bound to the fistahce, and the second
and subsequent instances are compared according to i&ferquality. For example,

variables can be bound to the subexpressions in the patsaonibed above as follows:

wher e(Tree typ, String name;
v => [@Untainted typ name(...)])

Patterns may also test whether a given subtree is equivialéimé¢ result of evalu-
ating the Ava COP expression betweénmarkers. For example, if is a variable of
type JCTree , then the following constraint requiresto be the first statement in the
current location’s enclosing block, which can be looked ngorf the context environ-
ment env.next). If the first statement in the enclosing block does not equéten

this pattern match will fail:

require(env.next => [{‘n’;...}])

Pattern matching can significantly improve the readabditg shorten the length
of rules that would otherwise require multiple type testsr &le, the rule from

Listing 3.11 can be rewritten using pattern matching as stihg 3.12.

3.2.8 Quantification

Java COP provides quantification over two kinds of data strucuférst, constraints
may universally or existentially quantify ov@vac List s withforall —andexists
guantifiers, respectively. The syntax is similar to the aymtf the enhancefdr in Java
1.5. For example, the predicate defined in Listing 3.13 megithatonfinedclasses do
not haveunconfinedgupertypes through quantification over all supertypes.farhi
iterates over a list of all types found on the list returned bypertypes() , binding
each to the name in turn. The variable used to bind each element of a list must

have the same type as the declared element type of the listsyiiitax for existential

41

decl are shortExplicitThisReceiver(JCMethodInvocation m){
requi re(m.meth => [this.”*]);

}

Listing 3.12: A more succinct version of thevh COP rule from Listing 3.11, which
uses pattern matching.

rul e ConfinedDef(JCClassDecl c){
wher e(!confined(c)){
forall (Type s : c.supertypes()){
requi re(!confined(s)):
error(c,...);

H

Listing 3.13: A AvA COP rule—demonstrating quantification over lists—whicurees
thatconfinedclasses do not extenchconfinedsuperclasses or implemeamconfined
interfaces.

guantification is identical, except that it uses the keyweasts instead offorall

Second, &AvACOP allows guantification over all nodes in a depth-firstdraal
from a given AST node. During this traversal, only nodes thatch the declared
type of the quantified variable are considered. For exantpke predicate defined
in Listing 3.14 determines if a field is used as the lock fortheo variable or field
in the same class The predicate uses existential quanbficti iterate over every
variable and field declaratiod@VariableDecl) in the body of the class currently
being visited énv.encIClass). The predicate also shows interaction between the
advanced features ofA COP (quantification and pattern matching) to create concise

and readable definitions.

42

decl are isSynchLock(JCVariableDecl v){
exi st s(JCVariableDecl v2 : env.enclClass){
/+* don’t do pattern match if no | ock declared */
requi re(declaresLock(v2)){
requi re(Literal n; v2 => [@LockedBy(n) ™ "*]){
requi re(n.value.equals(v.name));

i

Listing 3.14: A AVACOP predicate—demonstrating quantification over AST
nodes—which determines if a field is defined as a lock for ardtield or variable
for use in a race condition checking type system.

3.3 JavaCOPLanguage Semantics

In this section, | present a semantics for a core subset oflAeCOP language
which | call FEATHERWEIGHTJAVA COP, or F&OP, via a translation to the Datalog
language[CGT90]. Datalogis one of the more widely used formal declarative query
languages for relational databases, and is, thus, a goextneke point for the expres-
siveness of the language. The purpose of this presentationdefine more formally
whata JAvACOP program is and what kind of information about Java progré
can provide. | hope that this formalism may lead to futureginsinto how to make
Java COP more efficient or how to automatically reason abewta COP programs

via proof assistants or automated theorem provers.

3.3.1 Datalog

To understand the translation from ¢&Jp to Datalog’, | will first provide a small
overview of Datalog that provides insight into its syntax and semantics. | uge th

definition of Datalog as defined by Ceri et al. [CGT90] as the basis for the translation

In Datalog’, there are three infinite alphabets that make up the basitesles of

Datalog’ programs: variables, constants, and predicates. Predieae simply an

43

n-ary mapping from literals to truth values.

A termin Datalog’ is either a variable or a constant, atomis an n-ary predicate
and a list of arguments which are all terms, arideaal is either an atom or a negated
atom. Aclauseis a set of literals. A Datalogprogram is made up of a set of clauses
of which there are three kindfacts rules, andgoals Facts consist of a single positive
literal, rules consist of a head literal and a body of liter@hd are written as in Prolog

head: —body, and goals contain only a body of literals written-?body:.

There are two kinds of predicates in a Datalggogram: extensionapredicates
andintensionalpredicates. Extensional predicates are defined by thesatel data-
base over which the Datalogorogram will run; these predicates are defined before
execution of the program. Intensional predicates are difinyethe program itself;
the execution of the program will generate facts regardmtgrisional predicates. For
FJcop, the extensional predicates will consist of predicateateel to the Java AST
and base type system whereas the intensional predicatesowdist of the rules and

predicates defined in the E@pprogram.

As Datalog' is a query language, the semantics of Datalage defined by a map-
ping from the powerset of extensional predicate groundsaauo the powerset of all
predicate ground facts. It is easy to see that ground factegmond to the values of
this model. As facts strictly define new information, thegyde their own semantics;
a ground fact is already a value, and any fact with a variaxemply expanded into a
powerset from the literals defined in the extensional daaba rule is a fact generator
in that it can be used to derive new ground facts for an interadipredicate; thus, the
semantics of a rule is a mapping from the extensional da¢atmathe set of ground
facts for the predicate that the rule implicates. Adding arguo the program changes
the output of the program to the sets of extensional andsideal ground facts which

are subsumed by the query.

44

checkUntainted(A) :- typegA, JCAssign,F1(A).

F1(A) :- Ihs(A,L), typel, JCTred,F2(A,L).

F1(A) :- objectfA), Ihs(A,L), —(typgL, JCTreq).

F2(A,L) :- requiresUntainted(L),F3(A,L).

F2(A,L) :- object{A), objectL), —(requiresUntainted(L)).
F3(A,L) rhs(A,R), typgR, JCTreg,definitelyUntainted(R).
F3(A,L) object(A), objectL), rhs(A,R), —(typegR, JCTreq).

Listing 3.15: Datalog Translation of &vA COP program from Listing 3.2.

For Datalog programs with negation in the body of rules and goals, thigpiray
is only well-defined for predicates with stratified negati@e., predicates that may
be partitioned into strata that do not allow recursive depece on negation). Ceri et
al. [CGT90] provide more details on the Dataloggemantics as well as query execution

strategies.

3.3.2 Translation Overview

The FXoprlanguage allows users to define rules and predicates ove AR classes

in a similar manner to a standardvd COP program. The translation scheme pre-
sented here shows this form of checking reduces to a satig§i@iboblem in Datalog'.
The FXopframework can be thought of as an extensional database (E©&yator
for a given Java AST. The [EdP API provides the extensional predicates (EPred)
which the translated EEDbp rules and predicates will use. The translation itself cre-
ates the intensional predicates (IPred) which are a supef #ee predicates and rules
explicitly defined in the FJop program. For example, Listing 3.15 shows a transla-
tion of the basic subtyping rule for assignment to an unéaimeference as defined in

Listing 3.2.

It also outputs a set of Datalog goals of the form

? - typeX, 1), ~(f(X)).

45

d = declare f(x:14){c}
| rule f(x:1){c}

t = x|

cC = ¢CcC
require(e);
wher e(ep) {c}

Vax:1ex {c}
I x:tex {c}

!
|
| V.x:tex {c}
|
|
| dax:tex {c}

e = ot t oAt
& = e | f(t4)
|t Fp(th) | XiT—8

Figure 3.4: The FJorplanguage grammar.

These Datalog goals are used to find AST nodes of typthat do not satisfy a rule

f. If execution of a Datalogprogram augmented with a goal returns a non-empty set,
then this indicates the EdP program would generate at least one error for the given
AST node and the given EdPrule. If such an execution returns an empty set, then
the FXopprogram would not generate an error from that rule. For exentipe goal

associated with the rule translated in Listing 3.15 would be
? - typgX, JCAssign, —(checkUntainted(X)).

To generate valid Datalogprograms, FGopP must adopt the strategy of strati-
fied predicates with respect to negation. Ceri et al. [CGT98$@nt an algorithm to
determine stratification of a program. Application of thigaithm to the translated

Datalog’ program can determine whether thecle® program was originally stratified.

46

3.3.3 FJcopGrammar

FJcoPris a subset of the actuahva COP language. This core subset of theA}
COP language has been shown to be useful for a variety ofmaaltiomain-specific
and general purpose type systems including forms of contype ownership types,

information flow systems, and design pattern checking [ANMO

X, £, andt represent FJoP variable names, Java literals, and Java type names,
respectively. 7, and 7y, represent functions from the Edp API which return non-
boolean results andoolean results, respectively. Since the translation scheme pre-
sented here has different judgmentsifoolean -valued and noroolean -valued ex-
pressions, this distinction is importaritis the set of predicate and rule names defined
in the FXopprogram. Without loss of generality, this grammar assumenanical
form wherein all parameters to a predicate ocB8 API function are only variables

or literals. A FEXopprogram consists of one or madleelements.

3.3.4 Translation Judgment Notation

The @ context found in many of the translation judgments represséme current
scope’s mapping from EDP variables to Datalog variables; in other wordsp is

a function from Fg&op variables to a Datalogvariables. This is a one-to-one map-
ping, although the translation scheme does not strictlpreef one-to-oneness (nor
does it enforce tha® remain a function in the face of variable shadowing). A fresh
@ environment is generated for eachdé@krule and predicate, thereby allowing local

name reuse between top-level entities irtB8.

FJcop API functions are redefined over a flattened AST in Dataltzgfit a logic
programming style. For example, thed@lP call to retrieve the right-hand-side of an

assignment statemeatrhs() , would correspond to the Datalogxpressiomhs(A, X)

a7

(as shown in Listing 3.15 whep¢ corresponds to the result of theddp expression.

The translation also uses a number of predicates which dravadable from the
FJcopr API, but which an implementation of EdPin Datalog” would supply. The
typepredicate indicates if an object has a particular Java ty@mb jectpredicate is
defined for every object in the AST (which is used to restie tange of variables
used in negative literals); trmonsandnil predicates define list relationships; and the
subnodegredicate defines a traversal ordering of an AST subtree &s$ af those

nodes.

3.3.5 Translation Scheme

In this section, | present a subset of the judgments usecitrdihslation scheme from

FJcoprto Datalog'. The full set of translation judgments can be found in AppeAd

3.3.5.1 Value Expressions>"
A translation rule of the form
oo ="E|THP

can be read as: Given the variable mapping contexthe FEZoOP value expression

e, translates to the Datalagerm or literalE with Datalog’ termT that will hold the
result value that satisfids when evaluated. The translation also updates the mapping
context asd’. With value expressions, it is often important to refer backhe re-
sults of expressions in future evaluation. Thus, the tediwsi rules for these kinds

of expression result in both a term or literal, which will bged to build a rule in the
Datalog’ program, but also the term used to refer to the result of tladuation for

further transformation.

48

[TRANS-CONSTANT]

OHL=V| D

[TRANS-VAR-KNOWN]
P(x) =X

PFx=YX[XAD

[TRANS-VALUE-FN]
OHt=YT[THd, v

1P =V T | Ti A X fresh

D t.,’}’v(ﬂ = TV(T,T,X) | X CD|f|

Translating constants and variables as shown in teNB-CONSTANT and TRANS-

VAR-KNOWN rules are straightforward. The rule for translating vaealcurrently

not bound to a Datalogvariable is similarly straightforward and can be seen in Ap-

pendix A. The RANS-VALUE-FN rule shown here simply flatteng\dA COP API

functions into Datalog literals.

3.3.5.2 Boolean Expressions:P

A translation rule of the form

PHe="EAP

can be read as: Given the variable mapping corfexhe FEoprboolean expression

&, translates to the set of DatalotjteralsE and updates the mapping contexidas

[TRANS-PRED-CALL]
V@ e =T T @

Po + () =P £(T) Py

49

[TRANS-BINDING-TYPE-TEST1]
oo ="E|THP E4AT

Phx:1— e =PE,type (T,1) 4O U{(xT)}
[TRANS-BOOL-FN]
OHt=Y Db T|T VL 0t =YT | TP

Pt Fp(f) =P Fo(T,T) 4 P

Rules TRANS-PRED-CALL and TRANS-BooOL-FN are straightforward reworkings
of the TRANS-VALUE-FN rule from the previous subsection. Rule ANS-BINDING-
TYPE-TEST1 makes use of thigpe predicate defined in Section 3.3.4 to ensure that
the type test succeeds in order for the rule to be satisfiece r@te of clarification
regarding RANS-BINDING-TYPE-TEST-1, the test foE # T restricts this translation
rule to translating a value expression that translatesamatalog literal and not in a

Datalog' term. The other case can be found in Appendix A.

3.3.5.3 Constraints=*°
A translation rule of the form
orFc=°E|C
can be read as: Given the variable mapping coribexthe FZ oPconstraint translates
to a set of Datalog literalsE and a set of DatalogrulesC.

[TRANS-SEQUENCH
P =‘E|C ®re="EKR|C

®Fcyc=C°EL,E |CLUC,

50

[TRANS-WHERE-1]

Ffresh T=rangd®) dre="E4® '+c=°E|C

F(T): —E,E.
® - wher e(ey){c} _c F(T) | B T uC
F(T): - /\ObjECt (Ti),~(E).
i=1

[TRANS-FORALL-LIST]
F,X1,L,L " fresh
OFx="To|T,4® T=rangd®) DPU{(x,X1)}Fc=CE|C

DRV, x1:TEX{c}=°
F(T,L): —cons (Xg,L',L),type (Xg,T),E,F(T,L").
F(T,T2) | § F(T,L): —cons (X3,L,L),~(type (X1,1)),F(T,L). pUC
F(T,L): —nil (L).
[TRANS-EXISTS-LIST]
F, X, L, L fresh
OFx="To|T,4® T=rangd®) PU{(x;,X1)}Fc=CE|C

OFI, x:TEX{c}=°
FT.Ty) F(T,L): —cons (Xg,L',L),type (Xg,1),E. UE
F(T,L): —cons (Xg,L',L),F(T,L").

The first rule here, RANS-SEQUENCEdoes a straightforward translation of a se-
guence of F@opconstraints as the union (i.e., conjunction) of their retipe transla-
tion elements. In Rule RFANS-WHERE-1, thewhere constraint is translated into two
rules defining a new auxiliary predicake which either satisfies both the constraint
guard E€) and the body of the constrainEq) or does not satisfy the guard. When
negating the guard expression as a literal in Dataldlgs necessary to constrain the
clause by confining the possible objects to the known set ot via theobject
predicate. Otherwise, Datalogvill define the predicate over all constants that are not

specifically defined in the program. Note that theANS-WHERE-1 rule handles the

51

case when the boolean expression translates into a singgdoDaliteral. The two

literal case is shown in Appendix A.

The Rules RANS-FORALL-LIST and TRANS-EXISTS-LIST deal with quantifica-
tion over lists. The list is flattened using tbens andnil predicates. Unlike in Rule
TRANS-WHERE-1, constraining the negation inRRNS-FORALL-LIST does not re-
quire use of thebject predicate as theons predicate already limits the domain of

the constants for the predicdte

3.3.5.4 Predicate and Rule Definitions=¢

A translation rule of the form
d=9C|G

can be read as: The EJdr definition d translates to the DatalogclausesC, and

corresponds to the Datalogjoal G.

[TRANS-PREDICATE]

Go=0 VLB Fx=YX (XD Py c=CE|C
x|

decl are f(x:7){c} = {f(X): — Atype (X,T),E.}UC|0
i—1

[TRANS-RULE]
OFx=YX|XH4® @dFc=°E|C

rul e f(x:1){c} —d
{f(X): —type (X,1),E.}UC]|{?:—type (X,T),not (f(X)).}

As is expected, botheclare andrule constructs result in the definition of cor-
responding predicates in DatalagThe predicate definitions consist of the translated
constraints as well as type tests for the declared parasi€terule translation also

produces a goal of the form ?=type (X,1),not (f(X)). which, when added to a

52

Datalog’ program, will determine set of AST nodes of typ¢éhat do not satisfy the

rule f, therefore point to a violation of the EdpPtype system.

3.3.5.,5 Program=-P

A translation rule of the form
d=PC|G
can be read as: The Edprprogram defined via definitiortstranslates to the Datalog

programC and a set of goalG.

[TRANS-PROGRAM]
Vi‘i‘l'di =d G | Gi
_ d| o d|
d="P UCi | U Gi
i=1 =1

As expected, the transformation of ad&l program is just the union (i.e., con-

junction) of all the transformedile anddeclare constructs.

3.4 The JavaCOP Dataflow Framework

Some programming disciplines require flow-sensitive reasp For example, a pro-
grammer should never dereference an object unless it candrargeedt that pro-
gram pointthat the object is not null. A programmer might accompligk By placing
anif statement checking for nullity around the dereferencetings3.16 illustrates
code that a practical, usabt@n-nulldiscipline checker should allow. Thexh COP
language can handle simple forms of flow-sensitivity bygratmatching against large
portions of code—such as in the case offarstatement—but pattern matching will not

work for the general case of flow-sensitivity.

53

cl ass Person {
@NonNull String name = "Chris";

voi d setName(String newname) {
i f (newname == null)

name = "";
el se
name = newname;

Listing 3.16: Example code that requires flow-sensitivesoaing.

The need for flow-sensitive reasoning in building soundresgive type systems
has been demonstrated in recent literature (e.g., [FLOZ@X Boy01]). The follow-
ing approach to providing users with a practical way to wifiiese kinds of checkers

was adopted inAVA COP:

1. WVvACOP provides a generic dataflow framework that allows usemasily

define analyses that determine facts that hold at each pnogpant.

2. WVACOP performs user-defined flow analyses prior to enforcingexker’s

core AvACOP rules.

3. Results of the analyses are made available to the egreCIOP rules via deco-
rations on the AST nodes allowing users to easily write ceeskhat accept or

reject programs based on flow-sensitive information.

