
Hierarchical Co-Clustering Based on Entropy Splitting

Wei Cheng 1, Xiang Zhang 2, Feng Pan 3, and Wei Wang 4

1Department of Computer Science, University of North Carolina at Chapel Hill,
2Department of Electrical Engineering and Computer Science, Case Western Reserve University,

3Microsoft, 4 Department of Computer Science, University of California, Los Angeles

ABSTRACT
Two dimensional contingency tables or co-occurrence matrices arise
frequently in various important applications such as text analy-
sis and web-log mining. As a fundamental research topic, co-
clustering aims to generate a meaningful partition of the contingen-
cy table to reveal hidden relationships between rows and columns.
Traditional co-clustering algorithms usually produce a predefined
number of flat partition of both rows and columns, which do not
reveal relationship among clusters. To address this limitation, hi-
erarchical co-clustering algorithms have attracted a lot of research
interests recently. Although successful in various applications, the
existing hierarchial co-clustering algorithms are usually based on
certain heuristics and do not have solid theoretical background.

In this paper, we present a new co-clustering algorithm with sol-
id information theoretic background. It simultaneously constructs a
hierarchical structure of both row and column clusters which retain-
s sufficient mutual information between rows and columns of the
contingency table. An efficient and effective greedy algorithm is
developed which grows a co-cluster hierarchy by successively per-
forming row-wise or column-wise splits that lead to the maximal
mutual information gain. Extensive experiments on real datasets
demonstrate that our algorithm can reveal essential relationships of
row (and column) clusters and has better clustering precision than
existing algorithms.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering-algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
Co-clustering, Entropy, Contingency Table, Text Analysis

1. INTRODUCTION.
Two dimensional contingency table arises frequently in various

applications such as text analysis and web-log mining. Co-clustering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

algorithms have been developed to perform two-way clustering on
both rows and columns of the contingency table. Traditional co-
clustering algorithms usually generate a strict partition of the table
[4, 6, 12]. This flat structure is insufficient to describe relationships
between clusters. Such relationships are essential for data naviga-
tion, browsing, and so forth in many applications such as document
analysis.

To combine the advantages of both co-clustering and hierarchical
clustering, various hierarchical co-clustering algorithms have been
recently proposed [8, 3, 15, 1, 9]. However, existing hierarchi-
cal co-clustering algorithms are usually based on certain heuristic
criteria or measurements for agglomerating or dividing clusters of
rows and columns. Such criteria may be domain-specific and thus
suffer from lacking of generality. Another limitation of many exist-
ing hierarchical co-clustering algorithms is that they often require
the number of clusters (for both rows and columns) as an input.
However, accurate estimation of the number of clusters may be im-
possible in many applications, or require a pre-processing stage.

To overcome these limitations, we propose a hierarchical co-
clustering algorithm with solid information theoretic background.
Our approach aims to generate the simplest co-cluster hierarchy
that retains sufficient mutual information between rows and column-
s in the contingency table. More specifically, the mutual informa-
tion between resulting row clusters and column clusters should not
differ from the mutual information between the original rows and
columns by more than a small fraction (specified by the user). Find-
ing the optimal solution for this criterion however would take ex-
ponential time. Thus, we devise an efficient greedy algorithm that
grows a co-cluster hierarchy by successively performing row-wise
or column-wise splits that lead to the maximal mutual information
gain at each step. This procedure starts with a single row cluster
and a single column cluster and terminates when the mutual infor-
mation reaches a threshold. Other termination criteria (such as the
desired number of row/column clusters) can be easily incorporated.

In summary, our hierarchical co-clustering algorithm has the three
advantages: (1). Our algorithm builds cluster hierarchies on both
rows and columns simultaneously. The relationships between clus-
ters are explicitly revealed by the hierarchies. And the hierarchical
structures inferred by our approach are useful for indexing and vi-
sualizing data, exploring the parent-child relationships, and deriv-
ing generation/specialization concepts. (2). Our algorithm uses an
uniform framework to model the hierarchical co-clustering prob-
lem, and the optimality of splitting the clusters is guaranteed by
rigorous proofs. (3). Our algorithm does not necessarily require
prior knowledge of the number of row and column clusters. In-
stead, it uses a single input, the minimum percentage of mutual
information retained, and automatically derives a co-cluster hierar-

chy. Moreover, it is also flexible to incorporate optional constraints
such as the desired number of clusters.

