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Preface

With the growing use of information technology and the recent advances in web
systems, the amount of data available to users has increased exponentially. Thus, there is
a critical need to understand the content of the data. As a result, data-mining has become
a popular research topic in recent years for the treatment of the “data rich and information
poor” syndrome. Currently, application oriented engineers are only concerned with their
immediate problems, which results in an ad hoc method of problem solving. Researchers,
on the other hand, lack an understanding of the practical issues of data-mining for real-
world problems and often concentrate on issues (e.g. incremental performance
improvements) that are of no significance to the practitioners

In this volume, we hope to remedy these problems by (1) presenting a theoretical
foundation of data-mining, and (2) providing important new directions for data-mining
research. We have invited a set of well respected data mining theoreticians to present
their views on the fundamental science of data mining. We have also called on
researchers with practical data mining experiences to present new important data-mining
topics.

This book is organized into two parts. The first part consists of four chapters
presenting the foundations of data mining, which describe the theoretical point of view
and the capabilities and limits of current available mining techniques. The second part
consists of seven chapters which discuss the new data mining topics.

The first part of the book includes four chapters. The first chapter, authored by T.
Poggio and S. Smale, is entitled “The Mathematics of Learning: Dealing with Data.”
The authors present the mathematical formula of learning theory. In particular, they
present an algorithm for supervised learning by training sets and show that the algorithm
performs well in a number of applications involving regression as well as binary
classification. The second chapter, by H. Tsukimoto, is entitled “Logical Regression
Analysis: From Mathematical Formulas to Linguistic Rules.” He presents a solution for
solving the accurate prediction and comprehensive rules in supervised learning. The
author has developed a data mining technique called Logical Regression Analysis which
consists of regression analysis, and the Approximation Method, that can provide
comprehensive rules and also accurate prediction. The paper also shows how to apply
the techniques for mining images. The third chapter, by T.Y. Lin, is entitled “ A
Feature/Attribute Theory for Association Mining and Constructing the Complete Feature
Set” The author points out the importance of selecting correct attributes in data mining
and develops a theory of features for association mining (AM). Based on the
isomorphism theorem in AM, he concludes that it is sufficient to perform AM in
canonical models, and constructs the complete feature set for every canonical model.
Using the isomorphism theorem, the complete feature set can be derived for each relation.
Though the number of possible features is enormous, it can be shown that the high
frequency patterns features can be derived within polynomial time. The fourth chapter is
entitled “A new theoretical framework for K-means-type clustering,” and is authored by J.
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Peng and Y. Xia. The authors present generalized K-means type clustering method as the
0-1 semi-definite programming (SDP). The classical K-means algorithm, minimal sum
of squares (MSSC), can be interpreted as a special heuristic. Moreover, the 0-1 SDP
model can be further approximated by the relaxed and polynomially solvable linear and
semi-definite programming. The 0-1 SDP model can be applied to MSCC and to other
scenarios of clustering as well.

The second part of the book, from Chapters 5 to 11, present seven topics covering
recent advances in data mining. Chapter 5, entitled “Clustering via Decision Tree
Construction,” is authored by B. Liu, Y. Xia, and P. Yu. They propose a novel clustering
technique based on supervised learning called decision tree construction. The key idea is
to use a decision tree to partition the data space into cluster (or dense) regions and empty
(or sparse) regions (which produce outliers and anomalies). This technique is able to find
“natural” clusters in large high dimensional spaces efficiently. Experimental data shows
that this technique is effective and scales well for large high dimensional datasets.
Chapter 6, “Incremental Mining on Association Rules,” is written by Wei-Guang Teng
and Ming-Syan Chen. Due to the increasing use of the record-based databases where data
is being constantly added, incremental mining is needed to keep the knowledge current.
The authors propose incremental mining techniques to update the data mining on
association rules. Chapter 7, is entitled “Mining Association Rules from Tabular Data
Guided by Maximal Frequent Itemsets” and authored by Q. Zou, Y. Chen, W. Chu, and
X. Lu. Since many scientific applications are in tabular format, the authors propose to
use the maximum frequency itemset (MFI) as a road map to guide us towards generating
association rules from tabular dataset. They propose to use information from previous
searches to generate MFI and the experimental results show that such an approach to
generating MFI yields significant improvements over conventional methods. Further,
using tabular format rather than transaction data set to derive MFI can reduce the search
space and the time needed for support-counting. The authors use spreadsheet to present
rules and use spreadsheet operations to sort and select rules, which is a very convenient
way to query and organize rules in a hierarchical fashion. An example was also given to
illustrate the process of generating association rules from the tabular dataset using past
medical surgery data to aid surgeons in their decision making. Chapter 8, entitled
“Sequential Pattern Mining by Pattern-Growth: Principles and Extensions,” presents the
sequential pattern growth method and studies the principles and extensions of the method
such as (1) mining constraint-based sequential patterns, (2) mining multi-level, multi
dimensional sequential patters, and (3) mining top-k closed sequential patterns. They also
discuss the applications in bio-sequence pattern analysis and clustering sequences.
Chapter 9, entitled “Web Page Classification,” is written by B. Choi and Z. Yao. It
describes systems that automatically classify web pages into meaningful subject-based
and genre-based categories. The authors describe tools for building automatic web page
classification systems, which are essential for web mining and constructing semantic web.
Chapter 10 is entitled “Web Mining — Concepts, Applications, and Research Directions,”
and was written by Jaideep Srivastava, Prasanna Desikan, and Vipin Kumar. The authors
present the application of data mining techniques to extract knowledge from web content,
structure, and usage. An overview of accomplishments in technology and applications in
web mining is also included. Chapter 11, by Chris Clifton, Murat Kantarcioglu, and
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Jaideep Vaidya is entitled, “Privacy-Preserving Data Mining.” The goal of privacy-
preserving data mining is to develop data mining models that do not increase the risk of
misuse of the data used to generate those models. The author presents two classes of
privacy-preserving data-mining. The first is based on adding noise to the data before
providing it to the data miner. Since real data values are not revealed, individual privacy
is preserved. The second class is derived from the cryptographic community. The data
sources collaborate to obtain data mining results without revealing anything except those
results.

Finally, we would like to thank the authors for contributing their work in the
volume and the reviewers for commenting on the readability and accuracy of the work.
We hope the theories presented in this volume will give data mining practitioners a
scientific perspective in data mining and thus provide more insight into their problems.
We also hope that the new data mining topics will stimulate further research in these
important directions.

Wesley W. Chuand T. Y. Lin
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The Mathematics of Learning: Dealing with Data

Tomaso Poggio! and Steve Smale?

1 CBCL, McGovern Institute, Artificial Intelligence Lab, BCS, MIT, tp@ai.mit.edu
2 Toyota Technological Institute at Chicago and Professor in the Graduate School,
University of California, Berkeley, smale@math.berkeley.edu

Summary. Learning is key to developing systems tailored to a broad range of data analysis
and information extraction tasks. We outline the mathematical foundations of learning theory
and describe a key algorithm of it.

1 Introduction

The problem of understanding intelligence is said to be the greatest prob-
lem in science today and “the” problem for this century - as deciphering the
genetic code was for the second half of the last one. Arguably, the problem
of learning represents a gateway to understanding intelligence in brains and
machines, to discovering how the human brain works and to making intelli-
gent machines that learn from experience and improve their competences as
children do. In engineering, learning techniques would make it possible to
develop software that can be quickly customized to deal with the increasing
amount of information and the flood of data around us. Examples abound.
During the last decades, experiments in particle physics have produced a
very large amount of data. Genome sequencing is doing the same in biol-
ogy. The Internet is a vast repository of disparate information which changes
rapidly and grows at an exponential rate: it is now significantly more than
100 Terabytes, while the Library of Congress is about 20 Terabytes. We be-
lieve that a set of techniques, based on a new area of science and engineering
becoming known as “supervised learning” — will become a key technology
to extract information from the ocean of bits around us and make sense of
it. Supervised learning, or learning-from-examples, refers to systems that are
trained, instead of programmed, with a set of examples, that is a set of input-
output pairs. Systems that could learn from example to perform a specific
task would have many applications. A bank may use a program to screen
loan applications and approve the “good” ones. Such a system would be

* Reprinted by permission from Notices of the AMS, 50(5), 2003, pp.537-544
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trained with a set of data from previous loan applications and the experience
with their defaults. In this example, a loan application is a point in a mul-
tidimensional space of variables characterizing its properties; its associated
output is a binary “good” or “bad” label. In another example, a car manu-
facturer may want to have in its models, a system to detect pedestrians that
may be about to cross the road to alert the driver of a possible danger while
driving in downtown traffic. Such a system could be trained with positive
and negative examples: images of pedestrians and images without people.
In fact, software trained in this way with thousands of images has been re-
cently tested in an experimental car of Daimler. It runs on a PC in the trunk
and looks at the road in front of the car through a digital camera [36, 26, 43].
Algorithms have been developed that can produce a diagnosis of the type of
cancer from a set of measurements of the expression level of many thousands
human genes in a biopsy of the tumor measured with a cDNA microarray
containing probes for a number of genes [46]. Again, the software learns the
classification rule from a set of examples, that is from examples of expres-
sion patterns in a number of patients with known diagnoses. The challenge,
in this case, is the high dimensionality of the input space — in the order of
20,000 genes — and the small number of examples available for training —
around 50. In the future, similar learning techniques may be capable of some
learning of a language and, in particular, to translate information from one
language to another. What we assume in the above examples is a machine
that is trained, instead of programmed, to perform a task, given data of the
form (x;,y;)i2,. Training means synthesizing a function that best represents
the relation between the inputs z; and the corresponding outputs y;. The cen-
tral question of learning theory is how well this function generalizes, that is
how well it estimates the outputs for previously unseen inputs.

As we will see later more formally, learning techniques are similar to fit-
ting a multivariate function to a certain number of measurement data. The
key point, as we just mentioned, is that the fitting should be predictive, in the
same way that fitting experimental data (see figure 1) from an experiment in
physics can in principle uncover the underlying physical law, which is then
used in a predictive way. In this sense, learning is also a principled method
for distilling predictive and therefore scientific “theories” from the data. We
begin by presenting a simple “regularization” algorithm which is important
in learning theory and its applications. We then outline briefly some of its
applications and its performance. Next we provide a compact derivation of
it. We then provide general theoretical foundations of learning theory. In par-
ticular, we outline the key ideas of decomposing the generalization error of
a solution of the learning problem into a sample and an approximation er-
ror component. Thus both probability theory and approximation theory play
key roles in learning theory. We apply the two theoretical bounds to the al-
gorithm and describe for it the tradeoff — which is key in learning theory and
its applications — between number of examples and complexity of the hypothesis
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Fig. 1. How can we learn a function which is capable of generalization — among the many
functions which fit the examples equally well (here m = 7)?

space. We conclude with several remarks, both with an eye to history and to
open problems for the future.

2 A key algorithm

2.1 The algorithm

How can we fit the “training” set of data S,, = (z;,y;)]~, with a function
f:X — Y -with X aclosed subset of R" and Y C IR - that generalizes, eg
is predictive? Here is an algorithm which does just that and which is almost
magical for its simplicity and effectiveness:

1. Start with data (z;, y;)2,

2. Choose a symmetric, positive definite function K, (z') = K(z, z’), contin-
uous on X x X. A kernel K (t, s) is positive definiteif > ", _; cic;K(ti,t;) >
0 for any n € IN and choice of ¢4, ..., ¢, € X and ¢y, ..., ¢, € IR. An exam-
ple of such a Mercer kernel is the Gaussian

K(:c,x’):ef%. 1
restricted to X x X.
3.Setf: X —-Yto
fl@) =) Ky, (2). 2)

i=1



6 Tomaso Poggio and Steve Smale
where ¢ = (¢1, ..., ¢, ) and
(myI+K)ec=y ®)

where I is the identity matrix, K is the square positive definite matrix
with elements K; ; = K(xz;,z;) and y is the vector with coordinates ;.
The parameter v is a positive, real number.

The linear system of equations 3 in m variables is well-posed since K is pos-
itive and (m~I + K) is strictly positive. The condition number is good if m~y
is large. This type of equations has been studied since Gauss and the algo-
rithms for solving it efficiently represent one the most developed areas in nu-
merical and computational analysis. What does Equation 2 say? In the case
of Gaussian kernel, the equation approximates the unknown function by a
weighted superposition of Gaussian “blobs” , each centered at the location
x; of one of the m examples. The weight ¢; of each Gaussian is such to min-
imize a regularized empirical error, that is the error on the training set. The
o of the Gaussian (together with +, see later) controls the degree of smooth-
ing, of noise tolerance and of generalization. Notice that for Gaussians with
o — 0 the representation of Equation 2 effectively becomes a “look-up” table
that cannot generalize (it provides the correct y = y; only when =z = z; and
otherwise outputs 0).

2.2 Performance and examples

The algorithm performs well in a number of applications involving regres-
sion as well as binary classification. In the latter case the y; of the training
set (z;,y;)", take the values {—1,+1}; the predicted label is then {—1,+1},
depending on the sign of the function f of Equation 2. Regression applica-
tions are the oldest. Typically they involved fitting data in a small number
of dimensions [53, 44, 45]. More recently, they also included typical learning
applications, sometimes with a very high dimensionality. One example is
the use of algorithms in computer graphics for synthesizing new images and
videos [38, 5, 20]. The inverse problem of estimating facial expression and
object pose from an image is another successful application [25]. Still another
case is the control of mechanical arms. There are also applications in finance,
as, for instance, the estimation of the price of derivative securities, such as
stock options. In this case, the algorithm replaces the classical Black-Scholes
equation (derived from first principles) by learning the map from an input
space (volatility, underlying stock price, time to expiration of the option etc.)
to the output space (the price of the option) from historical data [27]. Bi-
nary classification applications abound. The algorithm was used to perform
binary classification on a number of problems [7, 34]. It was also used to per-
form visual object recognition in a view-independent way and in particular
face recognition and sex categorization from face images [39, 8]. Other appli-
cations span bioinformatics for classification of human cancer from microar-
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ray data, text summarization, sound classification® Surprisingly, it has been
realized quite recently that the same linear algorithm not only works well
but is fully comparable in binary classification problems to the most popular
classifiers of today (that turn out to be of the same family, see later).

2.3 Derivation

The algorithm described can be derived from Tikhonov regularization. To
find the minimizer of the the error we may try to solve the problem — called
Empirical Risk Minimization (ERM) — of finding the function in K which
minimizes

Z(f(l“i) —vi)°

=1

1
m

which is in general ill-posed, depending on the choice of the hypothesis space
‘H. Following Tikhonov (see for instance [19]) we minimize, instead, over
the hypothesis space H, for a fixed positive parameter ~, the regularized

functional
m

> i — f@)? + I F 1k, (4)

i=1

1

m
where | f||% is the norm in Hx — the Reproducing Kernel Hilbert Space
(RKHS), defined by the kernel K. The last term in Equation 4 — called reg-
ularizer — forces, as we will see, smoothness and uniqueness of the solution.
Let us first define the norm || f||%. Consider the space of the linear span of
Kz,. We use T; to emphasize that the elements of X used in this construction
do not have anything to do in general with the training set (x;),. Define an
inner product in this space by setting (K., Kz,) = K(z,7;) and extend lin-
early to 22:1 a;jKz,;. The completion of the space in the associated norm is
the RKHS, that is a Hilbert space Hx with the norm || f||% (see [10, 2]). Note
that (f, K;) = f(x) for f € Hg (just let f = Kz, and extend linearly). To
minimize the functional in Equation 4 we take the functional derivative with
respect to f, apply it to an element f of the RKHS and set it equal to 0. We
obtain

1« -
o > (i — f@a) (i) —=+(f, ) = 0. ©)
i=1
Equation 5 must be valid for any f. In particular, setting f = K, gives
fl@) =) cK, () 6)
i=1

3 The very closely related Support Vector Machine (SVM) classifier was used for
the same family of applications, and in particular for bioinformatics and for face
recognition and car and pedestrian detection [46, 25].
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where

o= Ui I )

my

since (f, K;) = f(x). Equation 3 then follows, by substituting Equation
6 into Equation 7. Notice also that essentially the same derivation for a
generic loss function V (y, f(z)), instead of (f(x) —y)?, yields the same Equa-
tion 6, but Equation 3 is now different and, in general, nonlinear, depend-
ing on the form of V. In particular, the popular Support Vector Machine
(SVM) regression and SVM classification algorithms correspond to special
choices of non-quadratic V, one to provide a 'robust” measure of error and
the other to approximate the ideal loss function corresponding to binary
(miss)classification. In both cases, the solution is still of the same form of
Equation 6 for any choice of the kernel K. The coefficients ¢; are not given
anymore by Equations 7 but must be found solving a quadratic program-
ming problem.

3 Theory

We give some further justification of the algorithm by sketching very briefly
its foundations in some basic ideas of learning theory. Here the data (z;, v;),
is supposed random, so that there is an unknown probability measure p on
the product space X x Y from which the data is drawn. This measure p de-
fines a function

fo: X =Y (8)

satisfying f,(z) = [wydp,, where p, is the conditional measure on z x Y.
From this construction f, can be said to be the true input-output function
reflecting the environment which produces the data. Thus a measurement of
the error of f is

/ (f — £, dpx )
X

where px is the measure on X induced by p (sometimes called the marginal
measure). The goal of learning theory might be said to “find” f minimizing
this error. Now to search for such an f, it is important to have a space H
— the hypothesis space — in which to work (“learning does not take place in a
vacuum”). Thus consider a convex space of continuous functions f : X — Y,
(remember Y C IR) which as a subset of C'(X) is compact, and where C(X) is
the Banach space of continuous functions with || f|| = maxx |f(z)|. A basic
example is

H = Ik (BRr) (10)

where Ik : Hx — C(X) is the inclusion and Bp, is the ball of radius R in H.
Starting from the data (z;,y;)", = 2 one may minimize - 3™ | (f(z;) — y;)*

over f € H to obtain a unique hypothesis f, : X — Y. This f, is called the
empirical optimum and we may focus on the problem of estimating
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/ (f: — fp)deX (11)
X

It is useful towards this end to break the problem into steps by defining a
“true optimum” fy relative to H, by taking the minimum over H of [, (f —
f,)%. Thus we may exhibit

/ (f. — £,)* = S(z,H) +/ (fr— £5)* = S(z, H) + A(H) (12)
X X

where

S(zH) = /X (f = )7 — /X (e — 1) (13)

The first term, (S) on the right in Equation 12 must be estimated in proba-
bility over z and the estimate is called the sample errror (sometime also the
estimation error). It is naturally studied in the theory of probability and of em-
pirical processes [16, 30, 31]. The second term (A) is dealt with via approxi-
mation theory (see [15] and [12, 14, 13, 32, 33]) and is called the approximation
error. The decomposition of Equation 12 is related, but not equivalent, to the
well known bias (A4) and variance (S) decomposition in statistics.

