
NETWORK DESIGN AUTOMATION:
WHEN CLARKE MEETS CERF

George Varghese
UCLA

(with collaborators from MSR, Stanford, UCLA)
IFIF Keynote & NSF Workshop, 2020

1

FOR PUBLIC CLOUDS,
PRIVATE CLOUDS,
ENTERPRISE
NETWORKS, ISPs, . . .

TOOLS

2

NDA

Functional
Description (RTL)

Testbench &
Vectors

Functional
Verification

Logical
Synthesis

Static Timing

Place & Route

Design Rule
Checking (DRC)

Layout vs
Schematic (LVS)

Parasitic
Extraction

Manufacture
& Validate

Specification

Policy
Language Testing

Verification

Synthesis

Topology Design

Wiring Checkers
Debuggers

Electronic Design Automation (EDA) Network Design Automation (NDA)

This talk: from EDA to NDA
Specification

Model and Terminology

1.2.*
Accounting

1.8.*
Engineering

1.2.* 1.2.*

• Routers, links, interfaces
• Packets, headers
• Prefix match rules, manually placed Access Control (ACL) rules

in router configuration files. Easy to make errors

1.HTTP | 1.2.3.4

1.2.*, SQL, Drop

Problem with Networks today

5

• Manual Configurations: Managers override shortest
paths for security, load balancing, and economics

• Problem: Manually programming individual routers to
implement global policy leads to cloud failures

S D
Shortest Path

Manual Traffic “steering knobs”

• Data forwarding/Data Plane:
o Access Control Lists (predicates on headers)
o VLANs (a way to virtualize networks)

• Routing/ Control Plane:
o Communities: equivalence classes on routes via a tag
o Static routes: a manager supplied route

Managers use many more knobs for isolation, economics

6

B

E

F HG

7

Deny Any C UDP

Name Service Queries are
now blocked!

POLICY
• Internet and Compute can

communicate
• Internet cannot send to

controllers

Allow Any C
Allow C Any

Why manual reasoning is hard
I

Cluster C

Why automated reasoning is imperative

• Challenges: 2^{100} possible headers to test!
o Scale: devices (1000s), rules (millions), ACL limits (< 700)
o Diversity: 10 different vendors, > 10 types of headers
o Rapid changes (new clusters, policies, attacks)

• Severity: (2012 NANOG Network Operator Survey):
o 35% have 25 tickets per month, take > 1 hour to resolve
o Welsh: vast majority of Google “production failures” due to

“bugs in configuration settings”
o Amazon, GoDaddy, United Airlines: high profile failures

As we migrate to services ($100B public cloud market),
network failure a debilitating cost.

8

Simple questions hard to answer today

o Which packets from A can reach B?

o Is Group X provably isolated from Group Y?

o Why is my backbone utilization poor?

9

NEED BOTTOM UP ANALYSIS OF EXISTING SYSTEMS

10

Formal methods have been used to verify (check
all cases) large chip designs and programs.

This talk: can we use formal methods across all
headers, & inputs for large clouds?

Approach: Treat Networks as Programs

• Model header as point in header space, routers as
functions on headers, networks as composite functions

11

Packet
Forwarding

0xx1..x1
Match

Action

Send to interface 2
Rewrite with 1x01xx..x1

CAN NOW ASK WHAT THE EQUIVALENT OF ANY PROGRAM
ANALYSIS TOOL IS FOR NETWORKS

P1 P2

Problems addressed/Outline

• Part 1: Classical verification tools do not scale
o Scaling via Network Specific Symmetries (POPL 16)

• Part 2: Lack of specifications
o Finding Bugs without Specifications (NSDI 2020)

• Part 3: A vision for Network Design Automation (NDA)

12

Scaling Network Verification
(Plotkin, Bjorner, Lopes, Rybalchenko, Varghese, POPL 2016)

exploiting network specific symmetries

13

Formal Network Model [HSA 12]
• 1 - Model sets of packets based on relevant header

bits, as subsets of a {0,1, *}L space – the Header Space
• 2 – Define union, intersection on Header Spaces
• 3 – Abstract networking boxes (Cisco routers, Juniper

Firewalls) as transfer functions on sets of headers
• 4– Compute packets that can reach across a path as

composition of Transfer Functions of routers on path
• 5. Find all packets that reach between every pair of

nodes and check against reachability specification

14

All Network boxes modelled as a Transfer Function:

All Packets that A can possibly
send to box 2 through box 1

All Packets that A
can possibly send

Computing Reachability [HSA 12]

Box 1
Box 2

Box 3Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A)) U T3(T4(T1(X,A))

15

All Packets that A can
possibly send to box 4

through box 1

COMPLEXITY DEPENDS ON HEADERS, PATHS, NUMBER OF RULES

Unfortunately, in practice . . .

• Header space equivalencing: 1 query in < 1 sec.
Uses ternary simulation! Major improvement
over SAT solvers and model checkers.

• But real data centers: 100,000 hosts, 1 million
rules, 1000s of routers, 100 bits of header

• So N^2 pairs takes 5 days to verify all specs.

