Incremental Mining on Association Rules

Wei-Guang Teng and Ming-Syan Chen

Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, ROC

Summary. The discovery of association rules has been known to be useful in se-
lective marketing, decision analysis, and business management. An important appli-
cation area of mining association rules is the market basket analysis, which studies
the buying behaviors of customers by searching for sets of items that are frequently
purchased together. With the increasing use of the record-based databases whose
data is being continuously added, recent important applications have called for the
need of incremental mining. In dynamic transaction databases, new transactions are
appended and obsolete transactions are discarded as time advances. Several research
works have developed feasible algorithms for deriving precise association rules effi-
ciently and effectively in such dynamic databases. On the other hand, approaches
to generate approximations from data streams have received a significant amount
of research attention recently. In each scheme, previously proposed algorithms are
explored with examples to illustrate their concepts and techniques in this chapter.

1 Introduction

Due to the increasing use of computing for various applications, the impor-
tance of data mining is growing at rapid pace recently. It is noted that analy-
sis of past transaction data can provide very valuable information on cus-
tomer buying behavior, and thus improve the quality of business decisions. In
essence, it is necessary to collect and analyze a sufficient amount of sales data
before any meaningful conclusion can be drawn therefrom. Since the amount
of these processed data tends to be huge, it is important to devise efficient
algorithms to conduct mining on these data. Various data mining capabilities
have been explored in the literature [2, 4, 5, 12, 10, 11, 21, 39, 51, 52]. Among
them, the one receiving a significant amount of research attention is on min-
ing association rules over basket data [2, 3, 16, 22, 25, 33, 36, 41, 44, 50]. For
example, given a database of sales transactions, it is desirable to discover all
associations among items such that the presence of some items in a transac-
tion will imply the presence of other items in the same transaction, e.g., 90%

2 Wei-Guang Teng and Ming-Syan Chen

of customers that purchase milk and bread also purchase eggs at the same
time.

Recent important applications have called for the need of incremental min-
ing. This is due to the increasing use of the record-based databases whose data
is being continuously added. Examples of such applications include Web log
records, stock market data, grocery sales data, transactions in electronic com-
merce, and daily weather /traffic records, to name a few. In many applications,
we would like to mine the transaction database for a fixed amount of most
recent data (say, data in the last 12 months). That is, in the incremental min-
ing, one has to not only include new data (i.e., data in the new month) into,
but also remove the old data (i.e., data in the most obsolete month) from the
mining process.

A naive approach to solve the incremental mining problem is to re-run
the mining algorithm on the updated database. However, it obviously lacks of
efficiency since previous results are not utilized on supporting the discovering
of new results while the updated portion is usually small compared to the
whole dataset. Consequently, the efficiency and the effectiveness of algorithms
for incremental mining are both crucial issues which will be discussed in details
in this chapter.

The rest of the chapter is organized as follows. Preliminaries including the
mining of association rules and the need for performing incremental mining
are given in Section 1. Algorithms for mining association rules incrementally
from transactional databases that generate precise results are described in
Section 2. On the other hand, algorithms dealing with data streams (i.e., online
transaction flows) that generate approximate results are explored in Section 3.
In each scheme, the algorithms can be further categorized according to their
major principles. Namely, the Apriori-based algorithms, the partition-based
algorithms and the pattern growth algorithms. In Section 4, remarks on the
relationship between two schemes are made, giving the summary of the state
of the art for incremental mining on association rules.

1.1 Mining Association Rules

Mining association rules was first introduced in [2], where the goal is to dis-
cover interesting relationships among items in a given transactional dataset.

A mathematical model was proposed in [2] to address the problem of
mining association rules. Let Z={i1, i, ..., i } be a set of literals, called items.
Let D be a set of transactions, where each transaction T is a set of items such
that T" C Z. Note that the quantities of items bought in a transaction are
not considered, meaning that each item is a binary variable representing if
an item was bought. Each transaction is associated with an identifier, called
TID. Let X be an itemset, i.e., a set of items. A transaction T is said to
contain X if and only if X C T'. An association rule is an implication of the
form X =Y, where X CZ,Y Cc Z and XY = ¢. The rule X =Y has
support s in the transaction set D if s% of transactions in D contain X |JY.

Incremental Mining on Association Rules 3

The rule X = Y holds in the transaction set D with con fidence c if ¢% of
transactions in D that contain X also contain Y. By utilizing the notation of
probability theory, the concepts of support and confidence for an association
rule can be formulated as

support(X = Y)=P(XUY) and,
confidence(X =Y) = P(Y|X).

For a given pair of support and confidence thresholds, namely the mini-
mum support Sy, and the minimum confidence Ciy,;y,, the problem of mining
association rules is to find out all the association rules that have confidence
and support greater than the corresponding thresholds. Moreover, the mining
of association rules is a two-step process:

1. Find all frequent itemsets: Frequent itemsets are itemsets satisfying the
support threshold, i.e., {X|X.support > Spin}. In some earlier literatures,
frequent itemsets are also termed as large itemsets and the set of frequent
k-itemsets (which are composed of k items) is thus commonly denoted by Ly.
Consequently, the goal in this step is to discover the set {Lq,...Ly}.

2. Generate association rules from the frequent itemsets: For any pair of
frequent itemsets W and X satisfying X < W, if %ﬁ% > Chnin, then
X =Y (=W — X) is identified as a valid rule.

The overall performance of mining association rules is in fact determined
by the first step. After the frequent itemsets are identified, the corresponding
association rules can be derived in a straightforward manner [2] as shown in
the second step above. A numerous prior works including the Apriori [2], the
DHP [41], and partition-based ones [32, 44] are proposed to solve the first
subproblem efficiently. In addition, several novel mining techniques, including
TreeProjection [1], FP-tree [24, 25, 43], and constraint-based ones [23, 27, 42,
50] also received a significant amount of research attention. To clarify the idea
of the mining of association rules before formally introducing the incremental
mining, some representative algorithms along with illustrative examples are
provided in following sections.

Apriori-Based Algorithms

Algorithm Apriori [2] is an influential algorithm for mining association rules. It
uses prior knowledge of frequent itemset properties to help on narrowing the
search space of required frequent itemsets. Specifically, k-itemsets are used
to explore (k+1)-itemsets during the levelwise process of frequent itemset
generation. The set of frequent 1-itemsets (L;) is firstly found by scanning
the whole dataset once. L is then used by performing join and prune actions
to form the set of candidate 2-itemsets (C3). After another data scan, the set
of frequent 2-itemsets (Lo) are identified and extracted from Cj. The whole
process continues iteratively until there is no more candidate itemsets which
can be formed from previous L.

4 Wei-Guang Teng and Ming-Syan Chen

T, |ABC
T, | A F
T, |ABC E
T,|AB D F

D|Ts C F
T, | ABC
T, |ABC E
T CDE
T,| B DE

Fig. 1. An illustrative transaction database

Example 1: Consider an example transaction database given in Fig. 1. In
each iteration (or each pass), algorithm Apriori constructs a candidate set of
large itemsets, counts the number of occurrences of each candidate itemset,
and then determine large itemsets based on a predetermined minimum support
Smin- In the first iteration, Apriori simply scans all the transactions to count
the number of occurrences for each item. The set of candidate 1l-itemsets,
(4, obtained is shown in Fig. 2. Assuming that S,.;,,=40%, the set of large
1-itemsets (L1) composed of candidate 1-itemsets with the minimum support
required, can then be determined. To discover the set of large 2-itemsets, in
view of the fact that any subset of a large itemset must also have minimum
support, Apriori uses L1*L; to generate a candidate set of itemsets Cy where
* is an operation for concatenation in this case. Co consists of

(%)

2-itemsets. Next, the nine transactions in D are scanned and the support of
each candidate itemset in Cy is counted. The middle table of the second row
in Fig. 2 represents the result from such counting in Cs. The set of large 2-
itemsets, Lo, is therefore determined based on the support of each candidate
2-itemset in Cs.

The set of candidate 3-itemsets (C3) is generated from Lo as follows. From
Lo, two large 2-itemsets with the same first item, such as {AB} and {AC},
are identified first. Then, Apriori tests whether the 2-itemset {BC}, which
consists of their second items, contributes a frequent 2-itemset or not. Since
{BC} is a frequent itemset by itself, we know that all the subsets of {ABC}
are frequent and then {ABC} becomes a candidate 3-itemset. There is no
other candidate 3-itemset from Lo. Apriori then scans all the transactions
and discovers the large 3-itemsets L3 in Fig. 2. Since there is no candidate
4-itemset to be constituted from L3, Apriori ends the process of discovering
frequent itemsets.

Incremental Mining on Association Rules 5

C, L,
Iltemset | Support Iltemset | Support
{A} 6/9 {A} 6/9
{B} 6/9 {B} 6/9
ScanD [(¢ 6/9) 6/9
{D} 3/9 {E} 4/9
{E} 4/9
{F} 3/9
C, C, L,
Itemset ltemset | Support Iltemset | Support
{A B} {AB} 5/9 {A B} 5/9
{AC} {AC} 4/9 {AC} 4/9
agy | Seanb, [ag [20 BCy | 49
{BC} {B C} 4/9
{B E} {B E} 3/9
{CE} {CE} 3/9
C3 C3 L3
ltemset Scan D ltemset | Support ltemset | Support
{(ABCY| — " |{ABC} 4/9 {ABC} 4/9

Fig. 2. Generation of candidate itemsets and frequent itemsets using algorithm
Apriori

Similar to Apriori, another well known algorithm, DHP [40], also generates
candidate k-itemsets from Lg_;. However, DHP employs a hash table, which
is built in the previous pass, to test the eligibility of a k-itemset. Instead of
including all k-itemset from Ly_1*L;_1 into Cy, DHP adds a k-itemset into
Cy, only if that k-itemset is hashed into a hash entry whose value is larger
than equal to the minimum transaction support required. As a result, the size
of candidate set Cj, can be reduced significantly. Such a filtering technique is
particularly powerful in reducing the size of Cs.

Example 2: The effect of utilizing the hash table on helping to reduce the
size of Cy is provided in Fig. 3. It is noted that since the total counts for
buckets 1 and 3 cannot satisfy the minimum support constraint, itemsets in
these buckets, e.g., {A E}, should not be included in Cs. This improve the
computing efficiency while the number of candidate itemsets to be checked is
reduced.