3.1 Sample Error
First consider an estimate for the sample error, which will have the form:
S(z,H) <e (14)

with high confidence, this confidence depending on € and on the sample size
m. Let us be more precise. Recall that the covering number or Cov#(H,n) is
the number of balls in H of radius 1 needed to cover H.

Theorem 3.1 Suppose |f(x)—y| < M forall f € H for almost all (x,y) € X XY
Then
Prob.e(xxyym{S(z,H) <€} <1-46

where 6 = Cov#(H, ﬁ)efmsgﬁ.

The result is Theorem C* of [10], but earlier versions (usually without a
topology on H) have been proved by others, especially Vapnik, who formu-
lated the notion of VC dimension to measure the complexity of the hypothe-
sis space for the case of {0, 1} functions. In a typical situation of Theorem 3.1
the hypothesis space H is taken to be as in Equation 10, where Bp, is the ball
of radius R in a Reproducing Kernel Hilbert Space (RKHS) with a smooth
K (or in a Sobolev space). In this context, R plays an analogous role to VC
dimension[50]. Estimates for the covering numbers in these cases were pro-
vided by Cucker, Smale and Zhou [10, 54, 55]. The proof of Theorem 3.1 starts
from Hoeffding inequality (which can be regarded as an exponential version
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of Chebyshev’s inequality of probability theory). One applies this estimate to
the function X x Y — IR which takes (z,y) to (f(z) —y)?. Then extending the
estimate to the set of f € H introduces the covering number into the picture.
With a little more work, theorem 3.1 is obtained.

3.2 Approximation Error

The approximation error [, (f» — f,)* may be studied as follows. Suppose
B : L? — L? is a compact, strictly positive (selfadjoint) operator. Then let E
be the Hilbert space

{g€ L% | B™"g|| < oo}

with inner product (g, h)g = (B~ ¢, B~*h) 2. Suppose moreover that E —
L? factors as E — C(X) — L? with the inclusion Jg : E — C(X) well
defined and compact. Let H be Jg(Br) when By, is the ball of radius R in E.
A theorem on the approximation error is

Theorem 3.2 Let 0 < r < s and H be as above. Then
2r

1. 5+
1y = frel® < () IB7"f

2s

s—r

We now use || - || for the norm in the space of square integrable functions on
X, with measure px. For our main example of RKHS, take B = L}(/Q, where

K is a Mercer kernel and
Lif(@) = [ 1)K @) (15)

and we have taken the square root of the operator L. In this case E is Hx
as above. Details and proofs may be found in [10] and in [48].

3.3 Sample and approximation error for the regularization algorithm

The previous discussion depends upon a compact hypothesis space H from
which the experimental optimum f, and the true optimum fy; are taken. In
the key algorithm of section 2 , the optimization is done over all f € Hg
with a regularized error function. The error analysis of sections 3.1 and 3.2
must therefore be extended. Thus let f, . be the empirical optimum for the
regularized problem as exhibited in Equation 4

= > = @) + e (16)
Then
[t = 12 <500+ A0 17)
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where A() (the approximation error in this context) is

_1
AW) =L ol (18)
and the sample error is

2 2
_BMAAOPR L -

S() 5

where v*(m, §) is the unique solution of

%vs - ln(%n)v —c =0. (20)
Here C,c; > 0 depend only on X and K. For the proof one reduces to the
case of compact H and applies theorems 3.1 and 3.2. Thus finding the optimal
solution is equivalent to finding the best tradeoff between A and S for a given
m. In our case, this bias-variance problem is to minimize S(vy) + A(7y) over
~ > 0. There is a unique solution — a best v — for the choice in Equation 4. For
this result and its consequences see [11].

4 Remarks

The tradeoff between sample complexity and hypothesis space complexity For a
given, fixed hypothesis space H only the sample error component of the error
of f. can be be controlled (in Equation 12 only S(z,H) depends on the data).
In this view, convergence of S to zero as the number of data increases (theo-
rem 3.1) is then the central problem in learning. Vapnik called consistency of
ERM (eg convergence of the empirical error to the true error) the key problem
in learning theory and in fact much modern work has focused on refining
the necessary and sufficient conditions for consistency of ERM (the uniform
Glivenko-Cantelli property of H, finite V., dimension for v > 0 etc., see [19]).
More generally, however, there is a tradeoff between minimizing the sample
error and minimizing the approximation error — what we referred to as the
bias-variance problem. Increasing the number of data points m decreases the
sample error. The effect of increasing the complexity of the hypothesis space
is trickier. Usually the approximation error decreases but the sample error
increases. This means that there is an optimal complexity of the hypothesis
space for a given number of training data. In the case of the regularization
algorithm described in this paper this tradeoff corresponds to an optimum
value for « as studied by [11, 35, 3]. In empirical work, the optimum value is
often found through cross-validation techniques [53]. This tradeoff between
approximation error and sample error is probably the most critical issue in
determining good performance on a given problem. The class of regulariza-
tion algorithms, such as Equation 4, shows clearly that it is also a tradeoff —
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quoting Girosi — between the curse of dimensionality (not enough examples)
and the blessing of smoothness (which decreases the effective “dimensionality”
eg the complexity of the hypothesis space) through the parameter . The reg-
ularization algorithm and Support Vector Machines There is nothing to stop us
from using the algorithm we described in this paper - that is square loss reg-
ularization — for binary classification. Whereas SVM classification arose from
using — with binary y — the loss function

V() =1 —yf(x¥)+,

we can perform least-squares regularized classification via the loss function

V(f(x,) = (f(x) —y)*.

This classification scheme was used at least as early as 1989 (for reviews see
[7, 40] and then rediscovered again by many others (see [21, 49]), including
Mangasarian (who refers to square loss regularization as “proximal vector
machines”) and Suykens (who uses the name “least square SVMs”). Rifkin
( [47]) has confirmed the interesting empirical results by Mangasarian and
Suykens: “classical” square loss regularization works well also for binary
classification (examples are in tables 1 and 2).

800 250 100 30
SVM [RLSC||SVM|RLSC||SVM [RLSC|[SVM|RLSC
0.131]0.129 ||0.167|0.165 ||0.214|0.211 ||0.311{ 0.309

Table 1. A comparison of SVM and RLSC (Regularized Least Squares Classification) accu-
racy on a multiclass classification task (the 20newsgroups dataset with 20 classes and high
dimensionality, around 50, 000), performed using the standard “one vs. all” scheme based on
the use of binary classifiers. The top row indicates the number of documents/class used for
training. Entries in the table are the fraction of misclassified documents. From [47].

52 20 10 3
SVM|RLSC||SVM|RLSC||SVM |[RLSC||SVM |[RLSC
0.072]0.066 {|0.176| 0.169 ||0.341| 0.335 ||0.650| 0.648

Table 2. A comparison of SVM and RLSC accuracy on another multiclass classification task
(the sectorl05  dataset, consisting of 105 classes with dimensionality about 50, 000). The
top row indicates the number of documents/class used for training. Entries in the table are the
fraction of misclassified documents. From [47].

In references to supervised learning the Support Vector Machine method
is often described (see for instance a recent issue of the Notices of the AMS



The Mathematics of Learning: Dealing with Data 13

[28]) according to the “traditional” approach, introduced by Vapnik and fol-
lowed by almost everybody else. In this approach, one starts with the con-
cepts of separating hyperplanes and margin. Given the data, one searches for
the linear hyperplane that separates the positive and the negative exam-
ples, assumed to be linearly separable, with the largest margin (the margin
is defined as the distance from the hyperplane to the nearest example). Most
articles and books follow this approach, go from the separable to the non-
separable case and use a so-called “kernel trick” (!) to extend it to the non-
linear case. SVM for classification was introduced by Vapnik in the linear,
separable case in terms of maximizing the margin. In the non-separable case,
the margin motivation loses most of its meaning. A more general and simpler
framework for deriving SVM algorithms for classification and regression is
to regard them as special cases of regularization and follow the treatment of
section 2. In the case of linear functions f(z) = w-z and separable data, max-
imizing the margin is exactly equivalent to maximizing m, which is in turn
equivalent to minimizing ||w||?, which corresponds to minimizing the RKHS
norm. The regularization algorithm and learning theory The Mercer theorem was
introduced in learning theory by Vapnik and RKHS by Girosi [22] and later
by Vapnik [9, 50]. Poggio and Girosi [41, 40, 23] had introduced Tikhonov reg-
ularization in learning theory (the reformulation of Support Vector Machines
as a special case of regularization can be found in [19]). Earlier, Gaussian Ra-
dial Basis Functions were proposed as an alternative to neural networks by
Broomhead and Loewe. Of course, RKHS had been pioneered by Parzen and
Wahba ([37, 53]) for applications closely related to learning, including data
smoothing (for image processing and computer vision, see [4, 42]). A Bayesian
interpretation The learning algorithm Equation 4 has an interesting Bayesian
interpretation [52, 53]: the data term — that is the first term with the quadratic
loss function — is a model of (Gaussian, additive) noise and the RKHS norm
(the stabilizer) corresponds to a prior probability on the hypothesis space H.
Let us define P[f|S,,] as the conditional probability of the function f given
the training examples S,,, = (x;,y;)7~;, P[Sm|f] as the conditional probabil-
ity of S, given f, i.e. a model of the noise, and P[f] as the a priori probability
of the random field f. Then Bayes theorem provides the posterior distribu-

tion as
P[Swm|f] P[f]
P(Sm)

If the noise is normally distributed with variance o, then the probability
P[Sml|f]is

Pf|5m] =

1 i sm (i 2
P[Sm|f] = Z@ 202 1=1(!/z f(‘LI))
where Z;, is a normalization constant. If P[f] = Z;re—n FI% where Z, is an-

other normalization constant, then

1 1 m
P[f]Sm] = 777 o (o2 T (wi—F (@) +IF %)
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One of the several possible estimates of f from P[f|S,,] is the so called Max-
imum A Posteriori (MAP) estimate, that is

max P[f|Sm] = min Y (y; — f(x:))* + 20°|| f|% -
=1

which is the same as the regularization functional, if A = 2% /m (for details
and extensions to models of non Gaussian noise and different loss functions
see [19]). Necessary and sufficient conditions for learnability Compactness of the
hypothesis space H is sufficient for consistency of ERM, that is for bounds of
the type of Theorem 3.1 on the sample error. The necessary and sufficient condi-
tion is that H is a uniform Glivenko-Cantelli class of functions, in which case
no specific topology is assumed for H*. There are several equivalent condi-
tions on H such as finiteness of the V., dimension for all positive v (which
reduces to finiteness of the VC dimension for {0,1} functions) °>. We saw
earlier that the regularization algorithm Equation 4 ensures (through the re-
sulting compactness of the “effective” hypothesis space) well-posedness of
the problem. It also yields convergence of the empirical error to the true er-
ror (eg bounds such as Theorem 3.1). An open question is whether there is a
connection between well-posedness and consistency. For well-posedness the
critical condition is usually stability of the solution. In the learning problem,
this condition refers to stability of the solution of ERM with respect to small
changes of the training set .S,,. In a similar way, the condition number (see
[6] and especially [29]) characterizes the stability of the solution of Equation
3. Is it possible that some specific form of stability may be necessary and
sufficient for consistency of ERM? Such a result would be surprising because,
a priori, there is no reason why there should be a connection between well-
posedness and consistency: they are both important requirements for ERM
but they seem quite different and independent of each other.

Learning theory, sample complexity and brains The theory of supervised
learning outlined in this paper and in the references has achieved a remark-
able degree of completeness and of practical success in many applications.

* Definition: Let F be a class of functions f. F is a uniform Glivenko-Cantelli class if for
every e >0

m—oo

lim sup IP{sup |E,,.f — E,f| >} =0. (21)
fer

where p», is the empirical measure supported on a set z1, ..., Tn.

® In [1] - following [51, 17] — a necessary and sufficient condition is proved for uni-
form convergence of |Iemp[f] — Ieap[f]], in terms of the finiteness for all v > 0 of a
combinatorial quantity called V5, dimension of F (which is the set V' (z), f(z), f €
‘H), under some assumptions on V. The result is based on a necessary and sufficient
(distribution independent) condition proved by [51] which uses the metric entropy
of F defined as Hy, (e, F) = sup, cxm logN (e, F,zm), where N(e, F, z,) is the
e-covering of F wrt 1z, (17 isthe [°° distance on the points x,,): Theorem (Dudley,

Tm

see [18]). F is a uniform Glivenko-Cantelli class iff lim,— oo W =0 forall e > 0.
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Within it, many interesting problems remain open and are a fertile ground
for interesting and useful mathematics. One may also take a broader view
and ask: what next? One could argue that the most important aspect of intel-
ligence and of the amazing performance of real brains is the ability to learn.
How then do the learning machines we have described in the theory com-
pare with brains? There are of course many aspects of biological learning
that are not captured by the theory and several difficulties in making any
comparison. One of the most obvious differences, however, is the ability of
people and animals to learn from very few examples. The algorithms we
have described can learn an object recognition task from a few thousand la-
beled images. This is a small number compared with the apparent dimen-
sionality of the problem (thousands of pixels) but a child, or even a mon-
key, can learn the same task from just a few examples. Of course, evolution
has probably done a part of the learning but so have we, when we choose
for any given task an appropriate input representation for our learning ma-
chine. From this point of view, as Donald Geman has argued, the interesting
limit is not ”m goes to infinity,” but rather "m goes to zero”. Thus an im-
portant area for future theoretical and experimental work is learning from
partially labeled examples (and the related area of active learning). In the
first case there are only a small number ¢ of labeled pairs (z;,;)¢_, — for in-
stance with y; binary — and many unlabeled data (x;)}} ,, m >> . Though
interesting work has begun in this direction, a satisfactory theory that pro-
vides conditions under which unlabeled data can be used is still lacking. A
comparison with real brains offers another, and probably related, challenge
to learning theory. The “learning algorithms” we have described in this pa-
per correspond to one-layer architectures. Are hierarchical architectures with
more layers justifiable in terms of learning theory? It seems that the learning
theory of the type we have outlined does not offer any general argument in
favor of hierarchical learning machines for regression or classification. This
is somewhat of a puzzle since the organization of cortex — for instance vi-
sual cortex — is strongly hierarchical. At the same time, hierarchical learning
systems show superior performance in several engineering applications. For
instance, a face categorization system in which a single SVM classifier com-
bines the real-valued output of a few classifiers, each trained to a different
component of faces — such as eye and nose —, outperforms a single classifier
trained on full images of faces ([25]). The theoretical issues surrounding hi-
erarchical systems of this type are wide open, and likely to be of paramount
importance for the next major development of efficient classifiers in several
application domains. Why hierarchies? There may be reasons of efficiency —
computational speed and use of computational resources. For instance, the
lowest levels of the hierarchy may represent a dictionary of features that can
be shared across multiple classification tasks (see [24]). Hierarchical system
usually decompose a task in a series of simple computations at each level
— often an advantage for fast implementations. There may also be the more
fundamental issue of sample complexity. We mentioned that an obvious dif-



16 Tomaso Poggio and Steve Smale

ference between our best classifiers and human learning is the number of
examples required in tasks such as object detection. The theory described in
this paper shows that the difficulty of a learning task depends on the size
of the required hypothesis space. This complexity determines in turn how
many training examples are needed to achieve a given level of generaliza-
tion error. Thus the complexity of the hypothesis space sets the speed limit
and the sample complexity for learning. If a task — like a visual recognition
task — can be decomposed into low-complexity learning tasks, for each layer
of a hierarchical learning machine, then each layer may require only a small
number of training examples. Of course, not all classification tasks have a
hierarchical representation. Roughly speaking, the issue is under which con-
ditions a function of many variables can be approximated by a function of a
small number of functions of subsets of the original variables. Neuroscience
suggests that what humans can learn can be represented by hierarchies that
are locally simple. Thus our ability of learning from just a few examples, and
its limitations, may be related to the hierarchical architecture of cortex. This
is just one of several possible connections, still to be characterized, between
learning theory and the ultimate problem in natural science — the organiza-
tion and the principles of higher brain functions.

Acknowledgments Thanks to Felipe Cucker, Federico Girosi, Don Glaser,
Sayan Mukherjee, Massimiliano Pontil, Martino Poggio and Ryan Rifkin.
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Logical Regression Analysis:From
mathematical formulas to linguistic rules
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1 Introduction

Data mining means the discovery of knowledge from (a large amount of) data,
and so data mining should provide not only predictions but also knowledge
such as rules that are comprehensible to humans. Data mining techniques
should satisfy the two requirements, that is, accurate predictions and com-
prehensible rules.

Data mining consists of several processes such as preprocessing and learn-
ing. This paper deals with learning. The learning in data mining can be di-
vided into supervised learning and unsupervised learning. This paper deals
with supervised learning, that is, classification and regression.

The major data mining techniques are neural networks, statistics, decision
trees, and association rules. When these techniques are applied to real data,
which usually consist of discrete data and continuous data, they each have
their own problems. In other words, there is no perfect technique, that is, there
is no technique which can satisfy the two requirements of accurate predictions
and comprehensible rules.

Neural networks are black boxes, that is, neural networks are incomprehen-
sible. Multiple regression formulas, which are the typical statistical models,
are black boxes too. Decision trees do not work well when classes are continu-
ous [19], that is, if accurate predictions are desired, comprehensibility has to
be sacrificed, and if comprehensibility is desired, accurate predictions have to
be sacrificed. Association rules, which are unsupervised learning techniques,
do not work well when the right-hand sides of rules, which can be regarded as
classes, are continuous [21]. The reason is almost the same as that for decision
trees.

Neural networks and multiple regression formulas are mathematical for-
mulas. Decision trees and association rules are linguistic rules. Mathematical
formulas can provide predictions but cannot provide comprehensible rules. On
the other hand, linguistic rules can provide comprehensible rules but cannot
provide accurate predictions in continuous classes.
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How can we solve the above problem? The solution is rule extraction from
mathematical formulas. Rule extraction from mathematical formulas is needed
for developing the perfect data mining techniques satisfying the two data
mining requirements, accurate predictions and comprehensible rules.

Several researchers have been developing rule extraction techniques from
neural networks, and therefore, neural networks can be used in data mining
[14], whereas few researchers have studied rule extraction from linear formulas.
We have developed a rule extraction technique from mathematical formulas
such as neural networks and linear formulas. The technique is called the Ap-
proximation Method.

We have implemented the Approximation Method for neural networks in
a data mining tool KINOsuite-PR[41].

Statistics have been developing many techniques. The outputs of several
techniques are linear formulas. The Approximation Method can extract rules
from the linear formulas, and so the combination of statistical techniques and
the Approximation Method works well for data mining.

We have developed a data mining technique called Logical Regression
Analysis(LRA). LRA consists of regression analysis’ and the Approximation
Method. Since there are several regression analyses, LRA has several versions.
In other words, LRA can be applied to a variety of data, because a variety of
regression analyses have been developed.

So far, in data mining, many researchers have been dealing with symbolic
data or numerical data and few researchers have been dealing with image
data.

