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ABSTRACT

As a promising tool for identifying genetic markers underlying
phenotypic differences, genome-wide association study (GWAS) has
been extensively investigated in recent years. In GWAS, detecting
epistasis (or gene-gene interaction) is preferable over single locus
study since many diseases are known to be complex traits. A brute
force search is infeasible for epistasis detection in the genome-
wide scale because of the intensive computational burden. Existing
epistasis detection algorithms are designed for dataset consisting
of homozygous markers and small sample size. In human study,
however, the genotype may be heterozygous, and number of
individuals can be up to thousands. Thus existing methods are not
readily applicable to human datasets. In this paper, we propose
an efficient algorithm, TEAM, that significantly speeds up epistasis
detection for human GWAS. Our algorithm is exhaustive, i.e., it
does not ignore any epistatic interaction. Utilizing the minimum
spanning tree structure, the algorithm incrementally updates the
contingency tables for epistatic tests without scanning all individuals.
Our algorithm has broader applicability and is more efficient than
existing methods for large sample study. It supports any statistical
test that is based on contingency tables, and enables both family-
wise error rate (FWER) and false discovery rate (FDR) controlling.
Extensive experiments show that our algorithm only needs to examine
a small portion of the individuals to update the contingency tables,
and it achieves at least an order of magnitude speedup over the brute
force approach.

1 INTRODUCTION

Genetic association analysis examines the statistical correlatio

(2005); Hoh and Ott (2003); Musaet al. (2007) for reviews of
current progress and challenges in epistasis detection in GWAS.

There are two grand challenges in epistasis detection. The first is
to develop statistical tests that can effectively capture the interaction
between SNPs. Various tests have been proposed for two-locus
association study, such as the chi-square test, likelihood-ratio test,
and entropy-based test (Balding, 2006). Another crucial challenge in
two-locus association study is the intensive computational burden
imposed by the enormous search space. Suppose that there are
N SNPs forM individuals. The overall search space of pairwise
interactions isV/ N (N —1) /2. The large number of tests also causes
the multiple testing problem (Miller, 1981). Controlling the family-
wise error rate (FWER) and false discovery rate (FDR) are standard
ways to control the error rate (Dudoit and Laan, 2008; Westfall
and Young, 1993). In the FWER and FDR controlling, permutation
test is preferred over simple Bonferroni correction since many
SNPs are correlated (Churchill and Doerge, 1994). The correlation
structure among genotype profiles is preserved across permutations
and is incorporated into permutation p-value estimation. The idea of
permutation test is to randomly shuffle the phenotype values among
the individuals and recalculate the test statistics. The distribution
of these test values are used to estimate the null distribution.
Permutation test dramatically increases the search space. With
K permutations, the entire search space of two-locus association
mapping isKk M N (N — 1) /2. Consider a moderate GWAS setting,
in which M = 1,000, N = 100,000, and KX = 1,000. The
size of the search space is abdut 10'°. Apparently, a brute
force enumeration of the search space is infeasible and thus efficient
algorithms are in demand.

Although the computational challenge of epistasis detection has
been well recognized, the algorithmic development is still very
fimited. For a small number of SNPs, e.g.,, from tens to a

devel ¢ high-th h . hnologi Sew hundreds, exhaustive algorithms that explicitly enumerate all
evelopment of high-throughput genotyping technologies, genetiq o qinie NP combinations have been developed (Nedsal,

variation of human and other model organisms has been measur 01: Ritchieet al, 2001). These methods are not scalable for

at ge_nome-mde scale. A? the most a_bundant source of genet{fenome-wide computing. Genetic algorithm (Carlbetgl., 2000)
variation, the number of single nucleotide polymorphism (SNPs)has been proposed. This approach is heuristic, which does not

n pUb.I'(t:. datatbgsesG\(/(\jIX(SBaE, JﬁX) N l;p o rtnlllljlons. Ger}qme;wmlite uarantee to find the optimal solution. To avoid explicitly exploring
association study ( ) has been shown to be a promising too e entire search space, a common heuristic used in epistasis

locate the genetic factors that cause phenotypic differences (Saxeﬁ%tection is a two-step approach (Evastsal, 2006; Hohet al
et al, 2007; Scuteret al, 2007; WTCCC, 2007; Weedoet al, 2000; Yanget al, 2009). First, a subset of SNPs are selected

2007). Epistasis, or gene-gene interaction detection, has receves cording to certain criteria. Then the selected SNPs are used for

increasing attention in complex trait analysis. Different from smgle-Subsequent epistatic analysis. However, the SNP screening process

!OCUS. approach, the goal_of two-locus epistasis d_etgchon_ IS t%uffers from the same problem as the single-locus approach. SNPs
identify interacting SNP-pairs that have strong association with the

phenotype. Please refer to Balding (2006); Hirschhorn and Daly

(© Oxford University Press 2010. 1



2
2]
0
0
@
0
&
n
o
wn
=
0
3
n
o
n
©
L
)
2
2
©
2
w

Sia Sis Sic St Sis Sio Sao So1 Sz Saz Sos |

X1 0 0 0 1 2 0 2 0 2 0 0 2 0 0 0 2 0 2 1 0 0 2 2 (0
X 2 2 0 2 0 2 0 2 2 2 2 0 1 0 0 2 0 2 1 0 2 2 2 2
X3 2 0 0 2 0 2 0 1 2 1 2 2 1 0 2 2 0 2 1 2 2 2 2 2
X4 0 2 2 0 0 0 2 1 0 2 2 0 0 0 0 0 0 0 1 0 1 2 0 Qg
X5 0 2 2 0 0 0 1 1 2 1 2 0 0 0 0 0 0 2 1 0 2 2 0 2
X 0 2 2 0 0 0 2 1 0 1 2 0 0 0 0 2 0 2 1 0 2 2 0 0
Yo 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 q
Y1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 Qg
Ys 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 Qg
Y3 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 Qg
Ys 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0
Ys 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1

Table 1. An example dataset consisting of 6 SNPsX 1, - - - , X}, the original phenotype Yy and 5 phenotype permutations{Y1,---,Ys} for 24
individuals {S1,- -, S24}

with strong epistasis but low marginal effects are likely to be filtered e Experimental results demonstrate that TEAM is more efficient
out (Zhanget al., RECOMB2009). than existing methods for large sample study.