DHP also reduces the database size progressively by not only trimming
each individual transaction size but also pruning the number of transactions
in the database. We note that both DHP and Apriori are iterative algorithms

6 Wei-Guang Teng and Ming-Syan Chen

Bucket
Address 0 1 2 3 4 5 6
Bucket
Count 4 3 8 2 4 6 5
{CE}|{AE}|({BC} {BD}/{BE}| {AB}|{AC}
{AD} {CF}({AF}|{BD}{DF}| {AB} {AC}
{CE}| {AE}|{BC} {BE}|{AB}| {AC}
Bucket | {CE} {AF} {BE}|{BF}|{AC}
Contents {B C} {AB}| {CD}
{B C} {A B}
{D E}
{D E}

Fig. 3. An example hash table for reducing the size of C2 in previous example. The
corresponding hash function is h(x,y)=[(order of x)*10+(order of y)Jmod 7 where
the order of item A is 1, the order of item B is 2, and so on.

on the frequent itemset size in the sense that the frequent k-itemset are derived
from the frequent (k-1)-itemsets.

Most of the previous studies, including those in [2, 7, 13, 14, 41, 45, 48],
belong to Apriori-based approaches. Basically, an Apriori-based approach is
based on an anti-monotone Apriori heuristic [2], i.e., if any itemset of length
k is mot frequent in the database, its length (k + 1) super-itemset will never
be frequent. The essential idea is to iteratively generate the set of candidate
itemsets of length (k+1) from the set of frequent itemsets of length k (for & >
1), and to check their corresponding occurrence frequencies in the database.
As a result, if the largest frequent itemset is a j-itemset, then an Apriori-based
algorithm may need to scan the database up to (j + 1) times.

In Apriori-based algorithms, C3 is generated from Lo * Lo. In fact, a Cs
can be used to generate the candidate 3-itemsets. This technique is referred
to as scan reduction in [10]. Clearly, a C% generated from Cs * Cs, instead of
from Lo % Lo, will have a size greater than |Cs| where Cs is generated from
Lo x Ly. However, if |C4| is not much larger than |Cs|, and both Cy and Cs
can be stored in main memory, we can find Lo and L3 together when the next
scan of the database is performed, thereby saving one round of database scan.
It can be seen that using this concept, one can determine all Lys by as few
as two scans of the database (i.e., one initial scan to determine L; and a final
scan to determine all other frequent itemsets), assuming that C}, for k > 3 is
generated from Cj,_, and all C}, for k > 2 can be kept in the memory. In [11],
the technique of scan-reduction was utilized and shown to result in prominent
performance improvement.

Incremental Mining on Association Rules 7
Partition-Based Algorithms

There are several techniques developed in prior works to improve the efficiency
of algorithm Apriori, e.g., hashing itemset counts, transaction reduction, data
sampling, data partitioning and so on. Among the various techniques, the data
partitioning is the one with great importance since the goal in this chapter is
on the incremental mining where bulks of transactions may be appended or
discarded as time advances.

The works in [32, 38, 44] are essentially based on a partition-based heuris-
tic, i.e., if X is a frequent itemset in database D which is divided into n
partitions p1, p2, ..., Pn, then X must be a frequent itemset in at least one of
the n partitions. The partition algorithm in [44] divides D into n partitions,
and processes one partition in main memory at a time. The algorithm first
scans partition p;, for ¢ = 1 to n, to find the set of all local frequent itemsets
in p;, denoted as LPi. Then, by taking the union of LPi for ¢ = 1 to n, a set of
candidate itemsets over D is constructed, denoted as C¢. Based on the above
partition-based heuristic, C¢ is a superset of the set of all frequent itemsets in
D. Finally, the algorithm scans each partition for the second time to calculate
the support of each itemset in C¢ and to find out which candidate itemsets
are really frequent itemsets in D.

Example 3: The flow of algorithm Partition is shown in Fig. 4. In this exam-
ple, D is divided into three partitions, i.e., Py, P» and P, and each partition
contains three transactions. The sets of locally frequent itemsets L are dis-
covered based on transactions in each partition. For example, L2 = {{A},
{B}, {C}, {F}, {A B}}. As is also shown in Fig. 4, the set of global candi-
date itemsets C¢ is then generated by taking the union of L. Finally, these
candidate itemsets are verified by scanning the whole dataset D once more.

1. Partition the whole dataset
D into partitions whose sizes
can fit into the main memory

T, | ABC Partition# Frequent Itemset(s) (L)
P, | T, [A F 2s Pt Py {A}{B} {C}{AB}{AC}{BC}{ABC}
T ABe £ |ASTeene T meones
T, |AB D F > Ps {B} {C}{D}{E}{B E} {C E} {D E}
D[Py | Ts c F l 3. Generate candidate itemsets
Te | ABC to be examined over D
T, | ABC E Candidate Itemset(s) (C®)
Py | Ts CDE {A} {B}{C}{D} {E} {F} {AB}{A C}
T,| B DE (BC}{BE}{CE}{DE}{ABC}

Fig. 4. Generation of global candidate itemsets using algorithm Partition.

8 Wei-Guang Teng and Ming-Syan Chen

Instead of constructing C¢ by taking the union of LPi, for i = 1 to n, at
the end of the first scan, some variations of the above partition algorithm are
proposed in [32, 38]. In [38], algorithm SPINC constructs C¢ incrementally
by adding LP* to C“ whenever LP is available. SPINC starts the counting of
occurrences for each candidate itemset ¢ € C% as soon as ¢ is added to C. In
[32], algorithm AS-CPA employs prior knowledge collected during the mining
process to further reduce the number of candidate itemsets and to overcome
the problem of data skew. However, these works were not devised to handle
incremental updating of association rule.

Pattern Growth Algorithms

It is noted that the generation of frequent itemsets in both the Apriori-based
algorithms and the partition-based algorithms is in the style of candidate
generate-and-test. No matter how the search space for candidate itemsets
is narrowed, in some cases, it may still need to generate a huge number of
candidate itemsets. In addition, the number of database scans is limited to be
at least twice, and usually some extra scans are needed to avoid unreasonable
computing overheads. These two problems are nontrivial and are resulted from
the utilization of the Apriori approach.

To overcome these difficulties, the tree structure which stores projected in-
formation of large datasets are utilized in some prior works [1, 25]. In [1], the
algorithm TreeProjection constructs a lexicographical tree and has the whole
database projected based on the frequent itemsets mined so far. The transac-
tion projection can limit the support counting in a relatively small space and
the lexicographical tree can facilitate the management of candidate itemsets.
These features of algorithm TreeProjection provide a great improvement in
computing efficiency when mining association rules.

An influential algorithm which further attempts to avoid the generation
of candidate itemsets is proposed in [25]. Specifically, the proposed algorithm
FP-growth (frequent pattern growth) adopts a divide-and-conquer strategy.
Firstly, all the transactions are projected into an FP-tree (frequent pattern
tree), which is a highly compressed structure, based on the frequent 1-itemsets
in descending order of their supports. Then, for each frequent item, the condi-
tional FP-tree can be extracted to be mined for the generation of correspond-
ing frequent itemsets. To further illustrate how algorithm FP-growth works,
an example is provided below.

Example 4: Consider the example transaction database given in Fig. 1. Af-
ter scanning the whole database once, the frequent 1-itemsets discovered are
{A:6}, {B:6}, {C:4} and {E:4} where the numbers are occurrence counts for
the items. Note that the ordering of frequent items, which is the ordering of
item supports in descending order, is crucial when constructing the FP-tree.

The construction of the FP-tree is shown in Fig. 5. The first transaction
T1:{A B C} is mapped to the single branch of the FP-tree in Fig. 5(a). In Fig.

Incremental Mining on Association Rules 9

Fig. 5. Building the FP-tree based on the dataset in Fig. 1: (a) T; is added; (b)
T2, T3 and T4 are added; (c) Ts is added; (d) T¢ and T7 are added; (e) Ts and Ty
are added (final FP-tree)

5(b), the next three transactions are added by simply extending the branch
and increasing the corresponding counts of existing item nodes since these
transactions can fit into that branch when infrequent items, i.e., items D
and F, are discarded. However, the transaction Ty contains only one frequent
item C and a new branch is thus created. Note that the node-link (composing
of arrows with dotted line) for item C is extended in Fig. 5(c) for tracking
the information of frequent itemsets containing item C. Specifically, all the
possible frequent itemsets can be obtained by following the node-links for the
items. In Fig. 5(d), transaction T¢ and T7 are added in a similar way as the
addition of transactions Ty to T4. Finally, the complete FP-tree in Fig. 5(e)
is constructed by adding the last two transactions Tg and Tg. It can be noted
from this example that since the heuristic that popular items tend to occur
together works in most cases, the resulting FP-tree can achieve a very high
data compression ratio, showing the compactness of algorithm FP-growth.

To discover all the frequent itemsets, each frequent item along with its
conditional FP-tree are mined separately and iteratively, i.e., the divide-and-
conquer strategy. For example, by firstly tracking the node-link of item A,
the 3-itemset {A B C} is found to frequent if S,,;,=40%. Its subsets which
contain the item A, i.e., {A B} and {A C}, can then be discovered with correct
supports easily. In addition, by tracking the node-links of both items B and C,
only one more frequent itemset {B C} is generated, showing the completeness
of algorithm FP-growth.

10 Wei-Guang Teng and Ming-Syan Chen
1.2 Incremental Mining Primitives

The mining of association rules on transactional database is usually an of-
fline process since it is costly to find the association rules in large databases.
With usual market-basket applications, new transactions are generated and
old transactions may be obsolete as time advances. As a result, incremental
updating techniques should be developed for maintenance of the discovered
association rules to avoid redoing mining on the whole updated database.

A database may allow frequent or occasional updates and such updates
may not only invalidate existing association rules but also activate new rules.
Thus it is nontrivial to maintain such discovered rules in large databases. Note
that since the underlying transaction database has been changed as time ad-
vances, some algorithms, such as Apriori, may have to resort to the regener-
ation of candidate itemsets for the determination of new frequent itemsets,
which is, however, very costly even if the incremental data subset is small.
On the other hand, while FP-tree-based methods [24, 25, 43] are shown to
be efficient for small databases, it is expected that their deficiency of mem-
ory overhead due to the need of keeping a portion of database in memory,
as indicated in [26], could become more severe in the presence of a large
database upon which an incremental mining process is usually performed.
Consequently, ordinary approaches for mining association rules are closely re-
lated to solving the problem of incremental mining. However, these algorithms
cannot be applied directly without taking the incremental characteristics into
consideration.