One of LRA’s merits is that LRA can deal with image data, that is, LRA
can discover rules from image data. Therefore, this paper explains the data
mining from images by LRA.

There are strong correlations between the pixels of images, and so the
numbers of samples are small compared with the numbers of the pixels, that
is, the numbers of attributes(variables).

A regression analysis for images must work well when the correlations
among attributes are strong and the number of data is small. Nonparametric
regression analysis works well when the correlations among attributes are
strong and the number of data is small.

There are many kinds of images such as remote-sensing images, industrial
images and medical images. Within medical images, there are many types such
as brain images, lung images, and stomach images. Brain functions are the
most complicated and there are a lot of unknown matters, and consequently
the discovery of rules between brain areas and brain functions is a significant
subject. Therefore, we have been dealing with functional brain images.

We have been applying LRA using nonparametric regression analysis to
fMRI images to discover the rules of brain functions. In this paper, for sim-

! The regression analysis includes the nonlinear regression analysis using neural
networks
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plification, “LRA using nonparametric regression analysis” is abbreviated to
“LRA”.

LRA was applied to several experimental tasks. This paper reports the
experimental results of finger tapping and calculation. The results of LRA
include discoveries that have never been experimentally confirmed. Therefore,
LRA has the possibility of providing new evidence in brain science.

ta

Regr essi on

Anal ysi s
\ 4
The Approxi mati on
Met hod
l \
Rul es predi ctions

(Predictions)

Fig. 1. Logical Regression Analysis

Section 2 explains the problems in the major data mining techniques and
how the problems can be solved by rule extraction from mathematical for-
mulas. Section 3 surveys the rule extraction from neural networks. Section 4
explains the Approximation Method, which has been developed by the au-
thor. The Approximation Method is mathematically based on the multilinear
function space, which is also explained. Section 5 explains the Approximation
Method in the continuous domain. Section 6 discusses a few matters. Section
7 briefly explains the data mining from fMRI images. Section 8 describes the
data mining from fMRI images by Logical Regression Analysis(LRA). Section
9 shows the experiments of calculations.

This paper is mainly based on [32], [33],[35], and [36].
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2 The problems of major data mining techniques
The major data mining techniques, that is, decision trees, neural networks,

statistics and association rules, are reviewed in terms of the two requirements
of accurate predictions and comprehensible rules.

2.1 Neural networks

;
w3 wo

Input Hidden Output

layer layer layer

Fig. 2. Neural network

Neural networks can provide accurate predictions in the discrete domain
and the continuous domain. The problem is that the training results of neu-
ral networks are sets of mathematical formulas, that is, neural networks are
incomprehensible black boxes.

For example, Fig. 2 shows a trained neural network. In Fig. 2, x and y are
inputs, z is an output, and ¢;’s are the outputs of the two hidden units. Each
output is represented as follows:

tl = S(wlm + waY + hl),

to = S(wzx + way + ho),
z = S(w5t1 —+ w6t2 + h3)7

where w;’s stand for weight parameters, S(x) stands for sigmoid function and
h;’s stand for biases. The weight parameters are as follows:
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wy = 2.51, we = —4.80, wg = —4.90,

wy = 2.83, w5 = 2.52, wg = —4.81,

hy = —0.83, hy = —1.12, hg = —0.82.
From the above weight parameters and the above formulas, we cannot un-
derstand what the neural network has learned. Therefore, the trained neural
network is a black box. What the neural network has learned will be explained
later using a rule extraction technique.

2.2 Multiple regression analysis

There are a lot of statistical methods. The most typical method is multiple
regression analysis, and therefore, only multiple regression analysis is dis-
cussed here. Multiple regression analysis usually uses linear formulas, and so
only linear regression analysis is possible and nonlinear regression analysis is
impossible, while neural networks can perform nonlinear regression analysis.
However, linear regression analysis has the following advantages.

1. The optimal solution can be calculated.

2. The linear regression analysis is the most widely used statistical method
in the world.

3. Several regression analysis techniques such as nonparametric regression
analysis and multivariate autoregression analysis have been developed
based on the linear regression analysis.

Linear regression analysis can provide appropriate predictions in the contin-
uous domain and discrete domain. The problem is that multiple regression
formulas are mathematical formulas as showed below.

n
Y= Z a;z; + b,
i=1

where y is a dependent variable, x;s are independent variables, b is a con-
stant, a;s are coefficients, and n is the number of the independent variables.
The mathematical formulas are incomprehensible black boxes. A mathemati-
cal formula consisting of a few independent variables may be understandable.
However, a mathematical formula consisting of a lot of independent variables
cannot be understood. Moreover, in multivariate autoregression analysis, there
are several mathematical formulas, and so the set of the mathematical for-
mulas cannot be understood at all. Therefore, rule extraction from linear
regression formulas is important.

2.3 Decision trees

When a class is continuous, the class is discretized into several intervals. When
the number of the intervals, that is, the number of the discretized classes, is
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small, comprehensible trees can be obtained, but the tree cannot provide ac-
curate predictions. For example, Fig. 3 shows a tree where there are two
continuous attributes and a continuous class. To improve the prediction ac-
curacy, let the number of intervals be large. When the number of intervals is
large, the trees obtained are too complicated to be comprehensible.

From the above simple discussion, we can conclude that it is impossi-
ble to obtain trees which can satisfy the two requirements for data mining
techniques, accurate predictions and comprehensible rules at the same time.
Therefore, decision trees cannot work well when classes are continuous [19].

As a solution for continuous classes, for example, Quinlan presented
Cubist[40]. Cubist generates piecewise-linear models, which are a kind of re-
gression trees. Fig. 4 shows an example. As seen from this figure, the tree is
an extension of linear formulas, and so the tree is a prediction model, that
is, it is incomprehensible. As a result, this solution has solved the inaccurate
prediction problem but has generated the incomprehensibility problem.

2.4 Association rules
Association rules are described as
aNb— c,

where ¢ can be regarded as a class. Association rules do not work well when
“classes” like c in the above rule are continuous. When there are many inter-
vals, the rules are too complicated to be comprehensible, whereas when there
are few intervals, the rule cannot provide accurate predictions, and therefore
some concessions are needed [21]. Some techniques such as fuzzy techniques
can be applied to the above problem [11], but while fuzzy techniques can
improve predictions, they degrade the comprehensibility.

3.0<y y<4.0

[0.0-1.5] [3.4-5.1] [1.6-3. 3] [5.2-10. 0]

Fig. 3. Decision tree with a continuous class
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3.0<y y<4.0

z=ax+by+c Z=dx+ey+f z=gx+hy+i z=j X+ky+l

Fig. 4. Regression tree

Table 1. Data mining techniques

type 1 2 3 4
class discrete| discrete |continuous|continuous
attribute discrete|continuous| discrete [continuous

neural network

linear regression

regression tree
decision tree

o >D D
op>D D>
>D>D>D>
>D>D>D>

Table 1 shows the summary.
A in neural network means that training results are incomprehensible.
A in linear regression means that training results are incomprehensible.
A in regression tree means that training results are incomprehensible.
A means that decision trees cannot work well in continuous classes.
Association rules are omitted in Table 1, because association rules do not have
classes. However, the evaluations for association rules are the same as those
for decision trees.

Thus, we conclude that there is no technique which can satisfy the two
requirements for data mining techniques, that is, the technique which can
provide accurate predictions and comprehensible rules in the discrete domain
and the continuous domain.

2.5 The solution for the problem

The solution for the above problem is extracting comprehensible rules from
mathematical formulas such as neural networks and multiple regression formulas[38].
When rules are extracted from mathematical formulas, the rules are not used
for predictions, but used only for human comprehension. The mathematical
formulas are used to make the predictions. A set of a prediction model and a
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rule(or rules) extracted from the prediction model is the perfect data mining
technique.

How a rule extracted from a prediction model is used is briefly explained.
When a prediction model predicts, it only outputs a class or a figure. Humans
cannot understand how or why the prediction model outputs the class or the
figure. A rule extracted from the prediction model explains how or why the
prediction model outputs the class or the figure.

For example, let a neural network be trained using process data consisting
of three attributes (temperature (t), pressure (p), humidity (h)), and a class,
the quality of a material (¢). Let the rule extracted be as follows:

(200 < ¢ < 300) V (p < 2.5) V (70 < h < 90) — ¢ < 0.2.

Assume that the network is used for a prediction, and the inputs for the net-
work are t = 310, p = 2.0, and A = 60 and the output from the network is 0.1,
which means low quality. The above rule shows that the network outputs 0.1,
because the pressure is 2.0, which is below 2.5, that is, p < 2.5 holds. Without
the rule, we cannot know how or why the network outputs 0.1 indicating the
low quality. Note that the rule extracted from the neural network is not used
for the predictions, which are made by the neural network.

An operator can understand that the neural network predicts low quality,
because the pressure is low. Therefore, the operator can raise the pressure
(for example, by manipulating a valve) to raise the quality. If the operator
does not know why the neural network predicts the low quality, the operator
cannot take an appropriate measure to raise the quality.

Because the operator understands how the neural network predicts, the
operator can take an appropriate measure. That is, the extracted rule enables
the operator to take the appropriate measure. If the neural network only
predicts the low quality (without the extracted rule), the operator does not
know what to do to raise the quality. The benefit of the extracted rule is very
large.

2.6 KINOsuite-PR

The rule extraction technique for neural networks has been implemented in
the data mining tool KINO- PR[41]. KINO stands for Knowledge INference
by Observation and PR stands for Predictions and Rules. KINOsuite-PR is
the first commercial data mining tool that has the rule extraction. The rule
extraction technique is called the Approximation Method. Next, the Approxi-
mation Method is explained. Before the explanation, the rule extraction from
neural networks is surveyed in Section 3.

3 The survey of rule extraction from neural networks

This section briefly surveys algorithms for rule extraction from neural net-
works. Some rule extraction algorithms are based on the structurization of
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neural networks, but the rule extraction algorithms cannot be applied to neu-
ral networks trained by other training methods such as the back-propagation
method. Some rule extraction algorithms are dedicated to hybrid models that
include symbolic and subsymbolic knowledge.

The rule extraction algorithms mentioned above are outside the scope of
this paper, because, in data mining, it is desired that rules can be extracted
from any neural network trained by any training method.

There are several algorithms for rule extraction from neural networks [1],
[2]. The algorithms can be divided into decompositional algorithms and ped-
agogical algorithms. Decompositional algorithms extract rules from each unit
in a neural network and aggregate them into a rule. For example, [5] is a
decompositional algorithm. Pedagogical algorithms generate samples from a
neural network and induce a rule from the samples. For example, [6] is a ped-
agogical algorithm. Decompositional algorithms can present training results
of each unit in neural networks, and so we can understand the training results
by the unit, while pedagogical algorithms can present only the results of neu-
ral networks, and so we cannot understand the training results by the unit.
Therefore, decompositional algorithms are better than pedagogical algorithms
in terms of understandability of the inner structures of neural networks.

Rule extraction algorithms are compared in several items, namely network
structures, training methods, computational complexity, and values.

network structure : This means the types of network structures the algorithm
can be applied to. Several algorithms can be applied only to particular
network structures. Most algorithms are applied to three-layer feedfor-
ward networks, while a few algorithms can be applied only to recurrent
neural networks, where Deterministic Finite-state Automata(DFAs) are
extracted [17].

training method : This means the training methods the rule extraction al-
gorithm can be applied to. Several rule extraction algorithms depend on
training methods, that is, the rule extraction algorithms can extract rules
only from the neural networks trained by a particular training method
[20],[5]. The pedagogical algorithms basically do not depend on training
methods.

computational complexity : Most algorithms are exponential in computa-
tional complexity. For example, in pedagogical algorithms, the total num-
ber of samples generated from a neural network is 2", where n is the num-
ber of inputs to the neural network. It is very difficult to generate many
samples and induce a rule from many samples. Therefore, it is necessary
to reduce the computational complexity to a polynomial. Most decompo-
sitional algorithms are also exponential in computational complexity.

values : Most algorithms can be applied only to discrete values and cannot
be applied to continuous values.

The ideal algorithm can be applied to any neural network, can be applied
to any training method, is polynomial in computational complexity, and can
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be applied to continuous values. There has been no algorithm which satisfies
all of the items above. More detailed review can be found in [7].

4 The Approximation Method

4.1 The outline

We have developed a rule extraction technique for mathematical formu-
las, which is called the Approximation Method. We presented an algorithm
for extracting rules from linear formulas and extended it to the continuous
domain[24]. Subsequently, we presented polynomial algorithms for extracting
rules from linear formulas [26] and applied them to discover rules from nu-
merical data [16]. We also developed an inductive learning algorithm based on
rule extraction from linear formulas[29]. The data mining technique through
regression analysis and the Approximation Method is called Logical regression
Analysis(LRA). We have been applying LRA using nonparametric regression
analysis to discover rules from functional brain images[30],[34],[9], [36],[37].

We extended the algorithms for linear formulas to the algorithms for
neural networks [27], and modified them to improve the accuracies and
simplicities[28],[33].

The Approximation Method for a linear formula is almost the same as
the Approximation Method for a unit in a neural network. The Approxima-
tion Method for neural networks basically satisfies the four items listed in the
preceding section, that is, the method can be applied to any neural network
trained by any training method, is polynomial in computational complexity,
and can be applied to continuous values. However, the method has a con-
straint, that is, the method can be applied only to neural networks whose
units’ output functions are monotone increasing. The Approximation Method
is a decompositional method.

There are two kinds of domains, discrete domains and continuous domains.
The continuous domain will be discussed later. The discrete domains can
be reduced to {0,1} domains by dummy variables, so only these domains
have to be discussed. In the {0,1} domain, the units of neural networks can
be approximated to the nearest Boolean functions, which is the basic idea
for the Approximation Method. The Approximation Method is based on the
multilinear function space. The space, which is an extension of Boolean algebra
of Boolean functions, can be made into a Euclidean space and includes linear
functions and neural networks. The details can be found in [31] and [33].

4.2 The basic algorithm of the Approximation Method

A unit of a neural network or a linear function is a function. The basic algo-
rithm approximates a function by a Boolean function. Note that “a function”
in the following sentences means a unit of a neural network or a linear function.
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Let f(x1,...,z,) stand for a function, and (f;)(i = 1,...,2™) be the values
of the function. Let the values of the function be the interval [0,1]. The values
of a unit of a neural network are [0,1]. The values of a linear function can be
normalized to [0,1] by some normalization method.

Let g(z1,...,x,) stand for a Boolean function, and (g;)(g; = 0 or 1,4 =
1,...,2™) be the values of the Boolean function. A Boolean function is repre-
sented by the following formula[3]:

on
g(xlv 7xn) = Zgiaia
=1

where Y is disjunction, a; is an atom, and g; is the value at the domain
corresponding to the atom. An atom is as follows:

n

a; = [Je(z;) (i=1,...2m),

Jj=1

where [ stands for conjunction, and e(z;) = x; or Z;, where T stands for the
negation of x. The domain (1, ..., x, ) corresponding to an atom is as follows:
When e(z;) = z;, z;=1, and when e(z;) = Z;, ; = 0. The above formula
can be easily verified.

The basic algorithm is as follows:

_J1I(fi =0.5),
= 0(f: < 0.5).

This algorithm minimizes Euclidean distance. The Boolean function is repre-
sented as follows:

27l
g(ml, 71'71) - Zgia'ia
=1

where g; is calculated by the above algorithm.
Example 1

Fig. 5 shows a case of two variables. Crosses stand for the values of a
function and dots stand for the values of the Boolean function. 00,01, 10 and
11 stand for the domains, for example, 00 stands for z = 0,y = 0. In this case,
there are four domains as follows:

(0,0),(0,1),(1,0),(1,1)
The atoms corresponding to the domains are as follows:

The values of the Boolean function g(z,y) are as follows:
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A

1

00 01 10 11

Fig. 5. Approximation

9(0,0) =0,9(0,1) = 1,9(1,0) = 0,9(1,1) = 1.
Therefore, in the case of Fig. 5, the Boolean function is represented as follows:

g(z,y) = 9(0,0)zy vV g(0,1)Zy V g(1,0)xy V g(1, 1)zy.

The Boolean function is reduced as follows:

g(z,y) = g(0,0)zy Vv (0, )Ty V g(1,0)2y V 9(1,1)2Yy
g(x,y) =0zy V 1y V 0xy V lay

g(z,y) =Ty Vay

g(z,y) =y.

Example 2:An example of a linear function
Let a linear function be as follows:

z=0.3z — 0.5y + 0.6
There are four domains as follows:
(0,0),(0,1),(1,0),(1,1)
The values of the function at the domains are as follows:
z(0,0) = 0.6,2(0,1) = 0.1, 2(1,0) = 0.9, 2(1,1) = 0.4.
By approximating the function to a Boolean function g(z, y),
9(0,0) =1,¢(0,1) =0,¢(1,0) = 1,¢9(1,1) = 0.

are obtained. The Boolean function g(x,y) is as follows:
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g(z,y) = g(0,0)zy Vv (0, )Ty V g(1,0)2y V 9(1,1)2Yy
g(x,y) = 1zy vV 0Ty V lag V Oxy

g(x,y) =Ty Vxy

g(z,y) = 7.

Example 3:An example of a neural network
We show what the neural network in Fig.2 has learned by rule extraction.
Two hidden units and the output unit are as follows:

t1 = S(wiz + way + hy),

to = S(w3l‘ + way + hg),
z= S(w5t1 + wgty + h3)7

where w;’s stand for weight parameters, S(z) stands for sigmoid function and
h;’s stand for biases. The training results by the back-propagation method
with 1000 time repetitions are as follows:

w1 = 2.51, W = —4.80, w3 = —4.907

wy = 2.83, ws = 2.52, wg = —4.81,

hy = —0.83, hy = —1.12, hg = —0.82.
For example,

t; = S(2.51z — 4.80y — 0.83),

and the values of ¢1(1,1),¢1(1,0),¢1(0,1), and ¢1(0,0) are as follows:
t1(1,1) = S(2.51 -1 —4.80-1 — 0.83) = S(—3.12),

£1(1,0) = S(2.51 -1 — 4.80 - 0 — 0.83) = S(1.68),
£1(0,1) = S(2.51-0 — 4.80 - 1 — 0.83) = S(—5.63),
£1(0,0) = S(2.51 -0 — 4.80 - 0 — 0.83) = S(—0.83).
S(—3.12) ~ 0, S(1.68) ~ 1, S(—5.63) ~ 0, and S(—0.83) ~ 0; therefore

tl ~ l‘@
In a similar manner, t, is approximated by the following Boolean function:
tz = Ey

z is approximated as follows:
z = t1to.

