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Abstract

Data streams are often locally correlated, with a sub-

set of streams exhibiting coherent patterns over a subset

of time points. Subspace clustering can discover clusters

of objects in different subspaces. However, traditional sub-

space clustering algorithms for static data sets are not read-

ily used for incremental clustering, and is very expensive for

frequent re-clustering over dynamically changing stream

data. In this paper, we present an efficient incremental sub-

space clustering algorithm for multiple streams over sliding

windows. Our algorithm detects all the δ-CC-Clusters,

which capture the coherent changing patterns among a set

of streams over a set of time points. δ-CC-Clusters are

incrementally generated by traversing a directed acyclic

graph pDAG. We propose efficient insertion and deletion

operations to update the pDAG dynamically. In addition, ef-

fective pruning techniques are applied to reduce the search

space. Experiments on real data sets demonstrate the per-

formance of our algorithm.

1 Introduction

Stream mining problem has attracted a lot of research

interest due to emerging stream applications such as net-

work monitoring, sensor networks, financial data analysis,

etc. Different from static data set, stream data is dynami-

cally changing, potentially infinite, and possibly with fast

speed, which poses new challenges to mining algorithm de-

sign.

To find interesting patterns for multiple data streams

evolving over time, clustering stream into groups which

exhibit coherent patterns has attracted significant interest.

Streams are often inherently correlated. For example, the

traffic volumes of connections in the same network, the

stock prices of related businesses, the environmental read-

ings from nearby sensors often exhibit coherent or corre-

lated patterns. Traditional distance-based clustering meth-

ods group together streams similar to each other. The dis-

tance between streams are evaluated over the entire time

dimension. However, for real world data, the stream corre-

lations are typically local and only to a subset of time points

for a subgroup of streams. Therefore, subspace clustering is

more effective for discovering patterns over any subgroup of

streams and subset of time points. Stream data is dynamic.

Subspace clustering algorithms for static data-sets cannot

readily be used for incremental computation and mainte-

nance in stream setting. Re-clustering whenever stream data

is updated can be quite expensive especially for large win-

dow size or for the entire stream.

In this paper, we propose an efficient incremental sub-

space clustering algorithm. Our subspace clustering model

δ-CC-Cluster considers the coherent changing pattern of a

subgroup of streams over a subset of time points. Our model

exerts two constraints for the subspace cluster. 1) Direc-

tion Constraint: the offsets of all the streams between any

two time points inside the cluster are of the same direction

(increasing or decreasing), and 2) Difference Constraint:

the maximum difference between the offsets of any two

streams over two time points inside the cluster is bounded

by δ. Based on the clustering model, we propose an effi-

cient incremental algorithm for computing δ-CC-Cluster.

The algorithm organizes the current patterns or potential fu-

ture patterns into a directed acyclic graph pDAG accord-

ing to the Anti-monotone Property. Whenever a new time

point is considered, the patterns in pDAG are accessed and

extended to obtain new patterns in a certain order so that

search space can be greatly reduced. Other pruning tech-

niques are also proposed to further improve the algorithm

performance.

2 Related Work

Subspace clustering has been extensively studied [3, 4, 2,

1] in recent years. It finds clusters that exist in multiple, pos-

sibly overlapping subspaces within high dimensional data

sets. In this section, we mainly review related work in δ-

Clusters. δ-Clusters is a unique kind of subspace clusters

that use coherence as the similarity measure for clustering

objects over a subset of dimensions. It was first proposed

in [5] to identify clusters of genes which exhibit coherent

expression levels over subset of conditions. In [10], pScore

is proposed as the metric to evaluate the coherence within a
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subspace δ-cluster described by similar shifting and scaling

patterns. Liu and Wang [8] proposed OP-Cluster, which de-

fines the coherent ordering of values of a cluster of objects

over a subset of attributes.

There are many algorithms for clustering data streams.