T, |ABC
AT, | A F
T, |ABC E
T,|AB D F
D Ts cC F
o |Te [ABC
T, |ABC E
T CDE |D
T,| B DE
To| B D
A Ty D F
T, | ABCD

Fig. 6. An illustrative transactional database for incremental mining

The concept of incremental mining on transaction databases in further il-
lustrated in Fig. 6. For a dynamic database, old transactions (A ™) are deleted
from the database D and new transactions (A1) are added as time advances.

Incremental Mining on Association Rules 11

Naturally, A~ C D. Denote the updated database by D', D’ = (D—AT)UAT.
We also denote the set of unchanged transactions by D~ =D — A™.

Generally speaking, the goal is to solve the efficient update problem of
association rules after a nontrivial number of new records have been added
to or removed from a database. Assuming that the two thresholds, minimum
support Sy, and minimum confidence C,,,;,,, do not change, there are several
important characteristics in the update problem.

1. The update problem can be reduced to finding the new set of frequent
itemsets. After that, the new association rules can be computed from the new
frequent itemsets.

2. An old frequent itemset has the potential to become infrequent in the
updated database.

3. Similarly, an old infrequent itemset could become frequent in the new data-
base.

4. In order to find the new frequent itemsets "exactly", all the records in
the updated database, including those from the original database, have to be
checked against every candidate set.

Note that the fourth characteristic is generally accepted when looking for
exact frequent itemsets (and thus the association rules) from updated data-
bases. On the contrary, in the data stream environment, the approximation
of exact frequent itemsets is a key ingredient due to the high speed and huge
volume of input transactions. Consequently, only increment portion of data
rather than the whole unchanged portion has to be scanned, leading to an
efficient way in performing updates of frequent itemsets. However, it is noted
that the quality of approximation should be guaranteed within a probabilistic
or deterministic error range, showing that the task of incremental mining on
data streams is of more challenge.

To further understand the incremental mining techniques from either
transaction databases or data streams, details are generally discussed in fol-
lowing sections. The algorithms of incremental mining which seek for exactly
updated association rules from transactional databases are presented in Sec-
tion 2. The importance and approaches targeting at mining and maintaining
approximations incrementally from data streams are explored in Section 3.

2 Mining Association Rules Incrementally from
Transactional Databases

Since database updates may introduce new association rules and invalidate
some existing ones, it is important to study efficient algorithms for incremen-
tal update of association rules in large databases. In this scheme, a major
portion of the whole dataset is remain unchanged while new transactions are
appended and obsolete transactions may be discarded. By utilizing different
core techniques, algorithms for incremental mining from transactional data-

12 Wei-Guang Teng and Ming-Syan Chen

bases can be categorized into Apriori-based, partition-based or pattern growth
algorithms, which will be fully explored in this section.

2.1 Apriori-Based Algorithms for Incremental Mining

As mentioned earlier, the Apriori heuristic is an anti-monotone principle.
Specifically, if any itemset is not frequent in the database, its super-itemset
will never be frequent. Consequently, algorithms belonging to this category
adopt a levelwise approach, i.e., from shorter itemsets to longer itemsets, on
generating frequent itemsets.

Algorithm FUP (Fast UPdate)

Algorithm FUP (Fast UPdate) [13] is the first algorithm proposed to solve the
problem of incremental mining of association rules. It handles databases with
transaction insertion only, but is not able to deal with transaction deletion.
Specifically, given the original database D and its corresponding frequent item-
sets L = {L, ..., Lk}. The goal is to reuse the information to efficiently obtain
the new frequent itemsets L' = {L, ..., L.} on the new database D' = DUA™T.

By utilizing the definition of support and the constraint of minimum sup-
port Siin. The following lemmas are generally used in algorithm FUP.

1. An original frequent itemset X, i.e., X € L, becomes infrequent in D’ if
and only if X.supportp: < Smin-

2. An original infrequent itemset X, i.e., X ¢ L, may become frequent in D’
only if X.support o+ > Smin-

3. If a k-itemset X whose (k-1)-subset(s) becomes infrequent, i.e., the subset
is in Ly_q but not in L) _,, X must be infrequent in D’.

Basically, similarly to that of Apriori, the framework of FUP, which can
update the association rules in a database when new transactions are added
to the database, contains a number of iterations [13, 14]. The candidate sets at
each iteration are generated based on the frequent itemsets found in the pre-
vious iteration. At the k-th iteration of FUP, AT is scanned exactly once. For
the original frequent itemsets, i.e., {X|X € Ly}, they only have to be checked
against the small increment AT, To discover the new frequent itemsets, the
set of candidate itemsets C}, is firstly extracted from A, and then be pruned
according to the support count of each candidate itemset in AT. Moreover,
the pool for candidate itemsets can be further reduced by discarding itemsets
whose (k-1)-subsets are becoming infrequent.

The flows of FUP can be best understood by the following example. The
dataset with the increment portion labeled as AT is shown in Fig. 7. Note that
the first nine transactions are identical to those shown in earlier examples. In
addition, the frequent itemsets of the unchanged portion D is also shown in
Fig. 7, where the generation process is described earlier and is thus omitted
here.

Incremental Mining on Association Rules 13

T, | ABC (Original) frequent
T, | A F itemsets {L,} of D
T, | ABC E Itemset | Support
T,|AB D F A} 6/9

p[T| ¢ F ® | 69
T, | ABC {c} 6/9
T, |[ABC E {E} 49
Te CDE {AB} | 59
T,| B DE {AC}Y | 49
To| B D BC} | 49

A | Ty, D F {ABC}| 409
T,| ABCD

Fig. 7. An illustrative database for performing algorithm FUP, and the original
frequent itemsets generated using association rule mining algorithm(s)

Example 5: The first iteration of algorithm FUP when performing incremen-
tal mining is represented in Fig. 8. The original frequent 1-itemsets are firstly
verified on the increment portion A+, and only itemsets with new supports no
less than Sy, (=40%) is retained as a part of new frequent 1-itemsets L], i.e.,
{A}, {B} and {C}. Then the supports of other possible items are also checked
in AT, leading to the construction of C1:{{D}} to be further verified against
the unchanged portion D. Finally, the new L) is generated by integrating the
results from both possible sources.

1. Check new

2. Check other

supports of L items in A* 3. Check C;on D
ltemset | Support ltemset | Support Itemset | Support
{A} 712 {D} 33 | —»| (D} 6/12

(B} 8/12 {F} 1/3 i
{C} 712 Ly
{E} 4/12 ltemset | Support
{A} 7112
{B} 712
> {C} 712
{D} 6/12

Fig. 8. The first iteration of algorithm FUP on the dataset in Fig. 6

The successive iterations work roughly the same as the first iteration.
However, since the shorter frequent itemsets have already been discovered, the

14 Wei-Guang Teng and Ming-Syan Chen

information can be utilized to further reduce the pool of candidate itemsets.
Specifically, as shown in Fig. 9, since the 1-itemset {E} becomes infrequent as
AT is considered, i.e., {E}e (L1 — L}), all itemsets in Ly containing a subset
of {E} should be infrequent and are thus discarded with no doubt. Other
itemsets in Lo are then verified again AT to see if they are still frequent. The
set of candidate 2-itemsets Cy is constructed by (L] * L] — Ly) since itemsets
in Ly are already checked. In this example, the 2-itemsets {A D}, {B D} and
{C D} are firstly checked against AT. Afterward, only {B D} is being checked
against the unchanged portion D, since it is the only frequent itemset in A¥.
Finally, the new L) is generated by integrating the results from both possible
sources. The generation of L) is of analogous process to that of L5, and it
works iteratively until no more longer candidate itemsets can be formed. In
this example, algorithm FUP stops when the only frequent 3-itemset {A B
C} is discovered.

1. Check new 2. Check other 2-
supports of L, itemsets in A* 3. Check C,on D
Iltemset | Support Itemset | Support Iltemset | Support
{A B} 6/12 {A D} 13 |—| (BD} 4/12
{AC} 5/12 (B D} 2/3 v
{BC} 5/12 {C D} 1/3 L,
ltemset | Support
{A B} 6/12
»| {AC} 5/12
{BC} 5/12

Fig. 9. The second iteration of algorithm FUP on the dataset in Fig. 6

Specifically, the key steps of FUP can be listed below. (1) At each iteration,
the supports of the size-k frequent itemsets in L are updated against AT
to filter out those that are no longer in D’. (2) While scanning AT, a set
of candidate itemsets, Cj, is extracted together with their supports in AT
counted. The supports of these sets in Cj, are then updated against the original
database D to find the “new” frequent itemsets. (3) Many itemsets in C}, can
be pruned away by checking their supports in A* before the update against
the original database starts. (4) The size of C} is further reduced at each
iteration by pruning away a few original frequent itemsets in A¥.

The major idea is to reuse the information of the old frequent itemsets
and to integrate the support information of the new frequent itemsets in
order to substantially reduce the pool of candidate sets to be re-examined.
Consequently, as compared to that of Apriori or DHP, the number of candidate
itemsets to be checked against the whole database D' = D U At is much
smaller, showing the major advantage of algorithm FUP.

Incremental Mining on Association Rules 15
Algorithms FUP,; and FUP,H

The algorithm FUP [13] updates the association rules in a database when new
transactions are added to the database. An extension to algorithm FUP was
reported in [14] where the authors propose an algorithm FUP, for updating
the existing association rules when transactions are added to and deleted from
the database. In essence, FUP5 is equivalent to FUP for the case of insertion,
and is, however, a complementary algorithm of FUP for the case of deletion.

For a general case that transactions are added and deleted, algorithm
FUP; can work smoothly with both the deleted portion A~ and the added
portion AT of the whole dataset. A very feature is that the old frequent k-
itemsets Ly, from the previous mining result is used for dividing the candidate
set C, into two parts: P, = CyNLy and Qx = C— Py In other words, Py, (Q%)
is the set of candidate itemsets that are previously frequent (infrequent) with
respect to D. For the candidate itemsets in Q, their supports are unknown
since they were infrequent in the original database D, posing some difficulties
in generating new frequent itemsets. Fortunately, it is noted that if a candidate
itemset in @y is frequent in A~ it must be infrequent in D~. This itemset
is further identified to be infrequent in the updated database D’ if it is also
infrequent in A™. This technique helps on effectively reducing the number of
candidate itemsets to be further checked against the unchanged portion D~
which is usually much larger than either A~ or AT.