By substituting t; = 27 and t3 = Zy in the above formula,
z=ayry =ay(zVy) =ayVay =y

has been obtained. Thus, we understand that the neural network in Fig.2 has
learned zy.
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4.3 Multilinear functions

The computational complexity of the basic algorithm is exponential, which
is obvious from the discussion above. Therefore, a polynomial algorithm
is needed. The multilinear function space is necessary for the polynomial
algorithm|[28],[33]. This subsection explains that the multilinear function space
of the domain {0, 1} is a Euclidean space. First, the multilinear functions are
explained. Second, it is shown that the multilinear function space is the linear
space spanned by the atoms of Boolean algebra of Boolean functions. Third,
it is explained that the space can be made into a Euclidean space. Finally, it
is explained that neural networks are multilinear functions.

‘What multilinear functions are

Definition 1 Multilinear functions of n variables are as follows:

2"‘1/
E aixf“ . .x,'iin,
i=1

where a; s real, x; is a variable, and e; is 0 or 1.
Example Multilinear functions of 2 variables are as follows:
axy + bx + cy + d.

Multilinear functions do not contain any terms such as

Ilflxgz o ‘Tﬁna (1)
where k; > 2. A function

f:{0,1}" = R
is a multilinear function, because xf = z; holds in {0,1} and so there is

no term like (1) in the functions. In other words, multilinear functions are
functions which are linear when only one variable is considered and the other
variables are regarded as parameters.

The multilinear function space of the domain {0, 1} is the linear
space spanned by the atoms of Boolean algebra of Boolean
functions

Definition 2 The atoms of Boolean algebra of Boolean functions of n vari-
ables are as follows:

where e(x;) = T; or z;.
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Example The atoms of Boolean algebra of Boolean functions of 2 variables
are as follows:
T ANy, TNY, TAY, TAY.

Theorem 1. The space of multilinear functions ({0,1}™ — R) is the linear
space spanned by the atoms of Boolean algebra of Boolean functions.

The proof can be found in [31] and [33].
Example A linear function of the atoms of 2 variables is

axy + bry + cxy + dxy.
This function is transformed to the following:
pry 4+ qr + 1Y+ 5,

where
p=a—-b—c+d, g=b—d, r=c—d, s=d.

A multilinear function
pry +qr +1ry+s

can be transformed into
axy + bry + cxy + dTY,
where
a=p+qtr+s, b=q+s, c=r+s, d=s.

Now, it has been shown that the multilinear function space of the do-
main {0,1} is the linear space spanned by the atoms of Boolean algebra of
Boolean functions. The dimension of the space is 2". Next, it is shown that
the multilinear function space is made into a Euclidean space.

The multilinear function space of the domain {0, 1} is a Euclidean
space

Definition 3 The inner product is defined as follows:

<fg>= > fg

{0,1}n

The sum in the above formula is done over the whole domain.
Example In the case of two variables,

< f,g >= 2{071}2 fg = f(070)g(070) + f(oa 1)9(071) + f(l,O)g(l,O) +
f(1,1)g(1,1).
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Theorem 2. Atoms ¢;s have unitarity and orthogonality.
< @i, d; > =1 (unitarity)
< @i, ¢; > =0(i # j) (orthogonality)

The proof can be found in [31] and [33].
Example An example of unitarity and orthogonality of two variables is as
follows:

<Y >= 30432 BT = Yoo1y2 TY° = Ygoapp @y = 1141040
1+0-0=1-04+1-1+0-04+0-1=1.
(The domain is {0,1}, and so 2% = z, %% = 7.)

<zy, Ty >= Z TYyry = Z *yy = 0.
{0,132 {0,132

Definition 4 Norm is defined as follows:

lfl=v<ff>= \/Z{o,1}nf2-

lzg| = V< zg,zy > =1

JFrom the above discussion, the space becomes a finite-dimensional inner
product space, namely a Euclidean space.

Example

Neural networks are multilinear functions

Theorem 3. When the domain is {0,1}, neural networks are multilinear
functions.

Proof As described in this subsection, a function whose domain is {0,1} is a
multilinear function. Therefore, when the domain is {0, 1}, neural networks,
that is, the functions which neural networks learn are multilinear functions.

(From the above discussions, in the domain of {0,1}, a neural network is
a multilinear function, a Boolean function is a multilinear function, and the
multilinear function space is a Euclidean space. Therefore, a neural network
can be approximated to a Boolean function by Euclidean distance.

4.4 A polynomial-time algorithm for linear formulas[29]

The condition that x;, - T, Ty, y
function after approximation

- +x;, exists in the Boolean

The following theorem holds.
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Theorem 4. Let
P121 + .. + PnTn + Dnt1

stand for a linear function. Let
a1 Ty + @221 - Ty + ... +A2nTy - Ty

stand for the expansion by the atoms of Boolean algebra of Boolean functions.
The a;’s are as follows:

a1 =p1+ ... +DPn+ Dnt1,

a2 =p1+ ...+ Pn-1+ Pn+t1,

Qon—1 = P1 + Pn+1,

Qgn-141 = P2+ p3+ ... +Pn1+DPn+ Pnt1,

agn—1 = Pp + Pnii,
azn = Pn+1-
Proof: The following formula holds.
P1T1 + oo + PuTp + Pl = 01%1 0 Ty + A2T1 - Ty, + ..o + Q20T - Ty

Each a; can be easily calculated as follows. For example, let

T =To = =2x, = 1.
Then the right-hand side of the above formula is

aj

and the left-hand side is

p1+ .. + Dn+ Pnt1-
Thus,
a1 =p1+ ... +Pn+ Pnt1

is obtained. Similarly, let
1 =22 = =2xp1= 112, =0,

then
a2 =p1+ ...+ Pn-1+Pnt1

is obtained. The others can be calculated in the same manner. Thus, the
theorem has been proved.
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Theorem 5. Let
P11 + ... +pnmn +pn+1

stand for a linear function. The condition that x;, - x4, T5, ., Ty, exists in the
Boolean function after approzimation is as follows:

ik
Y i+ pari+ 3 p; > 0.5,
i1 1<j<n,j#i1,..,i1,p; <O

Proof: Consider the existence condition of x; in the Boolean function af-
ter approximation. For simplification, this condition is called the existence
condition. Because

Tl =T1T2 Ty VT1T2 Ty V ...V T1T2 * “Tp,

the existence of x; equals the existence of the following terms:

T1X2 * Ty,
T1T2 Ty,
T3 - T

The existence of the above terms means that all coefficients of these terms
a1, 0as,...,aon-1 are greater than or equal to 0.5 (See 4.2). That is,

MIN{a;} > 0.5(1 <i<2"h).

MIN{a;} will be denoted by MINa; for simplification. Because a;’s (1 < <
2"=1) are
a1 =DPp1+ ... +Pn + Pnt1,

az =p1+ ... +Pn-1+Pnt1,

Ggn-1 = P1 + Pnil,
each a;(1 < i < 2"7!) contains p;. If each p; is non-negative, agn-1(= p; +
Pr+1) is the minimum because the other a;’s contain other p;’s, and therefore
the other a;’s are greater than or equal to agn—1(= p1 +ppy1). Generally, since
each p; is not necessarily non-negative, the MINa; is a; which contains all
negative p;. That is,

MINa; = p1 + ppy1 + > op
1<j<n,j#1,p; <0

which necessarily exists in a;(1 <14 < 2"1), because a;(1 <i < 2"71) is
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P1 + Dn+1 + arbitrary sum of p;(2 < j < n)).

JFrom the above arguments, the existence condition of x1, MINa; > 0.5, is
as follows:

pr+papit Y, p; =05
1<j<n.j#1.p, <0

Since
P1T1 + oo +PnTn + Pt

is symmetric for x;, the above formula holds for other variables; that is, the
existence condition of z; is

Di + Pnt1 + Z pj = 0.5.
1<j<n,j#i,p; <0

Similar discussions hold for Z;, and so we have the following formula:

Popit >, p; =05

1<j<n,j#i,p; <0

Similar discussions hold for higher order terms x;, - -z;, 75, , - -T;,, and so we
have the following formula:

ik
ij + Pny1 + Z pj > 0.5.

21 1<j<n,j#i1,..,i1,p; <0

Generation of DNF formulas

The algorithm generates terms using the above formula from the lowest order
up to a certain order. A DNF formula can be generated by taking the disjunc-
tion of the terms generated by the above formula. A term whose existence
has been confirmed does not need to be rechecked in higher order terms. For
example, if the existence of x is confirmed, then it also implies the existence
of xy,zz ,..., because x = x V xyV xz; hence, it is unnecessary to check the ex-
istence of zy, zz,.... As can be seen from the above discussion, the generation
method of DNF formulas includes reductions such as zy V zz = x.
Let
f =0.6521 + 0.23z5 + 0.1523 + 0.20x4 + 0.02z5
is

be the linear function. The existence condition of z;, - T Tigq Ty

ik
Y v+ s+ 3 p; > 0.5.
i1 1<j<n,j#i,..i1,p; <O

In this case, each p; is positive and p,,+1 = 0; therefore the above formula can
be simplified to
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23

> p; > 05.
i1

For z;, the existence condition is

p; > 0.5.
For:=1,2,3,4,5,
p1 > 057
therefore
Z1
exists.

For z;x;, the existence condition is

pi +p; > 0.5.
For ¢,57 =2,3,4,5,
pi +p; < 0.5,
therefore no
TiTyj

exists.
For z;z;x, the existence condition is

pi +pj +pr = 0.5.

For 4,4,k = 2,3,4,5,
p2 +p3 +ps > 0.5,

therefore
T2X3T4

exists. Because higher order terms cannot be generated from x5, the algorithm
stops. Therefore, 1 and x2x324 exist and the DNF formula is the disjunction
of these terms, that is,

1V Tox3x4.

4.5 Polynomial-time algorithms for neural networks

The basic algorithm is exponential in computational complexity, and there-
fore, polynomial algorithms are needed. The authors have presented polyno-
mial algorithms. The details can be found in [27], [28], [33]. The outline of the
polynomial algorithms follows.

Let a unit of a neural network be as follows:

S(p1z1 + ... + Pnn + Prt1)s

where S(-) is a sigmoid function. The Boolean function is obtained by the
following algorithm.
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1. Check if

Liy © Lip Ly Loy

exists in the Boolean function after the approximation by the following
formula:

ik
S(pn+1+ ij + Z pj) > 0.5
i1

1<j<n,j#i1,..,%1,p; <0

2. Connect the terms existing after the approximation by logical disjunction
to make a DNF formula.
3. Execute the above procedures up to a certain (usually two or three) order.

After Boolean functions are extracted from all units, the Boolean functions
are aggregated into a Boolean function(rule) for the network.
An example follows. Let

S5(0.6521 + 0.2329 + 0.1523 + 0.2024 + 0.0225 — 0.5)

be a unit of a neural network.
For z;(i = 1,2,3,4,5),
S(p1 +ps) > 0.5,

and therefore

1
exists.
For w;x;(i,j = 2,3,4,5),

S(pi +pj +ps) < 0.5,

and therefore no

TiTyj
exists.
For x;x;x,(4, 4,k = 2,3,4,5),

S(p2 +ps +ps+ps) > 0.5,

and therefore
T2X3T4

exists. Because higher order terms cannot be generated from x5, the algorithm
stops. Therefore, x1 and xox3x4 exist and the DNF formula is the disjunction
of these terms, that is,

1V ToX3T4.

If accurate rules are obtained, the rules are complicated, and if simple rules
are obtained, the rules are not accurate. It is difficult to obtain rules which
are simple and accurate at the same time. We have presented a few techniques
to obtain simple and accurate rules. For example, attribute selection works
well for obtaining simple rules[28],[33].
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4.6 Computational complexity of the algorithm and error analysis

The computational complexity of generating the mth order terms is a polyno-
mial of (7’;), that is, a polynomial of n. Thus, the computational complexity
of generating up to the kth order terms is Zzzlf (:1)7 which is a polynomial
of n. Therefore, the computational complexity of generating DNF formulas
from trained neural networks is a polynomial of n. However, the sum of the
number of up to the highest (=nth) order terms is "~ (") = 2"; therefore,
the computational complexity of generating up to the highest order terms is
exponential. If it is desired that the computational complexity be reduced to a
polynomial, the terms are generated only up to a certain order. If it is desired
that understandable rules are obtained from trained neural networks, higher
order terms are unnecessary. Therefore, actual computational complexity is a
low order polynomial.

In the case of the domain {0,1}, the following theorem holds[13].:

S f(s)F < am2 R,
|S|>k

where f is a Boolean function, S is a term, |S| is the order of S, k is any
integer, f (S) denotes the Fourier Transform of f at S and M is the circuit’s
size of the function.

The above formula shows that the high order terms have very little power;
that is, low order terms are informative. Therefore, a good approximation can
be obtained by generating up to a certain order; that is, the computational
complexity can be reduced to a polynomial by adding small errors.

5 The Approximation Method in the continuous domain

When classes are continuous, extracting rules from neural networks is impor-
tant. However, in the continuous domain, few algorithms have been proposed.
For example, algorithms for extracting fuzzy rules have been presented[4], but
fuzzy rules are described by linear functions, and so fuzzy rules are incompre-
hensible.

5.1 The basic idea

In this section, the algorithm is extended to continuous domains. Continuous
domains can be normalized to [0,1] domains by some normalization method,
so only these domains have to be discussed. First, we have to present a system
of qualitative expressions corresponding to Boolean functions, in the [0,1] do-
main. The author presents the expression system generated by direct propor-
tion, inverse proportion, conjunction and disjunction. Fig.6 shows the direct
proportion and the inverse proportion. The inverse proportion (y = 1 — x) is
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a little different from the conventional one (y = —z), because y = 1 — x is the
natural extension of the negation in Boolean functions. The conjunction and
disjunction will also be obtained by a natural extension. The functions gen-
erated by direct proportion, inverse proportion, conjunction and disjunction
are called continuous Boolean functions, because they satisfy the axioms of
Boolean algebra.

Since it is desired that a qualitative expression be obtained, some quantita-
tive values should be ignored. For example, function “A” in Fig. 7 is different
from direct proportion x but the function is a proportion. So the two func-
tions should be identified as the same in the qualitative expression. That is,
in [0,1], 2¥(k > 2) should be identified with z in the qualitative expression.
Mathematically, a norm is necessary, by which the distance among the two
functions is 0. The qualitative norm can be introduced.

In {0,1}, a unit of a neural network is a multilinear function. The multi-
linear function space is a Euclidean space. See Section 4. So the unit can be
approximated to a Boolean function by Euclidean norm. In [0,1], similar facts
hold, that is, a unit of a neural network is a multilinear function in the qual-
itative expression, that is, the qualitative norm, and the space of multilinear
functions is a Euclidean space in the qualitative norm. Thus the unit can be
approximated to a continuous Boolean function by Euclidean norm.

0 X
0 1

Fig. 6. Direct proportion and inverse proportion

5.2 Continuous Boolean functions

This subsection briefly describes continuous Boolean functions [25], [31]. First,
7 is defined, which is necessary for the definition of the qualitative norm.
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A (1’ 1)
1

Fig. 7. Qualitative norm

Definition 5 7, is defined as follows:
Let f(x) be a real polynomial function. Consider the following formula:

f(x) = p(x)(x — 2%) + q(z),

where q(x) = ax + b, where a and b are real, that is, q(x) is the remainder. 7,
1s defined as follows:

e f(x) = q(x).
The above definition implies the following property:

Tx(l'k) =z,
where k£ > 2.

Definition 6 In the case of n variables,
T s defined as follows:
T= H Ta; -
i=1

For example,
(@2 +y+1) =ay+y+1.

Theorem 6. The functions obtained from Boolean functions by extending the
domain from {0,1} to [0,1] can satisfy all axioms of Boolean algebra with the
logical operations defined below. Proof can be found in [25] and [31].

AND : 7(fg),

OR :7(f+g—fg),
NOT : (1 - f).
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Therefore, the functions obtained from Boolean functions by extending the
domain from {0,1} to [0,1] are called continuous Boolean functions. For
example,xzy and 1 — y(= 7) are Boolean functions, where z,y € [0,1]. We
show a simple example for logical operation.

(XVY)A(XVY)=XVY
is calculated as follows:

T((x+y—zy)(e+y —xy))
_ 2 2 2,2 2 2
=7(x° +y° + 27y° + 2zy — 2z°y — 2xy°)
=z+y+ay+2zy — 22y — 22y
=r+y—xy.
In the continuous domain, fuzzy rules can be obtained from trained neural
networks by some algorithms [1] . The expression by continuous Boolean func-

tions is more understandable than fuzzy rules, whereas continuous Boolean
functions are worse than fuzzy rules in accuracy.

5.3 The multilinear function space of the domain [0,1]
Multilinear functions of the domain [0,1] are considered. In the domain [0,1],
a qualitative norm has to be introduced.

Definition 7 An inner product in the case of n variables is defined as follows:

1
< fig>=2" /0 (fg)dz,

where f and g are multilinear functions. The above definition can satisfy the
properties of inner product[23],[24],[31].

Definition 8 Norm |f| is defined as follows:

lfl=v<[ff>

The distance between functions is roughly measured by the norm. For ex-
ample, function A in Fig. 7, which stands for ¥, is different from x. However,
by the norm, the distance between the two functions is 0, because 7 in the

norm
1
V< fig>= \/2"/0 7(fg)dx

identifies z¥(k > 2) with 2. Therefore, the two functions are identified as
being the same one in the norm. The norm can be regarded as a qualitative
norm, because, roughly speaking, the norm identifies increasing functions as
direct proportions, identifies decreasing functions as inverse proportions, and
ignores the function values in the intermediate domain between 0 and 1.
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Theorem 7. The multilinear function space in the domain [0,1] is a Eu-
clidean space with the above inner product: Proof can be found in [23], [24]
and [31].

The orthonormal system is as follows:
¢i =[] e(x)) i=1,..,2"),
j=1

where e(z;) = 1 — x; or z;. It is easily understood that these orthonormal
functions are the expansion of atoms in Boolean algebra of Boolean functions.
In addition, it can easily be verified that the orthonormal system satisfies the
following properties:

0(z

i
F=3"<fdi> 0

i=1

Example In the case of 2 variables, the orthonormal functions are as follows:

xy,x(l - y)? (1 - x)y, (1 - x)(l - y)

and the representation by orthonormal functions of = +y — zy of two variables
(dimension 4) is as follows:

f=lazy+1-21-y)+1-1—2)y+0-(1 —x)(1 —y).

When the domain is [0,1], neural networks are approximated to multilinear
functions with the following:

n {x(nga)

v 0(n > a),

where a is a natural number. When a = 1, the above approximation is the
linear approximation.

5.4 The polynomial algorithm in the continuous domain

The polynomial algorithm for the continuous domain is the same as that for
the discrete domain, because the multilinear function space of [0,1] is the same
as the multilinear function space of {0,1}. The rules obtained are continuous
Boolean functions.