Recently, the approach based on search space pruning has
been shown to be able to dramatically speed up the process of TEAM incorporates permutation test for proper error controlling.
epistasis detection without compromising the optimality of the The key idea is to incrementally update the contingency tables of
results. FastANOVA (Zhangt al., 2008) and FastChi (Zhareg al., two-locus tests. We show that only four of the eighteen observed
PSB2009) are specifically designed for ANOVA test and chi-squardrequencies in the contingency table need to be updated to compute
test respectively. The COE algorithm (Zhagtgal., RECOMB2009) the test value. In the algorithm, we build a minimum spanning
is a more general approach that is applicable to all convex testéree (Cormenet al, 2001) on the SNPs. The nodes of the tree
Utilizing an upper bound derived for the test being used, thesare SNPs. Each edge represents the genotype difference between
algorithms only need to examine a small number of promising SNPthe two connected SNPs. This tree structure can be utilized to
pairs and prune the SNP-pairs that are proven to have no strorgpeed up updating process for the contingency tables. A majority
association with the phenotype. Unlike heuristic approaches, thesaf the individuals are pruned and only a small portion are scanned
algorithms are guaranteed to find the optimal solution. Althoughto update the contingency tables. This is advantageous in human
these methods provide promising alternatives for GWAS, therestudy, which usually involves thousands of individuals. Extensive
are two major drawbacks that limit their applicability. First, they experimental results demonstrate the efficiency of the TEAM
are designed for relatively small sample size and only considealgorithm.
homozygous markers (i.e., each SNP can be representefDasja
binary variable). In human study, however, the sample size is
usually large and most SNPs contain heterozygous genotypes asd THE PROBLEM OF TWO-LOCUS EPISTASIS
are coded using(), 1, 2}. These make existing methods intractable. DETECTION IN HUMAN GWAS

Second, although the FWER and the FDR are both widely used fog hatth d A& SNPS! X x
error controlling, existing methods are designed only to control the uppose that the genotype dataset consi (X1, X}

FWER. From a computational point of view, the difference in the for M individuals{51, --- , Sa }. We adopt the convention of using

FWER and the FDR controlling is that, to estimate FWER, for each0 _and' 2 1o represent the' homozygous majority and homozygous
inority genotype respectively, and 1 to represent the heterozygous

permutation, only the maximum two-locus test value is needed. " .

estimate the FDR, on the other hand, for each permutation, all two=aSe: Letp € {0,1} be ,the phenotype of interest (0 for controls

locus test values must be computed. Please refer to Section 2 fgnd 1 for cases). Lev” = {¥i,.--,Yi} be the set ofK

further details of the FWER and the FDR controlling. permutations ofo. !n each permytatlom., the phenotype labels
In this paper, we propose an exhaustive algorithm, TEANr are randomly reassigned to individuals with no replacement.

efficient epistasis detection in human GWAS. TEAM has several Table 1 shows an example dataset .Of SNPs and phenotype
advantages over previous methods. permutations. The genotype dataset consists of 6 SNRs: - - , X}

for 24 individuals{S1, - - , Sa24}. Individuals{Si,--- ,Si2} are

cases andSis, - - -, S24} are controls. The phenotype is permuted

] ’ _ Stimes,ie.Y’' ={Yi,---,Ys}.

e By exhaustively computing all two-locus test values in | ot 7 denote the statistical test to be used. Specifically, we
permutation test, it enables both FWER and FDR controlling. represent the test value of SNB and phenotyp#}, (0 < k < K)

o Itis applicable to all statistics based on the contingency tableas .7 (X;,Yy), and represent the test value of SNP-paif; )
Previous methods either are designed for specific tests aandY;, as.7 (X,;X;,Y%). A contingency table, which records the
require the test statistics satisfy certain property. observed values of certain events, is the basis of many statistical

tests. Table 2 shows contingency tables for the single-locus test

T (X:,Yr) and 7 (X, YY), genotype relationship between SNPs

1 TEAM stands for Fee-based fistasis Asociation Mpping. X; and X, and two-locus tes? (X; X, Yx).

e |t supports to both homozygous and heterozygous data.




X;=0| X;=1| X; =2 | Total X;=0| X;,=1| X; =2 | Total
Y, =0 | eventA | eventB | eventF Y, =0 | eventG | eventH event]
Y. =1 | eventC | eventD | eventF Y., =1 | eventJ eventL eventO
Total M Total M
(a) Contingency table fo (X, Y) (b) Contingency table fo7 (X, Yy,)

X;=0| X; =1 X; =2 | Total
X, =0 | eventS eventT” | eventR
X; =1 eventP | eventQ | eventU
X, =2 | eventV | eventWW | eventZ
Total M

(c) Contingency table for two SNP%s; and X ;

X, =0 X; =1 X, =2 Total
X;=0|X;=1|X,;=2|X;=0|X,;,=1|X;=2|X;=0|X;,=1]| X;=2
Y, = 0 | eventa; | eventas | eventas | eventb; | eventby | eventbs | evente; | eventes | eventes
Yi = eventc; | eventes | eventcs | eventd; | eventds | eventds | eventf, | eventfs | eventfs

Total M

(d) Contingency table fofX; X ;) andY

Table 2. Contingency tables for single-locus test§” (X, Y%), 7 (X, Y%), genotype relation betweer(X;, X ;), and two-locus test7 (X; X, Y%)

Because of the large number of hypotheses being tested, multipl@gorithm, TEAM, exhaustively computes the test values of all SNP-
testing problem has received considerable attention in GWASpairs for every permutation. It can be used for both the FWER
Controlling the FWER and FDR are two widely used approachesand the FDR controlling. In this paper, we mainly focus on the
to control the error rate. The FWER is the probability of having problem of permutation test, since it is the most computationally
at least one false positive. The FDR is the expected proportion ointensive procedure. Testing SNP-pairs using original phenotype
false positives among rejected hypotheses. Permutation test is tloan be treated as a special case of permutation test.
standard way to estimate the null distribution in both approaches.