T, |ABC (Original) frequent
N Ty | A F itemsets {L,} of D Cy Ly
T; | ABC E Itemset | Support P, Q ltemset | Support
T,|AB D F {A} 6/9 {A} {D} {A} 4/9
D Ts (o] F {B} 6/9 {B} {F¥ |—| B} 6/9
o Te | ABC {C} 6/9 {C} {C} 5/9
T, | ABC E {E} 4/9 {E} {D} 6/9
Tg CDE D’ {AB} 5/9 C, L,
Ty B DE {AC} 4/9 P, Q, Itemset | Support
Tio B D {B C} 4/9 {A B} {A D} {AB} 4/9
AT Ty D F {ABC} 4/9 {AC} {8BD} |—| {BD} 4/9
T, | ABCD {8C} | {CD}

Fig. 10. Generation of new frequent itemsets from the dataset in Fig. 6 using
algorithm FUP,

Example 6: To further illustrate the flow of algorithm FUP5, an example is
provided in Fig. 10. In the first iteration, C; is exactly the set of all items.
In subsequent iterations, Cj is generated from L) _,, the frequent itemsets
found in the previous iteration. As shown in Fig. 10, the set of candidate
itemsets C; can be further divided into P; and @;. For each itemset in P;,

16 Wei-Guang Teng and Ming-Syan Chen

the corresponding support for D is known since the itemsets is previously
frequent. Therefore, by scanning only the deleted portion A~ and the added
portion A, the new support can be obtained. For example, Count({A})p =
Count({A})p — Count({A}) o- + Count({A})p+ = 6 — 3+ 1 = 4 where
Count(X)4p represents the occurrence counts for itemset X in dataset db. On
the other hand, to verify if an itemset in @); is frequent or not, the cost of scan-
ning the unchanged (and usually large) portion D~ could be required since
the corresponding support is previously unknown. Fortunately, in some cases,
only the scans of A~ and AT are required. For example, it can be easily ob-
served that Count({F})a+ — Count({F})ao- =0 < (JAT|=]|A7]) X Spin = 0,
showing that the support of itemset {F} could not be improved by intro-
ducing the updated transactions (both deleted and added transactions are
considered.) Consequently, fewer itemsets have to be further scanned against
the unchanged portion D~. An iteration is finished when all the itemsets in
P; and @Q); are all verified and therefore the new set of frequent itemsets L} is
generated.

Another FUP-based algorithm, call FUPyH, was also devised in [14] to
utilize the hash technique for performance improvement. In a similar way
to that of the algorithm DHP, the counts of itemsets in D~ can be hashed,
leading to an immediate improvement on efficiency.

Algorithm UWEP (Update With Early Pruning)

As pointed out earlier, the existing FUP-based algorithms in general suffer
from two inherent problems, namely (1) the occurrence of a potentially huge
set of candidate itemsets, which is particularly critical for incremental mining
since the candidate sets for the original database and the incremental portion
are generated separately, and (2) the need of multiple scans of database.

In [6], algorithm UWEP is proposed using the technique of update with
early pruning. The major feature of algorithm UWEP over other FUP-based
algorithms is that it prunes the supersets of an originally frequent itemset in
D as soon as it becomes infrequent in the updated database D’, rather than
waiting until the k-th iteration. In addition, only itemsets which are frequent
in both A* and D’'(= DU A™) are taken to generate candidate itemsets to
be further checked against AT. Specifically, if a k-itemset is frequent in AT
but infrequent in D', it is not considered when generating Cj41. This can
significantly reduce the number of candidate itemsets in AT with the trade-
off that an additional set of unchecked itemsets has to be maintained during
the mining process. Consequently, these early pruning techniques can enhance
the efficiency of FUP-based algorithms.

Algorithm Utilizing Negative Borders

Furthermore, the concept of negative borders [48] is utilized in [47] to improve
the efficiency of FUP-based algorithms on incremental mining. Specifically,

Incremental Mining on Association Rules 17

given a collection of frequent itemsets L, closed with respect to the set in-
clusion relation, the negative border Bd~ (L) of L consists of the minimal
itemsets X C R not in L where R is the set of all items. In other words, the
negative border consists of all itemsets that were candidates of the level-wise
method which did not have enough support. That is, Bd~(Ly) = Cy — Lg
where Bd~(Ly,) is the set of k-itemsets in Bd~(L). The intuition behind the
concept is that given a collection of frequent itemsets, the negative border
contains the "closest" itemsets that could be frequent, too. For example, as-
sume the collection of frequent itemsets is L={{A}, {B}, {C}, {F}, {A B},
{A C}, {A F}, {C F}, {A C F}}, by definition the negative border of L is
Bd™(L)={{B C}, {B F}, {D}, {E}}.

The algorithm proposed in [47] first generate the frequent itemsets of the
increment portion AT. A full scan of the whole dataset is required only if
the negative border of the frequent itemsets expands, that is, if an itemset
outside the negative border gets added to the frequent itemsets or its negative
border. Even in such cases, it requires only one scan over the whole dataset.
The possible drawback is that to compute the negative border closure may
increase the size of the candidate set. However, a majority of those itemsets
would have been present in the original negative border or frequent itemset.
Only those itemsets which were not covered by the negative border need to be
checked against the whole dataset. As a result, the size of the candidate set
in the final scan could potentially be much smaller as compared to algorithm
FUP.

Algorithm DELI (Difference Estimation for Large Itemsets)

To reduce the efforts of applying algorithm FUP, when database update oc-
curs, the algorithm DELI which utilizes sampling techniques is proposed in
[31]. Algorithm DELI can estimate the difference between the old and the
new frequent itemsets. Only if the estimated difference is large enough, the
update operation using algorithm FUP5 has to be performed on the updated
database to get the exact frequent itemsets.

Recall that in each iteration of algorithm FUPj,, all candidate itemsets
in Qr(= Cy — Py), i.e., previously infrequent itemsets, have to be further
verified. For each candidate itemset X € Qy, if X.supporta+ > Smin, the
exact occurrence count of X in D™ has to be further identified. This data
scan process is saved by algorithm DELI in the following way. By drawing m
transactions from D~ with replacement to form the sample S, the support of
itemset X in D, i.e., dx, can be estimated as

T _
ox = —=. }D | ’
m
where T, is the occurrence count of X in S. With m sufficiently large, the

normal distribution can be utilized to approximate the support of X in D~
with a 100(1 — a)% confidence interval [ax, bx]:

18 Wei-Guang Teng and Ming-Syan Chen

_ 7x(|D-| - ox
ax = 6% — 25 | U290 g
m

ox(ID~| - ox)

bx = 0x + za -
2 m

where zg is the critical value such that the area under the standard normal
curve beyond zg is exactly §. In other words, there is 100(1 — «)% chance
that the actual value of X.supportp- lies on the interval [ax, bx]. If the upper
bound does not exceed the support threshold, i.e., bx < Syin, itemset X is
very likely to be infrequent and is thus dropped. ansequently, the resulting
estimation for updated set of frequent itemsets L) and the previous set of
frequent itemsets Ly are compared to see if algorithm FUP5 has to be resorted
to obtain an accurate update.

Algorithms MAAP (Maintaining Association rules with Apriori
Property) and PELICAN

Several other algorithms, including the MAAP algorithm [54], and the PELI-
CAN algorithm [49], are proposed to solve the problem of incremental mining.
Algorithm MAAP firstly finds the frequent itemset(s) of the largest size based
on previously discovered frequent itemsets. If a k-itemset is found to be fre-
quent, then all of its subsets are concluded to be frequent and are thus be
added to the new set of frequent itemsets L’. This eliminates the need to
compute some frequent itemsets of shorter sizes. The other frequent itemsets
are then identified by following the levelwise style of itemset generation, i.e.,
from 1-itemsets to (k-1)-itemsets.

Both algorithms MAAP and PELICAN are similar to algorithm FUPo,
but they only focus on how to maintain maximum frequent itemsets when the
database are updated. In other words, they do not consider non-maximum fre-
quent itemsets, and therefore, the counts of non-maximum frequent itemsets
cannot be calculated. The difference of these two algorithms is that MAAP cal-
culates maximum frequent itemsets by Apriori-based framework while PELI-
CAN calculates maximum frequent itemsets based on vertical database format
and lattice decomposition. Since these two algorithms maintain maximum fre-
quent itemsets only, the storage space and the processing time for performing
each update can be thus reduced.

2.2 Partition-Based Algorithms for Incremental Mining

In contrast to the Apriori heuristic, the partition-based technique well uti-
lizes the partitioning on the whole transactional dataset. Moreover, after the
partitioning, it is understood that if X is a frequent itemset in database D
which s divided into n partitions p1, p2, ..., Pn, then X must be a frequent
itemset in at least one of the n partitions. Consequently, algorithms belonging

Incremental Mining on Association Rules 19

to this category work on each partition of data iteratively and gather the in-
formation obtained from the processing of each partition to generate the final
(integrated) results.

i+1

db-i
dbi+1. i+

ﬂ I
IHIlIIII|{|

PJ+1
Fig. 11. Incremental mining for an ongoing time-variant transaction database

Consider a partitioned transaction database in Fig. 11. Note that db*I
is the part of the transaction database formed by a continuous region from
partition P; to partition P;. Suppose we have conducted the mining for the
transaction database db*’. As time advances, we are given the new data of
P;1, and are interested in conducting an incremental mining against the new
data. With the model of sliding window which is usually adopted in temporal
mining, our interest is limited to mining the data within a fixed period of
time rather than taking all the past data into consideration. As a result, the
mining of the transaction database db’™"/ ™! is called for.

Algorithm SWF (Sliding—Window Filtering)

By partitioning a transaction database into several partitions, algorithm SWF
(sliding-window filtering) [28] employs a filtering threshold in each partition
to deal with the candidate itemset generation. Under SWF, the cumulative
information of mining previous partitions is selectively carried over toward
the generation of candidate itemsets for the subsequent partitions. After the
processing of a partition, algorithm SWF outputs a cumulative filter, which
consists of a progressive candidate set of itemsets, their occurrence counts
and the corresponding partial support required. Specifically, the cumulative
filter produced in processing each partition constitutes the key component to
realize the incremental mining.