A theoretical analysis of the error in the case of the [0,1] domain will be in-
cluded in future work. However, experimental results show that the algorithm
works well in the continuous domains, as explained in [28] and [33].
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6 Discussions

6.1 On the continuous domain

When classes are continuous, other techniques such as decision tree do not
work well as explained in Section 2. Therefore, rule extraction from mathe-
matical formulas with continuous classes is important. Continuous Boolean
functions work well for linear formulas, but cannot express the detailed infor-
mation on neural networks, because the neural networks are nonlinear. The
continuous Boolean functions are insufficient, and therefore, extracting rules
described by intervals such as

(200 < ¢ < 300) V (p < 2.5) V (70 < h < 90) — ¢ < 0.2

from neural networks is needed.

Usual real data consist of discrete data and continuous data. Therefore,
rule extraction from a mixture of discrete attributes and continuous attributes
is needed.

6.2 On the prediction domain

Training domains are much smaller than prediction domains. For example,
in the case of voting-records, which consist of 16 binary attributes, the num-
ber of possible training data is 215(= 65536), while the number of training
data is about 500. The outputs of a neural network are almost 100% ac-
curate for about 500 training data, and are predicted values for the other
approximately 65000 data. These predicted values are probabilistic, because
the parameters for the neural network are initialized probabilistically. 65000
is much greater than 400, that is, the probabilistic part is much larger than
the non-probabilistic part. Therefore, when a rule is extracted from a neural
network, the predicted values of the neural network have to be dealt with
probabilistically.

We have developed two types of algorithms. The first one deals with the
whole domain equally [27]. The second one deals with only the training do-
main and basically ignores the prediction domain [28],[33]. Both algorithms
can be regarded as opposite extremes. We also have developed an algorithm
which deals with the prediction domains probabilistically[16]. Future work
includes the development of algorithms dealing with the prediction domains
appropriately.

6.3 Logical Regression Analysis

There are several mathematical formulas obtained by regression analyses. It is
desired that rule extraction techniques from mathematical formulas be applied
to nonparametric regression analysis, (multivariate) autoregression analysis,
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regression trees, differential equations (difference equations), and so on. See
Fig.8.

The data mining technique consisting of regression analysis and the Ap-
proximation Method is called Logical Regression Analysis(LRA). We have ap-
plied the Approximation Method to nonparametric regression analysis, that
is, we have developed LRA using nonparametric regression analysis. We have
been applying LRA using nonparametric regression analysis to fMRI images
to discover the rules of brain functions.

neura networks

multivariate autoregression
v

linear nonparametric regression
formulass ~ _ )
N S aregression trees
N
™ adifferential equations
(diffence equations)

Fig. 8. The development of LRA

7 On the data mining from fMRI images

The rest of the paper describes the data mining from fMRI images by LRA.
This section explains the data mining from fMRI images.

The analysis of brain functions using functional magnetic resonance imag-
ing(fMRI), positron emission tomography (PET), magnetoencephalography (MEG)
and so on is called non-invasive analysis of brain functions[18]. As a result of
the ongoing development of non-invasive analysis of brain functions, detailed
functional brain images can be obtained, from which the relations between
brain areas and brain functions can be understood, for example, a relation
between a few areas in the brain and an auditory function[10].

Several brain areas are responsible for a brain function. Some of them are
connected in series, and others are connected in parallel. Brain areas connected
in series are described by “AND” and brain areas connected in parallel are
described by “OR?”. Therefore, the relations between brain areas and brain
functions are described by rules.

Researchers are trying to heuristically discover the rules from functional
brain images. Several statistical methods such as principal component analy-
sis, have been developed. However, the statistical methods can only present
some principal areas for a brain function. They cannot discover rules.
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fMRI images can be dealt with by supervised inductive learning. However,
the conventional inductive learning algorithms[19] do not work well for fMRI
images, because there are strong correlations between attributes(pixels) and
a small number of samples.

There are two solutions for the above two problems. The first one is the
modification of the conventional inductive learning algorithms. The other one
is nonparametric regression analysis. The modification of the conventional in-
ductive learning algorithms would require a lot of effort. On the other hand,
nonparametric regression analysis has been developed for the above two prob-
lems. Therefore, we have been using nonparametric regression analysis for the
data mining from fMRI images.

The outputs of nonparametric regression analysis are linear formulas,
which are not rules. However, we have already developed a rule extraction
algorithm from regression formulas[26],[29],[16], that is, we have developed
Logical Regression Analysis(LRA) as described above.

Since brains are three dimensional, three dimensional LRA is appropriate.
However, the three dimensional LRA needs a huge computation time, for
example, many years. Therefore, we applied two dimensional LRA to fMRI
images as the first step.

We applied LRA to artificial data, and we confirmed that LRA works well
for artificial data[30]. We applied LRA to several experimental tasks such as
finger tappings and calculations. In the experiments of finger tapping, we com-
pared the results of LRA with z-score[39], which is the typical conventional
method. In the experiments, LRA could rediscover a little complicated rela-
tion, but z-score could not rediscover the relation. As the result, we confirmed
that LRA works better than z-score. The details can be found in [37]. In the
experiments of calculations, we confirmed that LRA worked well, that is, LRA
rediscovered well-known facts regarding calculations, and discovered new facts
regarding calculations. This paper reports the experiments of calculations.

8 The data mining from fMRI images by Logical
Regression Analysis

First, the data mining from fMRI images by Logical Regression Analysis is
outlined. Second, nonparametric regression analysis is briefly explained. Fi-
nally, related techniques are described[34], [36],[37].

8.1 The outline of data mining from fMRI images by Logical
Regression Analysis

The brain is 3-dimensional. In fMRI images, a set of 2-dimensional im-
ages(slices) represents a brain. See Fig.9. 5 slices are obtained in Fig.9. Fig.10
shows a real fMRI image. When an image consists of 64 x 64(= 4096) pixels,
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Fig. 10. A fMRI image

Fig. 9. fMRI images(3 dimension)

Fig. 12. Measurement

Fig. 11. An example of fMRI image

Fig.10 can be represented as Fig.11. In Fig.11, white pixels mean activations
and dot pixels mean inactivations. Each pixel has the value of the activation.

Table 2. fMRI Data
‘ H 1 ‘ 2 ‘~~~‘4096Hclass‘
SL[[10[20]-- [ 11 || Y
S2|[21(16|---| 49 N

S24(/16(39|---] 98 || N
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Data

}

Preprocessing

Mapping to standard brair

}

Extracting brain part

l

Logical regression analysis

Nonparametric regression

v

Rule extraction

v :
Comparison '

Fig. 13. Processing flow

An experiment consists of several measurements. Fig.12 means that a sub-
ject repeats a task(for example, finger tapping) three times. “ON” in the upper
part of the figure means that a subject executes the task and “OFF” means
that the subject does not execute the task, which is called rest. Bars in the
lower part of the figure mean measurements. The figure means 24 measure-
ments. When 24 images(samples) have been obtained, the data of a slice can
be represented as Table 2.

Y(N) in the class stand for on(off) of an experimental task. From Table
2, machine learning algorithms can be applied to fMRI images. In the case of
Table 2, the attributes are continuous and the class is discrete.

Attributes(pixels) in image data have strong correlations between adjacent
pixels. Moreover it is very difficult or impossible to obtain sufficient fMRI
brain samples, and so there are few samples compared with the number of
attributes (pixels). Therefore, the conventional supervised inductive learning
algorithms such as C4.5[19] do not work well, which was confirmed in [30].
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Nonparametric regression analysis works well for strong correlations be-
tween attributes and a small number of samples. LRA using nonparametric
regression analysis works well for the data mining from fMRI images.

Fig.13 shows the processing flow. First, the data is mapped to the standard
brain[22]. Second, the brain parts of fMRI images are extracted using Standard
Parametric Mapping:SPM(a software for brain images analysis[39]) Finally,
LRA is applied to each slice.

8.2 Nonparametric regression analysis

First, for simplification, the 1-dimensional case is explained|8].

1-dimensional nonparametric regression analysis

Nonparametric regression analysis is as follows: Let y stand for a dependent
variable and ¢ stand for an independent variable and let ¢;(j = 1,..,m) stand
for measured values of t. Then, the regression formula is as follows:

Yy = Zajtj +e(j=1,.,m),

where a; are real numbers and e is a zero-mean random variable. When there
are n measured values of y,

Y; = Zajtij -+ el(z = ]., ,n)

For example, in the case of Table 2, m = 4096, n = 24, t1; = 10,t15 =
20,t1 4096 — 11, and Y1 = Y.

In usual linear regression, error is minimized, while, in nonparametric re-
gression analysis, error plus continuity or smoothness is minimized. When
continuity is added to error, the evaluation value is as follows:

n

1nYy (i —9:)° + A (Gir1 — )7,

i=1 i=1

where ¢ is an estimated value. The second term in the above formula is the
difference of first order between the adjacent dependent variables, that is, the
continuity of the dependent variable. A is the coefficient of continuity. When
A is 0, the evaluation value consists of only the first term, that is, error, which
means the usual regression. When ) is very big, the evaluation value consists
of only the second term, that is, continuity, which means that the error is
ignored and the solution ¢ is a constant.

The above evaluation value is effective when the dependent variable has
continuity, for example, when the measured values of the dependent variable
are adjacent in space or in time. Otherwise, the above evaluation value is
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not effective. When the dependent variable does not have continuity, the con-
tinuity of coefficients a;s is effective, which means that adjacent measured
values of the independent variable have continuity in the influence over the
dependent variables. The evaluation value is as follows:

n

1n> (i — 67 + A (a1 —a;)?

i=1 j=1

When A is fixed, the above formula is the function of a;(¢; is the function of
a;). Therefore, a;s are determined by minimizing the evaluation value, and
the optimal value of A is determined by cross validation.

Calculation

Let X stand for n x m matrix. Let ¢;; be an element of X. Let y stand for a
vector consisting of y;. m x m matrix C is as follows:

1 -1
-1 2 -1

C= -1 2 -1

Cross validation CV is as follows:
CV =ny'y
y =Diag(I- A) " '(I-A)y
A =X(X*X + (n — 1)AC) X",

where Diag(A) is a diagonal matrix whose diagonal components are A’s
diagonal components. The coefficients & are as follows:

a=(X*X +n)\,C) X'y,

where )\, is the optimal A determined by cross validation.

2-dimensional nonparametric regression analysis

In 2-dimensional nonparametric regression analysis, the evaluation value for
the continuity of coefficients a;; is modified. In one dimension, there are two
adjacent measured values, while, in two dimensions, there are four adjacent
measured values. The evaluation value for the continuity of coefficients is not

(aiy1 — ai)?,

but the differences of first order between a pixel and the four adjacent pixels
in the image. For example, in the case of pixel 66 in Fig.11, the adjacent pixels
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are pixel 2, pixel 65, pixel 67, and pixel 130, and the evaluation value is as
follows:

(ag — 6166)2 + (aes — a66)2 + (ag7 — a66)2 + (a130 — Clt3(3)2~

Consequently, in the case of two dimensions, C is modified in the way de-
scribed above. When continuity is evaluated, four adjacent pixels are consid-
ered, while smoothness is evaluated, eight adjacent pixels are considered, for
example, in the case of pixel 66 in Fig.11, the adjacent pixels are pixel 1, pixel
2, pixel 3, pixel 65,pixel 67, pixel 129, pixel 130 and pixel 131.

8.3 Related techniques

This subsection briefly explains two popular techniques, z-score and indepen-
dent component analysis, and compares them with LRA.

Z-score

z-score is widely used in fMRI images. z-score is calculated pixel-wise as fol-
lows:
| Mt — Mc]|

VotZ + oc?’

7Z — Score =

where
Mt : Average of task images

Mec : Average of rest images

ot : Standard deviation of task images

oc: Standard deviation of rest images

Task images mean the images in which a subject performs an experimental
task. Rest images mean the images in which a subject does not perform an
experimental task.

When z-score is 0, the average of task images equals the average of rest
images. When z-score is 1 or 2, the difference between the average of task
images and the average of rest images is big.

The areas whose z-scores are big are related to the experimental task.
However, z-score does not tell which slices are related to the experimental task
and does not tell the connections among the areas such as serial connection
or parallel connection.

Independent component analysis

Independent component analysis(ICA)[12] can be roughly defined as follows.
Let n independent source signals at a time ¢ be denoted by

S(t) = (S1(t), .., Sn(t)).

Let m (mixed) observed signals at a time ¢ be denoted by
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X(t) = (X1(t), .., Xmm(t)).
X(t) is assumed to be the linear mixture of S(¢), that is,
X(t) = AS(),

where A is a matrix.

ICA obtains source signals S(t) from observed signals X under the as-
sumption of the independence of source signals. Notice that the matrix A is
unknown.

Independent Component Analysis(ICA) is applied to fMRI images. LRA
is advantageous compared with ICA respecting the following points:

1. LRA uses classes. That is, LRA uses task/rest information, while ICA
does not use task/rest information.

2. LRA conserves the spatial topologies in the images, while ICA cannot
conserve the spatial topologies in the images.

3. LRA works well in the case of small samples, while it is not sure if ICA
works well in the case of small samples.

4. LRA does not fall into a local minimum, while ICA falls into a local
minimum.

5. LRA’s outputs can represent the connections among areas, while ICA’s
outputs cannot represent the connections among the areas.

9 The experiments of calculations

In the experiments of calculations, we confirmed that LRA worked well, that
is, we rediscovered well-known facts regarding calculations, and discovered
new facts regarding calculations. In the experiment, a subject adds a number
repeatedly in the brain. The experimental conditions follow:

Magnetic field : 1.5tesla
Pixel number : 64 %64
Subject number : 8

Task sample number : 34

Rest sample number : 36

Table 3 shows the errors of nonparametric regression analysis. Slice 0 is
the image of the bottom of brain and slice 31 is the image of the top of brain.
We focus on the slices whose errors are small, that is, the slices related to
calculation. 133, ...,336 in the table are the ID numbers of subjects.

Table4 summarizes the results of LRA. Numbers in parenthesis mean slice
numbers. Fig. 14,..; Fig. 19 show the main results

White indicates high activity, dark gray indicates low activity, and black
indicates non-brain parts. White and dark gray ares are connected by con-
junction. For example, let A stand for the white area in Fig.14 and B stand
for the dark gray area in Fig.14. Then, Fig.14 is interpreted as A A B, which
means area A is activated and area B is inactivated.
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The extracted rules are represented by conjunctions, disjunctions and
negations of areas. The conjunction of areas means the co-occurrent acti-
vation of the areas. The disjunction of areas means the parallel activation of
the areas. The negation of an area means a negative correlation.

LRA can generate rules including disjunctions. However, the rules includ-
ing disjunctions are too complicated to be interpreted by human experts in
brain science, because they have paid little attention to the phenomena. There-
fore, the rules including disjunctions are not generated in the experiments.

Researchers in brain science have paid attention to positive correlations,
and have not paid attention to negative correlations. LRA can detect negative
correlations, and so is expected to discover new facts.

Figures are taken from feet, and so the left side in the figures represents
the right side of the brain, and the right side in the figures represents the
left side of the brain. The upper side in the figures represents the front of the
brain, and the lower side in the figures represents the rear of the brain.

Activation in the left angular gyrus and supramarginal gyrus was observed
in 4 and 3 cases, respectively, and activation in the right angular gyrus and
supramarginal gyrus was observed in 3 cases and 1 case, respectively. Clinical
observations show that damage to the left angular and supramarginal gyrii
causes acalculia which is defined as an impairment of the ability to calculate.
Despite the strong association of acalculia and left posterior parietal lesions,
there are certain characteristics of acalculia that have led to the suggestion
of a right-hemispheric contribution. Clinical observations also suggest that
acalculia is caused by lesions not only in the left parietal region and frontal
cortex but also in the right parietal region. Fig.14 shows slice 18 of subject
331 and Fig.15 shows slice 26 of subject 331.

Significant activation was observed in the left inferior frontal gyrus in 6
out of 8 cases. On the other hand, none was observed in the right inferior
frontal gyrus. The result suggests that the left inferior frontal gyrus including
Broca’s area is activated in most subjects in connection with implicit verbal
processes required for the present calculation task. Furthermore, significant
activation in frontal region including middle and superior frontal regions was
found in 8 cases (100%) in the left hemisphere and in 3 cases in the right
hemisphere. The left dorsolateral prefrontal cortex may play an important
role as a working memory for calculation. Fig.16 shows slice 17 of 135 and
Fig.17 shows slice 18 of subject 317.

In addition to these activated regions, activation in cingulate gyrus, cere-
bellum, central regions and occipital regions was found. The activated regions
depended on individuals, suggesting different individual strategies. Occipital
regions are related to spatial processing, and the cingulate gyrus is related to
intensive attention. Central regions and the cerebellum are related to motor
imagery. 5 out of 8 subjects used their cingulate gyrus, which means that they
were intensively attentive. Fig.18 shows slice 17 of 133. 3 out of 8 subjects use
cerebellum, which is thought not to be related to calculation. Fig.19 shows
slice 1 of 332. The above two results are very interesting discoveries that have
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never been experimentally confirmed so far. The problem of whether these re-
gions are specifically related to mental calculation or not is to be investigated
in further research with many subjects.

LRA has generated rules consisting of regions by conjunction and nega-
tion. As for conjunctions and negations, the results showed the inactivated
regions simultaneously occurred with the activated regions. In the present ex-
periment, inactivation in the brain region contralateral to the activated region
was observed, suggesting inhibitory processes through corpus callosum. LRA
has the possibility of providing new evidence in brain hemodynamics.