We will only review the work in subspace clustering for data

streams. Kontaki et al. [7] presented an algorithm for incre-

mental subspace clustering over a set of data streams. They

proposed α-clusters, and provided efficient algorithms for

computing the α-clusters incrementally using a set of prun-

ing techniques. However, α-clusters only consider the sub-

set of consecutive points over the time point dimension. In

this paper, we consider a subspace clustering model which

considers any subset of time points inside the sliding win-

dow. Narahashi and Suzuki [9] proposed an incremental

subspace clustering algorithm to analyze web access log

data for detecting the hostile accesses. Their algorithm uses

a CF tree to compress data and effectively detect the sub-

space clusters.

3 Model

Consider a set of streams S = {s1, . . . , si, . . . , sm} over
a sequence of time points 〈t1, t2, . . . , tn〉, where tn is the

current time point. We are interested in the patterns exist-

ing in the latest w time points T = 〈tn−w+1, . . . , tn〉. The
stream data over this sliding window of size w can be repre-

sented as matrixW = (di,j)m×w, where the ith row corre-

sponds to stream si, the jth column corresponds to the jth

time point inside the sliding window which is tn−w+j , also

denoted as tWj .

Given the sliding window data matrix W = (di,j)m×w

over the stream set S and time point set T , we first de-

fine the Offset-direction Constraint which describes the co-

herent offset direction exhibited by a pair of streams si1 ,

si2∈ S over a pair of time points tWj1 , t
W
j2
∈ T .

Definition 3.1 Offset-direction Constraint (Dir-C). Given

sliding window data matrix W over stream set S and time

point set T , an Offset-direction Constraint is defined on a

2-by-2 sub-matrix

∣∣∣∣
di1,j1 di1,j2

di2,j1 di2,j2

∣∣∣∣ of W on any stream

pair si1 , si2∈ S, and any time point pair tWj1 , t
W
j2
∈ T which

requires:

sign(di1,j2 − di1,j1) = sign(di2,j2 − di2,j1). (1)

With Offset-direction Constraint, we define the Offset-

difference Constraint as follows:

Definition 3.2 Offset-difference Constraint (Dif-C). Given

sliding window data matrix W over stream set S and time

point set T , an Offset-difference Constraint is defined on

a 2-by-2 sub-matrix

∣∣∣∣
di1,j1 di1,j2

di2,j1 di2,j2

∣∣∣∣ ofW on any stream

pair si1 , si2∈ S, and any time point pair tWj1 , t
W
j2
∈ T which

requires:

|∆i1
j1,j2
−∆i2

j1,j2
| ≤ δ (2)

To allow minor noises, we define

∆i
j,j′ =

{
di,j − di,j′ if |di,j − di,j′ | > γ

0 otherwise

where δ, γ are user-defined thresholds.

Based on Dir-C and Dif -C, we define our clustering

model as follows:

Definition 3.3 δ-CC-Cluster. Given sliding window data

matrix W over stream set S and time point set T . For any

subset of streams Sp, and any subset of time points Tp,

(Sp, Tp) is a δ-CC-Cluster iff. any 2-by-2 sub-matrix in

WSp,Tp
satisfies Dir-C and Dif -C.

In fact, Dif -C is the same requirement as in δ-pCluster

[10] and restricts p-Score to be smaller than δ. δ-pCluster

controls the maximum difference between the offsets of any

two streams for any pair of time points inside the cluster.

However, it does not require the offsets to be in the same

direction (increasing/decreasing). In fact, the offset direc-

tion becomes critical if we have a considerably large δ (in

which case we want to relax δ to get more patterns). δ-CC-

Cluster controls both change in direction and maximum

offset difference using Dir-C and Dif -C, and therefore

qualifies as both a δ-pCluster and an OP -Cluster. As a

result, the δ parameter can be safely and flexibly adjusted to

get the patterns with desired quality of compactness.