The key idea of algorithm SWF is to compute a set of candidate 2-itemsets
as close to Ls as possible. The concept of this algorithm is described as follows.
Suppose the database is divided into n partitions Py, Py, ..., P,,, and processed
one by one. For each frequent itemset I, there must exist some partition Py
such that I is frequent from partition Py to P,. A list of 2-itemsets C'F' is
maintained by algorithm SWF to track the possible frequent 2-itemsets. For

20 Wei-Guang Teng and Ming-Syan Chen

each partition P;, algorithm SWF adds (locally) frequent 2-itemsets (together
with its starting partition P; and supports) that is not in CF and checks if
the present 2-itemsets are continually frequent from its stating partition to
the current partition. If a 2-itemset is no longer frequent, it is deleted from
CF'. However, if a deleted itemset is indeed frequent in the whole database,
it must be frequent from some other partition P; (j > i), where we can add
it to CF again.

It was shown that the number of the reserved candidate 2-itemsets will
be close to the number of the frequent 2-itemsets. For a moderate number of
candidate 2-itemsets, scan reduction technique [41] can be applied to generate
all candidate k-itemsets. Therefore, one database scan is enough to calculate
all candidate itemsets with their supports and to then determine frequent
ones. In summary, the total number of database scans can be kept as small
as two.

The flows of algorithm SWF is fully explored in the following example.

Example 7: Consider the transaction database in Fig. 6. A partitioned ver-
sion is shown in Fig. 12.

T, |ABC
AP T, | A F
T, | ABC E
T.|AB D F
D P, | Ts cC F
T, | ABC
o
T, | ABC E
Py | Ts CDE |D
T,| B DE
To| B D
At Py | Ty D F
T, | ABCD

Fig. 12. A partitioned transaction database whose data records are identical to
those in Fig. 6

Firstly, the goal is to generate all frequent itemsets in the original data-
base D, that is defined as the preprocessing step in algorithm SWF. With
Smin=40%, the generation of frequent 2-itemsets in each partition is shown
in Fig. 13. After scanning the first three transactions, partition Pj, 2-itemsets
{A B}, {A C} and {B C} are found to be frequent in P; and are thus potential
candidates for D. It can be noted that each itemset shown in Fig. 13 has two
attributes, i.e., ” Start” contains the identity of the starting partition when the
itemset was added, and ”Count” contains the number of occurrences of this

Incremental Mining on Association Rules 21

itemset since it was added. In addition the filtering threshold is [3 * 0.4] = 2
which is the minimal count required in P;.

P4 P, Ps

Itemset | Start | Count Itemset | Start | Count Itemset | Start | Count
{A B} 1 2 {AB} 1 4 {AB} 1 5
{AC} 1 2 {AC} 1 3 {AC} 1 4
{B C} 1 2 {B C} 1 3 {BC} 1 4
{B E} 3 2
{CE} 3 2
{DE} 3 2

Candidate itemsets in db'-3:

{A} {B}{C}{D}{E}{F}{AB}{AC}{BC}{BE}{CE}{DE}{ABC}{B CE}
Frequent itemsets in db'3:

{A} {B}{C}{E}{AB}{AC}{BC}{ABC}

Fig. 13. Generation of frequent 2-itemsets in each partition using algorithm SWF

Note that the frequent itemsets discovered in each partition are carried to
subsequent partitions. New itemsets could be added into the set of potential
candidate itemsets, i.e., Cs, in a new partition while the counts of existing
itemsets are increased and then be verified to see if these itemsets are still
frequent from their starting partition to the current one. For example, there is
no new 2-itemset added when processing P» since no extra frequent 2-itemsets
in addition to the ones carried from P;. Moreover, the counts for itemsets {A
B}, {A C} and {B C} are all increased, making these itemsets frequent since
their counts are no less than [6%0.4] = 3 when there are total six transactions,
i.e., P, U Py, are considered. Finally, after the analogous process for P3, the
resulting Co={{A B}, {A C}, {B C}, {B E}, {C E}, {D E}} which are also
shown in Fig. 13.

After generating Co from the first scan of database db'3, we employ the
scan reduction technique and use C5 to generate Cy (k = 2,3, ...,n), where Cy,
is the candidate last-itemsets. It can be verified that a Cy generated by SWF
can be used to generate the candidate 3-itemsets and its sequential C},_, can
be utilized to generate Cj,. Clearly, a C4 generated from Cj x Cs, instead of
from Lo % Lo, will have a size greater than |Cs| where C3 is generated from
Ly % Lo. However, since the |Cs| generated by SWF is very close to the the-
oretical minimum, i.e., |Ls|, the |C4| is not much larger than |C3|. Similarly,
the |C}| is close to |Cy|. All C}, can be stored in main memory, and we can
find Ly (k= 1,2, ...,n) together when the second scan of the database db'? is
performed. Thus, only two scans of the original database db™? are required in
the preprocessing step. In addition, instead of recording all Lis in main mem-

22 Wei-Guang Teng and Ming-Syan Chen

ory, we only have to keep Cs in main memory for the subsequent incremental
mining of an ongoing time variant transaction database. The itemsets of Cy
and Ly in db*?3 are also shown in Fig. 13 for references.

The merit of SWF mainly lies in its incremental procedure. As depicted
in Fig. 12, the mining database will be moved from db'? to db*>*. Thus, some
transactions, i.e., ti,ts, and t3, are deleted from the mining database and
other transactions, i.e., t10, t11, and t12, are added. For ease of exposition, this
incremental step can also be divided into three sub-steps: (1) generating Cy
in D~ = dbh? — A~ (2) generating Cy in db** = D~ + AT and (3) scanning
the database db®** only once for the generation of all frequent itemsets Ly,.
The flows of these steps are presented in Fig. 14 where shaded itemsets are
identified to be infrequent and are thus discarded during the mining process.
Specifically, the counts of existing itemsets in A~ are firstly subtracted, and
the processing of AT is then trivial and easy to achieve. After the new poten-
tial candidates for D'(= db**) are generated, algorithm SWF can obtain new
frequent itemsets with scanning db®* only once.

db'3— A-=Dr D+ A*=D

ltemset | Start | Count Iltemset | Start | Count
{A B} 2 3 {A B} 2 4
{A C} 2 2 {B E} 3 2
{B C} 2 2 {CE} 3 2
{B E} 3 2 {D E} 3 2
{CE} 3 2 (B D} 4 2
{D E} 3 2

Candidate itemsets in db24:

{A} {B}{C} {D} {E} {F} {A B} {B D}
Frequent itemsets in db24:
{A} {B}{C} {D} {A B} {B D}

Fig. 14. Incremental mining using algorithm SWF where shaded itemsets are iden-
tified to be infrequent when A~ is deleted or A% is added

The advantages of algorithm SWF not only can be fully exploited in the
problem of incremental mining, but also are beneficial to the development of
weighted mining [29].

Algorithms FI_SWF and CI_SWF

In [8], the algorithm SWF is extended by incorporating previous discovered
information. Two enhancements are proposed, namely the algorithm FI _SWF
(SWF with Frequent Itemset) and the algorithm CI_SWF (SWF with Can-
didate Itemset). These two algorithms reuse either the frequent itemsets or

Incremental Mining on Association Rules 23

the candidate itemsets of previous mining task to reduce the number of new
candidate itemsets. Therefore, the execution time for both algorithms can be
improved and is thus better than that of algorithm SWF.

Consider the example provided earlier, it is easily observed that there are
several (candidate or frequent) itemsets are identical for both the preprocess-
ing procedure, and the incremental procedure. Therefore, if the previous min-
ing result, i.e., the counts of the frequent itemsets, is incorporated, new counts
can be obtained by only scanning the changed portions of the whole dataset
in the incremental procedure.

2.3 Pattern Growth Algorithms for Incremental Mining

Both the Apriori-based algorithms and the partition-based algorithms aim at
the goal of reducing the number of scans on the entire dataset when updates
occur. Generally speaking, the updated portions, i.e., A~ and A, could be
scanned several times during the levelwise generation of frequent itemsets in
works belonging to these two categories. On the contrary, the algorithm FP-
growth [25] (frequent pattern growth) along with the FP-tree structure adopts
the divide-and-conquer strategy to mine association rules. The major difficul-
ties that FP-tree cannot be directly applied to the problem of incremental
mining are eased in some recent works [15, 18]. These works, in general, uti-
lize alternative forms of FP-tree to store required data to achieve the goal of
avoiding the overhead resulting from extra database scans.

Algorithms DB-tree and PotFp-tree (Potential Frequent Pattern)

In [18], two alternative forms of FP-tree are proposed to solve the problem of
incremental mining. One is the algorithm DB-tree, which stores all the items
in an FP-tree rather than only frequent 1-itemsets in the database. Besides,
the construction of a DB-tree is exactly the same way as that of a FP-tree.
Consequently, the DB-tree can be seen as an FP-tree with Sy, = 0, and is
thus a generalized form of FP-tree. When new transactions are added, corre-
sponding branches of the DB-tree could be adjusted or new branches may be
created. On the other hand, when old transactions are deleted, corresponding
branches are also adjusted or removed. This retains the flexibility to accommo-
date the FP-tree to database changes when performing incremental mining.
However, since the whole dataset being considered could be quite large, a
much more space could be needed to maintain this DB-tree structure even
a high compression is made by the nature of tree projection. This drawback
may cause the problem of insufficient memory even more severe when the size
of the DB-tree is far above the memory capacity.

The other algorithm proposed in [18] is the PotFp-tree, which stores
only some potentially frequent items in addition to the frequent 1-itemsets
at present. A tolerance parameter (or alternatively the watermark [25]) ¢ is
proposed to decide if an item is with the potential. Namely, for items with

24 Wei-Guang Teng and Ming-Syan Chen

supports s where t < s < 5,,;, are defined to be potentially frequent items.
Therefore, the need to scan the whole old database in order to update the FP-
tree when updates occur is likely to be effectively reduced. Generally speaking,
the PotFp-tree is seeking for the balance of required extra storage and possi-
bility of re-scanning the dataset.

It is noted that the FP-tree is a subset of either the DB-tree or the PotFp-
tree. To mine frequent itemsets, the FP-tree is firstly projected from either the
DB-tree or the PotFp-tree. The frequent itemsets are then extracted from the
FP-tree in the way described in [25]. The flows of utilizing algorithms DB-tree
and PotFp-tree to mine association rules incrementally are best understood
in the following example.