This section describegna COP’s support for defining checkers that involve flow-
sensitive reasoning. To illustrate how checkers can makeotishis information, |
explain the framework in terms ofreon-nulldiscipline checker with the goal of show-
ing how to allow the program in Listing 3.16 to successfujipe check. A non-null
type system ensures that no null values are stored in refes¢hat are marked as non-

null. Non-null references are important because deretargrthem is always safe:

54

doing so will never cause unexpected null pointer exceptatnruntime. The basic
rules of a non-null checker are very similar to those | praslg defined for untainted
in Listings 3.2, 3.4, 3.7, and 3.9. A more detailed examplghefnon-null checker is

described in Section 3.7.

3.4.1 Specifying Dataflow Analyses

JavA COP’s flow framework allows users to easily create forwaeh/gill style, in-

traprocedural dataflow analyses. In general, describirapalysis of this type requires

specifying:

1. the dataflow facts being tracked (e.g., definition sitesfreachable definitions

analysis or program expressions for an available expressinalysis)
2. the sets of dataflow facts that are generated by prograresipns
3. the sets of dataflow facts that are killed by program exgioes

4. how to combine sets of dataflow facts at control flow merges

In the AvA COP framework, this is accomplished by defining a Java clessmple-
ments an interface described below. In contrast to the detla language for writing
type systems,AVA COP gives users the full expressive power of Java to spegdls a
yses. In particular, this allows the user to choose a reptasen for sets of dataflow
facts that is appropriate for the analysis (e.g. a bit veetosus a hash map). In the
future, the AvA COP language may be extended to provide a declarative antetb
the dataflow framework (e.g., in the manner of bddbddb [WLO8])ch an extension

may fit nicely with the d&va COP semantics given in Section 3.3.

To define a dataflow analysis imh COP, the user provides a Java class that rep-

resents a set of dataflow facts and that implementd-idve-acts interface shown

55

i nterface FlowFacts {
FlowFacts genSet(JCTree node);
FlowFacts KkillSet(JCTree node);

/1 Al'l ow branch-condition-sensitive analysis
FlowFacts genSetTrue(JCTree node);
FlowFacts killSetTrue(JCTree node);
FlowFacts genSetFalse(JCTree node);
FlowFacts kill[SetFalse(JCTree node);

/| Operations for conbining sets of Fl owFacts
FlowFacts addSet(FlowFacts f);

FlowFacts removeSet(FlowFacts f);

FlowFacts meetWith(FlowFacts f);

}

Listing 3.17: The interface for defining dataflow analyses.

in Listing 3.17. The user-definegknSet andkillSet functions determine how to
change an incoming set of dataflow facts as a result of treagetise given expression.
TheaddSet andremoveSet functions respectively are used to update the current set
of facts with the gen and kill sets, and theetWith function is used to combine
sets at control flow merges. Note that the user-defgea®et andkillSet func-
tions are consulted for individual program expressionsforacontrol flow statements
such agf /else , try /catch ffinally , loops, and labeled breaks. These statements
are handled by the framework’s traversal code, shieldirgsuffom the complexi-
ties of Java’s control flow. For simple cases of path-seiitsitisuch as distinguishing
between the then-branch and an else-branch of an if statethenAPI provides the

methodgyenSetTrue , genSetFalse |, killSetTrue , andkillSetFalse

56

3.4.2 An Example Analysis for the Non-null Checker

Listing 3.18 shows th&lowFacts implementation for an analysis that can determine
thatnewname is non-null when assigned t@me in Listing 3.16. ThegenSetFalse
implementation checks if the given expression has the ftotalvVar == null"

If so, it returns a set containing the fact thatalVar is non-null, since this clearly
holds when the expression evaluates to false. This facttrbginvalidated by a reas-
signment tdocalVar . This is handled by thkillSet implementation. The imple-
mentations for the other gen and kill functions required lyRlowFacts interface
are not shown and simply return an empty set of dataflow fadis. implementation
distributed as part of theaya COP suite enhances this one by allowmdj to appear
on the left of an equality test and allowing fer tests. The implementation addition-
ally generates non-null facts on certain assignments @l Mariables that are clearly

not null, such as string literals and (boxed) primitiveritis.

3.4.3 Accessing Analysis Results from JavaCOP Rules

When using dataflow analysis, each expression node in the ASiEdorated with
the set of facts valid before its evaluation. Th&AICOP rules can then query these
decorations in order to incorporate flow-sensitive reaspniListing 3.19 shows the
JAvA COP code that must be added to the non-null checker in ordelnya COP to
accept the code in Listing 3.16. THewfact declaration allows the user to specify
that a particular implementation of tiwFacts interface should be used during the
analysis pass. AAVA COP file may indicate that several analyses should be peefthrm

by including multipleflowfact declarations.

Incorporating flow sensitivity into a non-null checker ongguires adding one new

case to thelefinitelyNotNull predicate (similar to the one for untainted shown in

57

cl ass NonNullFacts i nplements FlowFacts {
HashSet<Symbol> nonnulls = new HashSet();

[l Explicit non-null test generates non-null fact
FlowFacts genSetFalse(JCTree node){
NonNullFacts gen = new NonNullFacts();
i f (node instanceof JCBinary
&& node.tag == JCTree.EQ) {
JCBinary b = (JCBinary)node;
Symbol s = getSymbol(b.lhs);
i f (b.rhs.getKind() == Kind.NULL_LITERAL
&& isLocal(s))
gen.nonnulls.add(s);

}

return gen;

}

/I Re-assignment kills non-null fact for |ocal variable
FlowFacts killSet(JCTree node){
NonNullFacts kill = new NonNullFacts();
i f (node instanceof JCAssign){
Symbol s = getSymbol(((JCAssign)node).lhs);
i f (isLocal(s))
kill.nonnulls.add(s);

}

return kill;

}

/1 Define the neet operation as intersection

FlowFacts meetWith(FlowFacts f){
nonnulls.retainAll(((NonNullFacts)f).nonnulls);
return this;

}

//Rul es can use this nmethod to get non-null facts
bool ean isldentNonnull(JCldent id){
return nonnulls.contains(getSymbol(id));

}
}

Listing 3.18: FlowFacts for non-null analysis.

58

fl owf act nonnull.NonNullFacts;

decl ar e definitelyNotNull(JCldent id){
requi re(NonNullFacts f;
f <- id.getFlowFacts("nonnull.NonNullFacts")){
requi r e(f#isldentNonnull(id));

1

Listing 3.19: A AvA COP declaration using non-null dataflow facts.

Listing 3.9), as shown in Listing 3.19. The case queriesNbNullFacts object
that decorates an identifier's AST node in order to check kdredr not the dataflow
analysis determined the identifier to be non-null at thisipadilote that thélowFacts
interface itself does not provide a means of accessing tte¢lola facts. The user is
free to provide whatever methods are appropriate and caveior querying a partic-
ular implementation. In this example, tsé&lentNonnull method from Listing 3.18

serves this purpose

3.4.4 Flow Analysis Implementation

The goal of implementing theaya COP dataflow framework was to make it easy
for users to specify the kinds of analyses likely to be needeeh building pluggable
type checkers — analyses similar to those required by tlstiegiJava type system. The
javac compiler already performs a flow analysis in order to flagmsrfor uninitialized
local variables and final fields, unreachable code, and @itaxceptions. This well-
tested, efficient code was generalized AvAJCOP to make calls to thElowFacts

interface during traversal of the AST.

It is worth noting that althougha¥a COP dataflow analyses operate on the AST

(as opposed to a control flow graph), users of the framewoekl m®t be concerned

1Recall that thet operator allows access to Java methods that are not pag dthCOP API.

59

with the complexities of Java’s control flow. This is all héed by the framework’s
traversal code. For example, the analysis defined by thelsiNgoNullFacts class

in Listing 3.18 not only handles the if-statement case frbmn notivating example
in Listing 3.16, but also correctly derives the dataflow mfiation over all similar

constructs such as loop conditionals.

The decision to adapt the existing OpenJDK analysis impsse® limitations on
the analyses thataya COP supports. Only forward, gen/kill dataflow analyses are
permitted. But in practice, the flowfacts framework is ablentmdle many useful
analyses. These analyses were built with minimal per-aisignplementation effort;

an average of 115 non-comment, non-whitespace lines ofsffieed for each.

3.5 Type System Testing

Just as Java programmers make mistakes in their programsCOP users may in-
troduce errors in their pluggable type systems. In thisiseaete describe a practical
approach to giving AVACOP users confidence in the correctness of their type sys-
tems. In Section 3.5.1 we describe the two-stage testingpapb supported by our

framework and in Section 3.5.2 we report on our experientcegule test harness.

3.5.1 Two-Stage Testing Approach

The first stage, theompilationstage, of our testing framework leverages the fact that
type system developers will have an understanding of thaskafprograms that should
and should not successfully type check, much as unit testlol@srs have a general
idea of what the results of their unit tests should be. Vergythat type checkers gen-
erate the expected compilation results requires three oners from the developer:

the AvA COP type system being tested, a test suite of Java prograchtheexpected

60

public abstract class RawTestParent {

publ i c RawTestParent() {
m();
}

@RawThis abstract protected void m();

}
public class RawTest extends RawTestParent {
public @Nonnull Integer f1 = new Integer(3);
public @Nonnull Integer f2 = new Integer(4);
public RawTest() {
super ();
}
@RawThis protected void m() {
fl1 = 2 * 2,
}
}

Listing 3.20: A couple of Java classes defining a test frormthenull test suite. This
test demonstrates a case where a potentially uninitia@&adnNull field could result
in a null dereference during construction.

outcome of compiling each test program with ta@AICOP type system. Each of the
programs in the test suite is then compiled using the spdcifiern COP type system

and the results are compared with the expected outcome.

An example from the non-null test suite is shown in Listing@. This examples
demonstrates how virtual method dispatch, field initidi@a and non-null references
interact during object initialization. At first glace, it maeem safe to do the assign-
ment from@Nonnull field f2 to @Nonnull field f1 in methodmof the clasRawTest .
However,f2 may not have been initialized yet iifiis called from the superclass’s

(RawTestParent ’s) constructor. Thus, this test is expectedan with respect to the

61

Loading constraints class: javacop.nonnull.Nonnull
Done, loaded 1 constraint sets.

javacop/runtime/test/examples2/RawTest.java:14: Nonn ull:
Possibly null value where a @Nonnull value is expected

f1 = f2;
1 error

Listing 3.21: The expected result of running the test shawnisting 3.20.

non-null type system.AVA COP stores the expected outcome as a text file containing
the expected output of the compiler. For the test in Listir®P3the expected outcome

is shown in Listing 3.21.

The compilation stage of the test framework allowgAXCOP users to test whether
the intended static programming discipline is being impgated correctly by the rules.
However, these tests do not provide feedback on whetheytigeslystem ensures-
tendedprogram properties, only thexpectedesults of type checking. The distinction
between intended and expected here is subtle: the devedb@etest suite expects
the tests to provide certain type checking results, but naas Imonetheless created a
test which she believes should type check but actually tesléhe intended runtime

invariants associated with the type system.

For example, consider again the non-null type system. A Gelhriable declared
@NonNull is intended to never have the valuél at runtime, thereby preventing null
dereferences. However, suppose the developer had mitaleoted that the test in
Listing 3.20 shouldrasstype checking. A type system that does not flag this test as
an error would successfully meet the expectations of the sygtem according to the

developer, but fail to ensure the intended non-null progert

The second stage (thentime stage), of &vACOP'’s testing framework allows

users to test whether thesgentionsare violated for programs that their type system

62

accepts. | allow &va COP users to express the intended runtime properties with a
simple API that supports runtime instrumentation of Javetyde with user-defined
checks. This approach offers an advantage over formalfsgmn of an invariant
in that the invariant can be tested directly on the objectauiatime. Thus, instead
of having to reason about how Java deals with heaps, meltithng, dispatch, etc.,

developers can write simple code that examines the objeaiiable at runtime.

With this instrumentation facility, the user optionallyegpfies a Java runtime-
check method for each type of bytecode instruction to bewgrdcimmediately be-
fore all instructions of that kind. This method can checkpemies of the bytecode
instruction and signal an error when an invariant is vialatéf such an error is sig-
naled when executing a program that was accepted by a typ&ahé¢hen a hole in
that type system is exposed. Using bytecode instructiotiseaantry point for runtime
tests is a simple solution, but it does pose one problem.plaggammers to do not al-
ways know which bytecode instructions correspond to thecgocode elements. This
could potentially be handled by adding more test entry gdimthe 4vA COP instru-
mentation facility such as at all method invocations, atefierences, all field updates,
etc. While Ava COP does not currently support this, it is something | am iclansg

adding in the future.

Listing 3.22 shows an excerpt from the runtime checker far-noll properties.
The excerpt defines three methodsst — aux, testPutField , andtestGetField
Both of the methodgestPutField andtestGetField define define how their re-
spective bytecode instructions should be instrumented.arguments to the methods
are references that are copied off of the virtual machineksta ensure unintended
effects to these objects are minimized. Metadata annatgto each formal describe

the what each argument is meant to represent for that itigtnuc

Each instrumented bytecode instruction has its own set r@inpeters that can be

63

accessedd The testPutStatic method the type of the object whose field is being
updated @ReceiverObject recv), the name of the field@FieldName name), and

the object being assigned to the fie@ActionObject o) are all provided. In compar-
ison, thetestGetField method provides the actual object of the receiver instead of
the type of clasg®@ReceiverObject recv and lacks the@ActionObject parameter.
As the methodest aux does not correspond to any particular bytecode instruction
it will result in no additional automated instrumentatiddowever, the instrumenta-
tion methods ustest aux for code reuse. ThgenerateError ~ method generates a
Java COP runtime exception from the error message it is passedltandd be called

by all test methods. It will only generate errors if it is giva non-null string.

The test framework incorporates the user-defined runtinaiant tests as follows.
Runtime instrumentation classes, such as the one shownting.i3.22, are used to
build an adapter that instruments bytecode dynamicallyvéhelass is loaded by the
JVM. | implemented this on top of the ASM bytecode rewritimgrhework [BLC02].
Each program in the test suite that is accepted by the use#isCIOP checker in the
first stage of testing continues to the second stage, whesedmpiled and executed
using the instrumenting adapter. Any violations are reggbto the user and indicate
that a program satisfying the type system’s discipline rteedess fails to meet the

desired runtime invariants.

Listing 3.23 shows, at the source code level, the result stfumenting the test
from Listing 3.20 via the non-null runtime instrumenterrfrd.isting 3.22. Running
this instrumented program will result in an exception beyegerated before the as-
signment from2 to f1 in RawTest’s methodmwhen called from the constructor of
RawTestParent . In practice, this instrumentation is done only at the |®f¢he byte-

code when the class is loaded, but is shown at the source ewdefor clarity and

2All test methods actually share two common parameters, ifezbin whose context the instruction
is executed and that object’s type, but these parametemsratied for brevity.

64

public class NonnullTestMethod {

/+* common nullity test and nessage abstraction =*/
private static String test aux(Object o) {

return (o == null)?"Dereference of null object"
cnull;
}
/+* check for two properties: *
* 1. null assigned into @onnull field *
* 2. dereferenced object is null */

public static void testPutStatic(
@ReceiverObject Class recv,
@FieldName String name,
@ActionObject Object 0){

String message = null;
try{
i f(recv.getField(name).hasAnnotation(Nonnull. cl ass)
&& o0 == null)
message = "Cannot assign null to field "+name;

} catch (Exception e) {
[+ exception cannot be generated */

}

generateError(message);
}

/+* the other tests all test for receiver nullity =/
public static void testGetField(
@ReceiverObject Object recv,
@FieldName String name) {
generateError(test_aux(recv));

}
}
Listing 3.22: An excerpt from the Java class that specifiestimtime semantics for

a @NonNull type system. This excerpt signals an error when a null va@essigned
into a@NonNull field at runtime.

65

brevity.

3.5.2 Experience

Runtime Instrumentation | implemented four non-trivial runtime instrumenters for
use with the test framework. The non-null checker is 36 LOGtrumenting four
bytecode instructions. It replicates the behavior of theJdartual machine’s nullity
checking and extends this to include a test to ensurdl a value is never stored in
a @NonNull reference. Theonfinedtype system [VB99] instrumenter consists of 37
LOC and instruments seven bytecode instructions. Confinael dystems are meant
to ensure that confined objects are encapsulated by thiagacso the instrumenter
checks for illegal dereferences and assignments of thgsetstoutside of their pack-
ages. | also implemented runtime instrumenters foaae-condition detectiotype
system [FFO0] (43 LOC, four bytecode instructions), whicledmines if a field is
accessed without its lock being held, and for our implentenaf Java'dinal class
modifier (17 LOC, one bytecode instruction), which checksstiaclass of @Final

type is ever instantiated at runtime.

3.6 Domain-Specific Checkers: Polyglot & SCJ

This section illustrates howaya COP can be used to enforce domain-specific prop-
erties on Java projects. These kinds of domain-specifickelne@oint to the core
motivation for the work presented in this dissertation. Bugy such checkers from
scratch requires a non-trivial amount of time and a grasgheriundamentals of Java
compiler architecture. By abstracting away the details efabmpiler, the disciplines

can be developed quickly and maintain a close correspoedeitls their intent.

Although I have useda¥a COP to write a number of these pluggable type systems,

66

public class RawTest extends RawTestParent {

public @Nonnull Integer f1;
public @Nonnull Integer f2;

public RawTest() {
super ();
if (this == null)
t hrow new JavaCOPException(...);

Integer temp = new Integer(3);
if (temp == null)

t hrow new JavaCOPException(...);
fl = temp;
temp = new Integer(4);
if (temp == null)

t hrow new JavaCOPException(...);
f2 = temp;

}

@RawThis protected void m() {
if (this == null)
t hrow new JavaCOPException(...);
if (f2 == null)
t hrow new JavaCOPException(...); // throws exception
fl = f2;
}
}

Listing 3.23: An updated version of tiRawTest classes from Listing 3.20 that shows
how runtime instrumentation would affect the code. Insteatation actually occurs
at the bytecode level when the class is loaded.