In this paper, we consider δ-CC-Cluster (Sp, Tp) as a
significant pattern if it satisfies |Sp| ≥ nr and |Tp| ≥ nc,

where nr, nc are user defined thresholds for minimum num-

ber of streams (rows) and minimum number of time points

(columns) required for a cluster.

4 Algorithms

Subspace clustering over data streams requires perform-

ing the clustering process in a sliding window over the

streaming data. To avoid computationally intensive re-

clustering, an incremental clustering algorithm is required.

4.1 pDAG and pTable

We maintain a directed acyclic graph pDAG and a pat-

tern table pTable which record all the δ-CC-Clusters for

the current sliding window W as well as all the potential

δ-CC-Clusters (#rows ≥ nr but #columns < nc)

for future sliding windows. Note that all clusters in the

current window are not potential δ-CC-Clusters (even if

#rows ≥ nr). Trivially storing all the δ-CC-Clusters

720720720728728
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Figure 1. Initial sliding window and corresponding
pDAG and pTable. (a) is the initial sliding window data

matrix. (b) is the corresponding pDAG of (a). (c) is the

corresponding pTable of (a). Here, w = 6, δ = 4, γ = 2,
nr = 3, nc = 4. The detailed initialization process is illus-
trated in Fig. 2.
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Figure 2. Initialization process for pDAG and pTable for
the first sliding window. Here, w = 6, δ = 4, γ = 2,
nr = 3, nc = 4. The sliding window data matrix is in
Fig.1(a). The final pDAG and pTable after initialization are

in Fig.1(b), Fig.1(c).

is extremely inefficient for both memory usage and pattern

growth. Therefore, carefully designed pruning techniques

and pattern growth strategies are used to greatly reduce the

search space and improve the performance.

In pTable, δ-CC-Clusters and potential δ-CC-

Clusters (Sp, Tp) are organized according to the cor-
responding time sequence Tp = 〈ti1 . . . tik

〉 (ti1 <

. . . < tik
) (We will use “pattern” to refer to any such

(Sp, Tp) recorded inside pTable in the following discus-

sion). For example, (Sp1
, Tp), . . . , (Spi

, Tp) share entry
ti1 . . . tik

: Sp1
, . . . , Spi

in pTable (see Fig.1(c), entry

t3t4 : {s1s3s4}, {s3s4s5}). Each Sp satisfies |Sp| ≥ nr.

However, not every Tp has length k ≥ nc. Note that even if

the length of Tp is smaller than nc, the corresponding pat-

tern could be potential δ-CC-Clusters in the future. The

pattern entry ti1 . . . tik
: Sp1

, . . . , Spi
is indexed by the first

time point ti1 and first time pair ti1ti2 for easy manipulation

in pattern growing process (see Fig.1(c)).

In pDAG, each node uniquely represents a time point

ti, ti ≤ tn, where tn is the current time point (Fig.1(b)).

For any edge tj → ti, we have tj > ti. Each path in

pDAG ti1 ← . . .← tik
corresponds to an entry in pTable:

ti1ti2tik
: Sp1

, . . . , Spi
. For example in Fig.1(b), path t2 ←

t3 ← t4 corresponds to entry t2t3t4 : {s1s3s4} in Fig.1(c).
Note that not every pattern (Sp, Tp)with |Sp| > nr is stored

in pTable, therefore, not every pattern can find the corre-

Algorithm 1 Initialization(t̂i)

Input t̂i: stream data column at current time point ti

1: Insert(t̂i, pDAG, pTable)

2: Prune(pDAG, pTable)

Algorithm 2 IncConstruct(t̂i)

Input t̂i: stream data column at current time point ti

1: Delete( ˆti−m, pDAG, pTable)
2: Insert(ti, pDAG, pTable)

3: Prune(pDAG, pTable)

sponding path. For example, pattern (s1s3s4, 〈t2t4〉) has
3 streams (nc = 3), but it is not in pTable and does not

have corresponding path in pDAG since it is not a δ-CC-

Cluster and it is not possible to be one in the future. In

addition, for time sequence T1, T2 corresponding to two en-

tries in pTable, if T1 ⊂ T2, then the path in pDAG for

T1 is a sub-path of the path for T2. If we traverse pDAG

from terminal nodes which have no incoming edges, pDAG

guarantees we will meet all the patterns with growing time

sequence patterns.

