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Model and Terminology

1.2.*
Accounting

1.8.*
Engineering

1.2.* 1.2.*

• Routers, links, interfaces
• Packets, headers
• Prefix match rules, manually placed Access Control (ACL) rules 

in router configuration files. Easy to make errors

1.HTTP  |  1.2.3.4

1.2.*, SQL, Drop



Problem with Networks today
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• Manual Configurations: Managers override shortest 
paths for security, load balancing, and economics

• Problem: Manually programming individual routers to 
implement global policy leads to cloud failures

S D
Shortest Path



Manual Traffic “steering knobs”

• Data forwarding/Data Plane:
o Access Control Lists (predicates on headers)
o VLANs (a way to virtualize networks)

• Routing/ Control Plane:
o Communities: equivalence classes on routes via a tag
o Static routes: a manager supplied route

Managers use many more knobs for isolation, economics
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Deny Any  C  UDP

Name Service Queries are 
now blocked!

POLICY
• Internet and Compute can 

communicate
• Internet cannot send to 

controllers

Allow Any  C
Allow C  Any

Why manual reasoning is hard
I

Cluster C



Why automated reasoning is imperative

• Challenges: 2^{100} possible headers to test!
o Scale:  devices (1000s), rules (millions), ACL limits (< 700)
o Diversity: 10 different vendors, > 10 types of headers
o Rapid changes (new clusters, policies, attacks)

• Severity: (2012 NANOG Network Operator Survey):
o 35% have 25 tickets per month, take > 1 hour to resolve
o Welsh: vast majority of Google “production failures” due to 

“bugs in configuration settings”
o Amazon, GoDaddy, United Airlines: high profile failures

As we migrate to services ($100B public cloud market), 
network failure a debilitating cost.
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Simple questions hard to answer today

o Which packets from A can reach B?

o Is Group X provably isolated from Group Y?

o Why is my backbone utilization poor?
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NEED BOTTOM UP ANALYSIS OF EXISTING SYSTEMS
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Formal methods have been used to verify (check 
all cases) large chip designs and programs.

This talk: can we use formal methods across all
headers, &  inputs for large clouds? 



Approach: Treat Networks as Programs

• Model header as point in header space, routers as 
functions on headers, networks as composite functions

11

Packet
Forwarding

0xx1..x1
Match

Action

Send to interface 2
Rewrite with 1x01xx..x1

CAN NOW ASK WHAT THE EQUIVALENT OF ANY PROGRAM 
ANALYSIS TOOL IS FOR NETWORKS

P1 P2



Problems addressed/Outline

• Part 1: Classical verification tools do not scale 
o Scaling via Network Specific Symmetries (POPL 16)

• Part 2: Lack of specifications 
o Finding Bugs without Specifications (NSDI 2020)

• Part 3: A vision for Network Design Automation (NDA)
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Scaling Network Verification
(Plotkin, Bjorner, Lopes, Rybalchenko, Varghese, POPL 2016)

exploiting network specific symmetries 
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Formal Network Model [HSA 12]
• 1 - Model sets of packets based on relevant header 

bits, as subsets of a {0,1, *}L space – the Header Space
• 2 – Define union, intersection on Header Spaces
• 3 – Abstract networking boxes (Cisco routers, Juniper 

Firewalls) as transfer functions on sets of headers
• 4– Compute packets that can reach across a path as 

composition of Transfer Functions of routers on path
• 5. Find all packets that reach between every pair of 

nodes and check against reachability specification
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All Network boxes modelled as a Transfer Function:



All Packets that A can possibly 
send to box 2 through box 1

All Packets that A 
can possibly send

Computing Reachability [HSA 12]

Box 1
Box 2

Box 3Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A))  U  T3(T4(T1(X,A))
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All Packets that A can
possibly send to box 4

through box 1

COMPLEXITY DEPENDS ON HEADERS, PATHS, NUMBER OF RULES



Unfortunately, in practice . . .

• Header space equivalencing: 1 query in < 1 sec. 
Uses ternary simulation! Major improvement 
over SAT solvers and model checkers.  