Experiments on real datasets show that our hierarchical co-clustering
algorithm performs better than many existing co-clustering algo-
rithms.

2. RELATED WORK.
Co-clustering is a branch of clustering methods that clusters both

rows and columns simultaneously. The problem of co-clustering
has been studied extensively in recent literatures. These clustering
algorithms generate flat partitions of rows and columns. However,
a taxonomy structure can be more beneficial than a flat partition for
many applications such as document clustering. In this section, we
present a survey of recent co-clustering algorithms.

A pioneering co-clustering algorithm based on information theo-
ry was proposed by Dhillon et.al. in [6]. Taking the numbers of row
and column clusters as input, the algorithm generate a flat partition
of data matrix into row clusters and column clusters which max-
imizes the mutual information between row and column clusters.
The idea is generalized into a meta algorithm in [2]. It is proven
in [2] that besides mutual information, any Bregman divergence
can be used in the objective function and the two-step iteration al-
gorithm can always find a co-cluster by converging the objective
function to a local minimum. Even though the co-clustering model
proposed in these papers is also rooted in information theory, such
as mutual information and relative entropy, our approach generates
hierarchical cluster structures. This key difference entails differen-
t objective functions and, more importantly, different optimization
techniques. In addition, linear algebra methods are also applied to
derive co-clusters[4, 12].

By integrating hierarchical clustering and co-clustering, hierar-
chical co-clustering aims at simultaneously constructing hierarchi-
cal structures for two or more data types. Hierarchical co-clustering
has recently received special attentions [8, 3]. A hierarchical divi-
sive co-clustering algorithm is proposed in [15] to simultaneously
find document clusters and the associated word clusters. It has also
been incorporated into a novel artist similarity quantifying frame-
work for the purpose of assisting artist similarity quantification by
utilizing the style and mood clusters information [1]. Both hierar-
chical agglomerative and divisive co-clustering methods have been
applied to organize the music data [9].

3. PRELIMINARY.
We denote the two-dimensional contingency table as T . R =

{r1, r2, ..., rn} represents the set of rows of T , where ri is the ith

row. C = {c1, c2, ..., cm} represents the set of columns, where
cj is the jth column. The element at the ith row and jth column
is denoted by Tij . For instance, in a word-document table, each
document is represented by a row and each word maps to a column.
Each element stores the frequency of a word in a document.

We can compute a joint probability distribution by normalizing
elements in the table. Let X and Y be two discrete random vari-
ables that take values in R and C respectively. The normalized
table can be considered as a joint probability distribution of X and
Y . We denote p(X = ri, Y = cj) by p(ri, cj) for convenience in
the remainder of this paper.

A co-cluster consists of a set of row clusters and a set of column
clusters. We denote the set of row clusters as R̂,

R̂ = {r̂1, r̂2, ..., r̂l|r̂i ⊆ R, r̂i ∩ r̂j = ∅, i ̸= j}

where r̂i represents the ith row cluster.

Similarly, we denote the set of column clusters as Ĉ,

Ĉ = {ĉ1, ĉ2, ..., ĉk|ĉj ⊆ C, ĉj ∩ ĉi = ∅, j ̸= i}

where ĉj represents the jth row cluster. We denote the number
of clusters in R̂ as LR̂ = |R̂|, and the number of clusters in Ĉ

as LĈ = |Ĉ|. Given the sets of row and column clusters, a co-
cluster can be considered as a “reduce” table T̂ from T . Each row
(column) in T̂ represents a row (column) cluster. Each element in
T̂ is the aggregation of the corresponding elements in T ,

T̂ij =
∑

{Tuv|ru ∈ r̂i, cu ∈ ĉj}

Let X̂ and Ŷ be two discrete random variables that take values in
R̂ and Ĉ respectively. A normalized reduced table can be consid-
ered as a joint probability distribution of X̂ and Ŷ . We will denote
p(X̂ = r̂i, Ŷ = ĉj) by p(r̂i, ĉj) for convenience.