In the following section, we will describe in detail the

algorithm of constructing and updating pDAG and pTable

to incrementally generate the patterns. The algorithm has

two phases. The initialization phase constructs pDAG and

pTable for the initial sliding windowW0. After the sliding

window is filled up, the incremental growing phase updates

pDAG and pTable of the current sliding windowW to ob-

tain pDAG and pTable for the next sliding window W ′.

The brief routines of both phases are illustrated in Algo 1

and Algo 2.

4.2 Initialization

We begin with an example of how pDAG and pTable
are constructed during the initialization phase (see Fig.1).
Before proceeding, we first introduce time-pair MDS
(maximal dimension set)[6]. A δ-CC-Cluster C1 =
(S1, 〈ti, tj〉) is a time-pair MDS if there exists no δ-
CC-Cluster C2 = (S2, 〈ti, tj〉) such that S1 ⊂ S2.
Particularly, we denote StreamSets(titj) as the set
{Si,j |(Si,j , 〈ti, tj〉) is a time-pair MDS}. In general, for
any Tp ⊆ T , we define StreamSets(Tp) as {Sp|(Sp, Tp)
is a δ-CC-Cluster}. We also define

StreamSets(T1)
f\

StreamSets(T2) = {Sk|∃S1, S2 : (S1 ∈

StreamSets(T1)) ∧ (S2 ∈ StreamSets(T2)) ∧ (Sk = S1

\
S2)}.

In the following, we describe the process of building

pDAG and pTable for the initial sliding windowmatrixW0

(Fig.1(a)), with parameters w = 6, δ = 4, γ = 2, nr = 3,
nc = 4, pDAG and pTable.

1. Initially, pDAG and pTable are empty.
2. When t1 comes, node t1 is inserted into pDAG. We then

create an empty entry indexed by t1 inside pTable (Fig.2(a)).
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3. When t2 comes, we insert node t2 into pDAG, and create

an empty entry indexed by t2 inside pTable (Fig.2(b)). We

compute the time-pair MDSs between t2 with every other

node in pDAG, i.e., obtain StreamSets(t1t2). We prune
off any S′ ∈ StreamSets(t1t2) where |S

′| < nr, then

StreamSets(t1t2) = {s1s3s4}. We add edge t2 → t1 into

pDAG, and add corresponding entry t1t2 : {s1s3s4} into
pTable, which is indexed by t1 and t1t2.

4. When t3 comes, we insert node t3 into pDAG, we create

an empty entry indexed by t3 inside pTable (Fig.2(c)).

We compute the time-pair MDS between t3 with every

other node in pDAG, i.e., t1 and t2. The MDSs are not

empty, thus we add edges t3 → t1 and t3 → t2 into

pDAG, and insert t1t3 : {s1s3s4s5}, t2t3 : {s1s3s4}
into pTable. Then we start growing the old patterns using

t3 by traversing through all the paths in pDAG starting

from t3. For example, consider path t3 → t2 → t1.

Starting from t3, we set curStreamSets = {S},
where S is the whole stream set, and then move to node

t2. At t2, we get StreamSets(t2t3) from pTable.

We update curStreamSets = curStreamSets eT

StreamSets(t2t3), if curStreamSets is not empty, then

move to node t1. At node t1, we get StreamSets(t1t3).
Also, the path we have traversed is t2 → t1. We get

the corresponding StreamsSets(t1t2) from pTable,

and update curStreamSets = curStreamSets
eT StreamSets(t1t3) eT StreamsSets(t1t2).
If curStreamSets is not empty, we insert

t1t2t3 : currentMDS into pTable, with index t1 : t1t2.