• But real data centers: 100,000 hosts, 1 million 
rules, 1000s of routers, 100 bits of header

• So N^2 pairs takes 5 days to verify all specs.
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Exploit  Design Regularities to scale?

Can exploit regularities in rules and topology (not headers):
• Reduce fat tree to “thin tree”; verify reachability cheaply in 

thin tree.
• How can we make this idea precise?

Symmetry



Factored symmetries

• (Emerson-Sistla): Symmetry on state space 

• (Us): Factor symmetries on topology, headers. 
Define symmetry group G on topology

• Theorem: Any reachability formula R for 
original holds iff R’ holds for reduced network.
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R5

R2R1

R4R3

X

Z

R5

R2R1

R3

X

Z

Transforms to

Y Y

Topological Group Symmetry 

REQUIRES PERFECTLY SYMMETRICAL RULES AT R3 & R4.
IN PRACTICE, A FEW RULES ARE DIFFERENT.



R5

R2XR1

R4R3

X

X XX X

XX

R5

R2XR1

R4R3

X X

XX

Transform (Redirect
X to R3 only in R1, R2

R5

R2XR1

R4R3

X

X X

X

Transform (Remove
X Rule in R4

Near-symmetry  rule (not box) surgery

Instead of removing boxes, “squeeze” out redundant rules 
iteratively  by redirection and removal.  Automate using Union-Find



Exhaustive verification solutions

• Header equivalence classes: 2100 4000
• Rule surgery: 820,000 rules  10K rules
• Rule surgery time  few seconds
• Verify all pairs: 131 2 hours 
• 65 x improvement with simplest ideas.  With 32-

core machine & other surgeries  1 minute goal
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 Can do periodic rapid checking of network 
invariants.  Simple version in operational practice
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Ongoing work 
Limitation Research Project

Booleans only (Reachability) Quantitative Verification (QNA)

No incremental way to compute 
header equivalence classes

New data structure (ddNFs) 
Venn diagram intersection 

Data plane only: no verification 
of routing computation

Control Space Analysis (second 
part of talk)

Correctness faults only (no 
performance faults)

Data-plane tester  ATPG 
(aspects in  Microsoft  clouds)

Stateless Forwarding Only               Work at Berkeley, CMU 



Finding Misconfigurations without Specs
(Kakarla, Beckett, Jayaram, Millstein, Tamir, Varghese, NSDI 2020)

exploiting network specific data mining 
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NETWORK VERIFICATION STATUS 

• Scaling: Network specific formal methods that scale to 
large networks by defining equivalence classes.

• Commercial Entries: Forward Networks,  Veriflow
Networks,  IntentionNet, Amazon, Cisco

• Limited success: can check for certain canned properties 
(e.g., no loops) but can’t verify network specific properties

• Lack of specifications: distributed management, churn, 
turnover  knowledge, if any, is partial and imprecise
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SELF-STARTER: FINDING BUGS USING 
NETWORK SPECIFIC DATA MINING 
• Bug Finding not Proofs: Limit ourselves to finding bugs 

not proving correctness
• Deviant behavior (SOSP 01): deviation from majority -> 

bug.  Found many bugs in Linux
• Network Specific Insight: Routers in same role (e.g. core, 

edge) should be similar;  deviations  likely bugs
• Network Specific Data Mining: clustering, k-means works 

badly, instead cluster based on “similar” templates
• Templating Algorithm: parameter generalization crossed 

with sequence alignment
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Router
Configs

End-to-End Design

Network Engineer

SelfStarter

Roles Router

Role R2 
Configs

Role R1 
Configs

Templates ›
Likely Bugs!

T1 T2 T3›
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Router
Configs

Network Engineer

SelfStarter

Roles Router

Role R2 
Configs

Border 
Configs

Templates
T1 T2 T3

1000 Configs

106 
Configs

Group Sizes 88 16 2

Self-Starter on UCLA Border Routers

Likely Bugs!

Example run on UCLA



John met Harry 
in the park.
Harry and John 
played soccer.
Later, John went 
home to supper

Bob met Brad 
in the park.
Brad and Bob 
played soccer.
Later, Bob went 
home to supper

John is a 
trumpet player
John plays 
Mozart at night.
John won a prize 
for music.