Note that the original contingency table can be viewed as a co-
cluster by regarding each single row (column) as a row (column)
cluster. Given any co-cluster (R̂, Ĉ) on a contingency table, we
employ the mutual information between X̂ and Ŷ to measure the
relationship between row clusters and column clusters.

I(X̂, Ŷ) =
∑
r̂∈R̂

∑
ĉ∈Ĉ

p(r̂, ĉ)log2
p(r̂, ĉ)

p(r̂)p(ĉ)

As you may observe, the mutual information of the original table
I(X,Y) is larger than the mutual information of the aggregated
table I(X̂, Ŷ), due to clustering. This is in fact a property held by
co-clustering described in Theorem 3.1.

In order to prove Theorem 3.1, we first prove the following lem-
mas based on the theorems proven by Dhillon et.al. [6].

LEMMA 3.1. Given two co-clusters, {R̂(1), Ĉ(1)} and {R̂(2), Ĉ(1)},
where R̂(2) is generated by splitting a row cluster in R̂(1). Then

I(X̂
(1)

, Ŷ
(1)

) ≤ I(X̂
(2)

, Ŷ
(1)

)

Proof : Assume that R̂(2) is generated by splitting r̂
(1)
1 ∈ R̂(1) into

r̂
(2)
1 and r̂

(2)
2 . We have

I(X̂
(2)

, Ŷ
(1)

) − I(X̂
(1)

, Ŷ
(1)

)

= H(Ŷ
(1)|X̂(1)

) − H(Ŷ
(1)|X̂(2)

)

= −
∑

ĉ(1)∈Ŷ (1)

p(r̂
(1)
1 , ĉ

(1)
)logp(ĉ

(1)|r̂(1)1)+
∑

ĉ(1)∈Ŷ (1)

p(r̂
(2)
1 , ĉ

(1)
)logp(ĉ

(1)|r̂(2)1)

+
∑

ĉ(1)∈Ŷ (1)

p(r̂
(2)
2 , ĉ

(1)
)logp(ĉ

(1)|r̂(2)2)

Because r̂
(2)
1 ∪ r̂

(2)
2 = r̂

(1)
1 , we have

p(r̂
(1)
1 , ĉ

(1)
) = p(r̂

(2)
1 , ĉ

(1)
) + p(r̂

(2)
2 , ĉ

(1)
), ∀ĉ(1) ∈ Ŷ

(1)

Therefore,

I(X̂
(2)

, Ŷ
(1)

) − I(X̂
(1)

, Ŷ
(1)

)

=
∑

ĉ(1)∈Ŷ (1)

p(r̂
(2)
1 , ĉ

(1)
)log

p(ĉ(1)|r̂(2)1)

p(ĉ(1)|r̂(1)1)
+

∑
ĉ(1)∈Ŷ (1)

p(r̂
(2)
2 , ĉ

(1)
)log

p(ĉ(1)|r̂(2)2)

p(ĉ(1)|r̂(1)1)

= p(r̂
(2)
1)D(p(ĉ

(1)|r̂(2)1)||p(ĉ(1)|r̂(1)1))+p(r̂
(2)
2)D(p(ĉ

(1)|r̂(2)2)||p(ĉ(1)|r̂(1)1))

where D(p(r̂
(2)
1 , ĉ(1))||p(r̂(1)1 , ĉ(1))) is the relative entropy (KL-

divergence) between p(ĉ(1)|r̂(2)1) and p(ĉ(1)|r̂(1)1), which is always
non-negative (by definition). Therefore

I(X̂
(2)

, Ŷ
(1)

) − I(X̂
(1)

, Ŷ
(1)

) ≥ 0

and then

I(X̂
(1)

, Ŷ
(1)

) ≤ I(X̂
(2)

, Ŷ
(1)

)