Next, we briefly describe the typical procedures of the FWER and
FDR control. For statistical background of these approaches, pleasge FREE VARIABLES IN THE CONTINGENCY
refer to Dudoit and Laan (2008); Westfall and Young (1993) for  TABLE OF TWO-LOCUS TEST

details.
The FWER controlling procedur&or each permutatio¥y, € Y”, Let Eevens andOcven: denote the expected frequency and observed
frequency of an event in Table 2. Note that each event represents a

let 7y, represent the maximum test value among all SNP-pairs, i.e. L Lo
Fy, = max{T(X,X,,Y:)|[l <i < j < N}. The distribution of subset of individuals. For example, evénts a subset of individuals

{%,|Yrx € Y’} is used as the null distribution. Given an error satisfying(X; = 1 A Yy = 1), andOp represents its observed

rate threshold, thecritical value .7, is theaK-th largest value in gr(equsgic/y, '.'e'O,D_§ |€d‘.k*u—s'29 the :atz;egn ;ablzl, §0n3|der
{ P, [V € Y'}. ASNP-pair( X, X;) is considered significant ifits -3 2M%" (ie.,i = 3 andk = 4), we haveD = {So, 13, S10},

. .. . andOD = 3.
test value with the original phenotyp& exceeds the critical value, - . I .
e, ZX.X;,Yo) > . Many statistics, such as chi-square test and likelihood ratio test

T FDR contoling pocecetet PV represent e set o 75 E10E0 3 nclons of e cberved veduencies i contogenc
the pooled test values of all permutation tests, .} = ) y gency ’

(7(X.X,,Yo)[1 <i<j<N,€1<k< K}. Thep-value of the two-locus test valueZ (X;X;,Y:), one needs all eighteen
< i = = 9 —_ — .

observed frequencies for the events in the two-locus contingency
X:X;, Y. lcul X:X;,Y0)) = |{t > . X
E;SELX?&— Y5)|toé C;;?i?;lf ailtsd ﬁypgoportjionoc))i the‘{\fames table shown in Table 2(d). The following theorem shows that we
- PT; trju'llt e lose thaﬁ()’( X Yo). Letpo) < poo < only need four of the eighteen values to calculate the two-locus test
(EAVE . 1) P2 >

P(v(x—1)/2) be the ordereg-values of the original tests. Let = value given the three contingency tables in Tables 2(a), (b), and (c).

maxh{“d - P SII Iéwﬁf‘ﬁ)/z}. fThe r::'la;s:]c Benjamini-Hochberg  ryc5pen 3.1, For SNPsX;, X;, and permutationy, given
met_ 0 hrejects all hypotheses for which the corresponghugues the observed frequencies in Tables 2(a), (b), and (c), specificaly, th
are in the sefpq), p), -, P(w) }- values 0f Op, Or, 0,01, 00, Os, Op, Oy, Or, 0o, Ow, Or,

In the FWER controlling, we only need the maximum test vaIueOU 02}, all of the observed frequencies in Table 2(d) can be
of each permutation. To control the FDR, all test values need to b%etérmined if the values ¢D.,, Ou,, Oy,, Oy, } are known
29 39 29 3 :

computed to estimate thevalue of the original tests. The existing
algorithms, such as FastChi (Zhaeg al, PSB2009) and COE PROOF. See Appendix.
(Zhanget al, RECOMB2009), prune the SNP-pairs having weak

associations. Thus they cannot be used to control the FDR. Our SUppose that we have all the single-locus contingency tables,
i.e., Tables 2(a) and (b). Given a SNP-p@k;, X;), Table 2(c)




X5 10 ‘o to represent its observed frequency, i.€g,(X;X;,Y:) =

X1 . |d2(X;X;,Ys)|. This notation also applies to other events in the
11 6 contingency tables shown in Table 2. For example(X;, Yz)
6 represents the subset of individuals satisfyidg = 1 A Yz = 1),
. 3 andOp (X, Yr) = |D(X5, Yi)|.

Next we show that for any SNP-pa{X;X;) and an edge
(X;X}) € E(T), givenOq, (XX}, Yz), how to update the value
for Oq, (XX}, Yk). From the contingency tables in Table 2, it is
easy to see that

X4

Fig. 1. The minimum spanning tree built on the SNPs in the exaiple
dataset shown in Table 1 Oua, (XiX;,Yr) = [D(Xs, Vi) N Q(X3, X;)I,

and

is fixed. Thus, from Theorem 3.1, for permutatid®, once we O (XX, Vi) = |D(Xi, Yie) N Q(Xs, X))

have the values 0ofOy,,04,,0y,, 0}, 7 (X:X;,Y,) can be  The following theorem shows that, give@,,(X;X;,Y:) and
calculated accordingly. In the following, we show that these valuesD(X;,Y}), using the genotype difference associated with edge
can be computed incrementally utilizing a minimum spanning tree(X; X ), we can get the value @4, (X; X}, Yz).

built on SNPs. We focus on the incremental processfgy. The
same process can be applied to updage, Oy,, andOy,. We first ,
discuss how to updat@,, for a specific permutation. Then we show (X;X5) € E(T), we haveOa, (XiXj, Yi) = Oa, (Xi),(j’ Yi) +

that the procedure can also handle all the permutations in a batdh? (X Ye)N(X5.X5) o—130 213 |- D (X, Ye)N (X5 X5) (i—opua—2y |-
mode. PROOF. See Appendix.