Since t1 is already the end of the path, we stop. The traversal

of the other path t3 → t1 is similar.
5. When t4 comes, we update pTable and pDAG in a similar

way (Fig.2(d)).
6. When t5 comes, we update pTable and pDAG in a simi-

lar way(Fig.2(e)). After the insertion is done, we prune out

all the entries Tp : StreamSets(Tp) indexed by t1 where

|Tp| < 3. Those patterns can at most be extended by 1 after
t6 comes. After pruning, there is no pattern which is indexed

by t1t4. We also delete edge t4 → t1 from pDAG.
7. When t6 comes, similar insertion and pruning operations are

performed (Fig.2(f)).

The Insert and Prune operations are formally defined in

Algo 3 and Algo 4.

4.2.1 Insert Operation

Given sliding window W , the corresponding pDAG and

pTable, and the stream data t̂i of the new-coming time point

ti, the Insertion operation grows the patterns in pTable by

traversing pDAG to generate new patterns containing ti,

and update pDAG and pTable. To scan through all the old

patterns (Sj , Tj) in pTable for pattern growth, we consider

the following Anti-Monotone property:

Property 4.1 Anti-Monotone Property: If there exists no

pattern (Sj , Tj) which can grow with ti, i.e., StreamSets(
Tjti) = Φ, then no pattern (Sk, Tk), Tk ⊃ Tj can grow

with ti.

Algorithm 3 Insert(t̂i , pDAG, pTable)

Input t̂i: stream data column at current time point ti

1: Insert node ti into pDAG.
2: Create empty entry indexed with ti in pTable.
3: for every node tj ∈ pDAG do
4: Compute MDSs for〈tj , ti〉, get StreamSets(tjti)
5: Prune out all Sps where Sp ∈ StreamsSets(tjti) and |Sp| < nr
6: if StreamSets(tjti) is not empty then
7: Add edge ti → tj into pDAG
8: Insert entry tjti : StreamSets(tjti) into pTable indexed by tj :

tjti

9: end if
10: end for
11: Start from ti, traverse all the nodes in pDAG which is reachable from ti. Set

t∗ = ti, curStreamSets = {S}, curPath = 〈〉.
12: for every node tj where there exists tj ← t∗ in pDAG do
13: curPath = 〈tj , curPath〉
14: Look up pTable for StreamSets(titj)
15: Look up pTable for StreamSets(curPath), if |curPath| = 1, set

StreamSets(curPath) = {S}

16: Compute curStreamSets = curStreamSets eT

Streamsets(titj) eT StreamSets(curPath)
17: if curStreamSets is not empty then
18: Insert 〈curPath, ti〉 : curStreamSets into pTable
19: if If tj does not have outgoing edges in pDAG then
20: break
21: else
22: t∗ = tj , go to 11
23: end if

24: end if

25: end for

Algorithm 4 Prune(ti , pDAG, pTable)
Input ti: current time point

1: for every index time point tj ∈ pDAG do
2: for every entry Tp : StreamSets(Tp) indexed by tj do

3: if |Tp|+ (tj − t1) + (tw − ti) < nc then
4: Delete Tp : StreamSets(Tp) from pTable
5: if there is no entry indexed by the same secondary index then
6: Delete the corresponding edge of the secondary index from pDAG.
7: end if

8: end if

9: end for

10: end for

This Anti-Monotone property determines our search

strategy during pattern growth. The Insertion operation

scans all the patterns in pTable by traversing through all

the paths in pDAG, where we always visit patterns (Sp, Tp)
with shorter Tp first. The Anti-Monotone property guaran-

tees that the search space is reduced during Insertion and all

the necessary patterns in pTable are examined and all the

possible patterns are generated. In addition to complete-

ness, the correctness is ensured by the following Lemma.