Similarly, we have

LEMMA 3.2. Given two co-clusters, {R̂(1), Ĉ(1)} and {R̂(1), Ĉ(2)},
and Ĉ(2) is generated by splitting one column cluster in Ĉ(1). Then

I(X̂
(1)

, Ŷ
(1)

) ≤ I(X̂
(1)

, Ŷ
(2)

)

The above two lemmas state that splitting either row or column-
wise clusters increases the mutual information between the two set-
s of clusters. Hence, we can obtain the original contingency table
(i.e., each row/column itself is a row/column cluster) by performing
a sequence of row-wise splits or column-wise splits on a co-cluster.
By Lemmas 3.1 and 3.2, the mutual information monotonically in-
creases after each split, which leads to the following theorem.

THEOREM 3.1. The mutual information of a co-clustering, I(X̂, Ŷ),
always increases when any one of its row or column clusters is split,
until the mutual information reaches its maximal value, I(X,Y),
where each row and column is considered as a single cluster.

The monotonicity property of mutual information leads to the
following problem definition.

Problem Definition.
Given a normalized two-dimensional contingency table, T , and a
threshold θ(0 < θ < 1), find a hierarchical co-clustering contain-
ing a minimum number of the leaf row clusters R̂ and leaf column
clusters Ĉ, such that the mutual information corresponding to co-
clustering {R̂, Ĉ} satisfies I(X̂,Ŷ)

I(X,Y)
≥ θ. Optionally, a user can

specify desired number of row or column clusters (LR̂ = maxr

or LĈ = maxc) and ask for a co-cluster with maximal mutual
information.

4. CO-CLUSTERING ALGORITHM.
In this section, we present the details of our co-clustering algo-

rithm. The monotonicity property of mutual information stated in
Lemmas 3.1 and 3.2 inspires us to develop a greedy divisive algo-
rithm that optimizes the objective function I(X̂, Ŷ) at each step.
The main routine is presented in Section 4.1.

4.1 The Main Algorithm.
The pseudocode of the algorithm is shown in Figure 1. In Step

1 of the main function Co-Clustering(), function InitialSplit() is
called to generate the initial co-cluster {R̂(0), Ĉ(0)} with two row
clusters and two column clusters. In Step 2, the joint distribution
p(X̂, Ŷ) of this initial co-cluster is calculated. Then the algorithm
goes through iterations. During each iteration, a split is performed
to maximize the mutual information of the co-cluster. In Steps 5
and 6, each row or column cluster si is examined by function S-
plitCluster() to determine the highest gain in mutual information,
δI

(k)
i , which can be brought by an optimal split on si. (si1 and si2

denote the resulting clusters after split.) Steps 7 to 9 select the row
or column cluster whose split gives the highest gain δI

(k)
i , and per-

form the split. In Step 10, the joint distribution p(X̂, Ŷ) is updated
according to the new co-cluster {R̂(k+1), Ĉ(k+1)}. The algorith-
m continues until the mutual information ratio I(X̂,Ŷ)

I(X,Y)
reaches the

threshold, θ, and/or the number of clusters (row or column) reaches
the number of desired clusters, denoted by maxc and maxr . Note
that the termination condition can be easily modified to suit users’
needs.

4.2 Initial Split.
Function InitialSplit() splits the contingency table into two row

clusters and two column clusters. In Step 1, the joint distribution is

main function Co-Clustering()
Input:

• Normalized table, T
• Minimal threshold of I(X̂,Ŷ)

I(X,Y)
, θ

Optional Input:
• Maximal number of row clusters, maxr

• Maximal number of column clusters, maxc

Output: Co-cluster {R̂, Ĉ}
Method:

1. {R̂(0), Ĉ(0), I(0)} = InitialSplit(T)

2. calculate distribution p(X̂, Ŷ) according to {R̂(0), Ĉ(0)}
3. k=0

4. Do
5. for each cluster si, si ∈ R̂(k) ∪ Ĉ(k)

6. {si1, si2, δI(k)
i } = SplitCluster(si, p(X̂, Ŷ))