THEOREM 5.1. For any SNP-pair (X;X;) and an edge

ExAMPLE 5.2. Using the example dataset in Table 1, let
i = 3, j = 2,7 = 5 andk = 4, ie, we
4 BUILDING THE MINIMUM SPANNING TREE ON consider SNP-pair(Xs;X2), permutationYy, and the edge
THE SNPS (X2X5) in Figure 1. Suppose that we already know that
To build a minimum spanning tree (Cormen al, 2001) on the 0,4, (X3X2,Ys) = 2, and eventD(X3,Ys) = {Si0, Si3,S19}.
SNPs, let the SNP$X1, X2, -+, X~} be the nodes and SNP- From Table 3, we haveX2 Xs) o—11ug2—1} = {S7, Ss, S10}, and
pairs (X:X;) (i # j) be the (undirected) edges. For each edge(X,X5)(1_oyu{1—2; = {S13}. Thus according to Theorem 5.1,
(X:X;), we denote its weight (the number of individuals having we haveD, (X3 X5, Y1) = O, (X3X2, Ya)+|{S10}|—|{S13}| =
different genotypes in the two SNPs)@$X; X;). A spanning tree 2. Note that by this way, we get the valueQf, (X3 X5, Y1) from
7 is a tree that spans (connects) all SNPs.WL€T) be its node set O, (X3 X», Ys)without scanning all individuals.
and E(7) be its edge set. Aninimum spanning treis a spanning
tree whose weightVr = 3 w(X:X;), where(X;:X;) € E(7), So far, we have discussed the procedure to update the value
is no greater than any other spanning tree. Figure 1 shows thef O, (XX, Yz) from Og, (X:X;, Ys) for a specific phenotype
minimum spanning tree built using the example dataset in Table IpermutationY. This procedure can be easily extended to handle
The number on each edge represents its weight. For example, @l the permutations. From Theorem 5.1, for any permutatigrto
X3 and Xs, there are 6 individuals{ Sz, Ss, S10, 512, S15, 520}, update the value Py, (X; X}, Yi) from O, (X; X, Y3), we need
having different genotypes. the value ofD(X;, Y3 ) and the genotype difference associated with
For any individual, the genotype difference fralf} to X; can  edge(X;X}). Note that the genotype difference is fixed once the
be any one of the six combinations, i.€), — 1 (indicating  minimum spanning tree is built. Next, we discuss how to compute
that the genotype inX; is 0, and the genotype iX; is 1),  pD(X;,Y;) for all permutationg Y3, s, - - - , Yi } in a batch mode
1 —-00—22— 01 — 2, and2 — 1. Using the jn detalil.
example dataset in Table 1, Table 3 shows the genotype differences| et D (X;) be a list of M entries, with each entry corresponding
between the connected two SNPs in the minimum spanning tree ity an individual. For each individud,,,, we record inD x (X:)[m]
Figure 1. We us€X;X;)(u—v} (u,v € {0,1,2}) to represent  the set of phenotypes satisfyifi; = 1 A Y = 1). For example,
the set of individuals whose genotype Xi; is v and genotype consider the dataset in Table 1, we have tiat(X3)[8] =
in X; is v. For example, (X3X2){1—2;p = {5,510}, and  {v, ¥3}. Table 4(a) shows the entries bfi (X3 ). Only non-empty
(X3X2)r1-230{0—2} = {52, Ss, S10}. entries, i.e.,.Dx (X;)[m] # 0, are shown in the table. It is easy to
see that, for any; andY}, we can getD(X;, Yx) from D (X;)
as follows:D (X3, Yz ) is the set of individuals whose corresponding
5 INCREMENTALLY UPDATING OBSERVED entries inD g (X;) containY}, as an element, i.e.,
FREQUENCY Oy,

In this section, we discuss how to updaf®;, by utilizing

the minimum spanning tree. For clarity, from now on, we useFor example, using the example dataset in Table 1, from Table 4(a),
d2(X;X;,Y:) to denote the specific evenl, for the SNP-pair  we know thatD (X3, Ys) = {S10, 513, S19}-

(X;X,) and permutationY, i.e., the subsets of individuals For SNP-pair(X;X;), let Oq, (X:X;) = [Oay(X:X;, Y1),
satisfying(X; = 1A X; = 1A Y, = 1). We useOq, (X; X, Yi) Oa, (XiX;,Y2), -+ ,0a,(X;X;,Yk)]. From Theorem 5.1 and

D(Xi,Yi) = {Sm|Yk € Dk (Xi)[m]}. 1)




[ fo—1] 1—=0 ] 0— 2 [ 2 -0 [ 1—-2 ] 2—1 |

(X3X2) [ ] {S2} {S12, 515,520} {Ss, S10} ]
(X2X5) {S7} {S13} {S3} {S1, S4, Se, S16, S23} 0 {Ss, S10}
(X5X6) 0 0 {S16} {So, Sa4} {S7} 0
(X6X1) {S4} | {Ss,S10} | {S5,59,S12,S23} {S2, 53,511, S21} 0 [
(X6X4) 0 0 0 {S16,S18} {S10} {Sa1}

Table 3. Genotype difference between the connected SNPs iretminimum spanning tree shown in Figure 1

individual id. | phenotype permutations Yi Yo Y3 Yi Y5
Sg {Ys5,Y3} Oua, (X3X5) after initializing 1 1 1 2 1

S10 {Y'g7 Ys, Y4,Y5} Od2 (X3X5) after updating fors, 1 1 1 2 1

Sis {Y1,Y2,Ys, Y5} O, (X3X5) after updating forSg 1 2 2 2 1

Si9 {Y3, Y4} Odg (X3X5) after updating forS1o 1 3 3 3 2

(a) Dk (X3) with empty entries omitt dod2 (X5 X5) after updating forsi; | O 2 3 2 !