67

| chose to examine two particularly compelling domain-sfpeexamples here. One of
the reasons | find these examples so compelling is how they efxen simple project-

specific disciplines can be useful for building better saftev The first checker is
for the Polyglot extensible compiler framework from Corrf®lCMO03]. This checker

determines whether projects based on Polyglot approfyriage the design patterns
which provide Polyglot with its extensible behavior. Thesed example is a checker
for Safety Critical Java Technology from the Java Specificei®@equest 302 team. The
discipline of this checker is very straightforward, but amgtakes in implementing the
discipline can cause program errors that result in catalsicghysical damage. Thus,

it is vitally important to follow the discipline to createfegprograms.

There are a number of other domain specific disciplines thaveé implemented
which are not discussed here but can be found in #va GQOP papers [ANMOG6,
MME]. These disciplines include a very large checker forefptise JavaBeans 3.0
conformance [DeM04], alegenerate classasnicropatterns detector [GM05], PMD
Java style checkers [Cop05], and a checker for determiniregivein JUnit tests [Jt00]

provide useful feedback.

3.6.1 Design Patterns in Polyglot

Polyglot [NCMO03] is an extensible compiler framework for ddxom Cornell, written
in Java. Polyglot has been publicly available since 2004used by many researchers
to implement Java language extensions [Pt04]. Polygloi@ysm number of design
patterns that are not checked by the standard Java typersysigorogrammers must
manually ensure that their code conforms. The Polyglot sys¢em in AvA COP tests

for proper adherence to the following idioms:

1. Polyglot employs the factory design pattern [GHJ95] fothbAST nodes and

for “type objects” that hold the type information about assa The checker

68

requires that any expression of the fonew C(...), whereCis a subtype of the
Node interface, appear only in classes that subtypéeFactory , and similarly

for type objects.

2. Each AST node in Polyglot is represented by both a classamadterface. The
intent is that clients of a Polyglot extension should onlynipalate AST nodes
through their associated interfaces. The checker reqthiesa node class is
never used as the type of a public or package-level field onesitgument or

result type of a public or package-level method.

3. Polyglot uses a variant of the visitor design pattern [@]1o allow imple-
menters to traverse the AST. Each node class must haxigt@hildren
method that implements the traversal behavior for that &imibde. The checker
requires that each node class overridesvi$it€hildren method if it adds at

least one new field of typEode (or a subtype).

4. Polyglot employs a notion alelegategNCMO03] that allows the behavior of
an AST node to be modified modularly without requiring theati@n of a sub-
class. Each AST node has a pointer to a delegate object, amdsckhould
always invoke certain operations of a node (defined inNbeOps interface)
through the node’s delegate (e.g.del().typecheck() instead of simply

n.typecheck()). The checker enforces this rule.

The entire Polyglot checker consists of 80 lines of (nomklanon-comment)
JavA COP rules and auxiliary predicatesavA COP’s declarative nature makes each
rule relatively straightforward to understand. For examlisting 3.24 enforces the
factory design pattern for AST nodes. The rule directly esponds to the English
description provided above. The auxiliary user-definedlioedeisSubtype checks

whether a type (represented by its symbol) has a particufaarsype.

69

rul e nodeFactory(JCNewClass nc) {
wher e(isSubtype(nc.constructor.owner,
"polyglot.ast.Node")) {
requi r e(isSubtype(env.enclClass,
"polyglot.ast.NodeFactory")):
error (nc, "Nodes cannot be directly instantiated "+
"outside of the node factory!");

1}
Listing 3.24: A AvA COP rule enforcing Polyglot’s factory design pattern.

Table 3.1: Results of running the Polyglot style checker.

Compiler LOC Errors
signaled actual

Polyglot-1.3.4| 20910, 7 7
Polyglot-2.3.0| 25154 7 7
Polyglot5 7800 3 3
JPred 3343 0 0
eJava 2458 2 2
jet-0.9.0 921 0 0
jif-3.1.1 22020 14 12

70

The Polyglot style checker was then run on seven Polyglotpdens/extensions;
the results are shown in Table 3.1. The first two compilergraéolyglot 1.x and 2.x
branches from Cornell, respectively. The next three conmgilethe table are Poly-
glot extensions from UCLA to respectively support Java ldiuees [Pt07], predicate
dispatch [Mil04], and expanders [WSMO06]. The last two comslare Polyglot ex-
tensions from Cornell to respectively support nested ietdigsn [NQMO6] and secure

information flow [Mye99].

The second column in the table lists the (non-blank, nonment) lines of Java
code in the compiler or extension, ignoring generated cedg,(from the parser gen-
erator) and other special files. For each compiler, the nuwierrors signaled by the
checker is listed. These error messages were provided tietiedopers of the compil-
ers and the developers were asked to verify which were (indp@ion) actual errors.
As the last column in the table shows, of the 33 errors sighaézoss all compilers,

31 of them were actual errors.

All 14 errors in the two Polyglot base compilers were viaas of the fourth idiom
described above, related to delegates. These 14 erroesesprl2 distinct errors: two
errors from the 1.3.4 version were duplicated in the 2.3Biga. All of these errors
have been fixed by the developer in the latest releases of.xhantl 2.x Polyglot

branches.

Nine of the 14 errors signaled for Jif were violations of thstfidiom described
above, related to factories. these nine errors were caresidalse positives by the
developer. One involved a temporary node class used onigglparsing, which was
deliberately not given an associated factory method and atways directly instanti-
ated. The other pertained to a class that was being used atogyffor certain type
objects, even though it was not a subtype of the standardyoiyterface for type

factories. A user could easily employ an annotation @gypeFactory , along with a

71

rul e nodeFactory(JCNewClass nc) {
wher e(isSubtype(nc.constructor.owner,
"polyglot.ast.Node")) {
requi re(isSubtype(env.enclClass,
"polyglot.ast.NodeFactory") ||
env.enclClass.hasAnnotation("NodeFactory")):
error(nc, "Nodes cannot be directly instantiated "+
"outside of the node factory!");

1

Listing 3.25: A AVACOP rule enforcing an extension of Polyglot's factory dasig
pattern.

simple modification to ourAVA COP rule, to eliminate this false positive. A modified

version of the Polyglot rule from Figure 3.24 with this effexcshown in Figure 3.25.

3.6.2 Safety Critical Java (SCJ) Checker

Safety Critical Java (SCJ) [SCJ] is a subset of the Java langabuyg with a new set
of dedicated Java services, that can be used for creatiatysaitical applications in
Java. Such applications require that they must have goddrpeance and reliability
because of their use in situations where failure can resadlamage to human life. As
a result, numerous standards bodies have defined what itsni@aa program to be
certified as safety critical. The SCJ team chooses to adheselglto the definition
of safety critical as required for certification using thdtare Considerations in Air-
borne Systems and Equipment Certification (DO-178B) [RTCO&h&rd. This is the

same standard used by the US Federal Aviation Administratio

SCJ programs are meant to ease the process of certificatian thedDO-178B
standard by reducing the complexity of the programs. Theagah in complexity
is achieved through the definition of three conformity leve safety critical stan-

dards defined in the SCJ specification document: levels 0,dL.2ar.evel O is used

72

for simpler applications that have low complexity and ditdifficulty meeting mem-
ory constraints and real-time deadlines. Levels 1 and 2vallee use of more Java
libraries and thus increase the complexity of the appliceti Java virtual machines
are similarly built to run at these levels to ensure that demity is not added in at

runtime.

Level information is introduced in the code via the use of @&CJAllowed anno-
tation. This annotation can take the name of the definind bevva metadata argument.
Thus, a class declared at level 0 would be annotated with @JAllowed(Level -

0) annotation. For the Java virtual machine, the complianeel lis specified as a

command line argument.

The key to retaining the modularity and code reuse benefifaadh in SCJ is in
allowing programs defined at lower levels to remain validgpaons for the higher
levels. Simple and universal classes, sucblgsct , would be defined at level 0, and
thus be usable in any level's programs. However, a complitatass likeThread
would be defined at a higher level to prevent its use in a loasellprogram. If a Java
virtual machine is run at a particular level, then it willuet to load a class defined at

a higher level.

The SCJ A&va COP type system enforces the following idioms:

1. The default annotation for an otherwise unannotated cas

@SCJAllowed(Level 0).

2. When a class is annotated with @5CJAllowed(Level n) annotation, its
members assume a default annotatiorf@dCJAllowed(Level n). Members
of a class may override the default behavior by declaringghdr level than

their owning class.

3. All annotations must be preserved through subclassidgrethod overriding.

73

4. Nested non-static classes must be at least as restastiveir enclosing classes.

Nested static classes may be given any level of compliance.

5. Fields, methods, and constructors may only be accessecbintext with a level

at least as high as the level with which they are annotated.

The hvaCOP implementation of this discipline consists of 65 (ndemk, non-
comment) lines of code. There are 10 predicate declaratindss rules in the type
system. Because the rules and predicates remain relativally, shey are easy to read
and modify. Listing 3.26 shows a predicate and rule from sieis The rule codifies
that fields declared in a class may only broaden the comm@idene! specified by
its enclosing class. The predicate declaration defineslltveedSubtype predicate
used in the rule. This predicate makes use of the abilitydonstruct annotations from

declarations to directly compare thevel s of two entities.

The type system was used by the SCJ developers to test theiirspkementa-
tion. This spec implementation consists of an annotatesiames of thejava.lang
package and th&ector class from thgava.util package from standard Java; an
annotated version of thjavax.realtime package from the Real-Time Specification
for Java [BBDOO]; and a proposed new packgayax.safetycritical . In total,

this amounts to just under 130 Java files.

Type checking these classes resulted in the detection afr@&eelated to SCJ in
the spec implementatidn17 of these errors related to missing annotations on dasse
and methods related to subtyping. 8 of the errors relatedetihod and constructor
invocations in a lower compliance level context. Listing@Bshows one such error.
Lastly, 4 of the errors were a result of a subclass definingghdrilevel than their

parent. Based on the detection of these 4 errors, it was reeoned to change the

3The presence of other Java errors unrelated to SCJ may haléeckin under-reporting of actual
errors.

74

/* Fields nmust be declared at the same or higher |evel of
* conpliance as their enclosing class.
*/
rul e fieldDef(JCVariableDecl v){
wher e(!v.isLocal && hasSCJAllowed(v)){
wher e (hasSCJAllowed(env.enclClass)){
requi r e(allowedSubtype(env.enclClass.sym, v.sym))
cerror(v, ...);
}
}
}

/* One declared entity is a subtype of another if it has a
x | ower decl ared @CIAl | owed | evel .
*/
decl are allowedSubtype(Symbol x, Symbol y){
requi re(SCJAllowed x_annot;
X_annot <- x.getAnnotation("SCJAllowed")){
requi re(SCJAllowed y_annot;
y_annot <- y.getAnnotation("SCJAllowed")){
requi re(Level x_value; x_value <- x_annot#value()){
require(Level y_value; y_value <- y_annot#value()){
require(x_value#compareTo(y_value) <= 0);

H

Listing 3.26: A rule and predicate declaration from the SGaketgystem. The rule
requires members declare the same level of or higher conggdlias their enclosing
class. The predicate defines a subtype relationship a@@@jAllowed annotations.

75

public abstract class EventHandler
ext ends BoundAsyncEventHandler {

private Runnable task_ = new Runnable() {
public void run() {
/1 LEVEL_1 nethod accessed in LEVEL_ O context!
handleEvent();

}
|3

@SCJAllowed(LEVEL_1)
public abstract void handleEvent();

}

Listing 3.27: A Java class demonstrating an error in the spptementation of Safety
Critical Java caught by theada COP SCJ checker: the methbahdleEvent() , de-
fined atLevel 1, isusedin a default context bével 0 in the anonymouRunnable
instance assigned to fielask .

SCJ specification to allow this kind of definition; the virtuahchine of leveh will
not load a class defined at a level higher thaso suchunsafesubclasses cannot affect

performance on a virtual machine running at the level of éuept.

Looking at the results points out that even domain expertemog to a simple
discipline can easily make mistakes in their code. While thertors related to miss-
ing annotations were likely the results of incremental ipgrfrom the original Java
versions, the 8 errors related to method and constructocations are more serious.
It is unlikely that a developer will remember the compliateee! of every method or
constructor in a project, so these kinds of mistakes aredtmhappen occasionally,

even with expert programmers.

76

3.7 Advanced Type Checker: Non-null Types

This section demonstrateavd COP’s ability to express state-of-the-art type systems
by focusing on an in-depth description of a non-null cheé&epreventing null pointer
dereferences in Section 3.7.1. Recent literature (e.g.Q3FIAKCO02, Boy01]) has
shown that type systems for these properties that are bottdssind expressive enough
to be usable in practice employ reasoning that is subtle angpex. By using AvA -
COP’s declarative rule language introduced in SectionrBcdncert with the dataflow
framework presented in Section 3.4, it is possible to bwlslist, usable checkers for

these properties.

While not presented here, numerous other research typersysi@/e been imple-
mented in AvA COP including confined types [VB99] as described in Sectidnl].
scoped types [ZNV04], race condition detection types [FF8nd types for object
encapsulation [Hog91], Javari-style reference immuitgtiypes [BEO4, TEO5], types
for generic ownership in Java (OGJ) [PNCO06], and unique eeieg types [AKCO02,
Boy01]. More details about these type systems can be foundanjavAa COP publi-
cations [ANMO06, MME].

3.7.1 Non-null Type System

As stated previously in Section 3.4, a non-null type systasuees that no null values
are stored in references that are marked as non-null. Nbmeferences are important
because dereferencing them is always safe: doing so wilrreause unexpected null
pointer exceptions at runtime. The basic rules of a nonehdtker are very similar to
those | previously defined for untainted in Listings 3.2, 34, and 3.9. In particular,
it is essential thaton-nulltypes be treated as a subtype of an unannotated type just as

in the case for untainted. Using thevdA COP dataflow framework, explicit runtime

77

checks in the source code can be used to ensure non-nulliyreference before

dereferencing it or storing it into a location annotatedw@nNonNull .

3.7.1.1 Adding Raw Types

Due to the semantics of Java object construction, it is irgjbies to guarantee that a
field annotated with@NonNull nevercontainsnull — even if it is initialized at the
declaration site. The code in Listing 3.28 shows how a fieldlmaaccessed before it
is initialized. SinceA's constructor is executed before subclB'ssfield initializers are
run, the overriddemit method inB will dereference field before it is initialized.

The Java runtime will have storedll inf and a null pointer exception will result.

As this example shows, it would not be sound for a non-nultkbeto simply en-
force that a field annotated wi@NonNull have a non-null initializer in its declaration.
To handle this situation, my checker supportsrdng typesapproach invented by oth-
ers [FLO3]. I assume that fields declared as non-null mayarida null while the object
is under construction, aaw. | introduce two new annotation§@Rawand @RawThis,
that indicate that a method parameter or the receiver of aadetall, respectively,
may be under constructionavh COP rules are used to enforce that a constructor only
invokes@RawThis methods on the object being constructed and only pdlsisesto a
method as @Rawparameter. Listing 3.29 fixes the erroneous code from Igs3ir28
so that the checker accepts it. The type system reqinites to have the@RawThis
annotation, since it is called while the object is under tmcsion. Once the method is
marked as having a potentially raw receiver, the checkeriresjthat a runtime nullity
check is inserted before dereferencing fieJdsince it may contaimull despite its

@NonNull annotation.

Once the raw types mechanism is in place, it is overly rdsteido insist that a

@NonNull field be initialized at its declaration site. It is sufficieiot check that all

78

class A {

voi d init() { }
}

class B extends A {

@NonNull String f = "not null";

voi d init() {
/'l Executes before f is initialized
System.out.printin(f.length()); /I null deref!
}
}
Listing 3.28: Java fields may be accessed before their liziiais run.
class A {
A() {
init();
}
@RawThis voi d init() { }
}

cl ass B extends A {
@NonNull String f = "not null";

@RawThis voi d init() {
if (f!= null)
System.out.printin(f.length());

}
}

Listing 3.29: Using raw types to guard against null derefees during object con-
struction.

79

@NonNull fields have been assigned a non-null value by the end of cmtistn. This
check requires dataflow information, since it must reasaugabll paths through the
constructors. This definite assignment analysis was eadilled to the checker by

defining a FlowFacts class using our dataflow framework.

The entire non-null checker, including raw types, requit8@ lines of AvACOP
code consisting of 7 predicates and 12 rules. The two flowyaralused by thenJa -
COP rules were built using our dataflow framework in a totall¥ lines of Java

code.

3.7.1.2 Experience Using the Non-Null Checker

In Table 3.2 we present results of applying our non-null &eeto two existing Java
programs to make them safe from null dereferences. The fitshm contains re-
sults pertaining to an undergraduate project by one of thigoasithat uses Dijkstra’s
algorithm for determining shortest path on a given stregb.méhe second column
contains results from applyingsda COP to itself, namely the pass that we added to
the OpenJDK compiler forAVA COP’s rule enforcement. The table lists the size of
each application and the number of object dereferencesh@aton-null type system

must prove safe.

The table also lists the number of annotations requiredh Wwithin the application
itself and within depended-upon code: the Java standararyitand (for AvA COP)
the rest of thgavac compiler implementation. The number of annotations could
be significantly reduced through the use of appropriateuttsf@CJ07]. Such a non-
null-by-default type system could be adapted from the nalhtype system discussed
here by changing the predicaezuiresNonNull , which defines the non-null type,
to require the lack of @Nullable annotation instead of the presence a@&onNull

annotation.

80

Table 3.2: @NonNull annotation results for Dijkstra’s algorithm implementatiand
Java COP. Additional code dependencies listed here include paiamethods for li-
brary calls as well as additional annotated code. Nullityaks inserted due to lack of
Java support for annotations on enhanced for loops andigsraee listed under Java

limitations.