7. let δI(k)
j = max{δI(k)

i }
8. I(k+1) = I(k) + δI

(k)
j

9. {R̂(k+1), Ĉ(k+1)} = (R̂(k) ∪ Ĉ(k) − sj)
∪
{sj1, sj2}

10. update p(X̂, Ŷ) according to {R̂(k+1), Ĉ(k+1)}
11. k = k + 1

12. While I(X̂,Ŷ)
I(X,Y)

< θ and/or |R̂(k)| < maxr and/or |Ĉ(k)| < maxc

13. return {R̂(k), Ĉ(k)}

function InitialSplit(T)
Input: Normalized table T

Output: {R̂(0), Ĉ(0), I(0)}
Method:

1. p(X,Y) = T

2. s1 = R, s2 = C

3. {s11, s12, δI1} = SplitCluster(s1, p(X,Y))
4. {s21, s22, δI2} = SplitCluster(s2, p(X,Y))

5. R̂(0) = {s11, s12}, Ĉ(0) = {s21, s22}

6. I(0) = I(X̂(0), Ŷ (0))

7. return {R̂(0), Ĉ(0), I(0)}

Figure 1: Algorithm

set to the normalized table T . In Step 2, all rows are considered as
in a single row cluster s1 and all columns are considered as in a sin-
gle column cluster s2. They are then split in Steps 3 and 4 by call-
ing the function SplitCluster(). The initial co-cluster {R̂(0), Ĉ(0)}
and the corresponding mutual information I(0) = I(X̂(0), Ŷ (0))
are calculated accordingly in Steps 5 and 6.

Note that we split both row clusters and column clusters in this
initial step. To ensure a good initial split, when the function Split-
Cluster() is called, we tentatively treat each row as an individual
cluster so that the initial column clusters are created by taking into
account the row distribution. By the same token, we also tentative-
ly treat each column as an individual cluster when we create the
initial row clusters.

4.3 Cluster Splitting.
According to Lemmas 3.1 and 3.2, a split will never cause I(X̂, Ŷ)

decrease. In addition, only the split cluster may contribute to the
increase of I(X̂, Ŷ). Suppose that a row cluster r̂(1) is split into
r̂
(2)
1 and r̂

(2)
2 , the increase in I(X̂, Ŷ) is

δI = I(X̂
(2)

, Ŷ
(1)

) − I(X̂
(1)

, Ŷ
(1)

)

= p(r̂
(2)
1)D(p(ĉ

(1)|r̂(2)1)||p(ĉ(1)|r̂(1)1))+p(r̂
(2)
2)D(p(ĉ

(1)|r̂(2)2)||p(ĉ(1)|r̂(1)1))
(1)

Therefore, SplitCluster() can calculate the maximal value of δI
by examining each cluster to be split separately. However, it may
still take exponential time (with respect to the cluster size) to find
the optimal split. Therefore, SplitCluster() adopts a greedy algo-
rithm that can effectively produce a good split achieving a local
maximum in δI . Elements in the cluster are initially randomly
grouped into two sub-clusters. A sequence of iterations are tak-

function SplitCluster(s, p(X̂, Ŷ))
Input:• Cluster s, s ∈ R̂

∪
Ĉ

• Current joint distribution p(X̂, Ŷ)
Output:

• two sub-clusters of s, s1 and s2, s.t. s1
∪

s2 = s, s1
∩

s2 = ∅
• δI , the increase in I(X̂, Ŷ) achieved by splitting s

Method:
1. if s is a column cluster, p(X̂, Ŷ) = p(X̂, Ŷ)T

2. randomly split s into two clusters, s1 and s2.
3. calculate p(Ŷ |s1), p(Ŷ |s2) and δI accordingly
4. Do
5. for each element xi in s.
6. assign xi to cluster s′, where

s
′
= argminj=1,2D(p(Ŷ |xi)||p(Ŷ |sj))

7. update p(Ŷ |s1), p(Ŷ |s2) and δI accordingly
8. Until δI converges
9. return s1, s2 and δI

Figure 2: Function SplitCluster()

en to re-assign each element to its closer sub-cluster according to
KL-divergence until δI converges.