(b) UpdatingOg, (X3X5) from Og4, (X3X2)

Table 4. Updating Og4, (X3X5) from Og, (X3X2) for all permutations in a batch mode

Equation (1), for any SNP-paifX;X;) and an edgéX;X}) € The procedure of updatin@,, (X;X}) from O, (X;X;) can
E(T), we can ge0g, (X; X)) from O, (X;X;) using D (X;) also be applied to update the remaining free variableg X, X;),
and the genotype difference information associated with edg®y, (X;X;), Oy (X;X;). Note that, to updateDy, (X;X;),
(X;X}). First, initialize Oa, (XiX}) = Oa,(X:Xj). Next, for O, (X:X;), we will need Fx (X;), which can be defined in a
everym (1 < m < M), if Y € Dg(X;)[m], we update similar way to that ofDx (X;): for each individualS,,,, we record

Ou, (X:X}) as follows: in Fx (X;)[m] the set of phenotypes satisfyifd; = 2AY;, = 1).
increas&q, (X; X5, Ye) if Sm € (X;X))10—130{2—1};
decreas®g, (X; X}, Yx) if Sm € (X; X)) 1—0juf1—2)- Algorithm 1: The TEAM Algorithm
. . Input: SNPsX’ = { X, Xo,--- , Xy}, phenotype
ExAmMPLE 5.3. Following Example 5.2, we consider the two permutations” = {Y3,Ya,--- , Vi }

SNP-pairs (X3 X2) and (X3X5), with (X»X5) being an edge  output: 7 (X, X;, Y4) for all possible two-locus tests
of the tree in Figure 1. Assume thd?x (X3) is as shown in
Table 4(a), andOq4, (X5X2) = [1,1,1,2,1]. From Table 3, the
genotype difference on ed@&> Xs) is (X2X5)(0—1ju{2—1} =
{S7, Sg, Sl()}, and(Xng){lao}U{lﬂg} = {513}. For individual
Sm € {S7,8s,510} (Sm € {Si3}), we need to increase
(decrease) the corresponding values(n, (X3 X>) according to
Dg (X3). Table 4(b) shows the updating process @y, (X3X5).
Initially, Oq, (X3X5) = Oa,(X3X2). For individual S7, since its
corresponding entry ik (X3), Di(X3)[7] = 0, Oa,(X3X5)
remains unchanged. For individudls, Dx (X3)[8] = {Y2,Y3},

compute and store all single-locus contingency tables;
build minimum spanning tre@;
for everyX; € L(7), do
computeDg (X;) and Fix (X5);
CompUtwdzd:;fos (XiXa);
compute (X; Xq, Y%) (1 < k < K) and output;
EnumStack.push(Oayds fo 5 (XiXa));
while EnumStack # () do
Odyds f2 2 (XiX;) = EnumStack.pop();
for everyX’ = adj(X;) do

we increase the values 6f4, (X3X5, Y2) andOq, (X3 X5, Ys) by / .

’ ) updateO X; X)) fromO X:X;);

1. Similarly, we increase and decrease the value®ig(XsXs) cgmputed;l(}h-?(s Yk)]()l <k <d}?3fa21ﬁj(outpljji'

according to D (X3) for S1o and Sy3. For individual Si9, we EnumStack ;Jusjf;(Od ) ;f (S(-X’-))' ;
. 2a3]27J3 KV PAl

do not have any update becauSe, ¢ {S7,Ss,Si0} andSio ¢

{S13}. The final result 94, (X3X5) = [0,2,3,2,1]. end

end
deleteX; from 7;

Note that to get the value @D, (X;X;), using a brute force end
approach, we need to scan(2 + K) x M matrix consisting
of the genotype of X;X;) and permutation{Y1, Y2, -+ , Yk}
for the M individuals. In the previous example, to compute the
value of O4,(X3X5), the cost of the brute force approach is
(3 4+ 5) x 24 = 192. Using our approach, the total number of
updates i$Dx (X3)[8]| + | Dx (X3)[10]| + |Dx (X3)[13]| = 10, & THE TEAM ALGORITHM
which is significantly less than the cost of the brute force approachTEAM examines SNP pairs through a double loop, where the
More formally, givenDx (X;), the time complexity of updating outer loop visits a leaf node at a time, and the inner loop traverse
Ou, (X:X}) from Og, (X X;) is O(w(X; X)) K). the rest of the tree, starting from the parent node of the leaf.




Let Oayds fs f5 (XiX;) = [Oay (XiX;), Oas (X X5), O, (X X5), experiments, we show the performance evaluation using different
Oy, (X:X;)]. Let L(T) € V(T) be the set of leaf nodes of the spanning trees.

minimum spanning tre€ . For anyleaf node X; € L(7), let

AP(X;) = {(XiX; )i # 4,X; € V(T)}. Let X, be the parent

node of X;. Since all SNPs are connected i once we have 7 EXPERIMENTAL RESULTS

Odyds 1215 (XiXa), we can update alDg, (X;X;) € AP(X;) by
enumerating the edges (7)) in a breath-first traversal starting
from X,.

In this section, we present extensive experimental results on the
performance of the TEAM algorithm. TEAM is implemented in
C++. We first evaluate the efficiency of TEAM. Then we present
the findings of epistasis detection in simulated human genome-wide

EXAMPLE 6.1. Consider the tree in Figure 1. LeX; = X3
study.