Table 3. Results of nonparametric regression analysis
[slice[[133 [135 [312 [317 [321 [331 [332 [336 |
0 1/0.924/0.882|0.444|0.547|0.0039|0.870|0.455|0.306
0.418(0.030(0.546|0.587|0.298 |0.814|0.028|0.946
0.375(0.538(0.337|0.435|0.278 |0.723|0.381|0.798
0.016{0.510|0.585|0.430|0.282 |0.743|0.402|0.798
0.456(0.437|0.519|0.446|0.157 |0.636|0.419|0.058
0.120{0.469|0.473]0.376|0.265 |0.698|0.385|0.366
0.965(0.434|0.602|0.138|0.380 |0.475|0.420|0.541
1.001|0.230|0.430{0.309]0.119 |0.175]0.482]0.547
1.001|0.388|0.434(0.222]0.478 |0.246|0.387|0.704
0.968(0.473|0.362|0.281|0.390 |0.409|0.193|0.913
1.001{0.008|0.447(0.357(0.341 |0.358|0.227/0.908
1.001|0.066|0.383]0.380(0.167 |0.275]0.115]0.914
1.001{0.736|0.302{0.312{0.397 |0.021{0.181{0.909
0.828(0.793|0.525|0.222|0.455 |0.845|0.204|0.733
0.550(0.822(0.349|0.523|0.023 |0.229|0.130(0.474
0.528(0.805|0.298]0.569|0.107 {0.439|0.338|0.374
0.571{0.778|0.494|0.509|0.008 |0.354|0.377|0.493
0.009(0.007{0.159|0.615|0.238 ]0.159|0.561|0.774
0.089(0.060(0.663|0.010/0.011 |0.033]0.519|0.711
0.642{0.238|0.573|0.405|0.185 |0.426|0.470|0.689
0.887(0.514|0.383|0.376|0.149 |0.177|0.214|0.430
0.282(0.532(0.256|0.028|0.018 {0.219|0.303|0.548
0.281(0.415|0.613|0.167|0.045 |0.213|0.352|0.528
0.521{0.422(0.229|0.227|0.048 |0.306|0.050|0.450
0.814(0.270|0.401|0.439|0.013 |0.212|0.350|0.570
0.336(0.394|0.411|0.195|0.469 |0.148|0.414|0.689
0.603(0.008|0.390|0.180|0.477 |0.107|0.358|0.541
0.535(0.062|0.324|0.191|0.308 |0.279|0.455|0.413
0.719(0.010|0.371|0.271|0.167 |0.436|0.237|0.649
0.942{0.310{0.400|0.257|0.169 |0.353|0.023|0.775
0.898(0.360(0.547|0.283|0.209 |0.467|0.464(0.157
0.746(0.026|0.023|0.445|0.187 |0.197|0.084|0.195
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Table 4. Results of LRA
[NO. [Left [Right

133 ||cingulate gyrus(17) Cerebellum(3) Cerebellum(0,5)
superior frontal gyrus(17) middle frontal gyrus(25)
inferior frontal gyrus(17)
superior temporal plane(17,18)
middle frontal gyrus(18,21)
angular gyrus(21,22)

135 inferior frontal gyrus(17,18) superior frontal gyrus(26)
superior temporal plane(17,18) |superior parietal gyrus(26,28)
precuneus(26,28)

312 ||cingulate gyrus(21) inferior frontal gyrus(15) angular gyrus(17)
angular gyrus(21)
supramarginal gyrus(18,21)
middle frontal gyrus(23)

317 ||cingulate gyrus(27) inferior frontal gyrus(18,21) angular gyrus(26)
cuneus(21,22,26,27)

321 ||cingulate gyrus(16,22,24)|inferior frontal gyrus(14) cuneus(16,18)
postcentral gyrus(16,18) parieto-occipital sulcus(21)
cuneus(21) supramarginal gyrus(22,24)
parieto-occipital sulcus(22)
supramarginal gyrus(24)

331 ||cingulate gyrus(25,26) |inferior frontal gyrus(12,17,18) |angular gyrus(17,18,26)
angular gyrus(17,18,26) middle temporal gyrus(7,12,17)
supramarginal gyrus(17,18)

332 inferior temporal gyrus(1) inferior temporal gyrus(1)
Cerebellum(1) Cerebellum(1)
postcentral gyrus(33) middle frontal gyrus(29)
middle temporal gyrus(12) superior parietal gyrus(29,43)
pre-,post-central gyrus(14)
angular gyrus(23)
middle frontal gyrus(29)

336 Cerebellum(0,5) Cerebellum(0,5)
middle temporal gyrus(4,5) superior parietal gyrus(30)
middle frontal gyrus(30,31) occipital gyrus(11)
precentral gyrus(31)
superior frontal gyrus(32)

10 Conclusions

This paper has explained that rule extraction from mathematical formulas is
needed for perfect data mining techniques. This paper has briefly reviewed
the rule extraction techniques for neural networks and has briefly explained
the Approximation Method developed by the author.

The author has developed a data mining technique called Logical Regres-
sion Analysis(LRA), which consists of regression analysis and the Approxi-
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Fig. 14. Slice 18 331 Fig. 15. Slice 26 331 Fig. 16. Slice 17 135

Fig. 17. Slice 18 317 Fig. 18. Slice 17 133 Fig. 19. Slice 1 332

mation Method. One of LRA’s merits is that LRA can deal with images. The
author has been applying LRA using nonparametric regression analysis to
fMRI images to discover the rules of brain functions.

The LRA works better than z-score and has discovered new “relations”
respecting brain functions.

In the experiments, LRA was applied to slices, that is, 2-dimensional fMRI
images. However, complicated tasks such as calculation are related to at least
a few areas, and so the application of LRA to a set of a few slices is necessary
for fruitful data mining from fMRI images. It is desired that LRA be applied to
3-dimensional fMRI images. However, the nonparametric regression analysis
of 3-dimensional fMRI images needs a huge computational time. Therefore,
the computational time should be reduced, which is included in future work.

There are a lot of open problems in the field of LRA, therefore the authors
hope that researchers will tackle this field.
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A Feature/Attribute Theory for Association Mining
and Constructing the Complete Feature Set
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Summary. A correct selection of features (attributes) is vital in data mining. For this
aim, the complete set of features is constructed. Here are some important results: (1)
Isomorphic relational tables have isomorphic patterns. Such an isomorphism classi-
fies relational tables into isomorphic classes. (2) A unique canonical model for each
isomorphic class is constructed; the canonical model is the bitmap indexes or its vari-
ants. (3) All possible features (attributes) is generated in the canonical model. (4)
Through isomorphism theorem, all un-interpreted features of any table can be ob-
tained.

Keywords: attributes, feature, data mining, granular, data model

1 Introduction

Traditional data mining algorithms search for patterns only in the given
set of attributes. Unfortunately, in a typical database environment, the at-
tributes are selected primarily for record-keeping, not for understanding of
real world. Hence, it is highly possible that there are no visible patterns in the
given set of attributes; see Section 2.2. The fundamental question is: Is there
a suitable transformation of features/attributes so that

e The "invisible” patterns become visible in this new set?

Fortunately, the answer is yes. To answer this question, we critically analyze
the essence of association mining. Based on it, we are able

o To construct the complete set of features for a given relational table.

Many applications will be in the forth coming volumes [10]. Here are some
important results:(Continue the count from the abstract) (5) all high fre-
quency patterns (generalized association rules) of the canonical model can
be generated by a finite set of linear inequalities within polynomial time. (6)
Through isomorphism theorem, all high frequency patterns of any relational
table can be obtained.
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1.1 Basics terms in Association Mining (AM)

First, we recall (in fact, formalize) some basic terms. In traditional association
rule mining, two measures, called the support and confidence, are the main
criteria. Among the two, support is the essential measure. In this paper, we
will consider the support only. In other words, we will be interested in the
high frequency patterns that are not necessary in the form of rules. They
could be viewed as undirected association rules, or just associations.

Association mining is originated from the market basket data [1]. However,
in many software systems, the data mining tools are added to general DBMS.
So we will be interested in data mining on relational tables. To be definitive,
we have the following translations:

. arelational table is a bag relation(i.e., repeated tuples are permitted [8])

. an item is an attribute value,

. a g-itemset is a subtuple of length g, or simply g-subtuple,

. A g-subtuple is a g-association or (high frequency) g-pattern, if its occur-
rences are greater than or equal to a given threshold.

= W N =

2 Background and Scope

2.1 Scope - a Feature Theory Based on the Finite Data

A feature is also called an attribute; the two terms have been used inter-
changeably. In the classical data model, an attribute is a representation of
property, characteristic, and so forth [17]. It represents a human view of the
universe (a slice of real world) - an intension view [5]. On the other hand,
in modern data mining (DM), we are extracting information from the data.
So in principle, the real world, including features (attributes), is encoded by
and only by a finite set of data. This is an extension view or data view of the
universe.

However, we should caution that each techniques of data mining often
use some information (background knowledge) other than data [6]. So the
encoding of the universe is different for different techniques. For examples
association mining (AM)(Section 3) uses only the relational table, while clus-
tering techniques utilize not only the table (of points), but also the geometry
of the ambient space. So the respective feature theories will be different. In
this paper, we will focus on Association Mining.

Next, we will show some peculiar phenomena of the finite encoding. Let
Table 16 and 20 be the new tables derived from the tables in Section 2.2 by
rotating the coordinate systems ¢ degree. It should be easy to verify that (see
Section 4.1 for the notion of isomorphism).

Proposition 2.1.1. Table 1A, 1B and 16 are isomorphic, so are the Table 2A, 2B
and 26.
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This proposition says even though the rotations of the coordinate system
generate infinitely many distinct features/attributes, they reduce to the same
feature/attribute if the universe is encoded by a relational table. The main
result of this paper is to determine all possible features of the encoded world.

2.2 Background - Mining Invisible Patterns

Let us consider a table of 5 points in X-Y-plane, as shown in Table 1A. The first
column is the universe of the geometric objects. It has two attributes, which
are the ”X-Y coordinates.” This table has no association rule of length 2. By
transforming, the “X-Y coordinates” to “Polar coordinate system” (Table 2A),
interestingly

Associations of length 2 appear.

The key question is how can we find such appropriate new features (polar
coordinates).

Segment# Y | X Y’
S1 2 0 | 1.99 0.17
Sy [V3=173] 1 | 1.64 1.15
S [vV2=1.41|v2|1.29| 153
Sy 1 V3] 0.85 1.81
S5 0 2 |—0.17| 1.99
X-Y coordinate|Rotates -5 degree
Table 1A Table 1B

Table 1. Ten point in (X,Y)-coordinate and Rotated coordinate

Segment#|Length|Direction|Length|Direction

S1 2.0 0 2.0 5

So 2.0 30 2.0 35

Ss3 2.0 45 2.0 45

Sy 2.0 60 2.0 65

Ss 2.0 90 2.0 95
X-Y coordinate |Rotates -5 degree

Table 2A Table 2B

Table 2. Ten points in polar coordinate and rotated coordinate
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3 Formalizing Association Mining

In this section, we will critically analyze the association(rule) mining. Let us
start with a general question: What is data mining? There is no universally
accepted formal definition of data mining, however the following informal
description(paraphrase from [7]) is rather universal:

e Deriving useful patterns from data.

This ”definition” points out key ingredients: data, patterns, methodology of
derivations and the real world meaning of patterns(useful-ness). We will an-
alyze each of them.

3.1 Key Terms "word” and "symbol”

First we need to precisely define some key terms.

A symbol is a string of “bit and bytes.” It has no formal real world meaning,
more precisely, any real world interpretation (if there is one) does not partic-
ipate in formal processing or computing. Mathematicians (in group theory,
more specifically) use the term “word” for such purpose. However, in this
paper, a “word” will be more than a symbol. A symbol is termed a word, if
the intended real world meaning does participate in the formal processing or
computing. In Al there is a similar term, semantic primitive [2]; it is a symbol
whose real world interpretation is not implemented. So in automated com-
puting, a semantic primitive is a symbol.

3.2 What are Data? -a Table of Symbols

To understand the nature of the data, we will examine how the data is cre-
ated: In traditional data processing, (1) we select a set of attributes, called
relational schema. Then (2) we (knowledge) represent a set of real world en-
tities by a table of words.

‘K'map:‘/_> Kwo’rd; v— k

where K,orq is a table of words (this is actually the usual relational table).
Each word, called an attribute value, represents a real world fact(to human);
however the real world semantic is not implemented. Since K4 is a bag
relation [8], it is more convenient to use the graph Ky,qpn = {(v, K(v) | v €
V'}. If the context is clear, we may drop the subscript, so K is a map, an image
or a graph.

Next, how is the data processed? In traditional data processing environment,
for example, the attribute name COLOR means exactly what a human thinks.
Therefore its possible values are yellow, blue, and etc. More importantly,
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e DBMS processes these data under human commands, and carries out the
human perceived-semantics. Such processing is called Computing with
Words.

However, in the system, COLOR, yellow, blue, and etc are “bits and bytes”
without any meaning, they are pure symbols.

The same relational table is used by Association Mining (AM). But, the data
are processed without human interventions, so the table of words Ky,orq is
processed as a table K gm0 Of symbols.

DM : Kword = Ksymbol
In summary,

o The data (relational table) in AM is a table of symbols.

3.3 What are Patterns? and Computing with Symbols

What are the possible patterns? The notion depends on the methodology. So
we will examine the algorithms first. A typical AM algorithm treats words
as symbols. It just counts and does not consult human for any possible real
world meaning of any symbol. As we have observed in previous section no
real world meaning of any symbols is stored in the system. So an AM algo-
rithm is merely a computing of pure symbols. AM transforms a table K sy o
of symbols into a set Asympor Of association(rules)s of symbols. These associ-
ations are “expressions” of symbols. Therefore,

o All possible patterns of AM are expressions of the symbols of the rela-
tional table.

3.4 Interpretation and Realization of Patterns

The output of an AM algorithm is examined by human. So each symbol is
alive again. Its interpretation (to human only) is assigned at the data creation
time. So the patterns are interpreted by these interpretations of symbols.

1. Interpretation: A pattern, an expression of symbols, is an expression of
words (to human). So a pattern is a mathematical expression of real
world facts.

2. Realization: A mathematical expression of real world facts may or may
not correspond to a real world phenomenon.

4 Understanding the Data - A Table of Symbols

In the previous section, we have concluded that the input data to AM is a
table of symbols. In this section, we will explore the nature of such a table.
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4.1 Isomorphism - Syntactic Nature of AM

We have explained how data is processed in (automated) data mining:
The algorithms “forget” the real world meaning of each word, and regard
the input data as pure symbols. Since no real world meaning of each symbol
participates in the computing process if we replace the given set of symbols
by a new set, then we can derive new patterns by simply replacing the sym-
bols in “0ld” patterns. Formally, we have (Theorem 4.1. of [12])

Theorem 4.1.1. Isomorphic relational tables have isomorphic patterns.

Though this is a very important theorem, its proof does not increase the un-
derstanding. Its proof is in the appendix. Isomorphism is an equivalence re-
lation defined on the family of all relational tables, so it classifies the tables
into isomorphic classes.

Corollary 4.1.2. A pattern is a property of an isomorphic class.

The impacts of this simple theorem are rather far reaching. It essentially de-
clares that patterns are syntactic in nature. They are patterns of the whole
isomorphic class, even though many somorphic relations may have very dif-
ferent semantics.

Corollary 4.1.3. The probability theory based on the item counting is a prop-
erty of isomorphic class.

We will illustrate the idea by an example. The following example is adopted
from ([8], pp 702):

Example 4.1.4.

In this example, we will illustrate the notion of isomorphism of tables and
patterns. In Table 3, we present two “copies” of relational tables; they are
obviously isomorphic (by adding prime ’ to one table you will get the other
one). For patterns (support = 2), we have the following:

Isomorphic tables K and K" have isomorphic g-associations:

1. l-association in K: 30, 40, bar, baz,

2. l-association in K’: 30/, 40/, bar’, baz’,

3. 2-association in K: (30, bar) and (40, baz),

4. 2-association in K”: (30', bar’) and (40', baz’).

Two sets of g-association (q=1,2) are obviously isomorphic in the sense that
adding prime ’ to associations in K become associations in K’.
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Vi—=| F G|V |—=| F [ed
e1|—| 30 | fooll e1 |—| 30" | foo
ea|—| 30 | bar || ex |[—| 30" | bar’
es|—| 40 | baz || es |—| 40" | baz’
es|—| 50 | foo |l es |—| 50" | foo
es|—| 40 | bar |es |—| 40" | bar’
es|l—| 40 | bar ||es |—]| 40" | bar’
ez|l—| 30 | bar ||er |—| 30" | bar’
es|—| 40 | baz |les |—| 40" | baz’

Table 3. A Relational Table K and its Isomorphic Copy K’

4.2 Bitmaps and Granules - Intrinsic Representations

Due to the syntactic nature, as we have observed in last section, we can have
a more intrinsic representation, that is a representation in which only the
internal structure of the table is important, the real world meaning of each
attribute value can be ignored.

We will continue to use the same example. The following discussions es-
sential excerpt from ([8], pp 702). Let us consider the bitmap indexes for K
(see Table 3) the first attributes, F', would have three bit-vectors. The first, for
value 30, is 11000110, because the first, second, sixth, and seventh tuple have
F=30. The other two, for 40 and 50, respectively, are 00101001 and 00010000.
A bitmap index for G would also have three bit-vectors: 10010000, 01001010,
and 00100101. It should be obvious that we will have the exact same bitmap
table for K.

Next, we note that a bit vector can be interpreted as a subset of V, called an
elementary granule. For example, the bit vector, 11000110, of F'= 30 repre-
sents the subset {e1, 2, €g, e7}. Similarly, 00101001, of F' = 40 represents the
subset {es, e5, eg}, and etc. Let us summarize the discussions in the following
proposition:

Proposition 4.2.1. Using Table 4 as a translation table, we transform a table of
symbols (Table 3) into its respective

1. a bitmap table, and Table 5.
2. a granular table, Table 6.

Conversely,

Proposition 4.2.2. Using Table 4 as an interpretation table that interpret

1. Table 5 and Table 6 into Table 3, where (to human) each symbol corre-
sponds to a real world fact.

2. Note that F-granules (and G-granules too) are mutually disjoints and
form a covering of V. So the granules of each attribute induces a partition
on V (an equivalence relation).
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3. Each elementary granule, for example,the elementary granule {e1, ez, 5, €7}
of F'=30, consists of all entities that have (are mapped to) the same at-
tribute value, in this case, F'-value 30. In other words, F'-granule {e1, ez, e, e7 }
is the inverse of the value F'=30.

It should be obvious that these discussions can be generalized: They are sum-
marize in Proposition 5.1.1.

F-Value| Bit-Vectors Granules

30 | = 11000110 |({el, €2, €6, e7})
40 | =00101001 | ({e3,eb,e8})
50 | = 00010000 ({ed])

G-Value|= Bit-Vectors Granules
Foo |=10010000 ({el,e4})
Bar |=01001010 | ({e2,e5,e7})
Baz |=00100101| ({e3,e6,e8})

Table 4. Translation Table

| Table K [ Bitmap Table Bx |
Vi—| F| G F-bit G-bit

e1|—| 30| foo|| 11000110 | 10010000
ez2|—| 30| bar || 11000110 | 01001010
e3|—| 40 | baz || 00101001 | 00100101
es|—| 50| foo || 00010000 | 10010000
es|—| 40 | bar || 00101001 | 01001010
es|—| 30 | baz 11000110 | 00100101
er|—| 30| bar 11000110 | 01001010
es|—| 40 | baz || 00101001 | 00100101

Table 5. Contrasting Tables of Symbols and Bitmaps

5 The Model and Language of High Frequency Patterns

Aswehave observed in Section 3.3, informally patterns are expressions (sub-
tuples) of the symbols of the relational table. Traditional association mining
considers only the “conjunction of symbols.” Are there other possible expres-
sions or formulas? A big Yes, if we look at a relational table as a logic system.
There are many such logic views, for example, deductive database systems,
Datalog [21], and Decision Logic [19] among others. For our purpose, such
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[ TableK | Granular Table G i ‘
Ul—| F| G Er Eg
vl|—| 30| foo|| {el,e2,e6,e7} | {el,ed}
v2|— | 30| bar || {el,e2,e6,eT} | {€2,e5,e7}
v3|— | 40| baz {e3,e5,e8} | {e3,eb,e8}
vd|— | 50| foo {ed} {el,ed}
vh|— | 40| bar {e3,eb,e8} | {e2,eb,eT}
v6|— | 30| baz || {el,e2,e6,eT} | {e3,e6,e8}
er|— | 30| bar || {el,e2,e6,e7} | {€2,e5,e7}
es|— | 40| baz {e3,eb,e8} | {e3,eb6,e8}

Table 6. Contrasting Tables of Symbols and Granules

views are too “heavy”, instead, we will take an algebraic approach. The idea
is stated in [13] informally. There, the notion of “logic language” was in-
troduced informally by considering the “logical formulas” of the names of
elementary granules. Each “logical formula” (of names) corresponds to a set
theoretical formula of elementary granules. In this section, we shall re-visit
the idea more formally.