Dijkstra | JavaCOP
LOC 629 948
(add’l code dependency ~1000
Derefs 206 628
@NonNull annotations 83 92
(add’l code dependency) 43 100
@RawThis annotations 1 0
(add’l code dependency 1 1
Nullity checks 46 93
bugs 7 7
false positives 0 22
unknown 0 14
Java limitations 39 50

81

(a)
public class JCList<T extends Object> {

publ i c bool ean nonEmpty (){

return tail != nul | ;
}
}
(b)
@NonNull JCList<String> list = ...;
for (; list.nonEmpty(); list = list.tail) {
[* | oop body =/
}
(©)

@NonNull JCList<String> list = ..;
for (; list.nonEmpty();) {
/* 1 oop body =*/

JCList<String> tail = list.tail;
if (tail == nul 1)

t hrow new RuntimeException(...);
list = tail;

}

Figure 3.5: Example code (b) demonstrating a false positnkcated by our
@NonNull type system and how the code had to be modified (c) to appeasgph
system. This is a false positive because the type systemaiware of the invariant

which the methodionEmpty() (@) ensures.

82

The “Nullity checks” category indicates the number of pagewhich we had to
add an explicit test for non-nullness in order to typecheaaicessfully. These checks
have been partitioned into several categories. The sevgmibuhe Dijkstra applica-
tion all have to do with improper handling of input files. I&thles are notin the correct
format, the implementation generates null pointers witlsidata structures, which can
later be dereferenced. Seven bugs were also found imteCIOP source. For exam-
ple, the expressiofilename.getParentFile().toURL() contains an error, since
the methodyetParentFile() may returnnull for a malformed file descriptor. We
list 14 nullity checks as “unknown”. These checks all pertai references t@vac
Scope objects. Our inspection of thavac code leads us to believe that tBeope
objects are phased: initializedriall but, at some time before thevlh COP pass, set
to a non-null value. However, we found no conclusive evigetocsupport this belief

and so left the checks uncategorized.

The code in Figure 3.5(b) illustrates an example false pesitThe type system
complains that the potentially null fietdil is being assigned to th@NonNull vari-
able list. However, the loop guard ensures taat is non-null, as shown in Fig-
ure 3.5(a). We satisfy the type system by inserting a nutlitgck, as shown in Fig-
ure 3.5(c). This code also illustrates the need to introthuza variables, since the type
system only supports flow sensitivity for local variablesowrsensitivity for fields is
more challenging due to the potential for aliasing and thgsility of concurrent

access by multiple threads.

Finally, “Java limitations” lists nullity checks due to litations in Java’s annota-
tion syntax. Most notably, type parameters cannot havetations, so for example
it is not possible to have last of @NonNull strings. Therefore each time we access
and use an element from such a list, a spurious nullity checkquired. A current

proposal would resolve this and related limitations in JAGErn07].

83

Testing the Checker After updating the non-null type system to support flow sensi
tivity, but before extending it to properly handle objedtiadization via raw types, |
created a runtime checker for the non-null type system.r treated a test suite con-
sisting of 79 unit tests and verified via the test harnessthigapluggable type system
and runtime checker agree on the results of all tests. Thaaesess was then further

used during development of an extension to the type systdrartdle raw types.

First, a test case similar to the one in Listing 3.28 was exkalt passed the static
checker but failed the runtime checker, thus illustrating tnsoundness mentioned
earlier. This test case was used during development to erisat the resulting raw
types checker indeed plugged the type hole. This processepasted when adding
flow sensitivity to check for definite assignment@NonNull fields. Upon removing
the AvA COP rule requiring@NonNull fields to have initializers, the type system be-
came unsound until the flow-sensitive checks were in plades t€sting framework
made it easy to concretely understand the type holes beied dirnd to gauge progress
toward these goals. In total, an additional 10 test cases wreated when developing

and testing the raw types extension to the first non-null kévec

3.8 Compiler Performance

To demonstrate thataya COP is a practical implementation, | measured its perfor-
mance compiling a range of sample programs using a few rtde $bae sample pro-
grams include several well-known open source examples,eflsaw a simple Hello
World example and the Java code generated to check the auldsef Ava COP non-
null type systems implementation. | compiled each prograst With no rule sets,
then with a confined type system, unique reference typemsystad a non-null type
system individually, and then finally withaya COP checking all three of these rule

sets simultaneously.

84

The measurements were taken on a Dell Optiplex GX270, witmgah Pentium
IV 2.8GHz and 1.5GB RAM, running Fedora 8 in a KDE Konsole terahi JvA -
COP was run using the Sun Java HotSpot(TM) Client VM (build@..65-b13, mixed
mode, sharing). Each test was run five times and timed usetgitthn command from
the bash shell. The wall clock (real’) time was measured, the higheasd lowest
values were discarded, and the remaining three averagewdoige the final figure.
Because the confined type system rules rely on annotatioresgnt in most of the
examples, | modified the rules so tleateryclass would be checked as if it were con-
fined. All numbers include the time required to print warrgngrrors, andnt output

to the screen.

Fig. 3.6 presents the results. For each configuration therujpg is time in sec-
onds, while the lower row is the percentage slowdown oveb#seline performance
caused by using the given type system(s)—in each case levettier. The key point
from this table is that even when using multiple complex tggstems, performing
Java COP rule checking in addition to standard Java typechedikes less than 1.7
times as long as Java typechecking alone. Closer inspedtmmssthat most of the
time is spent in the two type systems which use flow-sensitiihe non-null and
unique type systems. This is not surprising as those rulest make multiple visits
over the AST and create a number of objects representinfj@atacts. The simpler
confined type system only imposes overhead of between orféftaed percent. | have
not performed any optimizations oavh COP, nor investigated any kind of incremen-
tal compilation support, in order to obtain these numbersndtheless,AYACOP’s

performance demonstrates the practicality of its design.

85

System Classes|| Norule set| Confined | Unique | Nonnull All
Hello World 1 0.6557 7487 .7343 7107 .7647

14.2% 8.4% 12.0% | 16.6%
Non-null rule set 4 1.2930 1.4603| 1.4493| 1.5610| 1.8147

12.9% | 121% | 20.7% | 40.3%
Polyglot5 161 6.1060 7.0577| 8.1930| 7.4580| 9.3163

156% | 34.2% | 22.1% | 52.6%
PMD 786 18.1073| 19.0110| 20.2160| 20.6807| 22.9273
4.2.4 50% | 11.6% | 14.2% | 26.6%
JEdit 1085 10.8970| 11.4950| 14.6067| 13.5540| 18.1417
4.3 pre 15 55% | 34.1% | 24.5% | 66.6%
Jython 1191 19.2883| 20.8210| 24.4997| 25.4143| 31.6790
2.5 79% | 27.0% | 31.8% | 64.2%
OpenJDK 1281 11.0743] 11.9663| 14.9040| 13.6270| 17.4420
7-ea-src-b36 8.1% | 34.6% | 23.1% | 57.5%

Figure 3.6: AvACOP Compilation Times

86

3.9 Summary

In this chapter, | presented thevd COP framework for pluggable types in Java. The
Java COP language allows developers to declaratively specifjarous non-trivial
programming disciplines for both domain-specific discips and general-purpose type
systems from the research literaturevAICOP additionally provides a simple dataflow
analysis API to let programmers utilize flow-sensitivitytireir type systems when the
JavAa COP language itself is not sufficient. ThevA COP compiler enables these pro-
gramming disciplines to be automatically enforced on Jasgnams. Via the Polyglot,
SCJ, and non-null checker case studies, | showed hewQOP discipline checking
can find bugs in real code. To ensure thatACOP programs also guarantee desir-
able program properties, | created the type system testamgeiwork. This practical
approach allows developers to specify desirable progesseuntime invariants which
are used to instrumenting code and find programs from a téstwhich successfully

type check but still violate the invariants.

87

CHAPTER 4

CLARITY : Semantic Type Qualifiers for C

4.1 Introduction

While the AvACOP framework provides a very expressive framework for dedin
disciplines, it does so to the detriment of automatic reegpabout the validity of
a discipline. Using a test framework for validating a didic against an intended
invariant is a practical solution, but it does not guarardesplete coverage of the
program space. Satisfying the expected and intended sesfudt discipline for a test
suite is only a hint, not a proof, that the discipline is cotrdn order to automate the
verification process, the discipline language must beiogstt so that theorem provers

and constraint solvers can reason more directly about the afi a discipline checker.

In this chapter, | present theL&RITY framework for semantic type qualifiers for
the C programming language. The intent behindRITY’s development was to show
how a framework can be built which addresses automatediamiazhecking of disci-
plines. It offers developers an automated way of enforcimdj\alidating disciplines
via type qualifiers Type qualifiers, in their simplest form, are lightweighp&ysystem
refinements denoted in syntax via an annotation on a typeseTealified types are

treated as subtypes of their respective unqualified types.

CLARITY supportssemantidype qualifiers by providing a restrictive DSL focused
on pattern matching over C expressions and statementsnidreled semantic invari-

ant of a discipline is supplied by the type system developex part of the discipline

88

specification using a stylized predicate syntax with builteasoning about program
state information. The simplicity of the language and prat#is allows qualifiers to
be type checked, or even inferred; programs to be autontigticatrumented for safe

casting; and, sometimes, rules themselves to be inferoed tihe invariant predicate.

The type qualifier specifications inLEGRITY enforce disciplines that restrict the
values of C expressions. The type systems that can be defir@\RITY are, thus,
a strict subset of those that can be definedawaL OP. For instance, \RITY can
check simple versions of the non-null and untainted digsogsl, but not the SCJ or
Polyglot disciplines defined in Chapter 3. However, theaRITY framework auto-
matically enforces a subtyping strategy that allows rutebdé more succinct. That
is, at every point in a C program where a subtyping relatignghexpected between
two expressions—such as assignments, return statemeyusyents to functions, etc.—
CLARITY requires that the qualifiers on the subtype be a supersee @jualifiers on
the supertype. This is the same behavior that had to be haaedan AvACOP in
Listing 3.4, but that is built-in to CARITY. The listing below shows how a simple

form of theuntainteddiscipline would be specified inlGQRITY .
val ue qualifier untainted(T Expr E)

The specification defines a new qualifientainted . As there are no other rules
provided in the definition, only expressions explicitly atated with theuntainted
qualifier will be considered untainted. As aresultARITY will automatically enforce
that only expressions that have amtainted qualified type can be used when an

untainted qualified type is expected.

CLARITY provides a novel combination of features to support the ldpwneent of

these semantic type qualifiers:

e Declarative rule languageCLARITY employs a declarative, pattern matching-

based language for defining semantic type qualifietssRETY ’s language was

89

created to be a simple, restricted language for defining néyp€ refinements
that is easy for qualifier designers and programmers to gtated and to define
correctly and enables automated verification of qualifilggagainst a semantic
invariant. The language has a natural correspondence twtheal specification
of syntax-directed typing rules and closely resemblespathatching schemes

found in languages such as ML.

Seamless integration with ©LARITY naturally allows type qualifiers to inter-
act with C’s existing type system. To enable efficient infeeenf qualifiers, it
does whole program checking, as opposed to the modularstglen in AvA -
COP. The typechecker is implemented as an module extertsiba CIL infras-
tructure for C program analysis and transformation from Bk [NMRO02].
This feature allows the Q\RITY to be used in place of the standard C compiler

in a development toolchain.

Support for inferenceProgrammers often find it burdensome to fully annotate a
program with necessary type qualifiers. To ease this budesrITY provides
whole program type inference for all expressions in a C @ogr This infer-
ence identifies all places where type qualifiers are neceasar can be used to
statically identify invariants about program entities.ARITY also supports au-
tomatic inference of type qualifier rules, which can enabikeeeloper to make

a more precise type system.

Automated qualifier validation.To address discipline verification, LERITY
provides a novesoundnesghecker that uses an off-the-shelf automatic theo-
rem prover to prove that qualifier rules ensure an assocssedntic invariant.
The soundness results are known to be valid given certaimggons that are

made about the C runtime states.

90

While not as diverse a set of disciplines as witvAICOP, | have defined and
verified a number of non-trivial type qualifiers inL@RITY and used them to detect
real errors and infer interesting invariants about oparre®C programs. CARITY
performs reasonably well when inferring multiple type dfigds, although it shows

some expected scaling issues with larger programs.

The rest of this chapter is organized as follows. Sectionmtraduces the design
of CLARITY’s rule language through a number of examples and introdineeson-
cepts ofvalueandflow type qualifiers. Section 4.3 explains the basic type checkin
scheme of CARITY without inference. Section 4.4 discusses the extensidretbasic
type checking scheme necessary to support inferengaloéqualifiers. Section 4.5
describes the automated validation scheme of type quatifies,and Section 4.6 de-
scribes the experience usingARITY qualifier checking and inference on open-source

C projects.

4.2 Semantic Type Qualifiers

The QLARITY framework supports the definition of a common class of qeadfi
known asvalue qualifiers. Value qualifiers, such @ss andnonnull , pertain only

to the value of an expression.

4.2.1 Value Qualifiers

Listing 4.1 illustrates a definition of the value qualifiges in the QLARITY frame-
work, which can be used to statically track positive intsgekine 1 of the listing
declaregos to be a new value qualifier applicable to expressions of iyfpe It also
declares a variablg, which is used in the rest of the qualifier's definition. Eaehiv

able declaration includes a type andlassifier The declared classifidtxpr for E

91

1 value qualifier pos(int Expr E)

2 case E of

3 decl int Const C:

4 C, where C > 0

5 | decl int Expr E1, E2:

6 El * E2, where pos(El) && pos(E2)
7 | decl int Expr E1:

8 -E1, where neg(El)

9 i nvariant value(E) > 0

Listing 4.1: A user-defined type qualifier specification.(ideclaration and associated
type rules) for positive integers.

int pos gcd(int pos n, int pos m);
int pos lem(int pos a, int pos b) {
int pos d = gcd(a, b);
int pos prod = a * b;
return (int pos) (prod / d);
}

Listing 4.2: Example code using tipes type qualifier.

92

indicates that during typechecking of a C progrdnwill be instantiated with side-
effect-free program expressions. The declared typ& fmynstrains such expressions
to have typent . In addition to the classifidgxpr , the Q_ARITY framework supports
the classifier€onst , LValue , andVar, which represent C constants, I-values, and
variables, respectively. AsI@RITY is implemented as an extension to the CIL in-
frastructure for C program analysis and transformation ROM], it performs qualifier
checking over programs in CIL's intermediate language, twigieanly distinguishes

expressions, which are side-effect-free, from instrungio

Given the declaration on line 1 of Listing 4.1, programmei@mow annotate
their programs with theos qualifier, as shown in the C code in Listing 4.2. Titra
procedure in the figure computes the least-common multipemintegers. Theos
qualifier is used to specify that the two arguments shoulddsdtipe integers and to
ensure that the return value is also positive. To handledegtalifiers unambiguously,
we use a postfix notation, whereby a qualifier qualifies thieestyipe to its left. A type

may be annotated with multiple user-defined qualifiersytheler is irrelevant.

4.2.1.1 Type Rules

Line 1 of Listing 4.1 declares the newes qualifier, but it does not indicate how this
gualifier should be used during typechecking. This is the oflthecase block be-
ginning on line 2, which uses a form of pattern matching tadatk a subset of ex-
pressions that can be given the tyipepos . For example, the clause in lines 3-4
indicates that a positive integer constant may be givenyipeint pos . The clause
first declares the variablg which ranges over integer constants from the underlying
program, for use in the rest of the clause. It then specifieptiternC, to indicate
the syntactic form of the expression. Finally, the predi€at> 0 further constrains an

expression that matches the pattern.

93

val ue qualifier neg(int Expr E)
case E of
decl int Const C:
C, where C < 0 \\
| decl int Expr E1, E2:
El * E2, where neg(El) && pos(E2)
| decl int Expr E1, E2:
E1l * E2, where pos(El) && neg(E2)
| decl int Expr EI:
-E1, where pos(El)
i nvariant value(E) < 0

Listing 4.3: A user-defined type qualifier specification fegative integers. This spec-
ification demonstrates a mutually recursive relationship the pos qualifier defined
in Listing 4.1.

Type rules like the firstase clause of Listing 4.1 can be simulated in simpler type
qualifier systems like QUAL [FFA99] by annotating all positive integers in a program
with a pos assumption. However, thease clauses in CARITY are more general.
For example, the clause on lines 5-6 specifies that an expneisat is a product
of two expressions of typ@at pos can also be given the typ& pos . This kind of
recursive type rule would be quite difficult to manually edewsingpos assumptions.
The finalcase clause illustrates that the definition of a qualifier can aejpen other
gualifiers. That clause specifies that a negation expressioibe given typet pos
if the negated expression can be given typpeneg , whereneg is another user-defined
gualifier. In fact, qualifier definitions can be mutually resive. For example, the

definition ofneg has rules that refer faos, as shown in Listing 4.3.

The syntax for expression patternsdase clauses is defined by the following

grammar:
P = X|*X|&X]|new|uop P|P bop P|return P

HereX ranges ovevariable patternswhich have a declared type and classifier (e.g.,

94

int Expr) restricting the kinds of program fragments that may matidte pattermew
matches against calls to memory allocation routinesrtiioc Various unary and bi-
nary operations may also be matched against. Finallyethuen patternallows users
to specify special-purpose type rules for the expressitmmed from a procedure. The
predicate after (the optionabhere in acase clause may include operations on con-
stants and on variable patterns with classifienst , qualifier checks on expressions

and patterns, and conjunctions and disjunctions of thesislof predicates.

Each clause of ease block can be viewed as antroductiontype rule for a qual-
ified type, since the clause specifies conditions under waitkexpression may be
assigned that qualified type. For example, the second claussting 4.1 is akin to

the following type system rule:

I+ Ez:int pos = Eo:int pos

M= EpxEp:int pos

The semantics of thease clauses are formalized in a companion tech report [CMMO04].

The QLARITY typechecker uses the type rules defineddse blocks, along with
a set of standard rules for typechecking constructs likekée references, procedure
calls, and assignments, to perform qualifier checking. Siumdtking validates the
gualifier annotations supplied by the programmer, whicheggnt the programmer’s
assumptions about when particular invariants hold. Fomgie, if a variable’s type
is annotated with qualifieg, then qualifier checking only succeeds if every expression
used as the right-hand side in an assignment to that vacahlbe determined to have

that same type.