and X, = X.. We haVeAP(Xg) = {(X3X2)7 (X3X5),
(X3X6), (X3X1),(X3X4)}. Starting from X3, a breadth first . .
search will enumerate edgééX» Xs), (X5 Xs), (X6 X1), (XsX4)}, (-1 Efficiency Evaluation
which can be utilized to updat@q, 4, 1, 7, (X: X;) forthe SNP-pairs ~ We use both simulated human datasets and real mouse datasets
in AP(X3). for the efficiency evaluation experiments. The experiments are
performed on a 2.6 GHz PC with 8G memory running Linux system.
Once the SNP-pairs il P(X;) have been processed, we delete Human data The human datasets are generated by the simulator
X; from L(7T), and repeat the same process for another leaf nodedapsample (Wrightet al., 2007), which is publicly accessible
The overall algorithm is summarized in Algorithm 1. Given the from the websitént t p: / / www. hapsanpl e. or g. We evaluate
SNPsX’ = {Xi, Xs,---, Xy}, phenotype permutations’ = the performance of TEAM by comparing it with the brute force
{Y1,Y>2,--- ,Yx}, we first enumerate and store all single-locus approach since there is no previous algorithm readily applicable
contingency tables. We then build the minimum spanning free to human datasets. Note that the brute-force approach is very time
with genotype difference associated with each edge. For leaf nodeonsuming, we use a moderate number of SNPs and permutations
Xi, we computeDx (X;), Fr(X;), andOayd, .15 (XiXa). This  in the experiments so that the brute-force approach can finish
information is then used to incrementally upd@g, a, ., r; (X X ) in a reasonable amount of time. Unless otherwise specified, the
for all SNP-pairs inAP(X;). After processingdP(X;), we delete  default experimental setting is the following: #individuals = 400,
X, from 7 and repeat the procedure for the remaining leaf nodes. #SNPs=10,000, #permutations=100, and the case/control ratio is 1.
Time Complexity: The time complexity on generating all single- These experimental settings are chosen to demonstrate the efficiency
locus contingency tables and building the minimum spanning tregjain offered by TEAM over the brute-force implementation. TEAM
is O(MNK) and O(M N?) respectively. The time complexity to can handle much larger datasets. The performance of TEAM is
compute D (X;) and Fix (X;) for all SNPs isO(MNK). The  expected to follow the same trends presented in this section.
total updating cost for ald P(X;) is O(Ws N K). Thus the overall TEAM contains three major components: building the minimum
time complexity of TEAM isO(MNK + MN? +WrNK).Note  spanning tree, updating the contingency tables, and calculating the
that the complexity of the brute force approaciigV N2K). The actual test values. Note that TEAM can be applied to any statistics

number of SNP3V is the dominant factor. defined on the contingency table. With different statistics, the
Space Complexity: The dataset size i©®(M (N + K)). The only difference in runtime would be caused by the last component
space needed to store all single-locus contingency tabl@&\ek). calculating the statistics. In the experiments, we choose chi-square

The size of tre¢l” is O(W7). The size ofDx (X;) and Fx (X;) is test as our statistic. Figure 2 shows the running time comparison of
O(MK). Thus the total space complexity of TEAM@(M (N + TEAM and the brute-force approach using different experimental
K)+ K(N + M)+ Wr). settings. The y-axis is in logarithm scale. In these figures, we also
Note that we can do incremental computation using anyshow the detailed runtime of these three components.
exploration order. TEAM utilizes minimum spanning tree to update Table 5 shows the percentage of individuals pruned by TEAM
the contingency tables. The reason is that the cost of such updatender different experimental settings. Since in theory we can update
depends on the difference between the SNPs. The more simildhe contingency tables in any exploration order, in the table, we also
they are, the lower the cost. Since minimum spanning tree has thehow the pruning effect of using a random spanning tree and a linear
minimum weightWz over all spanning trees, using it to guide spanning tree to guide the updating process. The random spanning
the computation leads to optimal efficiency. It is not absolutelytree is generated by starting from a randomly picked SNP and
necessary to use a minimum spanning tree. As long as the tregrowing edges that connect the remaining SNPs in a random order.
is close to a minimum spanning tree, we should expect goodhe linear tree is a single path connecting all SNPs sequentially.
performance. An implementation issue in building the minimumFrom the table, we can see that TEAM prunes more effectively
spanning tree is that we ne&( N?) space to store all pair-wise than the other two updating methods. In the table, we also show
differences between the SNPs. In practise, we divide the SNPs intithe ratio of the tree weights and the size of the SNP dataset, i.e.,
sub-groups of equal size. A minimum spanning tree is built for eacHVr /(M x N), which is a determining factor of the pruning ratio.
group. Then the sub-trees are merged to a larger tree by randomlyote that varying the number of permutations and the case/control
connecting leave nodes. The tree built in this way is an approximateatio does not effect the tree being built.
minimum spanning tree. Our focus in this paper is not to build an Figures 2(a) depicts the runtime comparison when varying the
optimal minimum spanning tree, but to use the tree structure fonumber of SNPs. TEAM is more than an order of magnitude faster
efficient updating. Please refer to Eisner (1997); Graham and Helhan the brute-force approach. Among the three components of
(1985) for surveys on minimum spanning tree construction. In theTEAM, the procedures on building the minimum spanning tree
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Fig. 2. Comparison between TEAM and the brute-force approab on human datasets under various experimental settings

TEAM Updating by Random Tree Updating by Linear Tree

Settings || Tree weight | Pruning ratio || Tree weight | Pruning ratio || Tree weight | Pruning ratio
10k 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
# SNPs 20k 18.692% 93.981% 52.881% 88.895% 52.851% 89.390%
30k 19.314% 93.802% 53.011% 88.823% 52.946% 89.380%
200 16.641% 94.376% 53.358% 88.749% 53.179% 89.205%
# Individuals 300 17.342% 94.209% 53.343% 88.730% 53.142% 89.213%
400 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
100 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
# Permutations 300 17.721% 94.105% 53.326% 88.724% 53.158% 89.212%
500 17.721% 94.104% 53.326% 88.724% 53.158% 89.212%
100/300 17.721% 97.049% 53.326% 94.355% 53.158% 94.599%
Case/control ratiq| 200/200|| 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
300/100 17.721% 97.049% 53.326% 94.355% 53.158% 94.599%