16

Exploit Design Regularities to scale?

Can exploit regularities in rules and topology (not headers):
• Reduce fat tree to “thin tree”; verify reachability cheaply in

thin tree.
• How can we make this idea precise?

Symmetry

Factored symmetries

• (Emerson-Sistla): Symmetry on state space

• (Us): Factor symmetries on topology, headers.
Define symmetry group G on topology

• Theorem: Any reachability formula R for
original holds iff R’ holds for reduced network.

18

R5

R2R1

R4R3

X

Z

R5

R2R1

R3

X

Z

Transforms to

Y Y

Topological Group Symmetry

REQUIRES PERFECTLY SYMMETRICAL RULES AT R3 & R4.
IN PRACTICE, A FEW RULES ARE DIFFERENT.

R5

R2XR1

R4R3

X

X XX X

XX

R5

R2XR1

R4R3

X X

XX

Transform (Redirect
X to R3 only in R1, R2

R5

R2XR1

R4R3

X

X X

X

Transform (Remove
X Rule in R4

Near-symmetry  rule (not box) surgery

Instead of removing boxes, “squeeze” out redundant rules
iteratively by redirection and removal. Automate using Union-Find

Exhaustive verification solutions

• Header equivalence classes: 2100 4000
• Rule surgery: 820,000 rules  10K rules
• Rule surgery time  few seconds
• Verify all pairs: 131 2 hours
• 65 x improvement with simplest ideas. With 32-

core machine & other surgeries  1 minute goal

21

 Can do periodic rapid checking of network
invariants. Simple version in operational practice

22

Ongoing work
Limitation Research Project

Booleans only (Reachability) Quantitative Verification (QNA)

No incremental way to compute
header equivalence classes

New data structure (ddNFs)
Venn diagram intersection

Data plane only: no verification
of routing computation

Control Space Analysis (second
part of talk)

Correctness faults only (no
performance faults)

Data-plane tester ATPG
(aspects in Microsoft clouds)

Stateless Forwarding Only Work at Berkeley, CMU

Finding Misconfigurations without Specs
(Kakarla, Beckett, Jayaram, Millstein, Tamir, Varghese, NSDI 2020)

exploiting network specific data mining

23

NETWORK VERIFICATION STATUS

• Scaling: Network specific formal methods that scale to
large networks by defining equivalence classes.

• Commercial Entries: Forward Networks, Veriflow
Networks, IntentionNet, Amazon, Cisco

• Limited success: can check for certain canned properties
(e.g., no loops) but can’t verify network specific properties

• Lack of specifications: distributed management, churn,
turnover  knowledge, if any, is partial and imprecise

24

SELF-STARTER: FINDING BUGS USING
NETWORK SPECIFIC DATA MINING
• Bug Finding not Proofs: Limit ourselves to finding bugs

not proving correctness
• Deviant behavior (SOSP 01): deviation from majority ->

bug. Found many bugs in Linux
• Network Specific Insight: Routers in same role (e.g. core,

edge) should be similar; deviations  likely bugs
• Network Specific Data Mining: clustering, k-means works

badly, instead cluster based on “similar” templates
• Templating Algorithm: parameter generalization crossed

with sequence alignment

25

26

Router
Configs

End-to-End Design

Network Engineer

SelfStarter

Roles Router

Role R2
Configs

Role R1
Configs

Templates ›
Likely Bugs!

T1 T2 T3›

27

Router
Configs

Network Engineer

SelfStarter

Roles Router

Role R2
Configs

Border
Configs

Templates
T1 T2 T3

1000 Configs

106
Configs

Group Sizes 88 16 2

Self-Starter on UCLA Border Routers

Likely Bugs!

Example run on UCLA

John met Harry
in the park.
Harry and John
played soccer.
Later, John went
home to supper

Bob met Brad
in the park.
Brad and Bob
played soccer.
Later, Bob went
home to supper

John is a
trumpet player
John plays
Mozart at night.
John won a prize
for music.

Story 1 Story 2 Story 3

Analogy of Anomaly Detection for Stories

A met B in the park. B and A
played soccer. Later, A went
home to supper

John is a trumpet player.
John plays Mozart at night.
John won a prize for music.

Template 1 (2 instances) Template 2 (1 instance)
(the anomaly)

Anomaly Detection by clustering templates

30

ip access-list extended ACL2

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.13.0 0.0.0.255 any

3 deny icmp 17.12.13.0 0.0.0.255 any

4 permit ip 17.12.13.0 0.0.0.255 any

5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL1

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.11.0 0.0.0.255 any

3 deny icmp 17.12.11.0 0.0.0.255 any

4 permit ip 16.21.0.0 0.0.63.255 any

5 permit ip 17.12.11.0 0.0.0.255 any

Challenge: Non-
identical lines

Ingredient 1:
Parameterization

Challenge 1: Benign differences

Same idea for Network Config “stories”
Challenge 1: Benign Differences

31

ip access-list extended ACL2

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.13.0 0.0.0.255 any

3 deny icmp 17.12.13.0 0.0.0.255 any

4 permit ip 17.12.13.0 0.0.0.255 any

5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL1

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.11.0 0.0.0.255 any

3 deny icmp 17.12.11.0 0.0.0.255 any

4 permit ip 16.21.0.0 0.0.63.255 any

5 permit ip 17.12.11.0 0.0.0.255 any

A block is a contiguous sequence of lines that can be arbitrarily
reordered but the order of blocks is important.