Example 8: Consider the transaction database in Fig. 6. By utilizing the
algorithm DB-tree, the resulting DB-tree is shown in Fig. 15 where all the
items, i.e., both the frequent ones (circles with solid lines) and the infrequent
ones (circles with dotted lines), are included. It is noted that the corresponding
FP-tree (which is shown in Fig. 5 earlier) forms a subset in the DB-tree and
is located in the top portion of the DB-tree. For a clearer presentation, the
node-links of individual items are ignored in Fig. 15.

momoO w >

Fig. 15. Construction of the DB-tree based on the transaction database D in Fig.
6

On the other hand, by setting the tolerance t=30% which is slightly lower
than Sj,in, the PotFp-tree can be also built by including items with supports
no less than ¢. The resulting PotFp-tree happens to be identical to the DB-tree
in Fig. 15.

After constructing either the DB-tree or the PotFp-tree, the generation
of frequent itemsets is very simple. Firstly, the corresponding FP-tree is ex-
tracted. Then, the frequent itemsets can be then discovered from the FP-tree
in the way as described in earlier section.

When the updated database D’ in Fig. 6 is being considered, some old
transactions have to be removed from the DB-tree and some new transactions
have to be included in the DB-tree. Note that the operations of removal and
inclusion could cause the ordering of some items to be changed since some
originally frequent items become infrequent while some originally infrequent

Incremental Mining on Association Rules 25

MmO O o>

Fig. 16. Construction of the DB-tree based on the transaction database D’ in Fig.
6

items become frequent. For example, the ordering of items D and F in Fig.
16 are exchanged since item D becomes frequent while item E becomes infre-
quent. On the other hand, it is not so necessary to change the item order in
the DB-tree when only the ordering of supports of frequent itemsets changes.

Algorithm FELINE (FrEquent/Large patterns mINing with CATS
trEe)

In [15], another alternative form of FP-tree is proposed to aim at the problem
of incremental mining. Namely, the CATS tree (compressed and arranged
transaction sequences tree) is with several common properties of FP-tree.
Also, the CATS tree and the DB-tree are very alike since they both store all
the items no matter they are frequent or not. This feature enables the CATS
tree to be capable of avoiding re-scans of databases when updates occur.
However, the construction of the CATS tree is different to that of an FP-tree
and a DB-tree. The items along a path in the CATS-tree can be re-ordered
to achieve locally optimized. Specifically, the FP-tree is built based on the
ordering of global supports of all frequent items, while the CATS-tree is built
based on the ordering of local supports of items in its path. Consequently,
the CATS-tree is sensitive to the ordering of input transactions, making the
CATS-tree not optimal since no preliminary analysis is done before the tree
construction. This in turns can reduce the data scan required to only once,
showing the advantage of this algorithm.

Example 9: Consider the transaction database in Fig. 6. The construction
of CATS-tree for the nine transactions in D is shown in Fig. 17.

By removing A~ (T;7T3) and adding A" (T10 Ti2), the incremental
modification of the CATS-tree is shown in Fig. 18. Since no specific ordering
is required when there is no conflict among items in a path, the CATS-tree
can be built and modified easily.

26 Wei-Guang Teng and Ming-Syan Chen

Goo) CrooD
D (a3
& &2 ED
CD €2

(@) (b)

Fig. 17. Construction of the CATS-tree: (a) T is added; (b) T2 and T3 are added,;
(¢) T4 Ty are added

Fig. 18. The modified CATS-tree when database updates occur

3 Mining Frequent Patterns from Data Streams

In several emerging applications, data is in the form of continuous data
streams, as opposed to finite stored databases. Examples include stock tick-
ers, network traffic measurements, web logs, click streams, data captured from
sensor networks and call records. Consequently, mining association rules (or
frequent patterns) incrementally in such a data stream environment could
encounter more challenges than that in a static database with occasional up-
dates. To explore related issues, several techniques proposed in recent works
are summarized in this section.

3.1 Mining from Online Transaction Flows

For data stream applications, the volume of data is usually too huge to be
stored on permanent devices or to be scanned thoroughly for more than once.
It is hence recognized that both approximation and adaptability are key in-
gredients for executing queries and performing mining tasks over rapid data
streams. With the computation model presented in Fig. 19 [20], a stream
processor and the synopsis maintenance in memory are two major components
for generating results in the data stream environment. Note that a buffer can
be optionally set for temporary storage of recent data from data streams.

Incremental Mining on Association Rules 27

Synopsis
in Memory

Stream - (Approximate)
Processor Results

Data Streams

Fig. 19. Computation model for data streams

W2,5]
w1,4]

wo,3] | |

: \

1 © O
% 2 |(abc) (c9) (dfg)
S 3| (o) (c.e,9) (9)

5 (I) (C) (g)
TxTime! % : % % -

0 1 2 3 4 °

Fig. 20. An example of online transaction flows

For time-variant databases, there is a strong demand for developing an
efficient and effective method to mine frequent patterns [17]. However, most
methods which were designed for a traditional database cannot be directly
applied to a dynamic data stream due not only to the high complexity of
mining temporal patterns but also to the pass-through nature of data streams.
Without loss of generality, a typical market-basket application is used here
for illustrative purposes. The transaction flow in such an application is shown
in Fig. 20 where items a to g stand for items purchased by customers. For
example, the third customer bought item ¢ during time t=[0, 1), items ¢, e
and g during t=[2, 3), and item ¢ during t=[4, 5). It can be seen that in
such a data stream environment it is intrinsically very difficult to conduct the
frequent pattern identification due to the limited time and space constraints.

3.2 Approximate Frequency Counts

As is mentioned in Section 1 in this chapter, the critical step to discover asso-
ciation rules lies in the frequency counting for all frequent itemsets. To obtain
precise supports for each itemset, the fastest algorithms to date must employ

28 Wei-Guang Teng and Ming-Syan Chen

two data scans. However, for the data stream environment, it is required to
have only one data scan for online (and incremental) maintenance of associa-
tion rules. Due to this limitation in processing data streams, two algorithms
are proposed in [35] to generate approximate frequency counts for itemsets.
One algorithm is based on the sampling technique to obtain a probabilistic
error bound while the other is based on the data partitioning technique to
obtain a deterministic error bound.

The approximation generated from both algorithms, i.e., the sticky sam-
pling and the lossy counting, are with the following guarantees, i.e., the e-
deficient synopsis:

1. There are no false positives, i.e., all itemsets whose true frequency exceed
the minimum support constraint are output.

2. No itemsets whose true frequency is less than (1-€)S,,, is output where ¢
is a error parameter.

3. Estimated frequencies are less than the true frequencies by at most e (in
percentage).

Note that the error € is a user-specified parameter in both algorithms.
In addition, the input for both algorithms is assumed to be a data stream
of singleton items at first. The lossy counting algorithm is then extended to
handle data streams of transactions which contains a set of items.

Sticky Sampling Algorithm

This algorithm is probabilistic with a user-specified parameter §, i.e., proba-
bility of failure that e-deficient synopsis cannot be guaranteed. The elements
of the input stream is processed one by one and the current length of the
stream is denoted by N.

The data structure maintained is a set S of entries of the form (e, f), where
f estimates the frequency of an element e belonging to the stream. Initially, S
is empty, and the sampling rate r = 1 is set. For each incoming element e, if
an entry for e already exists in S, the corresponding frequency f is increased
by one. Otherwise, if the element is selected (with probability %) by sampling,
an entry (e, 1) is added to S.

The sampling rate r varies over the lifetime of a stream. Let ¢t = %log(ﬁ).
The first 2t elements are sampled at rate r = 1, the next 2t elements are
sampled at rate r = 2, the next 4t elements are sampled at rate » = 4, and
so on. Whenever the sampling rate changes, the entries in S is scanned and
updated through a coin-tossing process, i.e., f is diminished by one for every
unsuccessful outcome until the repeatedly toss is successful. If f becomes 0
during this process, the corresponding entry is deleted from S.

When a user requests the list of frequent items, the entries in S with
f = N(1 — €)Spin are output. It is proved in [35] that true supports of these
frequent items are underestimated by at most e with probability 1 — §.

Intuitively, S sweeps over the stream like a magnet, attracting all elements
which already have an entry in S. The sample rate r increases logarithmically

Incremental Mining on Association Rules 29

proportional to the size of the stream. The most advantage of this algorithm is
that the space complexity is independent of the current length of the stream.

Lossy Counting Algorithm

In contrast to the sticky sampling algorithm, the incoming data stream is
conceptually divided into buckets of width w = H] transactions in the lossy
counting algorithm. Each bucket is labeled with a bucket id, starting from
1. The data structure maintained is a set S of entries of the form (e, f, A),
where f estimates the frequency of an element e belonging to the stream and
A is the maximum possible error in f. Initially, S is empty. Whenever a new
element e arrives, if the corresponding entry already exists, its frequency f
is increased by one. Otherwise, a new entry of the form (e, 1, beyrrent — 1) is
created where byrent denotes the current bucket id (= [%W). The idea behind
the lossy counting algorithm is to set a criterion that a tracked item should
at least occur once (in average) in each bucket. Consequently, the maximum
possible error A= by rrent — 1 for an entry added in bucket beyrrent. At bucket
boundaries, S is pruned by deleting entries satisfying f4+ A< beyrrent-

When a user requests the list of frequent items, the entries in S with
f > N(1 — €)Spin are output. It is proved in [35] that true supports of these
frequent items are underestimated by at most e.

To further discover frequent itemsets from data streams of transactions,
the lossy counting algorithm is also extended in [35]. A significant difference
is that the input stream is not processed transaction by transaction. Instead,
the available main memory is filled with as many buckets of transactions as
possible, and such a batch of transactions is processed together. If the number
of buckets in main memory in the current batch being processed is 3, then the
new entry (set, 1, beyrrent —) 18 created when the itemset set is not present
in S. Other methods are nearly identical to the original ones for streams of
singleton items. Similarly, when a user requests the list of frequent itemsets,
the entries in S with f > N(1 — €)Sy,in are output.