Table 5. The tree weight and the proportion of the individuak pruned by TEAM on the human datasets

and calculating test values only take a small portion of the totaimouse dataset and the 140k Broad/MIT mouse dataset (Wade
runtime of TEAM. The runtime of TEAM is dominated by the cost and Daly, 2005). This merged dataset has 156,525 SNPs for 71
of updating the contingency tables. As will be shown later, TEAM mouse strains. The missing values in the dataset are imputed using
prunes most of the individuals when updating the contingencyNPUTE (Robert®t al., 2007). We compare TEAM and the recently
tables. In Figures 2(b), 2(c), and 2(d), we can also observe a similgsroposed COE (Zhangt al., RECOMB2009) algorithm, which
one to two orders of magnitude speedup of TEAM over the brutas specifically designed for association study in mouse datasets.
force approach when varying the number of individuals, the numbefhe default experimental setting is as follows: #individuals = 70,
of permutations, and the case/control ratio. #SNPs=10,000, #permutations=100, and the case/control ratio is 1.
Mouse data The mouse datasets is extracted from a set of Figure 3 shows the comparison results. In the figure, we also
combined SNPs from the 10k GNRt(t p: / / www. gnf . org/) plot the runtime of the brute force approach. Figure 3(a) shows
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Fig. 3. Comparison between TEAM, COE, and the brute force apprach on mouse datasets under various experimental settings

| Dataset | Significant SNP-Pair | Chromosome and Location | FDR [ FWER |

(rs768529, rs3804940) | (chrl: 51946762, chr3: 7520545) | 0.00067| O
(rs768529, rs756084) (chrl: 51946762, chr3: 7536149) | 0.00067| O
1 (rs768529, rs779742) (chrl: 51946762, chr3: 7558058) | 0.00067| O
(rs768529, rs1872393) | (chrl: 51946762, chr3: 7546236) | 0.00067| 0.004
(rs768529, rs779744) (chrl: 51946762, chr3: 7555121) | 0.00067| 0.004
(rs768529, rs6764561) | (chrl: 51946762, chr3: 7514592) | 0.00067| 0.004
2 (rs10495728, rs521882)| (chr2: 22811773, chr8: 16688797) | 0.004 0.004
(rs1016836, rs2783130)| (chrl0: 31935845, chr13: 7906816/ 0
4 (rs648519, rs1012278) | (chrll: 98972936, chrl6: 5852506[7)0.002 0.002

w

Table 6. Identified significant SNP-pairs in the simulated hman GWAS datasets

the runtime of the three approaches when varying the number dbase-pair respectively. The FWER for each reported SNP-pair is
SNPs. Itis clear that both TEAM and COE are orders of magnitudealso shown. Note that, for a SNP-pair, a FDR (or FWER) value
faster than the brute force approach. TEAM is about twice fasteof O indicates that permutation tests do not generate any test value
than COE. Figure 3(b) shows the runtime comparison when varyingarger than value of the reported SNP-pair. In dataset 1, except
the number of individuals. From the figure, COE is more suitablefor the embedded SNP-pair (rs768529, rs3804940), 5 other SNP-
for datasets having small number of individual. As the number ofpairs are also reported. One of the embedded SNP, rs768529, is
individuals increases, the TEAM algorithm becomes more efficieninvolved in all the 5 pairs. A closer look at the other SNPs in the
than COE. Note that in human study, the number of individualsreported SNP-pairs shows that they are all adjacent to the embedded
usually ranges up to thousands, much larger than that in typicaBNP rs3804940. The normalized linkage disequilibrium (Lewontin
mouse datasets. and Kojima, 1960) between rs3804940 and the other 5 SNPs are
D’(rs3804940, rs756084)= 1D’(rs3804940, rs779742)= 0.477,
. . L D’(rs3804940, rs1872393)= 0.442)'(rs3804940, rs779744)=

7.2 Epistasis Detection in Simulated Human GWAS 0.442, andD’(rs3804940, rs6764561)= 0.454, indicating there is
In this section, we report the results of epistasis detection usingtrong linkage disequilibrium between them.
simulated human GWAS data generated by Hapsample. In total,
we generate 4 datasets, each of which has 112,036 SNPs for 250
cases and 250 controls. In each dataset, a disease causal interacting
SNP-pair is embedded. The embedded SNP-pairs are: (rs76852§, CONCLUSION AND FUTURE WORK
rs3804940) in dataset 1, (rs10495728, rs521882) in dataset The large number of SNPs genotyped in the genome-wide
(rs1016836, rs2783130) in dataset 3, and (rs648519, rs181#27 scale poses great computational challenges in two-locus epistasis
dataset 4. We use standard chi-square test with 500 permutationdetection. The permutation test used for proper error rate controlling
Similar results can be found by using likelihood-ratio test. makes the problem computationally even more intensive. In this

With an overall FDR threshold of 0.005, Table 6 shows thepaper, we propose an efficient algorithm, TEAM, for epistasis
identified significant SNP-pairs using TEAM. TEAM successfully detection human GWAS. TEAM has the same strength as the
identified the embedded SNP-pairs in all simulated datasets. Theecently developed epistasis detection methods, i.e., it guarantees to
embedded SNP-pairs are labelled with stars "*”. The table shows thénd the optimal solution. Compared to existing methods, TEAM is
SNP loci on the genome. For example, in dataset 1, we embed SNifore efficient in large sample study, and offers broader applicability.
pair rs768529 and rs3804940, which are located on chromosoméxisting methods designed for homozygous SNPs cannot be used
1 at position 51946762 base-pair and chromosome 3 at 752054%r human data where most SNPs are heterozygous. TEAM, on the




other hand, can handle both homozygous and heterozygous SNRh, J., and Ott, J. (2003). Mathematical multi-locus approaches to localizinglen
Since it exhaustively enumerate all SNP-pairs, TEAM can be used human trait genesNature Reviews Genetio$:701-709.

to control the FWER and the FDR, both of which are widely used in
controlling error in GWAS; while previous methods only control

Hoh, J.et al. (2000). Selecting snps in two-stage analysis of disease association data: a
model-free approachAnnals of Human Genetic64:413-417.
Lewontin, R.C., and Kojima, K. (1960). The evolutionary dynamics afnpkex

the FWER. Existing methods need to exam the formulation of polymorphismsEvolution 14(4):458-472.