5.1 Granular Data Model(GDM) - Extending the Expressive Power

Based on example, we have discussed granular data model in Section 4.2.
Now we will discuss the general case.

Let V be set of real world entities, A = {A', A% ... A"} be a set of at-
tributes. Let their (active) attribute domains be C' = {C1,C?,...,C"}, where
active is a database term to emphasize the fact that C7 is the set of distinct
values that occur in the current representation. Each C7, often denoted by
Dom(A7),is a Cantor set.

A relational table K can be regarded as a map (knowledge representation)
Kimap : V. — Dom(A) = Dom(A') x ... Dom(A™)

Similarly, an attribute is also a map
ATV — Dom(A%); v — e

The inverse of such an attribute map defines a partition on V' (hence an
equivalence relation); we will denote it by @7 and list some of its proper-
ties in:

Proposition 5.1.1.

1. The inverse image S = (A47)(~1)(c) is an equivalence class of Q7. We say
S is elementary granule, and c is the name of it.
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2. For a fixed order of V, S can be represented by a bit-vector. We also say ¢
is the name of the bit vector.

3. By replacing each attribute value of the table Km0 by its bit-vector or
elementary granule (equivalence class), we have the bitmap table By or
granular table Gi respectively.

4. The equivalence relations, Q@ = {Q',Q?,...,Q"}, play the role of at-
tributes in Table G and B.

5. For uniformity, we write V/Q7 = Dom(Q?), namely, we regard the quo-
tient set as the attribute domain.

6. Theoretically, Gk and Bk conceptually represent the same granular data
model; the difference is only in representations and is an internal matter.

7. We will regard the table K as an interpretation of Gx and Bg. The in-
terpretation is an isomorphism (via a table similar to Table 4) By The-
orem 4.1.1., the patterns in K, Gk, Bg are isomorphic and hence is the
same (identified via interpretation).

e Itis adequate to do the AM in Gg.

The canonical model Gk is uniquely determined by its universe V, and the
family @ of equivalence relations. In other words, the pair (V, Q) determines
and is determined by G .

Definition 5.1.1. The pair (V, Q) is called granular data model(GDM).

(V,Q) is a model of some rather simple kind of logic, where the only predi-
cates are equivalence predicates (predicates that satisfy the reflexive, sym-
metric and transitive properties). It was considered by both Pawlak and
Tony Lee and has been called knowledge base, relation lattice, granular
strucutre [19], [9] [13].

Note that the set of all elementary granule in (V, Q) generate a sub-Boolean
algebra of the power set of V. By abuse of notation, we will use (V, Q) to
denote this algebra. Since G is a table format of (V, ), we need to describe
how G is “embedded” into the Boolean algebra. We will extend Proposi-
tion 5.1.1,Item 7 into

Proposition 5.1.2. An attribute value of G i, which is an elementary granule, is
mapped to the same granule in (V, Q). A subtuple of G, consisting of a set
of elementary granules is mapped into the granule that is the intersection of
those elementary granules; note two subtuples may be mapped to the same
granule.

5.2 Algebraic Language and Granular Boolean Algebra

The attribute values in K are pure symbols. Now we will introduce a new
Boolean algebra L as follows: We will use U and N as the join and meet of
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this Boolean algebra. Ly is a free Boolean algebra subject to the following
conditions:

The N between symbols in the same columns are
B/NB] = Vi#kVj

This condition reflects the fact that the elementary granules of the same col-
umn are mutually disjoint.

We can give a more algebraic description [3]. Let F' be the free Boolean
Algebra generated by the symbols in K. Let I be the ideal generated by

B! N Bl Yik,j
Then the quotient algebra '/I = L.
We will regard this Boolean algebra as a language and call it

Granular algebraic language.

An attribute value in K can be regarded as the name of the corresponding
elementary granule in Gx and the elementary granule is the meaning set
of the name. Recall that GDM (V, Q) can be regarded as Boolean algebra
of elementary granules, and G is “embedded” in (V, Q) (Proposition 5.1.2.)
So the name-to-meaning set assignment, X — G, can be extended to a
homomorphism of Boolean algebras:

name-to-meaning: Ly — (V,Q); formula — meaning set.

e High frequency patterns of AM are formulas with large meaning set(the
cardinality is large).

6 The Formal Theory of Features in AM

The theory developed here is heavily depended on the nature of association
mining (AM) that are formalized in Section 3.

6.1 Feature Extractions and Constructions

Let us examine some informal assertions, e.g., [18]: ”All new constructed fea-
tures are defined in terms of original features, ..” and “Feature extraction is a
process that extracts a set of new features from the original features through
some functional mapping.” In summary the new feature is derived (by con-
struction or extraction) from the given set of attributes. We will formalize the
idea of features in association mining (AM). Perhaps, we should re-iterate
that we are not formalizing the general notion of features that involves hu-
man view.

Let K be the given relational table that has attributes A = {A!,... A"}. Next,
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let A"T1 ... A"T™ be the new attributes that are constructed or extracted. As
we remark in Section 5.1, an attribute is a mapping from the universe to a
domain, so we have the following new mappings.

ARV —— Dom(A™TF).

Now, let us consider the extended table, K, that includes both old and ad-
ditional new attributes {A!,... A" ... A"} In this extended table, by the
meaning of feature construction, A"** should be (extension) functionally
dependent (EFD) on A. This fact implies, by definition of EFD, there is a
mapping

R Dom(AY) x ... x Dom(A™) — Dom(A™F).
such that A"+ = fntko (Al x ... x A",

Those new extracted or constructed features, such as f"** is called derived
feature.

6.2 Derived Features in GDM

Now we will consider the situation in Gx, the granular table of K. In this
section, we will express EFD frtk in granular format, in other words, the
granular form of f"* is:

V/(Q'N...nQ") =V/Q" x ... x V/Q" — V/Q"tk

The first equality is a simple property of quotient sets. The second map is
f"T* in its granular form. The granular form of f"** implies that Q"% is a
coarsening of (Q' N ... N QF). So we have the following

Proposition 6.2.
Q"** is a derived feature of G if and only if Q"** is a coarsening of (Q! N
.NnQM).

Let the original Table K have attributes A = {A',... A"}. Let B C A and
YeA(g,Y=A""and Yy = Q")

Proposition 6.3. Y is a feature constructed from B if and only if the induced
equivalence relation Y is a coarsening of the induced equivalence relation
Bg=(Q"nN...nQ""),whereY € Aand B C A

The proposition says all the new constructed features are coarsening of
the intersection of the original features.

7 Universal Model - Capture the invisibles

Let A(V') be the set of all partitions on V' (equivalence relations); A(V) forms
a lattice, where meet is the intersection of equivalence relations and join is
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the “union,” where the “union,” denoted by U; @7, is the smallest coarsening
ofall Q7,5 =1,2,... A(V) is called the partition lattice.

Let (V,Q = {Q,...,Q"}) be a GDM. Let L(Q) be the smallest sublattice
of A(V) that contains ), and L*(Q) be the set of all possible coarsenings of
(Q'N...NnQ"). L*(Q) obviously forms a sublattice of A(V); the intersection
and “"union” of two coarsenings is a coarsening. From Proposition 6.2., we can
easily establish

Main Theorem 7.1.
Let Gi be a granular table; its GDM is (V, Q). Then (V, L*(Q)) is a GDM that
consists of all possible features for G .

The set of all possible features of G is the set D of all those derived features.
By Proposition 6.2., D is the set of all those coarsenings of (Q' N...N Q™). SO
(V, L*(Q)) is the desirable one.

Definition 7.2. The (V,L*(Q)) is the completion of (V, Q) and is called the
universal model of K.

We should point out that the cardinal number of L*(Q)) is enormous; it is
bounded by the Bell number B,,, where n is the cardinality of the smallest
partition in L*(Q) [4].

8 Conclusions

1. A feature/attribute, from human view, is a characteristic or property of
the universe (a set of entities). Traditional data processing takes such a
view and use them to represent the universe (knowledge representation).

2. A feature/attribute, in data mining, is defined and encoded by data. So a
feature in association mining is a partition of the universe. Under such a
view, we have shown that a set of infinite many distinct human-view-
features (rotations of coordinate systems) is reduced to a single data-
encoded-feature (Section 2.1).

3. Such views are shared by those techniques, such as classification, that
utilize only the relational table of symbols in their algorithms. The other
techniques, such as clustering and neural network, that utilize additional
background knowledge, do not share the same view.

4. In association mining, we have the following applications [11] [10]: All
generalized associations can be generated by a finite set of integral linear
inequalities within polynomial time

5. Finally, we would like to note that by the isomorphism theorem, two iso-
morphic relations may have totally distinct semantics. So relations with
additional structures that capture some semantics may be worthwhile to
be explored; see [15, 13].
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9 Appendix

9.1 General Isomorphism

Attributes A’ and A7 are isomorphic if and only if there is a one-to-one and
onto map, s : Dom(A") — Dom(A7) such that A7 (v) = s(A'(v)) Vv € V.
The map s is called an isomorphism. Intuitively, two attributes (columns) are
isomorphic if and only if one column turns into another one by properly re-
naming its attribute values.

Let K = (V,A) and H = (V, B) be two information tables, where A =
{AY A% .. A"} and B = {B',B?,...B™}. Then, K and H are said to be
isomorphic if every A’ is isomorphic to some B, and vice versa. The iso-
morphism of relations is reflexive, symmetric, and transitive, so it classifies
all relations into equivalence classes; we call them isomorphic classes.

Definition 9.1.1. H is a simplified relationaltable of KX, if H is isomorphic to K
and only has non-isomorphic attributes.

Theorem 9.1.2. Let H be the simplified relational table of K. Then the patterns
(large itemsets) of K can be obtained from those of H by elementary opera-
tions that will be defined below.

To prove the Theorem, we will set up a lemma, in which we assume there are
two isomorphic attributes B and B’ in K, that is, degree K - degree H =1.
Let s : Dom(B) — Dom(B’) be the isomorphism and &’ = s(b). Let H be
the new table in which B’ has been removed.

Lemma 9.1.3. The patterns of K can be generated from those of H by elemen-
tary operations, namely,

1. If b is a large itemset in H, then b’ and (b, b’) are large in K.

2. If(a.., b, c...)is alarge itemset in H, then (a..,b’,c...)and (a.., b, b’, c,.
..) are large in K.

3. These are the only large itemsets in K.

The validity of this lemma is rather straightforward; and it provides the crit-
ical inductive step for Theorem; we ill skip the proof.

9.2 Semantics Issues

The two relations, Tables 7and 8, are isomorphic, but their semantics are
completely different. One table is about part, the other is about suppliers.
These two relations have Isomorphic association rules;

1. Length one: TEN, TWENTY, March, SJ, LA in Table 7 and

2. Length one: 10, 20, Screw, Brass, Alloy in Table 8

3. Length two: (TWENTY, MAR), (Mar, SJ), (TWENTY, S])in one Table 7,
4. Length two: (20, Screw), (screw, Brass),(20, Brass), Table 8
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VI K [(S# Business Birth |CITY)
Amount (in m.)| Day
v1|—| (S1 TWENTY |MAR| NY
vo | —| (S2 TEN MAR| SJ
v3|—| (S3 TEN FEB | NY
vg|—| (Sa TEN FEB | LA
v5|—| (S5 TWENTY |MAR| §]
ve|—| (Se TWENTY |MAR| §J
v7|—| (S7| TWENTY |APR| 9]
vg|—| (Ss THIRTY JAN| LA
vg|—| (S THIRTY JAN | LA
Table 7. An RelationalTable K
V| K |(S#|Weight| Part |Material
Name
vi|—|(P1| 20 SCREW | STEEL
vo|—| (P2| 10 SCREW | BRASS
vg|—| (P3| 10 NAIL | STEEL
va|— | (Ps| 10 NAIL |ALLOY
vs|—| (Ps| 20 SCREW | BRASS
ve|—| (Ps| 20 SCREW | BRASS
vr|— | (Pr| 20 PIN BRASS
vg|—| (Ps| 30 |HAMMER|ALLOY
vg|—| (Po| 30 |HAMMER|ALLOY

Table 8. An RelationalTable K’

However, they have very non-isomorphic semantics:

1. Table 7: (TWENTY, S5J), that is, the business amount at San Jose is likely
20 millions; it is isomorphic to (20, Brass), which is not interesting.

2. Table 8: (SCREW, BRASS), that is, the screw is most likely made from
Brass; it is isomorphic to (Mar, SJ), which is not interesting.

References

1. R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules Between Sets
of Items in Large Databases,” in Proceeding of ACM-SIGMOD international Con-
ference on Management of Data, pp. 207-216, Washington, DC, June, 1993

2. A. Barr and E.A. Feigenbaum, The handbook of Artificial Intelligence, Willam

Kaufmann 1981.

3. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan, 1977

-~

Richard A. Brualdi, Introductory Combinatorics, Prentice Hall, 1992.

5. C. ]J. Date, C. DATE, An Introduction to Database Systems, 7th ed., Addison-

Wesley, 2000.



76 T. Y. Lin

6. Margaret H. Dunham, Data Mining Introduction and Advanced Topics Prentice
Hall, 2003, ISBN 0-13-088892-3

7. Fayad U. M., Piatetsky-Sjapiro, G. Smyth, P. “From Data Mining to Knowledge
Discovery: An overview.” In Fayard, Piatetsky-Sjapiro, Smyth, and Uthurusamy
eds., Knowledge Discovery in Databases, AAAI/MIT Press, 1996.

8. H Gracia-Molina, J. Ullman. & J. Windin, J, Database Systems The Complete Book,
Prentice Hall, 2002.

9. T. T. Lee, ”Algebraic Theory of Relational Databases,” The Bell System Technical
Journal Vol 62, No 10, December, 1983, pp.3159-3204.

10. T. Y. Lin, ” A mathematical Theory of Association Mining” In: Foundation and
Novel Approach in Data Mining (Lin & et al), Spriner-Verlag, 2005, to appear

11. T. Y. Lin, ” Mining Associations by Solving Integral Linear Inequalities,” in: the
Proceedings of International Conference on Data Mining, Breighton, England, Nov
1-4, 2004

12. T. Y. Lin ”Attribute (Feature) Completion— The Theory of Attributes from Data
Mining Prospect,” in: the Proceedings of International Conference on Data Mining,
Maebashi, Japan, Dec 9-12, 2002, pp.282-289.

13. T. Y. Lin, “Data Mining and Machine Oriented Modeling: A Granular Comput-
ing Approach,” Journal of Applied Intelligence, Kluwer, Vol. 13, No 2, Septem-
ber/October,2000, pp.113-124.

14. T. Y. Lin and M. Hadjimichael, "Non-Classificatory Generalization in Data Min-
ing,” in Proceedings of the 4th Workshop on Rough Sets, Fuzzy Sets, and Machine
Discovery, November 6-8, Tokyo, Japan, 1996, 404-411.

15. E. Louie, T. Y. Lin, “Semantics Oriented Association Rules,” In: 2002 World
Congress of Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002, 956-
961 (paper # 5702)

16. E. Louie and T. Y. Lin, “Finding Association Rules using Fast Bit Computation:
Machine-Oriented Modeling,” in: Foundations of Intelligent Systems, Z. Ras and S.
Ohsuga (eds), Lecture Notes in Artificial Intelligence 1932, Springer-Verlag, 2000,
pp. 486- 494. (ISMIS’00, Charlotte, NC, Oct 11-14, 2000)

17. H. Liu and H. Motoda, “Feature Transformation and Subset Selection,” IEEE In-
telligent Systems, Vol. 13, No. 2, March/ April, pp.26-28 (1998)

18. Hiroshi Motoda and Huan Liu ”Feature Selection, Extraction and Construction,”
Communication of IICM (Institute of Information and Computing Machinery, Tai-
wan) Vol 5, No. 2, May 2002, pp. 67-72. (proceeding for the workshop “Toward the
Foundation on Data Mining” in PAKDD2002, May 6, 2002.

19. Z. Pawlak, Rough sets. Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers, 1991

20. Z. Pawlak, Rough sets. International Journal of Information and Computer Sci-
ence 11, 1982, pp. 341-356.

21. J. Ullman, Principles of Database and Knowledge-Base Systes, Vol 1, II, 1988, 1989,
Computer Science Press.



A new theoretical framework for K-means-type
clustering

Jiming Peng* and Yu Xia

Advanced optimization Lab, Department of Computing and Software McMaster
University, Hamilton, Ontario L8S 4K1, Canada.
pengj@mcmaster.ca, xiay@optlab.mcmaster.ca

Summary. One of the fundamental clustering problems is to assign n points into
k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-
hard. In this paper, by using matrix arguments, we first model MSSC as a so-
called 0-1 semidefinite programming (SDP). The classical K-means algorithm can
be interpreted as a special heuristics for the underlying 0-1 SDP. Moreover, the 0-1
SDP model can be further approximated by the relaxed and polynomially solvable
linear and semidefinite programming. This opens new avenues for solving MSSC.
The 0-1 SDP model can be applied not only to MSSC, but also to other scenarios of
clustering as well. In particular, we show that the recently proposed normalized k-
cut and spectral clustering can also be embedded into the 0-1 SDP model in various
kernel spaces.

1.1 Introduction

Clustering is one of major issues in data mining and machine learning with
many applications arising from different disciplines including text retrieval,
pattern recognition and web mining[12, 15]. Roughly speaking, clustering in-
volves partition a given data set into subsets based on the closeness or simi-
larity among the data. Typically, the similarities among entities in a data set
are measured by a specific proximity function, which can be make precise in
many ways. This results in many clustering problems and algorithms as well.

Most clustering algorithms belong to two classes: hierarchical clustering
and partitioning. The hierarchical approach produces a nested series of par-
titions consisting of clusters either disjoint or included one into the other.
Those clustering algorithms are either agglomerative or divisive. An agglom-
erative clustering algorithm starts with every singleton entity as a cluster,

* The research of the first author was partially supported by the grant # RPG
249635-02 of the National Sciences and Engineering Research Council of Canada
(NSERC) and a PREA award. This research was also Supported by the MITACS
project “New Interior Point Methods and Software for Convex Conic-Linear Op-
timization and Their Application to Solve VLSI Circuit Layout Problems”.
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and then proceeds by successively merging clusters until a stopping criterion
is reached. A divisive approach starts with an initial cluster with all the enti-
ties in it, and then performs splitting until a stopping criterion is reached. In
hierarchical clustering, an objective function is used locally as the merging or
splitting criterion. In general, hierarchical algorithms can not provide optimal
partitions for their criterion. In contrast, partitional methods assume given
the number of clusters to be found and then look for the optimal partition
based on the object function. Partitional methods produce only one parti-
tion. Most partitional methods can be further classified as deterministic or
stochastic, depending on whether the traditional optimization technique or
a random search of the state space is used in the process. There are several
different ways to separate various clustering algorithms, for a comprehensive
introduction to the topic, we refer to the book [12, 15], and for more recent
results, see survey papers [4] and [13].