Story 1 Story 2 Story 3

Analogy of Anomaly Detection for Stories



A  met B in the park. B and A
played soccer. Later, A went 
home to supper

John is a trumpet player. 
John plays Mozart at night. 
John won a prize for music.

Template 1  (2 instances) Template 2 (1 instance)
(the anomaly)

Anomaly Detection by clustering templates
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ip access-list extended ACL2

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.13.0 0.0.0.255 any

3 deny icmp 17.12.13.0 0.0.0.255 any

4 permit ip 17.12.13.0 0.0.0.255 any

5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL1

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.11.0 0.0.0.255 any

3 deny icmp 17.12.11.0 0.0.0.255 any

4 permit ip 16.21.0.0 0.0.63.255 any

5 permit ip 17.12.11.0 0.0.0.255 any

Challenge: Non-
identical lines

Ingredient 1: 
Parameterization

Challenge 1:  Benign differences 

Same idea for Network Config “stories” 
Challenge 1:  Benign Differences
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ip access-list extended ACL2

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.13.0 0.0.0.255 any

3 deny icmp 17.12.13.0 0.0.0.255 any

4 permit ip 17.12.13.0 0.0.0.255 any

5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL1

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.11.0 0.0.0.255 any

3 deny icmp 17.12.11.0 0.0.0.255 any

4 permit ip 16.21.0.0 0.0.63.255 any

5 permit ip 17.12.11.0 0.0.0.255 any

A block is a contiguous sequence of lines that can be arbitrarily 
reordered but the order of blocks is important.

Challenge 2:  Missing Lines and Reordering

Challenge: Allow certain 
reorderings but not arbitrary 

reorderings
Solution: Two-level 

abstraction using blocks
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ip access-list extended ACL2

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.13.0 0.0.0.255 any

3 deny icmp 17.12.13.0 0.0.0.255 any

4 permit ip 17.12.13.0 0.0.0.255 any

5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL1

1 deny udp host 0.0.0.0 any

2 permit tcp 17.12.11.0 0.0.0.255 any

3 deny icmp 17.12.11.0 0.0.0.255 any

4 permit ip 16.21.0.0 0.0.63.255 any

5 permit ip 17.12.11.0 0.0.0.255 any

Ingredient 2: Sequence Alignment +Blocks

Block Alignment

Line Reorderings

Sequence alignment to prevent
cross-block reordering

Minimum-weight bipartite matching to 
allow within-block line reorderings



Network Segment Type Consistent 
Templates

Inconsistent Templates 

Identified Investigated True Positives 
(% of investigated) 

UCLA ACLs 0 6 3 3 (100%)

Microsoft
WAN

Prefix lists 10042 166 138 7 (5%)

Route policies 10969 56 33 33 (100%)

Microsoft
Data center

ACLs 9700 938 400* 400 (100%)*

Prefix lists 2954 0 - -

Route policies 11653 230 230* 230 (100%)*
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Results  

90 
min



3.0 NETWORK DESIGN AUTOMATION
NSF  LARGE GRANT 1901510, UCLA, USC
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Electronic Design Automation
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Network Design Automation
(NDA): NSF Large Grant

Digital Hardware Design as Inspiration
Specification



EDA design tool wish list

• Analysis: 
o Automatic test packets (“Post-silicon” debug)
o Debuggers (how to “step” through network?)
o Timing Verification for real time traffic

• Synthesis: 
o A Verilog for network configurations?
o Scalable specifications (network types?) 



Conclusion

• Inflection Point: Rise of services, SDNs 
• Intellectual Opportunity:  New techniques, network 

specific symmetries, network specific data mining.
• Working chips with billion transistors.  Large 

networks next? Need help from EDA!
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Thanks

• (MSR):  N. Bjorner,  R. Beckett, K. Jayaraman, 
N. Lopes,  G. Plotkin, A. Rybalchenko

• (Stanford): P. Kazemian, N. McKeown
• (UCLA): T. Millstein, Y. Tamir, S. Kesava, A. 

Tang
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