the statistic. TEAM is focused on efficiently updating contingency

Miller., R.G. (1981).Simultaneous Statistical Inferenc8pringer Verlag New York.

tables rather than any specific statistic. It can therefore be usiusani, SK., Shriner, D., Liu, N., and et al. (2007). Detection of gene egen

for any statistical test based on contingency table regardless of its

formulation.

interactions in genome-wide association studies of human populationHiaaan
Heredity 63(2):67-84.
Nelson, M.R., Kardia, S.L., Ferrell, R.E., and Sing, C.F. (2001). A coatbiiel

In this paper, we focus on the disease phenotypes which can be partitioning method to identify multilocus genotypic partitions thatedict
represented as binary variables. Many association studies involve quantitative trait variationGenome Researcf1:458-470.

phenotypes measured as continuous variables. We will investiga
how to apply the idea of the current algorithm to quantitative
phenotypes in the future study.

ACKNOWLEDGEMENT

The work is partially supported by NSF awards 11S0448392,
11S0812464.

REFERENCES

Balding, D. J. (2006). A tutorial on statistical methods for populatiosoeition
studies.Nature Reviews Genetics(10):781-791.

Carlborg, O., Andersson, L., and Kinghom, B. (2000). The use of a gealgirithm
for simultaneous mapping of multiple interacting quantitative trait.|/d8enetics
155:2003-2010.

Churchill, G.A. and Doerge, R.W. (1994). Empirical threshold values for dfadinie
trait mapping.Genetics 138(3):963-971.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (200jroduction to
Algorithms MIT Press and McGraw-Hill.

Dudoit, S., and Laan, M.J. (2008 Multiple testing procedures with applications to
genomics Springer.

Eisner, J. (1997). State-of-the-art algorithms for minimum spanning trees:oAiut
discussionManuscript,University of Pennsylvania

Evans, D.M., Marchini, J., Morris, A.P., and Cardon, L.R. (2006). Twoestag-locus
models in genome-wide associatid?LoS Genetic2: e157.

Graham, R.L. and Hell, P. (1985). On the history of the minimum spantrizeg
problem.Ann. History Comput.7:43-57.

Hirschhorn, J.N. and Daly, M.J. (2005). Genome-wide association studiesrfunon
diseases and complex traitdature Reviews Genetic8:95—-108.

‘%’tchie, M.D., Hahn, L.W., Roodi, N., and et al. (2001). Multifactor-éinsionality

reduction reveals high-order interactions among estrogen-metabolism genes in
sporadic breast cancekmerican Journal of Human Genetj@9:138-147.

Roberts, A., McMillan, L., Wang, W., and et al. (2007). Inferring missing ggoes
in large snp panels using fast nearest-neighbor searches over sliding wintiows
Proc. ISMB

Saxena, R., Voight, B.F., Lyssenko, V., and et al. (2007). Genome-wideiassn
analysis identifies loci for type 2 diabetes and triglyceride le\@&igence316:1331—
1336.

Scuteri, A., Sanna, S., Chen, W.-M., and et al. (2007). Genome-wide assoc@ion s
shows genetic variants in the fto gene are associated with obesity-relatedPtiraiSs.
Genetics 3(7):1200-1210.

The Wellcome Trust Case Control Consortium. (2007). Genome-wide assacaidy
of 14,000 cases of seven common diseases and 3,000 shared comatlse
447:661-678.

Wade, C.M., and Daly, M.J. (2005). Genetic variation in laboratory mibkature
Genetics37:1175-1180.

Weedon, M., Lettre, G., Freathy, R., and et al. (2007). A common variant of hmga2
is associated with adult and childhood height in the general populatiteture
Genetics39:1245-1250.

Westfall, P.H., and Young, S.S. (1993Resampling-based Multiple TestingViley,
New York.

Wright, F.A., Huang, H., Guan, X., Gamiel, K., and et al. (2007). Simogdati
association studies: a data-based resampling method for candidate regiomseor wh
genome scandioinformatics 23(19):2581-2588.

Yang, C., He, Z., Wan, X., Yang, Q., Xue, H., and Yu, W. (2009). SNPHarvester:
a filtering-based approach for detecting epistatic interactions in genomewide
association studieBioinformatics 25(4):504-511.

Zhang, X., Pan, F.,, Xie, Y., Zou, F., and Wang, W. (2009). COE: a general agipfor
efficient genome-wide two-locus epistatic test in disease association &iueiypc.
RECOMB

Zhang, X., Zou, F., and Wang, W. (2008). FastANOVA: an efficient algorithm fo
genome-wide association study. Fnoc. KDD.

Zhang, X., Zou, F., and Wang, W. (2009) FastChi: an efficient algorithm falyaimg
gene-gene interactions. Rroc. PSB




APPENDIX

Proof of Theorem 3.1

PrRoOF. From the four contingency tables shown in Table 2, it is easy to get theviolidinear equation system:
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The rank of the above linear system is 14. We thus take 14 {dw 10, 11,12, 13, 14, 15,16, 17,18, 19, 20, 21}, which form a full rank

matrix. The row reduced echelon form of this non-redundant linestesyis
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Thus we have the following solution:
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Clearly, only four variable§Oga,, Oq,, Oy,, Oy, } are free. Once the values of these free variables are known, thevetd§requencies of
remaining events in the two-locus contingency table are also known.

Proof of Theorem 5.1

ProoOF. It suffices to show that

D(X;,Y3) NQ(Xs, X5) = [D(X4,Y2) NQ(Xs, X;)] U [D(Xs, Vi) N ((X;X5) to—13012—13)] — [D(Xi, Ya) N (X5 X5) (1—03{1—2})]-

This is the same as to show that

Q(Xi, X)) = Q(Xi, X;) U (X5 X)) fo—11uiz—11) — (X5 X)) (10} {1—2})-

This is clearly true, hence completes the proof.
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