The details of function SplitCluster() are shown in Figure 2. In
Step 1, the joint probability distribution p(X̂, Ŷ) is transposed if
the input cluster s is a column cluster so that column clusters can
be split in the same way as row clusters. In Step 2, cluster s is ran-
domly split into two clusters. In Step 3, δI is calculated according
to Equation 1, and the weighted mean conditional distributions of
Ŷ for both clusters s1 and s2 (p(Ŷ |s1) and p(Ŷ |s2)) are calculated
according to Equation 2.

p(X̂ = si) =
∑

xj∈si

p(X = xj)

p(Ŷ |si) =
∑

xj∈si

p(X = xj)

p(X̂ = si)
∗ p(Ŷ |xj) (2)

From Step 5 to Step 7, each element xi in cluster s is re-assigned
to the cluster (s1 or s2) which can minimize the KL-Divergence
between p(Ŷ |xi) and p(Ŷ |sj). p(Ŷ |s1), p(Ŷ |s2) and δI are up-
dated at the end of each iteration. The procedure repeats until δI
converges. In Step 9, the two sub-clusters s1 and s2, and δI are re-
turned. In order to prove that function SplitCluster() can find a split
that achieves local maximum in δI , we need to prove that the re-
assignment of element xi in Steps 4-8 can monotonically increase
δI . Since the same principle is used to split row clusters and col-
umn clusters, without loss of generality, we only prove the case of
splitting row clusters.

A similar cluster split algorithm was used in [5] which re-assigns
elements among k clusters. It is proven that such re-assignment can
monotonically decrease the sum of within-cluster JS-divergence of
all clusters which is

Q({s1, s2, ..sk}) =

k∑
i=1

∑
xj∈si

p(X = xj) ∗ D(p(Ŷ |xj)||p(Ŷ |si))

In our function SplitCluster(), we only need to split the cluster into
two sub-clusters. Therefore, we show the proof for a special case
where k = 2. The following lemma was proven in [5].

LEMMA 4.1. Given cluster s containing n elements ((Ŷ |xi)),
the weighted mean distribution of the cluster ((Ŷ |s)) has the low-
est weighted sum of KL-divergence of p(Ŷ |s) and p(Ŷ |xi). That
is,∀q(Ŷ), we have

n∑
i=1

p(xi) · D(p(Ŷ |xi)||q(Ŷ)) ≥
n∑

i=1

p(xi) · D(p(Ŷ |xi)||p(Ŷ |s))

THEOREM 4.1. When splitting cluster s into two subclusters,
s1 and s2, the re-assignment of elements in s as shown in Steps

5-7 of function SplitCluster() can monotonically decrease the sum
of within-cluster JS-divergence of the two sub-clusters, s1 and s2.

Proof : Let Ql{s1, s2} and Ql+1{s1, s2} be the sum of within-
cluster JS-divergence of the two clusters before and after the lth re-
assignment of elements, respectively. And let pl(Ŷ |si) and pl+1(Ŷ |si)
be the corresponding weighted mean conditional distributions of
sub-clusters before and after the lth re-assignment. We will prove
that Ql+1{s1, s2} ≤ Ql{s1, s2}. Assume that the two clusters
after reassignment are s∗1 and s∗2.

Ql{s1, s2} =

2∑
i=1

∑
xj∈si

p(X = xj) ∗ D(p(Ŷ |xj)||pl(Ŷ |si))

≥
2∑

i=1

∑
xj∈si

p(X = xj) ∗ D(p(Ŷ |xj)||pl(Ŷ |s∗i))

=

2∑
i=1

∑
xj∈s∗

i

p(X = xj) ∗ D(p(Ŷ |xj)||pl(Ŷ |s∗i))

≥
2∑

i=1

∑
xj∈s∗

i

p(X = xj) ∗ D(p(Ŷ |xj)||pl+1(Ŷ |s∗i))

= Ql+1{s1, s2}
The first inequality is a result of Step 6 in SplitCluster() and the

second inequality is due to Step 7 in SplitCluster() and Lemma 4.1.
Therefore, we prove that the re-assignment of elements in s can
monotonically decrease Q({s1, s2}).