Lemma 4.1 Consider sliding window W over stream set

S and time point set T , the new incoming time point ti, if

Insert operation inserts an entry 〈Tp, ti〉 : SS, then for any

pattern (Sp, 〈Tp, ti〉), Sp ∈ SS, we have (Sp, 〈Tp, ti〉) is a
δ−CC−Cluster, and Sp ≥ nr.

Suppose that entry 〈Tp, ti〉 : SS is generated at node tj .

According to Algo 3, SS = curStreamSets is computed

at line 16. If |Tp| = 1, SS = S
⋂̃

StreamSets(tjti)⋂̃
S = StreamSets(tjti). Therefore, for any Sp ∈
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SS, (Sp, 〈Tp, ti〉) is the MDS for (tj , ti), thus it is a
δ−CC−Cluster. According to the pruning at line 5, we

also have Sp ≥ nr. If |Tp| > 1, let Tp = 〈T ′p, tj〉,

then SS = SS′
⋂̃

StreamSets(tjti)
⋂̃

StreamSets(T ′p).
Here, SS′ is generated at the previous node, and entry

〈T ′p, ti〉 : SS′ has been inserted to pTable. We only need

to prove that ∀Sp ∈ SS, t′, t′′ ∈ Tp

⋃
{ti}, (Sp, 〈t

′, t′′〉) is
a δ-CC-Cluster. First, if t′, t′′ ∈ Tp, it holds. Second, if

t′, t′′ are ti and tj , it holds. Finally, if one of t
′, t′′ is ti, the

other one is in T ′p, it also holds.

4.2.2 Prune Operation

The Prune operation prunes out all the patterns that are

not or unable to be significant patterns, which reduces the

search space for future pattern growth.

Some pruning criteria are applied inside the Insert op-

eration.

Pruning Criterion 1 During pattern growth in Algo 3,

any generated MDS (Sp, 〈tj , ti〉) for the new time point ti
and a previous time point tj with |Sp| ≤ nr is pruned out.

Pruning Criterion 2 During the traversal of the pDAG

along a path, if at a node tj , the patterns at tj cannot grow

with the new time point ti, then stop moving forward along

that path. This pruning criterion is according to the Anti-

Monotone Property.

In Prune operation, we perform pruning according to the

following critera.

Pruning Criterion 3 For any pattern (Sp, Tp) in pTable

where Tp starts with tj , suppose that the first time point of

the current sliding window is t1, the sliding window size is

w, the current time point is ti, then (Sp, Tp) is not a poten-
tially significant pattern if |Tp|+(tj − t1)+ (tw− ti) < nc

(see Algo 4). If the sliding window is full, then tw = ti.

The current size of the pattern (Sp, Tp) along the time
dimension is Tp. If the pattern starts at tj with t1 as the

starting time point of the sliding window, then the pattern

(Sp, Tp) can at most be extended by (tj − t1) + (tw − ti)
along the time dimension, where ti is the current time point.

Therefore, for pattern (Sp, Tp) to be able to be a future sig-
nificant pattern, it has to satisfy |Tp|+(tj−t1)+(tw−ti) ≥
nc.

Pruning Criterion 4 For any edge e = ti → tj in

pDAG, if there are no entries indexed by e in pTable, then

delete e.

There is no entry indexed by e since 〈tj , ti〉 is not in any
significant or potentially significant pattern. Therefore, e

can be deleted to reduce the search space.

4.3 Incremental Construction

After sliding windowW is filled up, pDAG and pTable

are incrementally updated according to Algo 2. The Delete
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Figure 3. Example of incremental construction: slid-
ing window t2-t7 and corresponding pDAG and pTable

operation deletes all the related patterns containing the old-

est time point and all its incident edges from pDAG, which

will be obselete. Then the Insert and Prune operations are

performed as Initialization phase.

Fig.3 illustrates an example of incremental construction

from sliding window over 〈t1, . . . , t6〉 (Fig.1(a)) to the next
sliding window over 〈t2, . . . , t7〉 (Fig.3). The pDAG and

pTable are after Delete, Insert and Prune operations.