Challenge 2: Missing Lines and Reordering

Challenge: Allow certain
reorderings but not arbitrary

reorderings
Solution: Two-level

abstraction using blocks

32

ip access-list extended ACL2

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.13.0 0.0.0.255 any

3 deny icmp 17.12.13.0 0.0.0.255 any

4 permit ip 17.12.13.0 0.0.0.255 any

5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL1

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.11.0 0.0.0.255 any

3 deny icmp 17.12.11.0 0.0.0.255 any

4 permit ip 16.21.0.0 0.0.63.255 any

5 permit ip 17.12.11.0 0.0.0.255 any

Ingredient 2: Sequence Alignment +Blocks

Block Alignment

Line Reorderings

Sequence alignment to prevent
cross-block reordering

Minimum-weight bipartite matching to
allow within-block line reorderings

Network Segment Type Consistent
Templates

Inconsistent Templates

Identified Investigated True Positives
(% of investigated)

UCLA ACLs 0 6 3 3 (100%)

Microsoft
WAN

Prefix lists 10042 166 138 7 (5%)

Route policies 10969 56 33 33 (100%)

Microsoft
Data center

ACLs 9700 938 400* 400 (100%)*

Prefix lists 2954 0 - -

Route policies 11653 230 230* 230 (100%)*

33

Results

90
min

3.0 NETWORK DESIGN AUTOMATION
NSF LARGE GRANT 1901510, UCLA, USC

34

Functional
Description (RTL)

Testbench &
Vectors

Functional
Verification

Logical
Synthesis

Static Timing

Place & Route

Design Rule
Checking (DRC)

Layout vs
Schematic (LVS)

Parasitic
Extraction

Manufacture
& Validate

Specification

Policy
Language Testing

Verification

Synthesis

Topology Design

Wiring Checkers
Debuggers

Electronic Design Automation
(McKeown SIGCOMM 2012)

Network Design Automation
(NDA): NSF Large Grant

Digital Hardware Design as Inspiration
Specification

EDA design tool wish list

• Analysis:
o Automatic test packets (“Post-silicon” debug)
o Debuggers (how to “step” through network?)
o Timing Verification for real time traffic

• Synthesis:
o A Verilog for network configurations?
o Scalable specifications (network types?)

Conclusion

• Inflection Point: Rise of services, SDNs
• Intellectual Opportunity: New techniques, network

specific symmetries, network specific data mining.
• Working chips with billion transistors. Large

networks next? Need help from EDA!

37

Thanks

• (MSR): N. Bjorner, R. Beckett, K. Jayaraman,
N. Lopes, G. Plotkin, A. Rybalchenko

• (Stanford): P. Kazemian, N. McKeown
• (UCLA): T. Millstein, Y. Tamir, S. Kesava, A.

Tang

38

	NETWORK DESIGN AUTOMATION: WHEN CLARKE MEETS CERF
	Slide Number 2
	This talk: from EDA to NDA
	Model and Terminology
	Problem with Networks today
	Manual Traffic “steering knobs”
	Why manual reasoning is hard
	Why automated reasoning is imperative
	Simple questions hard to answer today
	Slide Number 10
	Approach: Treat Networks as Programs
	Problems addressed/Outline
	Scaling Network Verification�(Plotkin, Bjorner, Lopes, Rybalchenko, Varghese, POPL 2016)��exploiting network specific symmetries �
	Formal Network Model [HSA 12]
	Computing Reachability [HSA 12]
	Unfortunately, in practice . . .
	Exploit Design Regularities to scale?
	Factored symmetries
	Slide Number 19
	Slide Number 20
	Exhaustive verification solutions
	Slide Number 22
	Finding Misconfigurations without Specs�(Kakarla, Beckett, Jayaram, Millstein, Tamir, Varghese, NSDI 2020)��exploiting network specific data mining �
	NETWORK VERIFICATION STATUS
	SELF-STARTER: FINDING BUGS USING NETWORK SPECIFIC DATA MINING
	End-to-End Design
	Example run on UCLA
	Slide Number 28
	Slide Number 29
	Same idea for Network Config “stories” Challenge 1: Benign Differences
	Challenge 2: Missing Lines and Reordering
	Ingredient 2: Sequence Alignment +Blocks
	Results
	3.0 NETWORK DESIGN AUTOMATION�NSF LARGE GRANT 1901510, UCLA, USC
	Digital Hardware Design as Inspiration
	EDA design tool wish list
	Conclusion
	Thanks