Note that the sum of δI and Q({s1, s2}) is a constant [5], which
is shown in Equation 3.∑
xj∈s

p(xj)D(p(Ŷ |xj)||p(Ŷ |s)) (3)

=

2∑
i=1

∑
xj∈si

p(xj)D(p(Ŷ |xj)||p(Ŷ |si)) +
2∑

i=1

p(s1)D(p(Ŷ |si)||p(Ŷ |s))

= Q({s1, s2}) + δI

Therefore, since the re-assignment process monotonically de-
creases Q({s1, s2}), it will monotonically increase δI as a re-
sult. Thus function SplitCluster() can find a split that achieves local
maximum in δI .

5. EXPERIMENTS.
In this section, we perform extensive experiments on real data to

evaluate the effectiveness of our co-clustering algorithm. In Sec-
tions 5.2, we use real datasets for experiments. We compare the
quality of the clusters generated by our method with those gener-
ated by previous co-clustering algorithms. We use micro-averaged
precision [6, 12] as the quality measurement.

5.1 Experimental Settings on Real Dataset.
In this section, we describe the experimental settings. We use 20

Newsgroup dataset from UCI 1. We preprocess the 20 Newsgroup
dataset to build the corresponding two dimensional contingency ta-
ble. Each document is represented by a row in the table and 2000
distinct words are selected to form 2000 columns. Words are select-
ed using the same method as in [14]. In order to compare the qual-
ity of clusters generated by our method with those of previous al-
gorithms, we generate several subsets of the 20 Newsgroup dataset
using the method in [12, 14, 6]. Each subset consists of several
major newsgroups and a subset of the documents in each selected
newsgroups. The details are listed in Table 1. As in [12, 14, 6], each
of these subsets has two versions, one includes the subject lines of
all documents and the other does not. We use datasetsubject and
dataset to denote these two versions respectively.

1http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

Table 1: Subsets of 20 Newsgroups used in Section 5.2
Dataset Newsgroups # documents per group Total # documents
Multi5 comp.graphics, rec.motorcycles, rec.sports.baseball, sci.space, talk.politics.mideast 100 500
Multi10 alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos, rec.sport.hockey 50 500

sci.crypt, sci.electronics, sci.med, sci.space, talk.politics.guns

Table 2: micro-averaged precision on subsets of 20 Newsgroup
Mehtod HICC NVBD ICC HCC

m-pre # clusters m-pre # clusters m-pre # clusters m-pre # clusters
Multi5subject 0.96 30 0.93 5 0.89 5 0.72 5
Multi5 0.96 30 N/A 0.87 5 0.71 5
Multi10subject 0.74 60 0.67 10 0.54 10 0.44 10
Multi10 0.74 60 N/A 0.56 10 0.61 10
Mehtod Single-Link Complete-Link UPGMA WPGMA

m-pre # clusters m-pre # clusters m-pre # clusters m-pre # clusters
Multi5subject 0.27 30 0.89 30 0.73 30 0.65 30
Multi5 0.29 30 0.85 30 0.59 30 0.71 30
Multi10subject 0.24 60 0.67 60 0.60 60 0.58 60
Multi10 0.24 60 0.60 60 0.61 60 0.62 60

5.2 Comparison with Previous Algorithms.
In this section, we compare our co-clustering algorithm with sev-

eral previous algorithms. For all the datasets, we empirically set
θ = 0.7 in our algorithm.

The state of the art co-clustering algorithms used for comparison
are: (1). NBVD [12]: Co-clustering by block value decomposition.
This algorithm solves the co-clustering problem by matrix decom-
position. (2). ICC [6]: Information-theoretic co-clustering. This
algorithm is also based on information theoretic measurements and
considers the contingency table as a joint probability distribution.
(3). HCC [11]: a hierarchical co-clustering algorithm. HCC brings
together two interrelated but distinct themes from clustering: hi-
erarchical clustering and co-clustering. (4). Linkage [7]: a set of
agglomerative hierarchical clustering algorithms based on linkage
metrics. Four different linkage metrics were used in our experi-
ments, i.e., Single-Link, Complete-link, UPGMA (average), WPG-
MA (weighted average).