Consider again th&m procedure in figure 4.2. As usual, typechecking an as-
signment statement involves obtaining the types of eadh aimtl checking that they
match. The assignment tiotypechecks successfully because both sides of the assign-

ment have typ@t pos : the right-hand side is shown to have this type by the stahdar

95

val ue qualifier nonzero(int Expr E)
case E of
decl int Const C:
C, where C 1= 0
| decl int Expr E1:
E1l, where pos(El)
| decl int Expr E1:
El, where neg(El)
| decl int Expr E1, E2:
El1 * E2, where nonzero(El) && nonzero(E2)
restrict
decl int Expr E1, E2:
E1 / E2, where nonzero(E2)
i nvariant value(E) '= 0

Listing 4.4: A CLARITY type qualifier specification for nonzero integers.

type rule for procedure calls, given the declared type sigeafgcd. The assignment
toprod also typechecks successfully, becausectise clause on lines 5-6 allows *

b to be given the typ@t pos . Because of their declared types, we statically know
that bothprod andd are positive, but this information is not sufficient to shdattthe
expressiorfprod / d) is also positive. Indeed, the type rules pos are not able to
derive the typent pos for that expression. Therefore, the programmer must irsert

cast to satisfy the typechecker, because of the declanachrigtpe oficm .

A case block specifies when an expression may be given a qualified §pecifi-
cation developers may also want enhance the precisionstfrexiyping rules from the
base C type system using type qualifier expressionaARCry provides aestrict
block for this purpose, an example of which is shown in thenitédn for anonzero
qualifier in Listing 4.4. The syntax of eestrict clause is identical to that of a
case clause. Arestrict clause specifies that any expression in a given program that
matches the clause’s pattern must also satisfy the clapsstcate. Theestrict

clause fornonzero overrides the base rule for typechecking division expoessio

96

require that the denominator have the typtenonzero (rather than simplynt).
In this way, potential divide-by-zero errors can be det@statically instead of being

found at runtime.

For example, consider again tlen procedure in Listing 4.2. If the extensible
typechecker is given the definition obnzero in addition to that ofpos, it will use
nonzero ’s restrict clause to check the division in the last statemeritrofs body.
Therestrict clause requires thdthave the typént nonzero . By the secondase
clause fomonzero in Listing 4.4, any expression of typet pos also has the type
int nonzero . Sinced is declared to have the tyjp@ pos , thatcase clause allows

therestrict check to succeed.

Therestrict clause is analogous to qualifier assertions QU&L [FFA99]. For
example, theestrict type rule in Listing 4.4 could be simulated by annotating the
denominator in each division in a program witm@zero assertion. However, the
restrict clause is more general. For example, the predicater@stact clause

may contain conjunctions and disjunctions of qualifier &sec

4.2.1.2 Subtyping

It is natural to consideint pos to be a subtype aht . For example, this subtyping

relationship would allow the following code snippet to tgpeck:

int pos x = 3;
int y = x;

The QLARITY typechecker considegdl value-qualified types to be subtypes of their
associated unqualified types. More preciselg,ig a value qualifier andis a (possibly

gualified) type, therm qis considered to be a subtypetwf

The rest of the supported subtyping rules are standard. ved,.are must be taken

in the presence of pointers [FFA99]. For example, it wouldibgound to considenmt

97

pos* to be a subtype ofht* , because that would allow the following code, which
stores a negative number in a variable of typepos , to typecheck:

int pos x = 3;

int* p = &x;

*p = -1;

A companion technical report contains the formal definibéthe subtyping relation

in CLARITY [CMMO4].

CLARITY does not support explicit subtype declarations betweenseo-defined
gualifiers. However, such subtype relationships can bedsttasing thease block.
For example, the second clause inthge block ofnonzero ’s definition in Listing 4.4
effectively declarepos to be a subtype afonzero : any expression of typiet pos

may also be considered to have typtenonzero

4.2.1.3 Semantic Invariants

Line 9 of Listing 4.1 uses ainvariant clause to define thgos qualifier's associated
run-time invariant. The invariant is a predicate that is oty defined in the context
of an arbitrary run-time execution state. Let us denotedkecution state bp. The
value predicate is provided by our framework and represents thee\a a given ex-
pression imp. Therefore, the invariant fquos indicates that the value of an expression

of typeint pos should be greater than zero, in any run-time execution.state

The limitations of the CARITY language for writing type rules, and of static type-
checking in general, sometimes requires programmers éotioasts in order for qual-
ifier checking to succeed. To retain soundness with respextpecified invariant in
these cases,I@RITY’s typechecker instruments programs with a run-time check f
each cast to a value-qualified type. Each run-time check teséther the expression

being cast satisfies the cast-to qualifier’s invariant. sithplementation, a fatal error

98

is signaled if the test fails. For example, consider the icattie last statement ddm
in Listing 4.2. At run time, a check ensures that the valuépafd / d) is in fact

greater than zero.

4.2.1.4 Flow Qualifiers

Some common kinds of qualifiers are used solely to restritflthw of values in a
program. For example, thentainteddiscipline used as a running example throughout
this dissertation essentially tracks the flow of data confiogn trustworthy and po-
tentially untrustworthy sources. For soundness, the adyirement is thatinted

data never flows wherentainted data is expected. Thmtainted qualifier can help

to statically detect SQL injection attacks, as discusse@hapter 1, but it is equally
useful for tracking format-string vulnerabilities in catb C’sprintf and related pro-
cedures [STFO01]. Another example of flow qualifiers includke qualifiersuser and
kernel which can be used to statically ensure that user pointersemex dereferenced

in kernel space [JW04].

The listing below shows a IQ\RITY specification for a simple untainted analysis

in the Q_LARITY framework.

val ue qualifier untainted (T Expr E)

As the specification is defined, thietainted qualifier can qualify any typé&. Flow
qualifiers likeuntainted are a degenerate form of value qualifier IDARITY : since
theuntainted qualifier has na@ase block, the only way to introduce an expression
of typeT untainted is with a cast, to explicitly mark the expression as beingttru
worthy. The qualifier also lacks an explicit run-time inwant as the invariant language
is not expressive enough to capture runtime propertiecedsed with the discipline.
Proper value flow is guaranteed “for free” becatlisentainted is a subtype oT but

not vice versa. Therefore, untainted data can flow wherérarpidata is expected, but

99

not vice versa.

As discussed earlier, thatainted qualifier can help find errors in calls to vari-
ous SQL APIs for C. For example, the DB2 database managemeatrsyt®m IBM
provides a functiorBQLExecDirect() for directly executing a SQL statement on a
database. The second argumen$@i.ExecDirect is the SQL statement that will be
executed on the database. C itself does not verify, eitheorapile time or run time,
that callingSQLExecDirect with an arbitrary SQL statement will not have unintended
effects on the database. To ensure that only well-behaagehsénts are executed on
the database, a programmer can use a type signatus@f@ixecDirect that requires

the second formal parameter to have tgpa* untainted

For example, suppossafe stmt is a SQL statement which has been completed
by getting input from an arbitrary user via tgetName function. Also, suppose that
safe stmt usesthe same SQL statement fragment but fills it with a kn@afenstring
literal. Then typechecking with the simple untainted typstem defined above on the
following code allows the first safe call 8QLExecDirect , but signals an error for the

unsafe second call:

char unsafe_stmt[MAX_SQL_SIZE];
sprintf(unsafe_stmt,
"SELECT * FROM users WHERE name='%s’";",getName());
char * untainted safe_stmt =
(char* untainted) "SELECT * FROM users WHERE name='shane’;";

result = SQLExecDirect(hstmt, safe_stmt, ...); [/ OK
result2 = SQLExecDirect(hstmt, unsafe_stmt, ...); /1 ERROR
It may be useful to explicitly annotate some expressiongaglpossiblyainted
for code readability. For example, it might be helpful to ldee the header for theain
function of a program as follows, to explicitly indicate tlmmand-line arguments

should not be trusted:

int main(int argc, char* tainted argv[]);

100

The definition ottainted in the listing below allows th&inted qualifier to be given
to any expression.

val ue qualifier tainted(T Expr E)
case E of E

The lonecase clause allows any expression to be considdgagded , effectively
makingT tainted a supertype of (and hence also of untainted). Because of
the implicit subtyping relation for value qualifiers, it itsa the case that tainted

is a subtype ofT, so those types are essentially equivalent.

Although the versions ofainted anduntainted shown above are degenerate,
they could easily be augmented. For example, a user couldaddwat all constants

should be trusted, addingcase clause to the definition afntainted as follows:
case E of decl T Const C: C

This rule would, for example, obviate the need for the caiterassignment teafe -
stmt in the previous C code snippet usiSQLExecDirect . This is also equivalent
to one of the predicate declarations from thgAICOP rules for untainted shown in

Listing 3.9.

4.3 Extensible Typechecking

The QLARITY typechecker takes as arguments a C program and a set of ejuspiéic-
ifications in the language described in the previous sectibhe typechecker then
performs qualifier checking on the program as directed bytiadifier specifications’
type rules. The extensible typechecker also uses valudigtsldeclared invariants
to instrument the program with run-time checks for castsliing value qualifiers, as

mentioned in Section 4.2.1.3.

The QLARITY typechecker is implemented as a module in CIL [NMRO02], a front

101

end for C written in OCaml [Rem98]. CIL parses C code into an abstsyntax
tree (AST) format and provides a framework for performingges over this AST.
After qualifier checking, the AST is output as C code andgtte compiler performs

ordinary C typechecking and code generation.

4.3.1 Annotating Programs

CLARITY makes use gfcc attributes which are tags that can be associated with types
(and other program entities) similar, but more flexible thlava metadata annotations
as seen in Chapter 3, to introduce qualifiers into C programk. sgpportsgcc at-
tributes and maintains them in the generated AST for a pmgra type attribute

follows the type name and has the following syntax:

__attribute__ ((attribute name¢)

Instead of directly using this rather unwieldy syntax, ssesn define C macros to
replace the name of the qualifier with the full syntax. Sucltrogare used in the C
language examples of Section 4.2. For example, the qugldseused in Listing 4.2

is defined as follows:

#defi ne pos __ attribute_ ((pos))

4.3.2 Qualifier Checking with CIL

To enforce a qualifier specification, the &RITY typechecker traverses the provided
CIL AST, applying user-defined type rules to applicable pangfragments. Any type
errors found during qualifier checking are provided to thegpammer as warnings,

but compilation is allowed to continue.

To implement qualifier checking, | created a set of OCaml gipts to represent

the expression patterns and predicates that are allowezkirdefined type rules. For

102

example, consider thmase clause on lines 5-6 in Listing 4.1. The expression pattern

is represented internally as follows:
Binop(Mult, Expr("E1"), Expr("E2"))

The clause’s predicate is similarly represented as fotlows
And(Qual("pos", Expr("E1")),
Qual("pos", Expr("E2")))

Consider the application of this type rule to the right-haite ®f the assignment
to prod in Listing 4.2. First, the typechecker matches the expoespattern against
the CIL AST fora * b. The match succeeds and produces bindings for variables
in the pattern:El is bound to the expressianandE?2 is bound to the expressidn
Finally, the rule’s predicate is evaluated, after replgaach pattern variable with the
C program fragment to which it is bound. In this example, thedicate is satisfied
if a andb can recursively satisfy the qualifipos. The other kinds of type rules are

represented and checked similarly.

4.3.3 Interacting with C

CLARITY allows types to be annotated with qualifiers wherever thgyeap For ex-
ample, the types ddtruct fields may be qualified, and the typechecker will check
that they obey the user-defined type rules. Fields of unicasaiso be given qualified
types, but the usual unsoundness for C unions makes qualifemking in this case

unsound as well.

As is often the case for C program analysesARITY assumes a logical model
of memory. In particular, the type @fi , wherep is a pointer and is an integer, is
assumed to be the same as the typp.ofhis assumption is unsound, but in practice
it removes a large source of spurious type errors; for exaragking from pointer

arithmetic for array indexing.

103

Another source of spurious type errors arises from invokirmcedures in the C
standard library, since their argument and result typesateannotated with user-
defined qualifiers. A CARITY user can mitigate this problem by writing header files
that contain alternate signatures for library procedusdsch replace the procedures’
ordinary signatures vigcc command-line macros. Macros from the standard library
are also problematic. When these macros are expanded by tleepgCqeessor, CAR-

ITY produces type errors because the macros’ bodies are n@rfyrapnotated. Short
of creating new external versions of these macros, theréles dlecourse in prevent
such spurious errors. Typechecking can also be unsoundi$®daallows variables
to be used before being initialized (according to C conwars) and does not model

arithmetic overflow.

4.4 Qualifier Inference

Up to this point | have discussed €rITY’s qualifiercheckingcapabilities: that is, all
variables have had to be explicitly annotated with theirlifjees in order to typecheck
correctly. In this section, | show howL@RITY supports qualifieinferencein the

presence of user-defined qualifier rules. | formalize qealifiference for a simply-
typed lambda calculus with references and user-definedfigus| as defined by the

following grammar:

e = clegt+e|x|Ax:T.e|eie|refe|e =€ |le|assert(eq)

T = int|T1 —T2|reft

Let Q be the se{qy,...,qn} of user-defined qualifiers in a program. Sets of quali-
fiers fromQ form a natural lattice, with partial order, least-upper-bound function,

and greatest-lower-bound functian | denote elements of this lattice by metavariable

104

I; qualified types are ranged over by metavarighénd are defined as follows:
p = 1l@ @:i=int|pr—p2|refp

| present both a type system and a constraint system forfigmnatiference and
describe an algorithm for solving the generated conssaihhe type system defines
what type qualifiers are necessary in order for a program twdietyped, while the
constraint system provides an efficient implementatioatsgy for determining those
qualifiers. 1 assume that bound variables in expressionararetated with unqualified
typest. Itis possible to combine qualifier inference with type nefece, but separating

them simplifies the presentation.

4.4.1 Formal Qualifier Rules

| formalize thecase rules as defining two kinds of relations. First, sotage clauses
have the effect of declaring a specificity relation betweealifjers. | formalize these
rules as defining axioms for a relation of the focargp. For example, the second
case clause in Listing 4.4 would be represented by the axpeR®>nonzero. | use>*

to denote the reflexive, transitive closure of the user-édfirrelation, and we require

>* to be a partial order.

The other kind oftase clause uses a pattern to match on a constructor (e.g., +),
and the clause determines the qualifier of the entire exprebased on the qualifiers
of the immediate subexpressions. | formalize these rulekefsing relations of the
form R}, whereq is a qualifier andp represents one of the constructors in the formal
language, ranging over integer constants and the symbalsandref . The arity of
each reIatiorR% is the number of immediate subexpressions of the construgpoe-
sented byp, and the domain of each argument to the relatioQ.i<€achcase clause

is formalized through axioms for these relations. For eXdantpe fourthcase clause

105

in Listing 4.4 would be represented by the axi&"*°*° (nonzero,nonzero) (if the
formal language contained theoperator). The firstase clause in Listing 4.4 would
be formalized through the (conceptually infinite) set oams R} °#¢¥° (), R5°™2°*°(),
etc. For simplicity of presentation, | assume that eachesgdyession is required to
satisfy only a single qualifier. In fact, the implementatalows each sub-expression
to be constrained to satisfy a set of qualifiers, and it iSgitéorward to update the

formalism to support this ability.

Finally, | formalize theestrict rules with an expression of the formsert(e q),
which requires the type system to ensure that the top-lavaifeer on expressiog's
type includes qualifieq. For example, theestrict rule in Listing 4.4 is modeled
by replacing each denominator expressiin a program withassert(e,nonzero).
Theassert expression can also be used to model explicit qualifier atioots in pro-

grams.

4.4.2 The Type System

In this section | formalize qualifier inference as a type sgsbver the simply-typed
lambda calculus with references and user-defined qualdsedefined previously. The
previous section provided some insight into howa@ITY interacts with C via pattern
matching, but this formalism defines how to infer the qualifiecessary for a well-

typed program.

The qualifier type system is presented in Figure 4.2, anddhefsxiomsA repre-
senting the user-defined qualifier rules are implicitly ¢desed to augment this formal
system. As usual, metavariableanges over type environments, which map variables
to qualified types. The rule faissert(e q) infers a qualified type foe and then
checks thag is in the top-level qualifier of this type. Tharip function used in the

rule for lambdas removes all qualifiers from a qualified tpperoducing an unquali-

106

1121, 121, p<p pP<p 11Dl p2<pr PL<Ph

[1int <loint Iy ref p <l ref p’ l1(p1 — p’l) <l2(p2 — p’z)

Figure 4.1: Formal subtyping rules for qualified types.

N~e;: 11 int Ne:lint
= {q|REOAG> a} 1={q|Ri(au)AdLeling € laAd > g}

N=c:l int N-ei+e:lint

strip(p1) =11 I,x:piFe:p2 pa=lh@
rx)=p | = {q| R (@) Agzel2Ad > g}

Fr-x:p F=Ax:12.€:1(p1 — P2)

MN-e:p p=Ilo@
Fre:l(pa—p) Tre:pe 1={q|R () Adoelong s q}

M-e1e:p MN-refe:lrefp

F-e:lrefp N-e:p MN-e:lrefp M-e:p p=1o gel

Me:=e:p MHle:p I+ assert(eq):p

FFe:p p'<p

N-e:p

Figure 4.2: Formal qualifier inference rules.

107

o1int Cagint = {a12dz}
Oiref &1 Cogref O = {01202} Ud COHUNRLC &

a1(01 =8 Cax(d —d,) = {a120a2}UsCHUY CY,

Figure 4.3: Converting type constraints into set constsdimt CLARITY .

fied typert.

The main novelty in the type system is the consultation ofdk®ms inA to
produce the top-level qualifiers for constructor exprassid-or example, consider the
first rule in Figure 4.2, which infers the qualifiers for aneigér constant using a
set comprehension notation. The resultingldatludes all qualifiersf such that the
Rg/() relation holds (according to the axiomsA), as well as all qualifierg that are
“less specific” than such g as defined by the* relation. In this way, the rule finds
all possible qualifiers that can be proved to hold given thex-definedcase clauses.
The subsumption rule at the end of the figure can then be udedjet some of these
gualifiers, via the subtyping rules in Figure 4.1. The infeeeof top-level qualifiers is
similar for the other constructors, except that consutatf theR relation makes use

of the top-level qualifiers inferred for the immediate sytressions.