3.3 Finding Recent Frequent Itemsets Adaptively

In order to differentiate the information of recently generated transactions
from the obsolete information of old transactions, a weighting scheme and the
estDec method for discovering recent frequent itemsets from data streams are
developed in [9]. A delay rate d (0 < d < 1) is introduced in this weighting
scheme that the weight value of an old transaction Ty, with id k (starting from
1) is d(cvrrent=k) where current is the current transaction id being processed.
Consequently, when the first transaction is looked up, the total number of
transactions is obviously 1 since there is no previous transaction whose weight
should be decayed. As time advances, when k transactions are processed, the
total number of transactions can be expressed by

30 Wei-Guang Teng and Ming-Syan Chen

k-1 k-2 . _1-d
|D|, =d"" +d" " +---+d+1=)
1—-d
Also, it is obvious that
1 ifk=1

D|, = :
1Dl {|D|,H><d+1 if k> 2

Moreover, the estDec method proposed in [9] maintains a monitoring lat-
tice to track frequent itemsets. Each node in this lattice is an entry of the
form (ent, err, M Rtid) for a corresponding itemset X, where cnt is the oc-
currence count, err is the maximum error count and M Rtid is the trans-
action id of the most recent transaction containing X. The critical step in
this approach is to update occurrence counts for tracked itemsets. If an item-
set X is contained in the current transaction Ty and the previous entry is
(entpre, €rTpre, M Rtidy,), its current entry (cnty,erry, M Rtidy) can be up-
dated as

enty = cntpre X dk—MRtidpre) 1,

J(k—MRtid

ETT = €TTpre X P”), and

M Rtidy, = k.

Therefore, when the updated support of an itemset becomes less than the
threshold, i.e., %ﬁ < Spin, the entry corresponding to this itemset is
dropped. The threshold for pruning here can be adjusted to be slightly less
than the minimum support to reduce the overhead of reinserting a previously
deleted itemset.

For inserting newly discovered itemsets, another feature of the estDec
method is that only when all of the (n-1)-subsets of an n-itemset are frequent,
this n-itemset is able to become a candidate. In other words, a frequent itemset
may not be identified immediately since all its subsets have to become frequent
first, leading to a possible delayed insertion.

3.4 A Scheme for Mining Temporal Patterns

In a temporal database, frequent patterns are usually targets of mining tasks.
In addition to the mining of association rules, similar techniques can be ex-
tended to facilitate the mining of other types of temporal patterns.

Mining of Temporal Patterns

Prior works have developed several models of temporal patterns, including the
inter-transaction association rule [34], the causality rule [30], the episode [37]
and the sequential pattern [4]. Note that the very difference among the above
temporal patterns lies the ordering of occurrences. Mining of sequences corre-
sponds to the one with strict order of events, while mining inter-transaction

Incremental Mining on Association Rules 31

associations corresponds to the one without limitation on order of events.
Between these two extremes, mining of causalities and episodes mainly em-
phasizes the ordering of triggering events and consequential events. Although
the mining procedures may vary when being applied to discover different types
of temporal patterns, a typical Apriori framework is commonly adopted. By
utilizing the downward closure property in this framework [53], a fundamen-
tal issue of mining frequent temporal patterns is the frequency counting of
patterns.

In many applications, a time-constraint is usually imposed during the min-
ing process to meet the respective constraint. Specifically, the sliding window
model is introduced here, i.e., data expires after exactly N time units after its
arrival where N is the user-specified window size. Consequently, a temporal
pattern is frequent if its support, i.e., occurrence frequency, in the current
window is no less than the threshold.

Support Framework for Temporal Patterns

To evaluate the importance of a temporal pattern, the support, i.e., occurrence
frequency, is a metric commonly used. However, the definition of support
for a pattern may vary from one application to another. Consider again the
market-basket database as an example. In mining sequential patterns [4], all
the transactions of a customer can be viewed as a sequence together and the
support for a sequential pattern is the fraction of customers whose purchasing
sequences contain that pattern. Analogously, we have the model of frequency
counting in mining causality rules [30]. On the other hand, in mining inter-
transaction association rules [34], the repetitive occurrences of a pattern from
an identical customer are counted cumulatively. Moreover, when the sliding
window constraint is introduced in mining episodes [37], the support is defined
to be the fraction of windows in which an episode occurs.

To deal with data streams, problems arise due to different support defini-
tions. Specifically, since it is not possible to store all the historical data in the
memory, to identify repetitive occurrences of a pattern is difficult. As a result,
it is very important to properly formulate the support of temporal patterns.
With the sliding window model, the support or the occurrence frequency of a
temporal pattern X at a specific time t is denoted by the ratio of the number
of customers having pattern X in the current time window to the total number
of customers.

Example 10: Given the window size N=3, three sliding windows, i.e., w[0,3],
w(1,4] and w[2,5], are shown in Fig. 20 for the transaction flows. For example,
according to the support definition, supports of the inter-transaction itemset
{¢, g} from TxTime t=1 to t=>5 are obtained as in Table 1. Accordingly, the
support variations can be presented as a time series as shown in Fig. 21. For
simplicity, the total number of customers is a constant in this example, and
could be a variable as time advances in real applications.

32 Wei-Guang Teng and Ming-Syan Chen

Table 1: The support values of the inter-transaction itemset {c, g}

TxTime |Occurrence(s) of {¢, g}|Support
t=1|w][0,1]|none 0
t=2|w[0,2]|CustomerID={2, 4} |2/5=0.4
t=3|w][0,3]|CustomerID={2, 3, 4} {3/5=0.6
t=4|w[1,4]|CustomerID={2, 3} |2/5=0.4
t=5|w][2,5]|CustomerID={1, 3, 5} |3/5=0.6

1
- 08 r
8_ 06
S o4t
n
02 r
0
0 1 2 3 4 5

time

Fig. 21. Support variations of the inter-transaction itemset {c, g}

Algorithm FTP-DS (Frequent Temporal Patterns of Data
Streams)

Note that although the approaches proposed in [35] work successfully for
counting supports of singleton items, as the number of items increases, the
rapidly increasing number of temporal patterns can cause problems of pro-
hibitive storage and computing overheads. Explicitly, if the lossy counting
scheme proposed in [35] is adopted, patterns with supports no less than e
are maintained during the mining process to guarantee the error range to
be within e. However, since the threshold e, whose value could be one-tenth
of Smin, is usually too small to filter out uninteresting patterns, the storage
space could be quite large.

To address this point, the algorithm FTP-DS is developed in [46]. With the
sliding window model employed, only the occurrences of singleton items are
being counted in the first time window. After the counting iteration, frequent
items which have supports no less than the specified threshold are identified.
These frequent items can be joined to generate candidate patterns of size
two, which are then being counted in later iterations. After some patterns of
size two are identified frequent, the candidate patterns of size three are gen-
erated and counted subsequently. As a result, longer candidate patterns are
gradually generated, counted and verified to be frequent during the counting

Incremental Mining on Association Rules 33

iterations. From the downward closure property [53], it follows that only pat-
terns whose sub-patterns are all frequent are taken as candidates and to be
counted subsequently.

Example 11: Given the support threshold S,,;,=40%, the window size N=3
and the transaction flows in Fig. 20, suppose the frequent inter-transaction
associations are being generated. Since the temporal order is not required for
inter-transaction associations, we have the frequent temporal itemset gener-
ation shown in Table 2. The support calculation of each itemset is the same
as the process in Table 1. The averaged support value is represented by (ac-
cumulated supports over windows)/(number of recorded windows) in Table
2 where only itemsets with supports no less than S,,;,=40% are listed. In
addition, frequent itemsets generated in previous time window are used to
generate longer candidates to be examined later. For example, according to
Definition 1, the supports of itemset {d} during t=1 to t=5 are 0, 0.2, 0.4,
0.4 and 0.2, respectively. Not until t=3 does the support value satisfy the
threshold, meaning that itemset {d} is being tracked since t=3 as shown in
Table 2(c) and Table 2(d). However, the averaged support of itemset {d} is
(0.4+0.44-0.2)/3=1.0/3 which is less than the S,,;, =40%, making this itemset
discarded in Table 2(e). Moreover, the inclusion of itemset {d} at t=3 results
in the generation of related candidate itemsets, i.e., {c¢,d} and {d,g}, to be
examined at t=4. However, only itemset {d, g} satisfies the support threshold
and is included in Table 2(d).

Table 2: Generation of frequent temporal itemsets (Sp,i=40%)

(d)

()

t=1 t=2 t=3
{cr 0.6/1)[{cr 1272 {cF 2/3
(a) {g} 0.4/1|| {d} 0.4/1
(b) {e} 1/2
t=4 {c,g} 0.6/1
{c} 2.8/4 (c)
{dy 0.8/2|[t=5
{g} 1.6/3|| {c} 3.4/5
{i} 0.4/1]| {g} 2.4/4
{cgy 1/2 | {i} 0.8/2
{d.g} 0.4/1]|{c,g} 1.6/3

It can be seen that this approach can generate patterns of various lengths
as time advances. However, as pointed out earlier, since a pattern is not taken
as a candidate to accumulate its occurrence counts before all its subsets are
found frequent, the phenomenon of delayed pattern recognition exists, i.e.,
some patterns are recognized with delays due to the candidate forming process
in the data stream. For example, since items ¢ and ¢ are not both identified
frequent until t=2, the candidate itemset {c, g} is generated and counted
at t=3. However, it can be verified from Table 1 that {¢, g} is actually fre-
quent at t=2. Therefore, a delay of one time unit is introduced for discovering

34 Wei-Guang Teng and Ming-Syan Chen

this itemset {c, g}. It is worth mentioning that only long transient frequent
patterns could be neglected in this pattern generation process. As time ad-
vances, patterns with supports near the threshold will be further examined
and identified to be frequent if so qualified.

With a support threshold S,,;, to filter out uninteresting patterns, only
new patterns whose frequencies in the current time unit meet this threshold
are being recorded. Supports of existing patterns, i.e., patterns which were
already being recorded in previous time unit, are updated according to their
support values in the current time unit. Note that, as time advances, pat-
terns whose averaged supports fall below the threshold are removed from the
records. Therefore, only frequent patterns are monitored and recorded. In
practice, since a frequent pattern is not always with a very steady frequency,
the above mentioned removal can be delayed to allow a pattern whose sta-
tistics are already recorded to stay in the system longer with an expectation
that this pattern will become frequent again soon. This will be an application-
dependent design alternative.

4 Concluding Remarks

The mining of association rules among huge amounts of transactional data
can provide very valuable in information on customer buying behavior, and
thus improve the quality of business decisions. This market basket analysis is
a crucial area of application when performing data mining techniques. Specif-
ically, the mining of association rules is a two-step process where the first step
is to find all frequent itemsets satisfying the minimum support constraint, and
the second step is to generate association rules satisfying the minimum con-
fidence constraint from the frequent itemsets. Since to identify the frequent
itemsets is of great computational complexity, usually the problem of min-
ing association rules can be reduced to the problem of discovering frequent
itemsets.