There are other existing co-clustering/clustering algorithms, such
as [14, 10, 13], which conducted experiments on the same subset-
s in Table 1. Since NVBD and ICC outperform these algorithms
in terms of micro-averaged precision, we will not furnish a direct
comparison with them. For convenience, we use HICC to represent
our algorithm and use m-pre to represent micro-averaged precision.
For the number of word clusters, ICC generates about 60 − 100
word clusters as reported in [6] while our algorithm HICC gener-
ates about 50 − 80 word clusters. The number of word clusters
generated by NVBD is not reported in [12]. While in the Linkage
algorithms, since they only cluster the rows, each column can be
considered as a column cluster. The comparison of micro-averaged
precision on all datasets in Table 1 is shown in Table 2. In Table 2,
the micro-averaged precision decrease slightly after we merge our
original clusters into the same number of clusters as NVBD and IC-
C. This is because cluster merge may over-penalize the incorrectly
labelled documents. Nevertheless, our algorithm is still the winner
in all cases. The Single-linkage metric has a very low precision
comparing with all other algorithms. The reason may be that us-
ing the shortest distance between two clusters as the inter-cluster
distance suffers from the high dimensionality and the noise in the
dataset.

6. CONCLUSIONS.
In this paper, we present a hierarchical co-clustering algorithm

based on entropy splitting to analyze two-dimensional contingency

tables. Taking advantage of the monotonicity of the mutual infor-
mation of co-cluster, our algorithm uses a greedy approach to look
for simplest co-cluster hierarchy that retains sufficient mutual in-
formation in the original contingency table. The cluster hierarchy
captures rich information on relationships between clusters and re-
lationships between elements in one cluster. Extensive experiments
demonstrate that our algorithm can generate clusters with better
precision quality than previous algorithms and can effectively re-
veal hidden cluster structures.

7. REFERENCES
[1] T. L. B. Shao and M. Ogihara. Quantify music artist similarity based on style

and mood. In WIDM ’08, pages 119–124, 2008.
[2] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A generalized

maximum entropy approach to bregman co-clustering and matrix
approximation. In SIGKDD’04 Conference Proceedings, 2004.

[3] R. P. D. Ienco and R. Meo. Parameter-free hierarchical co-clustering by n-ary
splits. In Machine Learning and Knowledge Discovery in Databases, pages
580–595, 2009.

[4] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitionning. In SIGKDD ’01 Conference Proceedings, 2001.

[5] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature
clustering algorithm for text classification. Journal of Machine Learning
Research, 3:1265–1287, 2003.

[6] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering.
In SIGKDD ’03 Conference Proceedings, 2003.

[7] M. F. A survery of recent advances in hierarchical clustering algorithms.
Computer Journal, 26(4):354–359, 1983.

[8] M. Hosseini and H. Abolhassani. Hierarchical co-clustering for web queries and
selected urls. In Web Information Systems Engineering-WISE 2007, pages
653–662, 2007.

[9] T. L. Jingxuan Li, Bo Shao and M. Ogihara. Hierarchical co-clustering: a new
way to organize the music data. In IEEE Transactions on Multimedia, pages
1–25, 2011.

[10] D. Lee and H.S.Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788–791, 1999.

[11] J. Li and T. Li. Hcc: a hierarchical co-clustering algorithm. In SIGIR’10, pages
861–862, 2010.

[12] B. Long, Z. Zhang, and P. S. YU. Co-clustering by block value decomposition.
In SIGKDD’05 Conference Proceedings, 2005.

[13] R.El-Yaniv and O.Souroujon. Iterative double clustering for unsupervised and
semi-supervised learning. In ECML, pages 121–132, 2001.

[14] N. Slonim and N. Tishby. Document clustering using word clusters via the
information bottleneck method. In ACM SIGIR, 2000.

[15] G. Xu and W. Y. Ma. Building implicit links from content for forum search. In
SIGIR ’06, pages 300–307, 2006.