4.4.3 The Constraint System

While the formal type system presented previously clearfinds how type qualifiers
and their associated axioms can be integrated into the ppsesystem, it is not an
effective approach for implementing qualifier inferenca.this section | describe a
constraint-based algorithm for qualifier inference. The tkevelty is the use of a spe-
cialized form ofconditional constraintso represent the effects of user-defined quali-
fier rules. The metavariabbterepresentgjualifier variables and generated constraints

have the following forms:

108

o fresh & =a'int d=refreshd)

KFc:3|d Cdu{Cla’)|qeQ}

KFep:agint|Cy KFe:dapint |Cp

o fresh & =a'int d=refreshd)

KFep+6:8|CLuCUd CdU{C(a1,az,0') |qe Q}

K.Xx:0Fe:d|C 01 = embedt,) 02 =0z 2
o fresh & =0ad'(dy—8) d=refreshd)

KHAX:11.6:8|CUd C3U{Cl(az,a') | g€ Q}

KFe:a(d—d)|C KFe:d,|Co
KX)=98 d=refreshd) 5 = refresh(d)

K|—X25|6/26 K|‘€1€225‘C1UC2U6/2262U5/E5

KFe:d|C dp = 0o do

o' fresh & =0a'refd &=refresid)

Krefe:d|CUd CdU{CI (ap,0')|qeQ}

KFe:arefd |Cy KFe:d'|C KFe:arefd |C
d = refresi(d') 5 = refresi(d')

KFei=6:0|CLUCUY' CYUY LD KHle:d|CUd Cd

kFe:d|C d=a0g
d = refresi(d)

K assert(e,q):d|CU{qea}Ud Cd

Figure 4.4: Formal constraint generation rules for qualifikerence in CARITY .

109

a20 gea qea=V(Agqea)

Given a se€ of constraints, leEbe a mapping from the qualifier variableGro sets
of qualifiers.Sis said to be &olutionto C if Ssatisfies all constraints @. Sis said to
be theleast solutiorto C if for all solutionsS and qualifier variablea in the domain
of SandS, S(a) 2 S(a). Itis easy to show that if a set of constraitin the above

form has a solution, then it has a unique least solution.

4.4.3.1 Constraint Generation

| formalize constraint generation by a judgment of the farme: o | C. HereCis a
set of constraints in the above form, and the metavariabépresents qualified types

whose qualifiers are all qualifier variables:
O = a¢ ¢:=int|d —O|refd

The metavariable denotes type environments that map program variables tdigda

types of the formd.

The inference rules defining this judgment are shown in feigud. Theembed
function adds fresh qualifier variables to an unqualifiecttyp order to turn it into a
qualified typed, andrefresi{d) is defined agmbedstrip(d)). To keep the constraint
generation purely syntax-directed, subsumption is “boilto each rule: theefresh
function is used to create a fresh qualified typevhich is constrained by a subtype
constraint of the fornd C 8. Subtype constraints are also generated for applications
and assignments, as usual. Subtype constraints are teesatedhorthand for a set of

gualifier-variable constraints, as shown in Figure 4.3.

Each rule for an expression with top-level construgigaroduces one conditional
constraint per qualifieg in Q, denotedCS. Informally, the constrainCS invertsthe

user-defined qualifier rules, indicating all the possiblgswa prove that an expression

110

with constructomp can be given qualifieq according to the axioms iA. For example,
both the second and thirthse clauses in Listing 4.4 can be used to prove that a
producta*h has the qualifienonzero , so our implementation of constraint generation

in CLARITY produces the following conditional constraint:

nonzero € O, = ((nonzero € 0, Anonzero € Oy) V (pos € Uauwp))

More formally, Ietzip(R‘E,(ql, ...,qm),01,...,0m) denote the constraimy € a; A
...A\0Om € 0m. Let{ay,...,a,} be all the axioms irA for the relationRY, and let
{a1,..-,av} = {d € Q| g >q}. ThenCi(ay,...,am,a’) is the following conditional

constraint:

gea = (\/ zip&,az,....am)V \/ G e

1<i<u 1<i<v
This constraint system is actually equivalent to the typstesy presented in the
previous subsection; details of the proof of the systemsivadence are presented in

a companion technical report [CMMO5Db].

Theorem: 0 e:pifand only if 0+ e: & | C and there exists a solutidghto C such
thatS(d) = p.

4.4.3.2 Constraint Solving

The qualifier inference constraints are solved by a gragedbaropagation algorithm,
which either determines that the constraints are unsdtisfia produces the unique
least solution. Figure 4.5 shows a portion of the constrgiaph generated for the
statemenint prod = a*h; . On the left side, the graph includes one node for each
qualifier variable, which is labeled with the correspondimnggram expression. Each
node contains a bit string of lengt®| (not shown in the figure), representing the

gualifiers that may be given to the associated expressiohbitl are initialized to

111

HonIang
ga=h

y
nonzarn
&a
-
-
- -
- -

Figure 4.5: An example constraint graph.

true, indicating that all expressions may be given all digas. If biti for nodea ever
becomes false during constraint solving, this indicates$ dhcannot include theth

qualifier in any solution.

Because this algorithm propagatesitability for an expression to have a qualifier,
the direction of flow is opposite what one might expect. Fahegenerated constraint
of the formay D ay, the graph includes an edge fram to a,. For each conditional
constraint, the graph contains a representation afdtgrapositive For example, the

right side of Figure 4.5 shows amd-ortree that represents the following constraint:
((nonzero ¢ O, Vnonzero & Op) A (POSE Uaup)) = nonzero & Oaup

The tree’s root has an outgoing edge torthezero bit of the nodea*b , and the leaves
similarly have incominguonzero -bit edges. In the figure, edges to and from individual
bits are dotted. The root of each and-or tree maintains ateoofthe number of sub-
trees it is waiting for before it can “fire.” This example treas a counter value of

2.

To solve the constraints, the root of each and-or tree ised<nce. If its counter

112

is greater than 0, CARITY does nothing. Otherwise, the outgoing edge from its root
is traversed, which falsifies the associated bit and prdpadhis falsehood to its suc-
cessors recursively until quiescence. For example, if titka tree in Figure 4.5 ever
fires, that will falsify thenonzero bit of a*b , which in turn will falsify thenonzero

bit of prod .

After the propagation phase is complete, ABITY employs the constraints of the
form g € a to check for satisfiability. For each such constraint, iftitecorresponding
to qualifierqgin nodea is false, then this points out a contradiction and the cangs
are unsatisfiable. Otherwise, the least solution is formedhhpping each qualifier
variablea to the set of all qualifiers whose associated bit in nads true. For ex-
ample, the least solution to the constraints in Figure 40G.i§ = Oproq = {nonzero}

anda, = 0y, = {nonzero,pos}.

4.4.3.3 Complexity Analysis

Let n be the size of a programm be the size of the axioms #, andq be the number
of user-defined qualifiers. There aBén) qualifier variablesQ(n?) constraints of the
form a 2 a, O(gn) constraints of the forng € a, andO(gn) conditional constraints
generated, each with si&m). Therefore, the constraint graph haén?) edges be-
tween qualifier-variable nodes, each of which can be prdpdgecross| times. There
areO(gnm) edges in total for the and-or trees, and thereC{gnm) edges between the
gualifier-variable nodes and the and-or trees, each of wtachbe propagated across
once. Therefore, the total number of propagations, andehiretotal time complexity,

is O(gn(n+m)).

113

4.5 Automated Qualifier Verification

Up to this point in my discussing of IQRITY, | have focused on defining the language
of type qualifier specifications, the semantics of the tymtesys in the language, and
how the qualifiers could be checked and/or inferred. Thigrtfeestablishes how
CLARITY tackles expressiveness and usability, but does not praviight on how it
addressereliability. In this section, | outline how CARITY uses the definesemantic
invariant of the specification to automatically prove that the typintes are sound

using Q_ARITY's soundness checker

The approach described here is in contrast with the apprshotvn for AvA -
COP in Section 3.5. Because thevdCOP language is so expressive, reliability is
expressed using the incomplete method of unit testing. érctise of CARITY, the
restricted expressiveness of the language allows the tygieras to be formally vali-
dated against an invariant using an automated theoremrmpiRR&sults from such vali-
dation provide a much stronger guarantee of soundnessARICY than can easily be
achieved by hand ina%a COP. This provides a clear illustration of the trade-offstth
are necessary to make practical discipline checking frasrkesvas defined in Chap-

ter 1.

4.5.1 Soundness Checking

A user-defined qualifier and its associated type rules doteta typing discipline,
which is enforced by the Q\RITY typechecker. Often such typing disciplines are
intended to ensure a particular run-time invariant. Fongxa, the typing discipline
defined by thepos qualifier and associated type rules in Listing 4.1 is intehtie

guarantee that certain expressions only evaluate to pesgitiegers at run time.

However, the extensible typechecker enforces user-defypaoly disciplines in a

114

purely syntactic manner, without knowledge of the intenoiedriants. For example,
suppose the pattern in the secarade clause in the definition gfos in Listing 4.1
were erroneously specified B$ - E2 instead ofEl * E2. In that case, CARITY’S
typechecker would happily use this revised type rule to kipgograms, even though

this can causpos’s intended invariant to be violated at run time.

Rather than forcing users to take responsibility for the exxrress of their qual-
ifiers, QLARITY supportsautomated soundness checking qualifier definition may
optionally specify the qualifier's associated invariarg,desscussed in Section 4.2.1.3.
The framework’'ssoundness checkean then be used to automatically proves that the

qualifier’s type rules establish this invariant.

With a qualifier’s invariant, CARITY's soundness checker generates one proof
obligation for eachcase clause of a qualifier specification and automatically dis-
charges these obligations via Simplify [DNSO03], a Nelsgmpén-style automatic the-
orem prover [NO79]. Simplify contains decision procedufesseveral decidable
theories, including linear arithmetic and equality fornterpreted function symbols.

Simplify’s input language accepts first-order formulasraese theories.

4.5.2 Value Qualifier Proof Obligations

Eachcase clause’s proof obligation simply requires that if an exgres matches
the clause’s syntactic pattern and satisfies the clausetiqate, interpreted in the
context of an arbitrary run-time execution statethen the qualifier’s invariant also
holds inp. For example, consider the firsise clause forpos in Listing 4.1. The

soundness checker generates the following proof obligaifcan expressiork is an

integer constant that is greater than zero, then the val&eroén arbitrary execution
statep is greater than zero. This obligation is easily proved, mittee evaluation

semantics of integer constants.

115

Now consider the secormhse clause fompos. The soundness checker generates

the following proof obligation: if an expressidhhas the formEl * E2 and bothEl
and E2 satisfypos’s invariant in an arbitrary execution stape thenE also satisfies
pos’s invariant inp. This obligation is easily proved by the semantics of miitigz
tion. On the other hand, if the pattern in that clause wer@newusly specified &l -
E2, the soundness checker would catch the error and warn tigegononer, since the
associated proof obligation would fail: it is not possilieptove that the difference of
two arbitrary positive integers is also positiRestrict clauses do not help in deter-
mining if an expression of qualified type satisfies its quadiiinvariant, saestrict

clauses are ignored by the soundness checker.

4521 Axioms

CLARITY employs logical axioms to formalize the dynamic semantfqg@ograms in
CILs intermediate language. The state of a program is reptes by an execution
statep = (11 1,€,0), wherertis a programi is an index pointing to the statement about
to be executed; is the environment, which maps variable names to memoryitotg

ando is the store, which maps locations to values.

CLARITY also defines several function symbols for constructing aadipulating
execution states. Thatatefunction symbol takes a program, index, environment, and
store, and it constructs an execution state. The functiotbsysgetStmtgetEny and
getStoretake a state and respectively return the statement abow éxdxuted, the
environment, and the store. Environments and stores areseped amaps Sim-
plify has built-in function symbols that represent opeyasi on maps. For example,
the built-inselectfunction symbol takes a map and a key and returns the keyssass
ated value. Finally, C program expressions and statemieensselves are represented

using additional function symbols. For instance, the state«x := &y is encoded as

116

assigriderefvar(x)),addr(var(y))).

Given this representation,L@RITY defines axioms for a function symbeval-
Expr, which evaluates an expression in a given state. For instane following axiom

formalizes evaluation of variable references

Vp, e x.(e=var(x) =

evalExp(p, e) = selectgetStorép), selectgetEnyp),x)))

CLARITY similarly defines axioms for a functidocation, which takes an I-value and
returns its address, and a functistepStatewhich takes a program state and returns

the state resulting from executing the current statement.

The axioms only formalize the subset of the CIL intermediateylage necessary
for reasoning about expression patterns. For exampleRAGY does not axioma-
tize the semantics of procedure calls, since they cannoalierp-matched against.
However, G ARITY does explicitly model memory allocation, via thew function

symbol.

4.5.2.2 Producing Proof Obligations

To produce a qualifier's proof obligations, first &RITY defines a predicate to repre-
sent the qualifier’s invariant. Built-in function symbolgdivalue in qualifier defini-
tions are translated to their counterpart function symbothe axioms. For example,

the invariant forpos from Listing 4.1 is defined as follows:

pogp,e) = (evalExp(p,e) > 0)

Proving the soundness of a qualifeealso requires access to the invariants of all qual-

ifiers g that are referred to ig's type rules.

Given these invariants it is straightforward to represenbpobligations in Sim-

117

plify. For example, the obligation for the secocate clause ofpos in Listing 4.1 is

defined as follows:

Vp.e1, e.(pogp,el) Apogp,e2)) = pogp, multExprel, e2))

4.6 Experience

This section reports on experience using theaRTY framework for user-defined
type qualifiers. | describe experience using the framewmdottypechecking on pro-
grams both without qualifier inference and with qualifiereir@nce. The experience
reported without inference focuses on statically detgchbLL dereferences, viola-
tions of uniqueness invariants, and improper format s&ringfhese three examples
demonstrate all three type qualifier categorizations: ejaleference, and flow, respec-
tively. The experience with inference similarly reportsuse of a suite of type systems
on six open-source C programs. Four of these open-sourgegmns are seen in both

sets of experiments.

4.6.1 Qualifier Checking

In all of the experiments described below that do typecheghithout inference, the
extra compile time for performing qualifier checking in Clluisder one second. Thus,

times are omitted from discussion until the next subsection

4.6.1.1 Null Dereferences

Listing 4.5 shows the definition ofraon-nullvalue qualifier in CARITY, which can be
automatically proved sound by the 8rITY soundness checker. The sodse clause

indicates that the address of an I-value can be consideredll . The restrict

118

val ue qualifier nonnull(T* Expr E)
case E of
decl T Lvalue L:
&L
restrict
decl T* Expr E:
*E, where nonnull(E)
i nvariant value(E) !'= NULL

Listing 4.5: Anonnull value qualifier specification in Q\RITY .

clause requires all dereferences in a program to bertaull expressions.

| used thisnonnull qualifier to statically ensure the absencé\bLL dereferences
inthegrep search utility program (version 2.5). | annotated the fifag anddfa.h
which comprise the core string-matching algorithm andteelalata structures. The

files consist of 2287 non-blank, non-comment lines of code.

| appliednonnull annotations to variables in an iterative fashion. Runnirg th
extensible typechecker on the unannotated files producesiran message for each
dereference, due to tmennull qualifier'srestrict clause. For example, the type-
checker indicated aestrict violation for d in the following code, leading to a

nonnull annotation:

static void build_state(int s, struct dfa *d) {

i f (d->trcount >= 1024) {

These errors were removed by annotating some variableswrithilll , which could
in turn cause error messages on assignments to the newdyaaea variables, leading
to more annotations. In addition to formal parameters acdllgariables, | docu-

mented several fields of structures as beiomnull through this process.

119

Table 4.1: Results from thennull experiment.

program:| grep
files: | dfa.c , dfa.h
lines: | 2287

dereferences: 1072

annotations] 114

casts:| 59

errors:| O

There were situations where the type rulesfmmull were insufficient and | had
to insert casts. The major source of such imprecision is atiget flow-insensitivity of

the QLARITY framework. An example of such imprecision framep follows:

if ((t = d->trans[works]) !'= NULL) {
works = t[*p];

}

The index into array is safe because it is guarded by the checkNOLL, but the
type system cannot deduce this fact. Simple forms of such-$kemgitive reasoning
could be incorporated by extending theARITY framework with a dataflow analysis

framework, such as the one fromvad COP presented in Section 3.4.

A related source of imprecision occurs when access Mld-terminated array
is guarded by a test that the index is less than the value ofiabla holding the
array’'s length. Statically deducing the invariant betwé®sn array and that variable
may be difficult. One possibility would be to piggyback thetijiier checker on top of
CCured [NMWO02], which (among other things) can sometimescsthyideduce array

bounds.

Table 4.1 summarizes the results of this non-null expertmén order for the

120

Table 4.2: Results from thentainted ~ experiment.

program:| bftpd | mingetty | identd
lines: | 750 293 228
printt calls: | 134 23 21
annotations] 2 1 0
casts:| O 0 0
errors:| 1 0 0

restrict clause imonnull to succeed on all 1072 dereferences, | had to insert 114

nonnull annotations and 5&nnull casts.

4.6.1.2 Untainted Format Strings

While the running examples throughout this dissertatioretiagused on using an un-
tainted discipline for preventing SQL injection attacksn@entioned in Section 4.2.1.4,
this discipline is general useful for tracking program dinees embedded in strings.
This section provides experience using tikainted qualifier for ensuring proper
format-string arguments tintf . For these experiments, | used the simple version
of untainted defined in Section 4.2.1.4, augmented witbase clause that defines

all constants to bentainted
case E of decl T Const C: C

This form of the qualifier was used to annotate and check tbfdélee programs
tested by Shankaat al.[STFO01], who performed a taintedness analysis usiQ@AL .
The programs arbftpd (version 1.0.11), an FTP servenjngetty (version 0.9.4),
a remote terminal utility; andlentd (version 1.0), a network identification service.