According to the numerous works on mining association rules, the ap-
proaches utilized for efficiently and effectively discovering frequent itemsets
can be categorized into three types. Namely, they are the Apriori-based al-
gorithms, the partition-based algorithms and the pattern growth algorithms.
The Apriori-based algorithms adopt a levelwise style of itemset generation
while the database may need to be scanned for a few times. The partition-
based algorithms firstly divide the whole database into several partitions and
then perform the mining task on each partition separably and iteratively. The
pattern growth algorithms usually project the whole database into a highly
compressed tree structure and then utilize the divide-and-conquer strategy to
mine required frequent itemsets.

Recent important applications have called for the need of incremental min-
ing. This is due to the increasing use of the record-based databases whose data
are being continuously added. As time advances, old transactions may become

Incremental Mining on Association Rules 35

obsolete and are thus discarded from the database of interests to people. For
the purpose of maintaining the discovered association rules, some previously
valid rules may become invalid while some other new rules may show up. To
efficiently reflect these changes, how to utilize discovered information well is
undoubtedly an important issue. By extending the techniques used in mining
ordinary association rules, several works reached a great achievement by de-
veloping either the Apriori-based algorithms, the partition-based algorithms
and the pattern-growth algorithms.

Moreover, a challenging and interesting area of conducting the mining
capabilities in a data stream environment is becoming popular in data mining
society. To further extend the concept of mining and maintaining association
rules from data streams, some recent works are also included in this chapter.

References

1. R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algo-
rithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed
Computing (Special Issue on High Performance Data Mining), 61(3):350-371,
2001.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between
Sets of Items in Large Databases. Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pages 207-216, May 1993.

3. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in
Large Databases. Proceedings of the 20th International Conference on Very
Large Data Bases, pages 478-499, September 1994.

4. R. Agrawal and R. Srikant. Mining Sequential Patterns. Proceedings of the 11th
International Conference on Data Engineering, pages 3—14, March 1995.

5. J. M. Ale and G. Rossi. An Approach to Discovering Temporal Association
Rules. Proceedings of the 2000 ACM Symposium on Applied Computing, pages
294-300, March 2000.

6. N. F. Ayan, A. U. Tansel, and M. E. Arkun. An Efficient Algorithm to Update
Large Itemsets with Early Pruning. Proceedings of the 5th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 287291,
August 1999.

7. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic Itemset Counting
and Implication Rules for Market Basket Data. Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, pages 255-264,
May 1997.

8. C.-H. Chang and S.-H. Yang. Enhancing SWF for Incremental Association
Mining by Itemset Maintenance. Proceedings of the 7th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, April 2003.

9. J. H. Chang and W. S. Lee. Finding Recent Frequent Itemsets Adaptively
over Online Data Streams. Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 487-492, August
2003.

10. M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from Database
Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):866—
883, December 1996.

36

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Wei-Guang Teng and Ming-Syan Chen

M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data Mining for Path Traversal
Patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2):209-
221, April 1998.

X. Chen and I. Petr. Discovering Temporal Association Rules: Algorithms,
Language and System. Proceedings of the 16th International Conference on
Data Engineering, 2000.

D. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of Discovered Associ-
ation Rules in Large Databases: An Incremental Updating Technique. Proceed-
ings of the 12th International Conference on Data Engineering, pages 106—114,
February 1996.

D. Cheung, S. D. Lee, and B. Kao. A General Incremental Technique for Updat-
ing Discovered Association Rules. Proceedings of the Fifth International Con-
ference On Database Systems for Advanced Applications, pages 185-194, April
1997.

W. Cheung and O. R. Zaiane. Incremental Mining of Frequent Patterns without
Candidate Generation or Support Constraint. Proceedings of the 7th Interna-
tional Database Engineering and Application Symposium, July 2003.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ull-
man, and C. Yang. Finding Interesting Associations without Support Pruning.
IEEE Transactions on Knowledge and Data Engineering, 13(1):64-78, Janu-
ary/February 2001.

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule Discovery
from Time Series. Proceedings of the 4th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 16—22, August 1998.

C. I. Ezeife and Y. Su. Mining Incremental Association Rules with Generalized
FP-Tree. Proceedings of the 15th Canadian Conference on Artificial Intelligence,
May 2002.

V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining Data Streams under Block
Evolution. SIGKDD Ezxplorations, 3(2):1-10, January 2002.

M. N. Garofalakis, J. Gehrke, and R. Rastogi. Querying and Mining Data
Streams: You Only Get One Look. Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, June 2002.

J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in
Time Series Database. Proceeding of the 15th International Conference on Data
Engineering, pages 106-115, March 1999.

J. Han and Y. Fu. Discovery of Multiple-Level Association Rules from Large
Databases. Proceedings of the 21th International Conference on Very Large Data
Bases, pages 420-431, September 1995.

J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based, Multidimen-
sional Data Mining. COMPUTER (Special Issue on Data Mining), pages 46-50,
1999.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu. FreeSpan:
Frequent Pattern-Projected Sequential Pattern Mining. Proceedings of the 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 355—359, August 2000.

J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Gen-
eration. Proceedings of the 2000 ACM-SIGMOD International Conference on
Management of Data, May 2000.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Incremental Mining on Association Rules 37

J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for Association Rule
Mining - A General Survey and Comparison. SIGKDD Ezxplorations, 2(1):58-64,
July 2000.

L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of Constrained
Frequent Set Queries with 2-Variable Constraints. Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, pages 157-168,
June 1999.

C.-H. Lee, C.-R. Lin, and M.-S. Chen. Sliding-Window Filtering: An Efficient
Algorithm for Incremental Mining. Proceeding of the ACM 10th International
Conference on Information and Knowledge Management, November 2001.
C.-H. Lee, J.-Z. Oh, and M.-S. Chen. Progressive Weighted Miner: An Effi-
cient Method for Time-Constraint Mining. Proceedings of the 7th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, April 2003.

C.-H. Lee, P. S. Yu, and M.-S. Chen. Causality Rules: Exploring the Rela-
tionship between Triggering and Consequential Events in a Database of Short
Transactions. Proceedings of the 2nd SIAM International Conference on Data
Mining, April 2002.

S. D. Lee, D. W. Cheung, and B. Kao. Is Sampling Useful in Data Mining? A
Case Study in the Maintenance of Discovered Association Rules. Data Mining
and Knowledge Discovery, 2(3):233-262, 1998.

J. L. Lin and M. H. Dunham. Mining Association Rules: Anti-Skew Algorithms.
Proceedings of the 14th International Conference on Data Engineering, pages
486-493, 1998.

B. Liu, W. Hsu, and Y. Ma. Mining Association Rules with Multiple Minimum
Supports. Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 1999.

H. Lu, J. Han, and L. Feng. Stock Movement Prediction and N-Dimensional
Inter-Transaction Association Rules. Proceedings of the 1998 ACM SIGMOD
Workshop on Research Issues on Data Mining and Knowledge Discovery, pages
12:1-12:7, June 1998.

G. S. Manku and R. Motwani. Approximate Frequency Counts over Streaming
Data. Proceedings of the 28th International Conference on Very Large Data
Bases, pages 346-357, August 2002.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient Algorithms for Discover-
ing Association Rules. Proceedings of AAAI Workshop on Knowledge Discovery
in Databases, pages 181-192, July 1994.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery, 1(3):259-289, 1997.
A. Mueller. Fast Sequential and Parallel Algorithms for Association Rule Min-
ing: A Comparison. Technical Report CS-TR-8515, Dept. of Computer Science,
Univ. of Maryland, College Park, MD, 1995.

R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial
Data Mining. Proceedings of the 20th International Conference on Very Large
Data Bases, pages 144-155, September 1994.

J.-S. Park, M.-S. Chen, and P. S. Yu. An Effective Hash-Based Algorithm
for Mining Association Rules. Proceedings of the ACM-SIGMOD International
Conference on Management of Data, May 1995.

J.-S. Park, M.-S. Chen, and P. S. Yu. Using a Hash-Based Method with Transac-
tion Trimming for Mining Association Rules. IEFE Transactions on Knowledge
and Data Engineering, 9(5):813-825, October 1997.

38

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Wei-Guang Teng and Ming-Syan Chen

. J. Pei and J. Han. Can We Push More Constraints into Frequent Pattern
Mining? Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 2000.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu.
PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern
Growth. Proceedings of the 17th International Conference on Data Engineering,
2001.

A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. Proceedings of the 21th International
Conference on Very Large Data Bases, pages 432-444, September 1995.

R. Srikant and R. Agrawal. Mining Generalized Association Rules. Proceedings
of the 21th International Conference on Very Large Data Bases, pages 407—419,
September 1995.

W.-G. Teng, M.-S. Chen, and P. S. Yu. A Regression-Based Temporal Pat-
tern Mining Scheme for Data Streams. Proceedings of the 29th International
Conference on Very Large Data Bases, pages 93-104, September 2003.

S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An Efficient Algorithm for
the Incremental Updation of Association Rules in Large Databases. Proceedings
of the 3rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 263—266, August 1997.

H. Toivonen. Sampling Large Databases for Association Rules. Proceedings of
the 22th International Conference on Very Large Data Bases, pages 134-145,
September 1996.

A. Veloso, B. Possas, W. M. Jr., and M. B. de Carvalho. Knowledge Manage-
ment in Association Rule Mining. Workshop on Integrating Data Mining and
Knowledge Management (in conjuction with ICDM2001), November 2001.

K. Wang, Y. He, and J. Han. Mining Frequent Itemsets Using Support Con-
straints. Proceedings of the 26th International Conference on Very Large Data
Bases, pages 43-52, September 2000.

K. Wang, S. Q. Zhou, and S. C. Liew. Building Hierarchical Classifiers Using
Class Proximity. Proceedings of the 25th International Conference on Very Large
Data Bases, pages 363-374, 1999.

C. Yang, U. Fayyad, and P. Bradley. Efficient Discovery of Error-Tolerant Fre-
quent Itemsets in High Dimensions. Proceedings of the 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2001.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for
Fast Discovery of Association Rules. Proceedings of the 3rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 283—
286, August 1997.

Z.Zhou and C. I. Ezeife. A Low-Scan Incremental Association Rule Maintenance
Method. Proceedings of the 14th Canadian Conference on Artificial Intelligence,
June 2001.