5 Experiments

We performed our experiments on two real data sets 1)

STOCK Data Set: 30 stocks are chosen from historical data

of S&P 500 stocks1, each has 253 values which represent

the daily open prices of that stock throughout the year from

May, 2006 till May, 2007. 2) Climate Data Set2: tempera-

ture data for 25 cities, each contains the daily temperature

of the corresponding city throughout a year.

The performance of our algorithm is mainly dependent

on the pruning efficiency obtained in a sliding window.

Higher pruning efficiency results in faster incremental com-

putations as the sliding window advances in time. The prun-

ing efficiency is dependent on several factors. In order to

measure the performance of our experiments, we used a

sliding window of size 15 for STOCK data set (3 weeks)

and 14 for climate data set (2 weeks). We used default pa-

rameters of δ = 4.0, γ = 0.2, nr = 5 and nc = 7 for the
stock data set, and δ = 0.3, γ = 0.002, nr = 4, nc = 7
for the climate data set. In our experiments, we tested the

performance of our algorithm by using default parameters

for the datasets and varying one parameter at a time.

Minimum number of time point(nc): We expect higher

pruning efficiency as nc increases. Fig. 4(a) and 4(f) com-

pare the performance of our algorithm against the algorithm

without pruning as nc varies. We observe that for larger nc,

our algorithm achieves higher speedup as expected. Our al-

gorithm also performs better in capturing larger patterns.

Overall, for both data sets, our algorithm exhibits 2-18x

speedup over the algorithm without pruning.

Stream count threshold nr: As nr increases, the number

of patterns common to at least nr streams decreases, there-

fore increasing the pruning efficiency. Figs. 4(b), and 4(g)

show the performance of our algorithm by varying nr. We

1http://biz.swcp.com/stocks/
2http://hprcc.unl.edu/data/index.php
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Figure 4. Performance on Stock (the first row) and Climate data (the second row)

observe that our algorithm is up to 4x faster on the stock

data and 5x faster on climate data.

δ threshold: The δ threshold determines the maximum dif-

ference between two points in a pattern. As δ increases,

we expect to identify more patterns satisfying the threshold.

Therefore, the pruning efficiency decreases as δ increases

and the overall performance decreases. Fig. 4(c), and Fig.

4(h) highlight the performance of our algorithm with vary-

ing δ, with a speedup of 4x in Fig. 4(c) and a speedup of 5x

faster in Fig. 4(h).

Sliding window size: As the sliding window size increases,

we expect higher number of patterns. Therefore, we expect

the overall performance to decrease as the sliding window

size increases and vice-versa. Fig. 4(d), and Fig. 4(i) in-

dicate that our algorithm achieves 5x and 6x higher perfor-

mance than without pruning. Besides, the response time for

our algorithm increases slowly and scales better than the al-

gorithm without pruning.

Number of streams: Similar to the sliding window size

parameter, as the number of streams increases we expect

higher number of patterns. Therefore the response time is

expected to decrease as the number of streams increase. We

tested the algorithms on Stock data sets of sizes 10, 20, 30,

40, 50 (Fig. 4(e)), and climate data sets of sizes 10, 15, 20,

25, 30 (Fig. 4(j)). Our algorithm with pruning techniques is

up to 4x faster in Fig. 4(e) and up to 5x faster in Fig. 4(j).

6 Conclusion

We proposed an efficient incremental algorithm for sub-

space clustering of multiple streams over sliding windows.

Our subspace clustering model δ-CC-Cluster captures the

coherent changing pattern of a subgroup of streams over a

subset of time points. We maintain all the significant pat-

terns and potential future significant patterns of the current

sliding window and organize them into an acyclic graph

pDAG and incrementally update the pDAG efficiently.

The experiments over two real data sets demonstrate the ef-

ficiency and effectiveness of our algorithm.
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