For all three programs, | was able to reproduce the resuihahkaset al.

121

These results are shown in table 4.2. Runningutteinted qualifier checker
on bftpd indicated two procedure parameters that must be annotatgdamted
since they are used as format strings fiontf . Re-running the qualifier checker
then reveals an exploitable error that had been previodsiytified [Bai, STF01]. The

offending code is shown below:

int sendstrf(int s, char * untainted format, o)

sendstrf(s, entry->d_name);

Thed namefield ofentry is a file name and should not be considered a proper format
string. The extensible typechecker appropriately sigaalsrror since the field has not

been declaredntainted

The other two test programs were verified to have no fornrategsvulnerabili-
ties. In addition, no casts were required for any of the tieseprograms; the simple
case clause defined above was sufficient to infer the untaintesdoiesl! format-string

arguments.

4.6.2 Qualifier inference

To test G ARITY s qualifier inference scheme, | used four different qualsigecifica-
tions on six open-source C programs, ranging from a few hathtlr over 50,000 lines
of code: the user identification progradentd , the terminal programmingetty , the
regular expression matching progrgnap , the Linux FTP servebftpd , the calcula-
tor programbc, and the intrusion detection systemort . Their size and number of

variables are shown in the first section of Table 4.3.

Each test case was run through the inferencer twice. Theifiref the inferencer
was given a definition only for a version obnnull , with acase clause indicating

that an expression of the for&E can be consideretbnnull and arestrict clause

122

Table 4.3: Qualifier inference results.

gualifier sets nonnull nonnull/pos/neg/nz
program kloc | vars || cons | gen | solv cons gen | solv
(s) | (s (s) (s)
identd-1.0 0.19| 624 1381 0.09| 0.01 2757| 0.15| 0.01

mingetty-0.9.4[0.21| 488 646| 0.04| 0.01 1204| 0.06| 0.01
bftpd-1.0.11 2.15| 1773| 3768| 0.39| 0.05 6426 0.58| 0.08
bc-1.04 4.75| 4769| 14913, 1.21| 0.13| 27837 5.78| 0.18
grep-2.5 10.43| 4914 15719, 0.75| 0.55| 28343| 7.84|, 0.71
snort-2.06 52.11| 29013 99957| 36.39| 46.81| 176852| 290.24| 58.07

requiring dereferences to be tonnull expressions, as shown in Listing 4.5. The
second time, the inferencer was additionally given vesmithe qualifierpos, neg,
andnonzero for integers, each with 5 case rules similar to those in hgi4.1, 4.3,
and 4.5. For each run, the table records the number of camstpgoduced as well as

the time in seconds for constraint generation and conssalaing.

Several pointer dereferences fail to satisfyrdstrict clause fomonnull , caus-
ing qualifier inference to signal inconsistencies. | anatiyezach of the signaled errors
for bc and inserted casts tmnnull where appropriate to allow inference to succeed.
In total, | found no real errors and inserted 107 casts. Os¢h88 were necessary
due to a lack of flow-sensitivity in CARITY ; this is the same limitation shown in the
tests without inference. Despite this limitation, the dfued rules were often powerful
enough to deduce interesting invariants. For exampldycor87% (163/446) of the
integer Ivalues were able to be given tiemzero qualifier and 5% (24/446) thgos
gualifier. Forsnort , 8% (561/7103) of its integer Ivalues were able to be given th
nonzero qualifier, and 7% (317/4571) of its pointer Ivalues were dblbe given the

nonnull qualifier (without casts).

123

As the program size increases, inference becomes too sleasity use as part
of an interactive development process, especially whefoatlqualifiers are inferred
simultaneously. However, at around 6 minutes for a 40,0@®grogram, it would be
feasible to perform global qualifier inference once or omrzaly, and use the results
to do standard typechecking without inference. This hylapgroach provides the
precision and reduced manual annotation requirementseoinference engine with

the speed of the standard typechecking engine.

4.7 Summary

In this chapter, | presented theL &RITY framework for semantic type qualifiers in
C. The Q. ARITY language allows developers to create value qualifier spatidns

via pattern matching over C expressions. While not as expeess the &AvACOP

language, the CARITY language shows proficiency for developing type qualifieas th
constrain integer values suchmmzero , pos, andneg, as well as other simple qual-
ifiers like untainted andnonnull . This simplified language enables ARITY to

support a number of automated features including staretddjualifier typechecking
and inference as well as discipline verification. | presérdéormal type system and
inference algorithm for qualifiers that clearly defines havalfiers are enforced on C
programs. | also presented the automated soundness chedfgorithm that ensures

a qualifier’s typing rules establish its associated invdria

124

CHAPTER 5

Conclusions

In this dissertation, | have shown that syntactic guidalimdich | callprogramming

disciplinescan be used to write better software. This is made possibtakyg ad-

vantage of three key insights that allow programming disogs to beautomatically

enforced on target programs via frameworks for programsedined discipline check-
ing. First, the frameworks provide a domain-specific lamgur defining a discipline
specification. This allows users to reuse and adapt prdyialedined disciplines as
well as write their own disciplines and encourages enforesgraf multiple disciplines
on a project. Second, the frameworks leverage static tygtes)s for discipline check-
ing. Type systems often have annotation facilities assedaith them that allow users
to specify more information about the type of a program el@nmethe source code.
The ability to use the built-in annotation facilities, aslvas standard idioms of type
systems such as subtyping, remove the need to replicatdesatcines in the discipline.
The discipline implementations can take advantage of imgjldn top of these under-
lying base mechanisms, thus significantly simplifying giine development. Third,
the frameworks provide some means by which discipline §igations can be vali-
dated against the program invariants they intend to endunis.third feature elevates
discipline enforcement from simply constraint checkingctmstraint checking for a

semantic purpose.

| have developed and presented two practical implementaid this approach:

JavA COP, a pluggable type system for Java; andRTY, a semantic type qualifier

125

framework for C. These implementations demonstrate theulrsefs of the approach
by showing how a variety of discipline implementations catedt and prevent bugs
in real code. However, they also show trade-offs among ttsirete properties of
discipline checking frameworksada COP has a very expressive language for writing
disciplines but has limited faculty for automated verificatof disciplines against their
intended program invariants. InsteagdydCOP includes a unit test framework which
allows developers to provide test suites looking for violas of a discipline’s intent.
CLARITY, on the other hand, provides a language with limited expressss but more
automated verification of the discipline. Limiting the egpsiveness of the language
also allows CARITY to provide support for type inference, which is not feasible

JAVACOP.

5.1 Future Directions

While this dissertation has shown the utility of disciplintgere are still a number of
interesting directions that it suggests in which reseasshgo towards enabling the

development of better software.

One of the key challenges in both formal specification ane tyygstems is auto-
mated verification of the soundness. This applies equally teediscipline frame-
works shown here. Expressive frameworks likeAJCOP are much more difficult to
formally reason about in an automated fashion than simptetems like CARITY.
However, an increasingly large research focus has showakttme@ughs in both the
automatic generation of test suites [BKM02, DDGO07] and on ehatiecking of type
systems [RHDO08]. Such work suggests that it might be possijdeovide more auto-
mated support for verifying disciplines in more express$maeneworks like AvACOP.
The translation scheme from\h COP to Datalog is a first step in this direction as it

should allow more formal reasoning about the disciplinesitbelves.

126

As more programming migrates to platforms that supportrauigon of multiple
languages, discipline frameworks that focus on discigliioe a single target language
like CLARITY and AvA COP will not be sufficient for discipline checking. Instead,
new models must be investigated to find the appropriate balaetween language-
agnostic and language-specific discipline specificatioomé possible platforms to
target with this work include web platform languages likeakcript, SQL, and PHP;
and languages that run on top of the .NET Common Language Reiiten C# and
F#. Recent work in this area includes type safety checking tareign function
calls [FF08] and the Boogie language which multiple langsag be translated into
and verified with the Boogie tool [DL0O5, BCDO5].

127

APPENDIX A

Full FJcoprto Datalog™ Translation Scheme

In this appendix, | present the full translation scheme fiedoopto Datalog'. Dis-

cussion of the translation can be found in Chapter 3, Sect@nTis full translation
includes a number of translation scheme judgments that ma&réound in previous
discussion, including alternate rules for effectively tiémg negation, multiple literals

instead of a single literal created via translation

Value Expression—V

[TRANS-CONSTANT]

PHE=VL[4D

[TRANS-VAR-KNOWN]
P(x) =X

OEXx=YX|X-®

[TRANS-VAR-FRESH]
P(x)=0 X fresh

Phx=YX [XADPU{(x,X)}

[TRANS-VALUE-FN]
PHt=YT|THDy VL 0 Ht=YT|THd Xiresh

OFtAy () =Y F(T,T,X) [X 4 B

128

Boolean Expressions="

[TRANS-PRED-CALL]
Vi k g =Y T TP

Do - £ (T) =P £(T) 4y
[TRANS-BINDING-TYPE-TEST1]
oo ="E|THP E4AT

DFx:T—a = E type (T,T) 4D U{(XT)}
[TRANS-BINDING-TYPE-TEST2]
oo =VT|THY

DFx:T—e =type (T,D) 4D U{(x,T)}
[TRANS-NEG-1]

Pe="EEA® E#-(E)

vspace.lin @+ —e, = E,~(E) 4@’
[TRANS-NEG-2]
O ="E,~(E) 4

O+ -e,="EE-4P
[TRANS-BOOL-FN]
OHt=YOorT|T VL O ht=YT T

Pt Fp(f) =P Fo(T,T) 4 O

Constraints =¢

[TRANS-SEQUENCH
Ol =°E|C. Pr="E|C

PFcyc=E,E |CUC,
[TRANS-REQUIRE]
Ore="E-

drrequire(e)=°E|0

129

[TRANS-WHERE-1]
Ffresh T=rangd®) dre="E4® '+c=°E|C

F(T): -E,E..

® - wher e(ey){c} =°F(T) | = \ oe
F(T): - /\ObjECt (Ti),~(E).
i1

[TRANS-WHERE-2]
Ffresh T=rangd®d) @Fe=PE E,4® d'+c=°E|C

F(T): —E1,E2E..
® - wher e(ey){c} =°F(T) | _ T uC
F(T):— /\object (Ti),E1,~(E2).
i=1
[TRANS-FORALL-LIST]
F,X1,L,L fresh

PFx="To|T,4® T=rangd®) PU{(x,X1)}Fc=CE|C

OV, X :TEX.{c} =
F(T,L): —cons (Xg,L',L),type (X1,1),E,F(T,L).
F(T,T2) | { F(T,L): —cons (X1,L,L),~(type (X1,7)),F(T,L’). pUC
F(T,L): —nil (L).

[TRANS-FORALL-TREE]
F,X1,L,L " fresh

PFx="To|T,4® T=rangd®) PU{(x,X1)}Fc=CE|C

®FVax 1T EX.{c} =Csubnodes (T,,L),F(T,L) |
F(T,L): —cons (Xg,L',L),type (X1,7),E,F(T,L").
F(T,L): —cons (Xg,L,L), = (type (X,7)),F(T,L"). puUC
F(T,L): —nil (L).

130

[TRANS-EXISTS-LIST]
F,X1,L,L " fresh
Dhx="Ty|T,4® T =rangdd) DU{(x;,X)}Fc=CE|C

D% :TEx{c}=°
_ F(T,L): —cons (Xg,L,L),type (Xg,1),E.
F(T,T2) |

F(T,L): —cons (Xg,L',L),F(T,L").
[TRANS-EXISTS-LIST]

ucC

F,X1,L,L " fresh
PFx="To|T,4® T=rangd®) PU{(x,X)}Fc=CE|C

®F3,.%:T € x.{c} =Csubnodes (T,,L),F(T,L) |
F(T,L): —cons (X3,L’,L),type (Xq,1),E.
F(T,L): —cons (Xg,L',L),F(T,L").

ucC

Predicate and Rule Definitions=4
[TRANS-PREDICATE]
Po=0 VI Bibx=YX|XA0 oykc=CE|C
IX|

decl are f(x:7){c} = {f(X): — Atype (X,T),E.}UC|0
i=1

[TRANS-RULE]

OFx=YX|XH4®d dFc=°E|C

rul e f(x:1){c} =4

{f(X): —type (X,1),E.}UC|{?:—type (X,T),not (f(X)).}

Program =-P

[TRANS-PROGRAM]
Vi‘(jl.di =d C | Gi
I
d="P UCi | U Gi
i=1 i=1

131

[AKCO02]

[ANMOSB]

[Bai]

[BBDOO]

[BCDO5]

[BDFO8]

[BEO4]

[BKMO2]

REFERENCES

Jonathan Aldrich, Valentin Kostadinov, and Craig Chears. “Alias
annotations for program understanding.” In Mamdouh Ibratind
Satoshi Matsuoka, editor®OPSLA 2002: Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented Programming, Systean-
guages, and ApplicationSeattle, WA, USA, November 2002, pp. 311-
330, New York, NY, 2002. ACM Press.

Chris Andreae, James Noble, Shane Markstrum, andl Milstein. “A
framework for implementing pluggable type systems.” Inrard Cook
[TCO6], pp. 57-74.

Christophe Bailleux. “More security problems in bftpd3112.BugTraq
mailing list post of December 8, 2000tittp://www.securityfocus.
com/archive/1/149977

Greg Bollela, Ben Brosgol, Peter Dibble, Steve Furr, JaGesling,
David Hardin, and Mark TurnbullThe Real-Time Specification for Java
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, U3800.

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bartba 0002,

and K. Rustan M. Leino. “Boogie: A Modular Reusable Verifier for
Object-Oriented Programs.” In Frank S. de Boer, Marcello MnBo
sangue, Susanne Graf, and Willem P. de Roever, edfdi€O 2005:
Formal Methods for Components and Objects, 4th Internati®yan-
posium Amsterdam, The Netherlands, November 2005, Revised Lec-
tures, volume 4111 dfecture Notes in Computer Sciengp. 364—-387.
Springer, 2005.

Mike Barnett, Robert Deline, ManueblRndrich, Bart Jacobs, K. Rustan
Leino, Wolfram Schulte, and Herman Venter. “The Spec# Ruogning
System: Challenges and Directions.” pp. 144-152, 2008.

Adrian Birka and Michael D. Ernst. “A practical type $gs and lan-
guage for reference immutability.” In Vlissides and Schinff\é504], pp.
35-49.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darlesivbv. “Korat:
automated testing based on Java predicates.” In Phyllisr&@kF, edi-

tor, ISSTA 2002: Proceedings of the 2002 ACM SIGSOFT Interndtiona
Symposium on Software Testing and Ana)yR@ma, Italy, July 2002, pp.
123-133, New York, NY, USA, 2002. ACM Press.

132

[BLCO2]

[Blo02]

[Bok99]

[BoyO1]

[CO2]

[CABS6]

[CGT90]

[CH88]

[CJOT7]

[CMMO4]

E. Bruneton, R. Lenglet, and T. Coupaye. “ASM: A Java bgtecma-
nipulation and analysis framework.” IRroceedings of Adaptable and
Extensible Component Syste@senoble, France, November 2002, 2002.
http://asm.objectweb.org

J. Bloch. “A metadata facility for the Java programgianguage.” Tech-
nical Report JSR 17%itp://lwww.jcp.org , 2002.

Boris Bokowski. “CoffeeStrainer: statically-checkednstraints on the
definition and use of types in Java.” ESEC/FSE-7: Proceedings of
the 7th European software engineering conference heldlyomith the
7th ACM SIGSOFT international symposium on Foundations iivace
engineeringpp. 355-374. Springer-Verlag, 1999.

John Boyland. “Alias burying: Unique variables witliodestructive
reads.”Software - Practice and Experienc¥l(6):533-553, 2001.

“C# Language Specification, Second Edition. ECMA Intéoral, Stan-
dard ECMA-334.", December 2002.

Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. &leland,

J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smittement-

ing Mathematics with the Nuprl Proof Development SystdPnentice-
Hall, Englewood Cliffs, NJ, 1986.

Stefano Ceri, Georg Gottlob, and Letizia Tancagic Programming and
Databases Springer-Verlag, Berlin, Germany, 1990.

Thierry Coquand and Gerard Huet. “The calculus of caesions.” Inf.
Comput, 76(2-3):95-120, 1988.

Patrice Chalin and Perry R. James. “Non-null Referengd3dbault in
Java: Alleviating the Nullity Annotation Burden.” In Erik Est, editor,
ECOOP 2007: Proceedings of the 21st European Conference aar@bj
Oriented Programming, Berlin, Germany, July 200ilume 4609 of
Lecture Notes in Computer Scienpp. 227-247, Berlin, Germany, 2007.
Springer.

Brian Chin, Shane Markstrum, and Todd Millstein. “Seartia Type Qual-
ifiers.” Technical Report CSD-TR-40045, UCLA Computer Science De
partment, November 2004.

133

[CMMO5a]

[CMMO5b]

[CMMO6]

[Cop05]
[Cre97]

[CV02]

[DDGO7]

[DeMO04]

[DFO1]

Brian Chin, Shane Markstrum, and Todd Millstein. “Sartic Type Qual-
ifiers.” In Vivek Sarkar and Mary W. Hall, editor®LDI 2005: Proceed-
ings of the ACM SIGPLAN 2005 Conference on Programming Laregguag
Design and ImplementatiorChicago, IL, USA, June 2005, pp. 85-95,
New York, NY, 2005. ACM Press.

Brian Chin, Shane Markstrum, Todd Millstein, and J&ad sberg. “In-
ference of User-Defined Type Qualifiers and Qualifier Rulegthhical
Report CSD-TR-050041, UCLA Computer Science Department, Octobe
2005.

Brian Chin, Shane Markstrum, Todd Millstein, and JerdsBerg. “In-
ference of User-Defined Type Qualifiers and Qualifier Rulesi Pe-

ter Sestoft, editorESOP 2006: Programming Languages and Systems -
Proceedings of the 15th European Symposium on Programidiagna,
Austria, March 2006, volume 3924 bécture Notes in Computer Science
pp. 264-278, Berlin, Germany, 2006. Springer.

Tom CopelandPMD Applied Centennial Books, November 2005.

Roger F. Crew. “ASTLOG: A Language for Examining Abstr&yn-
tax Trees.” In Chris Ramming, editoRProceedings of the Conference
on Domain-Specific LanguageSanta Barbara, California, USA, Octo-
ber 1997, pp. 229-243, Berkeley, CA, 1997. USENIX Association

Karl Crary and Joseph C. Vanderwaart. “An expressivajatie type
theory for certified code.” IfProceedings of the seventh ACM SIGPLAN
international conference on Functional programmjipg. 191-205. ACM
Press, 2002.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Mann “Auto-
mated Testing of Refactoring Engines.” In lvica Crnkovic anat@yia
Bertolino, editors, ESEC/SIGSOFT FSE 2007: Proceedings of the 6th
Joint Meeting of the European Software Engineering Conferema the
ACM SIGSOFT International Symposium on Foundations of Sodtia-
gineering Dubrovnik, Croatia, September 3-7, 2007, pp. 185-194, New
York, NY, 2007. ACM Press.

Linda DeMichiel.Enterprise JavaBeans Specification, Version SON
Microsystems, 2004.

Robert DeLine and Manuel Fahndrich. “Enforcing higlel protocols in
low-level software.” InProceedings of the ACM SIGPLAN 2001 confer-
ence on Programming language design and implementaipn59-69.
ACM Press, 2001.

134

[DFO4]

[DLO5]

[DMR92]

[DNSO03]

[ECGO1]

[EHO4]

[EMOO04]

[Ern07]

[ESMO5]

Robert DeLine and Manuel Fahndrich. “Typestates fbje®ts.” InPro-
ceedings of the 2004 European Conference on Object-Oridhtgtam-
ming, LNCS 3086, Oslo, Norway, June 2004. Springer-Verlag.

Robert DeLine and K. Rustan M. Leino. “BoogiePL: A typempedu-
ral language for checking object-oriented programs.” e Report
MSR-TR-2005-70, Microsoft Research, 2005.

Carolyn K. Duby, Scott Meyers, and Steven P. Reiss. “CCklMeta-
language for C++.” InProceedings of the 1992 USENIX C++ Confer-
ence Portland, OR, USA, August 1992, pp. 99-116, Berkeley, CA, 1992
USENIX Association.

David Detlefs, Greg Nelson, and James B. Saxe. “StyjnpA Theo-
rem Prover for Program Checking.” Technical Report HPL-20a8;
HP Labs, 2003.

Michael D. Ernst, Jake Cockrell, William G. Griswoéthd David Notkin.
“Dynamically Discovering Likely Program Invariants to Saget Program
Evolution.” IEEE Transactions on Software Engineer,ir23(2):99-123,
2001.

Torbjorn Ekman and Grel Hedin. “Rewritable Reference Attributed
Grammars.” In Martin Odersky, editoECOOP 2004: Proceedings of
the 18th European Conference on Object-Oriented Programn@slo,
Norway, June 2004, volume 3086 loécture Notes in Computer Science
pp. 144-169, Berlin, Germany, 2004. Springer.

Michael Eichberg, Mira Mezini, Klaus OstermanngdaFhorsten Scafer.
“XIRC: A Kernel for Cross-Artifact Information Engineering Boftware
Development Environments.” IWorking Conference on Reverse Engi-
neering 2004.

Michael Ernst. “Java Annotations on Types.” TedahReport JSR 308,
http://www.jcp.org , 2007.

Michael Eichberg, Thorsten Sifer, and Mira Mezini. “Using Annota-
tions to Check Structural Properties of Classes.” In Mauradligeditor,
FASE 2005: Proceedings of the 8th International Conferenc&unda-
mental Approaches to Software Engineerikdinburgh, UK, April 2005,
volume 3442 ot ecture Notes in Computer Scienpp. 237-252, Berlin,
Germany, 2005. Springer.

135

[FFOO]

[FFO8]

[FFA99]

[FLO3]

[FLLO2]

[FMO7]

[FTAO2]

[GBLO7]

Cormac Flanagan and Stephen N. Freund. “Type-baseddetection

for Java.” In James Larus and Monica Lam, editétkDI 2000: Pro-
ceedings of the ACM SIGPLAN 2000 Conference on Programming Lan
guage Design and Implementatiovncouver, BC, Canada, June 2000,
pp. 219-232, New York, NY, 2000. ACM Press.

Michael Furr and Jeffrey S. Foster. “Checking typesadf foreign func-
tion calls.” ACM Trans. Program. Lang. SysB0(4):1-63, 2008.

Jeffrey S. Foster, ManuelRndrich, and Alexander Aiken. “A Theory
of Type Qualifiers.” In Barbara G. Ryder and Benjamin Zorn, adito
PLDI 1999: Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementatistlanta, GA, USA,
June 1999, pp. 192-203, New York, NY, 1999. ACM Press.

Manuel Fahndrich and K. Rustan M. Leino. “Declaringdarhecking
non-null types in an object-oriented language.” In Ron Crocked
Guy L. Steele Jr., editor§ OPSLA 2003: Proceedings of the 18th ACM
SIGPLAN Conference on Object-Oriented Programming, Systean-
guages and Application®Anaheim, CA, USA, October 2003, pp. 302—-
312, New York, NY, 2003. ACM Press.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridgéreg Nelson,
James B. Saxe, and Raymie Stata. “Extended Static Checkingvar'J

In Jens Knoop and Laurie J. Hendren, editétsPl 2002: Proceedings

of the ACM SIGPLAN 2002 Conference on Programming Language De-
sign and ImplementatigBerlin, Germany, June 2002, pp. 234-245, New
York, NY, 2002. ACM Press.

Jeffery S. Foster and Kin-keung Ma. “Inferring Aling and Encapsula-
tion Properties for Java.” In Gabriel et al. [GBLO7], pp. 4230.

Jeffrey S. Foster, Tachio Terauchi, and Alex AikeriFlow-sensitive
type qualifiers.” InProceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementatmgm 1-12. ACM
Press, 2002.

Richard P. Gabriel, David F. Bacon, Cristina Videira kegpand Guy L.
Steele Jr., editors.OOPSLA 2007: Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming e8yst
Languages, and Applicationslontreal, Quebec, Canada, October 2007,
New York, NY, 2007. ACM Press.

136

[GFO7] David Greenfieldboyce and Jeffery S. Foster. “Typal@er Inference
for Java.” In Gabriel et al. [GBLO7], pp. 321-336.

[GHJ95] Erich Gamma, Richard Helm, Ralph E. Johnson, and Jdiksides.De-
sign Patterns: Elements of Reusable Object-Oriented Scétwaddison-
Wesley, Massachusetts, 1995.

[GMO5] Joseph (Yossi) Gil and Itay Maman. “Micro Patternslava Code.” In
Johnson and Gabriel [JGO5], pp. 97-116.

[GMJO2] Dan Grossman, Greg Morrisett, Trevor Jim, Michaetkd, Yanling
Wang, and James Cheney. “Region-based memory management in Cy-
clone.” In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementatign. 282—-293. ACM
Press, 2002.

[HHO6] Daging Hou and H. James Hoover. “Using SCL to Specifg &teck
Design Intent in Source Code.lEEE Transactions on Software Engi-
neering 32(6):404—-423, 2006.

[HLOZ] Sudheendra Hangal and Monica S. Lam. “Tracking dowftvgare bugs
using automatic anomaly detection.” In Michal Young and B&digee,
editors,ICSE 2002: Proceedings of the 22rd International Conferente o
Software EngineeringOrlando, Florida, USA, May 2002, pp. 291-301,
New York, NY, USA, 2002. ACM Press.

[Hoa69] C. A.R. Hoare. “An axiomatic basis for computer pragnaing.” Com-
mun. ACM 12(10):576-580, 1969.

[Hog91] John Hogg. “Islands: aliasing protection in objedented languages.”
In Andreas Paepcke, editddOPSLA 1991: Proceedings of the 6th ACM
SIGPLAN Conference on Object-Oriented Programming, Systean-
guages, and Applications, Phoenix, AZ, USA, November,§91271—
285, New York, NY, 1991. ACM Press.

[HPO4] David Hovemeyer and William Pugh. “Finding bugs isyaln John M.
Vlissides and Douglas C. Schmidt, edito@OPSLA Companion 2004:
Companion to the 19th Annual ACM SIGPLAN Conference on Obiject-
Oriented Programming, Systems, Languages, and Applicati@ncou-
ver, BC, Canada, October 2004, pp. 132-136, New York, NY, 200CMA
Press.

[HVMO6] Elnar Hajiyev, Mathieu Verbaere, and Oege de MoorCotleQuest:
Scalable Source Code Queries with Datalog.” In Dave Thomdis, e
tor, ECOOP 2006: Proceedings of the 20th European Conference on

137

[IPWO1]

[1SO]

[JGO5]

[Jt00]
[JVO3]

[JWO04]

[LLLO9]

[LMCO3]

[LMRO5]

Object-Oriented ProgrammindNantes, France, July 2006, volume 4067
of Lecture Notes in Computer Scienpp. 2—27, Berlin, Germany, 2006.
Springer.

Atsushi Igarashi, Benjamin C. Pierce, and Philip WadlEeatherweight
Java: a minimal core calculus for Java and GACM Transactions on
Programming Languages and Syste2%&3):396—450, May 2001.

ISO/IEC 25436:2006Ilnformation Technology — Eiffel: Analysis, Design
and Programming LanguagéSO, Geneva, Switzerland.

Ralph E. Johnson and Richard P. Gabriel, editoOPSLA 2005:
Proceedings of the 20th Annual ACM SIGPLAN Conference on ©bjec
Oriented Programming, Systems, Languages, and Applitati®an
Diego, CA, USA, October 2005, New York, NY, 2005. ACM Press.

“JUnit.” http://junit.org , 2000.

Doug Janzen and Kris De Volder. “Navigating and qirggycode with-
out getting lost.” In William G. Griswold and Mehmet Aksitdiors,
AOSD 2003: Proceedings of the 2nd International Conferemca&spect-
Oriented Software DevelopmerBoston, Massachusetts, USA, March
2003, pp. 178-187, New York, NY, 2003. ACM Press.

Rob Johnson and David Wagner. “Finding User/Kerneht@oiBugs with
Type Inference.” InProceedings of the 13th USENIX Security Sympo-
sium pp. 119-134, 2004.

Gary T. Leavens, Gary T. Leavens, Gary T. Leavensheht L. Baker,
Albert L. Baker, and Albert L. Baker. “Enhancing the Pre- andtPo
condition Technique for More Expressive Specificationsln FM’99:
World Congress on Formal Methodsp. 1087-1106. Springer, 1999.

Sorin Lerner, Todd Millstein, and Craig Chambers. “Antatically prov-

ing the correctness of compiler optimizations.” Bmoceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design an
Implementationpp. 220-231. ACM Press, 2003.

Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chaens. “Auto-
mated Soundness Proofs for Dataflow Analyses and Transfiomsavia
Local Rules.” InProceedings of the 32nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languag@€M Press, 2005.

138

[Mar82] Per Martin-16f. “Constructive Mathematics and Computer Program-
ming.” In Sixth International Congress for Logic, Methodology, and-Ph
losophy of Scien¢gp. 153-175, Amsterdam, 1982. North-Holland.

[Mey92] Bertrand Meyer. “Applying "Design by Contract”.” Computey
25(10):40-51, 1992.

[Mil04] Todd Millstein. “Practical predicate dispatch.h \Vlissides and Schmidt
[VS04], pp. 345-364.

[MME] Shane Markstrum, Daniel Marino, Matthew Esquivel,dtbMillstein,
Chris Andreae, and James Noble. “JavaCOP Declarative Pllgggab
Types for Java.” to be published.

[MWC99] Greg Morrisett, David Walker, Karl Crary, and Neal GleiWrom Sys-
tem F to typed assembly language®CM Trans. Program. Lang. Syst.
21(3):527-568, 1999.

[Mye99] Andrew C. Myers. “JFlow: Practical mostly-statidanmation flow con-
trol.” In Andrew W. Appel and Alex Aiken, editordf2OPL 1999: Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prisciple
of Programming Language$an Antonio, TX, USA, January 1999, pp.
228-241, New York, NY, 1999. ACM Press.

[NCMO03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.dvl; “Poly-
glot: An Extensible Compiler Framework for Java.” Irof@l Hedin, edi-
tor, CC 2003: Proceedings of the 12th International Conference am-Co
piler Construction Warsaw, Poland, April 2003, volume 2622 loéc-
ture Notes in Computer Sciengep. 138-152, Berlin, Germany, 2003.
Springer.

[Nec97] George C. Necula. “Proof-carrying code.” Pnoceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan
guagespp. 106-119. ACM Press, 1997.

[NMRO2] George C. Necula, Scott McPeak, Shree P. Rahul, andiéy/éaskeimer.
“CIL: Intermediate Language and Tools for Analysis and Tfamaation
of C Programs.” IrProceedings of CC 2002: 11'th International Confer-
ence on Compiler ConstructioBpringer-Verlag, April 2002.

[NMWO02] George C. Necula, Scott McPeak, and Westley Weimer. ‘@Gu
Type-safe retrofitting of legacy code.” IRroceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan
guagespp. 128-139. ACM Press, 2002.

139

[NO79]

[NQMO6]

[PACO8]

[PNCO8]

[Pt04]

[PtO7]

[Rem98]

[RHDOS]

[RTC92]

[SCJ]

[SST02]

Greg Nelson and Derek C. Oppen. “Simplification by Caapieg Deci-
sion Procedures ACM Trans. Program. Lang. Syst(2):245-257, 1979.

Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. “J&offware Com-
position with Nested Intersection.” In Tarr and Cook [TC06j, 1—-36.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jrif } Perkins,
and Michael D. Ernst. “Practical pluggable types for JavaBarbara G.
Ryder and Andreas Zeller, editot§STA 2008: Proceedings of the 2008
ACM/SIGSOFT International Symposium on Software TestingAsuad+
ysis Seattle, WA, USA, July 2008, pp. 201-212, New York, NY, 2008
ACM Press.

Alex Potanin, James Noble, Dave Clarke, and Robert BidtBeneric
Ownership for Generic Java.” In Tarr and Cook [TCO06], pp. 324-3

“Polyglot extensible compiler frameworkittp://www.cs.cornell.

edu/Projects/polyglot , 2004.
“Polyglot for Java 5. http://www.cs.ucla.edu/ ~milanst/
projects/polyglots , 2007.

Didier fmy and 8rdme Vouillon. “Objective ML: An Effective Object-
Oriented Extension of ML.” Theory and Practice of Object Systems
4(1):27-52, 1998.

[35 references.]

Michael Roberson, Melanie Harries, Paul T. Darga, @hdndrasekhar
Boyapati. “Efficient software model checking of soundnesg/pé sys-
tems.” In Gail E. Harris, editorOOPSLA 2008: Proceedings of the
23rd Annual ACM SIGPLAN Conference on Object-Oriented Pnogra
ming, Systems, Languages, and Applicatiddashville, TN, USA, Octo-
ber 2008, pp. 493-504, New York, NY, 2008. ACM Press.

RTCA. “Software considerations in airborne systems @juipment cer-
tification.”, 1992.

“JSR 302: Safety Critical Java Technologpttp://icp.orglen/jsr/
detail?id=302

Zhong Shao, Bratin Saha, Valery Trifonov, and Niksld&apaspyrou.
“A type system for certified binaries.” IrProceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan
guagespp. 217-232. ACM Press, 2002.

140

[STFO1]

[TCO6]

[TEO5]

[US 09]
[VB99]

[VS04]

[WL04]

[WSMO6]

[XP98]

[XP99]

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster[Zandd Wagner. “De-
tecting Format String Vulnerabilities with Type Qualifiérén Proceed-
ings of the 10th Usenix Security SymposiWashington, D.C., August
2001.

Peri L. Tarr and William R. Cook, editor©OPSLA 2006: Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-Oriented P
gramming, Systems, Languages, and Applicafidstland, OR, USA,
October 2006, New York, NY, 2006. ACM Press.

Matthew S. Tschantz and Michael D. Ernst. “Javaridiag reference
immutability to Java.” In Johnson and Gabriel [JG05], ppl-2430.

US-CERT. “SQL Injection.”, 2009.

Jan Vitek and Boris Bokowski. “Confined types.” In Brent kbairn,

Linda Northrop, and A. Michael Berman, editoBOPSLA 1999: Pro-
ceedings of the 14th ACM SIGPLAN Conference on Object-Odéd?ria

gramming, Systems, Languages, and Applications, Denvey, U332\,

November 199%p. 82-96, New York, NY, 1999. ACM Press.

John M. Vlissides and Douglas C. Schmidt, edito®OPSLA 2004:
Proceedings of the 19th Annual ACM SIGPLAN Conference on ©bjec
Oriented Programming, Systems, Languages, and Applitati@ancou-
ver, BC, Canada, October 2004, New York, NY, 2004. ACM Press.

John Whaley and Monica S. Lam. “Cloning-based contexts#tive
pointer alias analysis using binary decision diagrams.XMiliam Pugh
and Craig Chambers, editoiRl.DI 2004: Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design andetmpl
mentation Washington, DC, USA, June 2004, pp. 131-144, New York,
NY, 2004. ACM Press.

Alessandro Warth, Milan Stanojéviand Todd Millstein. “Statically
scoped object adaptation with expanders.” In Tarr and CoGOHT, pp.
37-56.

Hongwei Xi and Frank Pfenning. “Eliminating Array Bod Checking
through Dependent Types.” IRroceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementappn249—
257, Montreal, June 1998.

Hongwei Xi and Frank Pfenning. “Dependent Types iad#cal Pro-
gramming.” InProceedings of the 26th ACM SIGPLAN Symposium on

141

Principles of Programming Languagesp. 214—-227, San Antonio, Jan-
uary 1999.

[ZNVO04] Tian Zhao, James Noble, and Jan Vitek. “Scoped TyipeRReal-Time
Java.” INnRTSS Proceeding2004.

142