Among various criterion in clustering, the minimum sum of squared Eu-
clidean distance from each entity to its assigned cluster center is the most
intuitive and broadly used. Both hierarchical and partitional procedures for
MSSC have been investigated. For example, Ward’s [27] agglomerative ap-
proach for MSSC has a complexity of O(n?logn) where n is the number of
entities. The divisive hierarchical approach is more difficult. In [9], the au-
thors provided an algorithm running in O(n?*!logn) time, where d is the
dimension of the space to which the entities belong.

However, in many applications, assuming a hierarchical structure in parti-
tioning based on MSSC is unpractical. In such a circumstance, the partitional
approach directly minimizing the sum of squares distance is more applaud-
able. The traditional way to deal with this problem is to use some heuristics
such as the well-known K-means [18]. To describe the algorithm, let us go into
a bit more details.

Given a set S of n points in a d-dimensional Euclidean space, denoted by

S:{Si:(si17"’,sid)T€Rd i:l,...,n}

the task of a partitional MSSC is to find an assignment of the n points into k
disjoint clusters S = (Si,-- -, Sk) centered at cluster centers c; (j =1,---, k)
based on the total sum-of-squared Euclidean distances from each point s; to
its assigned cluster centroid c;, i.e.,

1S;1

f(5,8) ="

j=11i=1

, 2
(4) )
S;"" — G| >

where |S;| is the number of points in S;, and SZ(-]) is the i*" point in S;. Note
that if the cluster centers are known, then the function f(S,S) achieves its
minimum when each point is assigned to its closest cluster center. Therefore,
MSSC can be described by the following bilevel programming problem (see
for instance [2, 19]).
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(1.1) min me{nsz —ci|?, -, |Isi — el

C1,,C

Geometrically speaking, assigning each point to the nearest center fits into
a framework called Voronoi Program, and the resulting partition is named
Voronoi Partition. On the other hand, if the points in cluster S; are fixed,

then the function 5
S;

155 = 34 oo

is minimal when
) (J)
¢ = 155 S A Z

The classical K-means algorithm [18], based on the above two observations,
is described as follows:

K-means clustering algorithm

(1)Choose k cluster centers randomly generated in a domain containing all

the points,

A551gn each point to the closest cluster center,

3)Recompute the cluster centers using the current cluster memberships,
4)If a convergence criterion is met, stop; Otherwise go to step 2.

Another way to model MSSC is based on the assignment. Let X = [z;;] €
Rk be the assignment matrix defined by

S 1 If s; is assigned to Sj;
Y00 Otherwise.

As a consequence, the cluster center of the cluster Sj;, as the mean of all the
points in the cluster, is defined by

Zl 1xlasl
Zl 1%l

Using this fact, we can represent (1.1) as

Zl 1 L1581

Cj =

(1.2) min Zij ||si
i ;; v Dl T
(1.3) S.T. injzl(izl,...,n)
J=1

(1.4) zn:xijzl(jzlv“'»k)
—1
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The constraint (1.3) ensures that each point s; is assigned to one and only one
cluster, and (1.4) ensures that there are exactly k clusters. This is a mixed
integer programming with nonlinear objective [8], which is NP-hard. The dif-
ficulty of the problem consists of two parts. First, the constraints are discrete.
Secondly the objective is nonlinear and nonconvex. Both the difficulties in the
objective as well as in the constraints make MSSC extremely hard to solve.

Many different approaches have been proposed for attacking (1.2) both in
the communities of machine learning and optimization [1, 8, 3]. Most methods
for (1.2) are heuristics that can locate only a good local solution, not the exact
global solution for (1.2). Only a few works are dedicated to the exact algorithm
for (1.2) as listed in the references of [3].

Approximation methods provide a useful approach for (1.2). There are
several different ways to approximate (1.2). For example, by solving the so-
called K-medians problem we can obtain a 2-approximately optimal solution
for (1.2) in O(n*!) time [10]. In [22], Mutousek proposed a geometric approx-
imation method that can find an (1 + €) approximately optimal solution for
(1.2) in O(nlog" n) time, where the constant hidden in the big-O notation de-
pends polynomially on €. Another efficient way of approximation is to attack
the original problem (typically NP-hard) by solving a relaxed polynomially
solvable problem. This has been well studied in the field of optimization, in
particular, in the areas of combinatorial optimization and semidefinite pro-
gramming [5]. We noted that recently, Xing and Jordan [29] considered the
SDP relaxation for the so-called normalized k-cut spectral clustering.

In the present paper, we focus on developing approximation methods for
(1.2) based on linear and semidefinite programming (LP/SDP) relaxation. A
crucial step in relaxing (1.2) is to rewrite the objective in (1.2) as a simple
convex function of matrix argument that can be tackled easily, while the
constraint set still enjoy certain geometric properties. This was possibly first
suggested in [6] where the authors owed the idea to an anonymous referee.
However, the authors of [6] did not explore the idea in depth to design any
usable algorithm. A similar effort was made in [30] where the authors rewrote
the objective in (1.2) as a convex quadratic function in which the argument
is a n x k orthonormal matrix.

Our model follows the same stream as in [6, 30]. However, different from the
approach [30] where the authors used only a quadratic objective and simple
spectral relaxation, we elaborate more on how to characterize (1.2) exactly
by means of matrix arguments. In particular, we show that MSSC can be
modelled as the so-called 0-1 semidefinite programming (SDP), which can be
further relaxed to polynomially solvable linear programming (LP) and SDP.
Several different relaxation forms are discussed. We also show that variants
of K-means can be viewed as heuristics for the underlying 0-1 SDP.

Our model provides novel avenues not only for solving MSSC, but also
for solving clustering problems based on some other criterions. For exam-
ple, the clustering based on normalized cuts can also be embedded into our
model. Moreover, our investigation reveals some interesting links between the
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well-known K-means and some recently proposed algorithms like spectral clus-
tering.

The paper is organized as follows. In Section 2, we show that MSSC can
be modelled as 0-1 SDP, which allows convex relaxation such as SDP and LP.
In Section 3, we discuss algorithms and challenges for solving our 0-1 SDP
model. Section 4 devotes to the discussion on the links between our model
and some other recent models for clustering. Finally we close the paper by
few concluding remarks.

1.2 Equivalence of MSSC to 0-1 SDP

In this section, we establish the equivalence between MSSC and 0-1 SDP. We
start with a brief introduction to SDP and 0-1 SDP.

In general, SDP refers to the problem of minimizing (or maximizing) a
linear function over the intersection of a polyhedron and the cone of symmetric
and positive semidefinite matrices. The canonical SDP takes the following
form

min Tr(WZ)
(SDP) (¢ ST.Tr(BiZ)=b; fori=1,---,m
Z =0

Here Tr(.) denotes the trace of the matrix, and Z > 0 means that Z is positive
semidefinite. If we replace the constraint Z > 0 by the requirement that
Z? = Z, then we end up with the following problem

min Tr(WZ)
(0-1 SDP) ¢ S.T.Tr(B;Z) =b; fori=1,---,m
722 =72,72=272"

We call it 0-1 SDP owing to the similarity of the constraint Z2 = Z to the
classical 0-1 requirement in integer programming.

We next show that MSSC can be modelled as 0-1 SDP. By rearranging
the items in the objective of (1.2), we have

> i1 Tij

n k
(1.6) £08,8) = llsall* [ D i ZHZ L wgsil)”
i=1 j=1

WgW Z ||Zl 1X1Jsl|| 7

1 1 Xij

where Wg € R"*? denotes the matrix whose ith row is the vector s;. Since X
is an assignment matrix, we have
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XTX = diag (zn: T, ixfk) = diag (i Til, Zn:xzk)
i=1 i=1 i=1

=1
Let
Z = [zy] = X(XTX) X7,

we can write (1.6) as Tr(WsW¢§ (I — Z)) = Tr(WJ Wg) — Tr (W WsZ). Obvi-
ously Z is a projection matrix satisfying Z2 = Z with nonnegative elements.
For any integer m, let e, be the all one vector in R"™. We can write the
constraint (1.3) as

Xek =en.

It follows immediately
Ze" = ZXel = Xek = e,
Moreover, the trace of Z should equal to k, the number of clusters, i.e.,
Tr(Z) = k.
Therefore, we have the following 0-1 SDP model for MSSC
(1.7) min Tr(WsW¢§ (I - 2))
Ze =e,Tr(Z) =k,
2>0,2=27V72=2.

We first give a technical result about positive semidefinite matrix that will be
used in our later analysis.

Lemma 1 For any symmetric positive semidefinite matriz Z € R"*"™, there
exists an index ig € {1,---,n} such that

Z;

= max Zl]
(2¥]

o0to
Proof: For any positive semidefinite matrix Z, it is easy to see that
Z’L?ZO7 ’Lil,,n

Suppose the statement of the lemma does not hold, i.e., there exists ig # jo
such that
Ziojo = max Zij > 0.
i,

<Zi0i0 Zioj, >
Zjoio Zjojo
is not positive semidefinite. This contradicts to the assumptuion in the lemma.

Now we are ready to establish the equivalence between the models (1.7)
and (1.2).

Then the submatrix
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Theorem 1.2.1 Solving the 0-1 SDP problem (1.7) is equivalent to finding
a global solution of the integer programming problem (1.2).

Proof: From the construction of the 0-1 SDP model (1.7), we know that
one can easily construct a feasible solution for (1.7) from a feasible solution
of (1.2). Therefore, it remains to show that from a global solution of (1.7), we
can obtain a feasible solution of (1.2).

Suppose that Z is a global minimum of (1.7). Obviously Z is positive
semidefinite. From Lemma 1 we conclude that there exists an index i; such
that

Zilil = maX{Zi]‘ 01 < Z,j < TL} > 0.

Let us define the index set
11 = {j : Zz'lj > O}

Since Z% = Z, we have

Z (Zi1j)2 = Ziliu

Jj€Ty

which implies
Z; 1J

1141

Zi ;=L
JETL

From the choice of i1 and the constraint
n
Y Zui=Y Zini=1,
j=1 JE€TL

we can conclude that
Zilj = Zi1i1’ VJ S Il.

This further implies that the submatrix Zz,7, is a matrix whose elements are
all equivalent, and we can decompose the matrix Z into a bock matrix with
the following structure

Zgg O )

1.8 7= (9 ,
(18) ( 0 Z11,
where Z; = {i : i € T, }. Since Y_,c7 Zi = 1 and (Z1,7,)* = Z7,7,, we can
consider the reduced 0-1 SDP as follows
(1.9) min Tr((wswg)fljl (I Z)ml)

27,7, = e,Tr(Zj—lj—l) =k—-1,

Z1,7, 20,23 3, = Z1,7,.

Repeating the above process, we can show that if Z is a global minimum of
the 0-1 SDP, then it can be decomposed into a diagonal block matrix as
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Z = diag (Z1,1,, > 21, 72,)>

where each block matrix Zz,7, is a nonnegative projection matrix whose ele-
ments are equal, and the sum of each column or each row equals to 1.
Now let us define the assignment matrix X € R"**

(1 ifieT
Xij = {O otherwise

One can easily verify that Z = X(X7X)~'X7T. Our above discussion illus-
trates that from a feasible solution of (1.7), we can obtain an assignment
matrix that satisfies the condition in (1.2). This finishes the proof of the the-
orem.

By comparing (1.7) with (1.2), we find that the objective in (1.7) is linear,
while the constraint in (1.7) is still nonlinear, even more complex than the
0-1 constraint in (1.2). The most difficult part in the constraint of (1.7) is
the requirement that Z? = Z. Several different ways for solving (1.7) will be
discussed in the next section.

1.3 Algorithms for solving 0-1 SDP

In this section, we focus on various algorithms for solving the 0-1 SDP model
(1.7). From a viewpoint of the algorithm design, we can separate these algo-
rithms into two groups. The first group consists of the so-called feasible iter-
ative algorithms, while the second group contains approximation algorithms
(might be infeasible at some stage in the process) based on relaxation. It is
worthwhile pointing out that our discussion will focus on the design of the
algorithm as well as the links among various techniques, not on the imple-
mentation details of the algorithm and numerical testing.

1.3.1 Feasible Iterative Algorithms

We first discuss the so-called feasible iterative algorithms in which all the
iterates are feasible regarding the constraints in (1.7), while the objective is
reduced step by step until some termination criterion is reached. A general
procedure for feasible iterative algorithms can be described as follows:

Feasible Iterative Algorithm
StePhbose a starting matrix Z° satisfying all the constraints in (1.7),

StePs2:a heuristics to update the matrix Z* such that the value of the

objective function in (1.7) is decreased, = = .
Stephadck the termination criterion. If the criterion is reached, then stop;

Otherwise go to Step 2.
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We point out that the classical K-means algorithm described in the intro-
duction can be interpreted as a special feasible iterative scheme for attacking
(1.7). To see this, let us recall our discussion on the equivalence between MSSC
and (1.7), one can verify that, at each iterate, all the constraints in (1.7) are
satisfied by the matrix transformed from the K-means algorithm. It is also
easy to see that, many variants of the K-means algorithm such as the variants
proposed in [11, 14], can also be interpreted as specific iterative schemes for
(1.7).

1.3.2 Approximation Algorithms Based on LP/SDP Relaxations

In the section we discuss the algorithms in the second group that are based on
LP/SDP relaxation. We starts with a general procedure for those algorithm.

Approximation Algorithm Based on Relaxation

Stephbose a relaxation model for (1.7),

StepoRe the relaxed problem for an approximate solution,

StePs8:a rounding procedure to extract a feasible solution to (1.7) from
the approximate solution.

The relaxation step has an important role in the whole algorithm. For exam-
ple, if the approximation solution obtained from Step 2 is feasible for (1.7),
then it is exactly an optimal solution of (1.7). On the other hand, when the
approximation solution is not feasible regarding (1.7), we have to use a round-
ing procedure to extract a feasible solution. In what follows we discuss how
to design a rounding procedure.

First, we note that when Z* is a solution of (1.7), it can be shown that the
matrix Z*Wg contains k different rows, and each of these k different rows rep-
resents one center in the final clusters. A good approximate solution, although
it might not be feasible for (1.7), should give us some indications on how to
locate a feasible solution. Motivated by the above-mentioned observation, we
can cast the rows of the matrix ZWyg as a candidate set for the potential ap-
proximate centers in the final clustering. This leads to the following rounding
procedure.

A Rounding Procedure

Stemfit: an approximate solution Z and the matrix Wg,

Stepeltet k rows from the rows of the matrix ZWg 2 as the initial centers,

Steppdy the classical K-means to the original MSSC using the selected
initial centers.

We mention that in [29], Xing and Jordan proposed a rounding procedure
based on the singular value decomposition Z = UTU of Z. In their approach,
Xing and Jordan first cast the rows of U” as points in the space, and then
they employed the classical K-means to cluster those points.

2 For example, we can select k rows from ZWjs based on the frequency of the row
in the matrix, or arbitrarily select k centers.
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Another way for extracting a feasible solution is to utilize branch and cut.
In order to use branch and cut, we recall the fact that any feasible solution Z
of (1.7) satisfies the following condition

Zii(Zis — Zi) =0, i,j=1,---.n.

If an approximate solution meets the above requirement, then it is a feasible
solution and thus an optimal solution to (1.7). Otherwise, suppose that there
exist indices 4, j such that

Zij(Zii — Zij) # 0,

then we can add cut Z;; = Z;; or Z;; = 0 to get two subproblems. By combin-
ing such a branch-cut procedure with our linear relaxation model, we can find
the exact solution to (1.7) in finite time, as the number of different branches
is at most 2.

To summarize, as shown in our above discussion, finding a good approx-
imation (or a nice relaxation) is essential for the success of approximation
algorithms. This will be the main focus in the following subsections.

Relaxations based on SDP

In this subsection, we describe few SDP-based relaxations for (1.7). First we
recall that in (1.7), the argument Z is stipulated to be a projection matrix,
i.e., Z? = Z, which implies that the matrix Z is a positive semidefinite matrix
whose eigenvalues are either 0 or 1. A straightforward relaxation to (1.7) is
replacing the requirement Z2 = Z by the relaxed condition

I~7Z*0.

Note that in (1.7), we further stipulate that all the entries of Z are nonnega-
tive, and the sum of each row(or each column) of Z equals to 1. This means
the eigenvalues of Z is always less than 1. In this circumstance, the constraint
Z = I becomes superfluous and can be waived. Therefore, we obtain the
following SDP relaxation for MSSC

(1.10) min Tr(WsW¢§ (I - 2))
Ze =e,Tr(Z) =k,
Z>0,Z = 0.

The above problem is feasible and bounded below. We can apply many existing
optimization solvers such as interior-point methods to solve (1.10). It is known
that an approximate solution to (1.10) can be found in polynomial time.

We noted that in [29], the model (1.10) with a slightly different linear con-
straint 3 was used as a relaxation to the so-called normalized k-cut clustering.

3 In [29], the constraint Ze = e in (1.7) is replaced by Zd = d where d is a positive
scaling vector associated with the affinity matrix, and the constraint Z < I can
not be waived.
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As we shall show in section 4, the model (1.10) can always provides better
approximation to (1.7) than the spectral clustering. This was also observed
and pointed out by Xing and Jordan [29].

However, we would like to point out here that although there exist theoreti-
cally polynomial algorithm for solving (1.10), most of the present optimization
solvers are unable to handle the problem in large size efficiently.

Another interesting relaxation to (1.7) is to further relax (1.10) by drop-
ping some constraints. For example, if we remove the nonnegative requirement
on the elements of Z, then we obtain the following simple SDP problem

(1.11) min Tr(WsWg§ (I - 2))
Ze =e,Tr(Z) =k,
I>=27>0.

The above problem can be equivalently stated as
(1.12) max Tr(WsW{Z)
Ze =e,Tr(Z) =k,
I~=7Zx0.

In the sequel we discuss how to solve (1.12). Note that if Z is a feasible solution

for (1.12), then we have
1

7 1

—Ze=—e¢

vn vn

which implies %e is an eigenvector of Z with eigenvalue 1. Therefore, we can
write any feasible solution of (1.12) Z as

Z=QrqQT + %eeT,
where Q € R"*("=1) i a matrix satisfying the condition:
C.IThe matrix [Q : ﬁe] is orthogonal,
and I' = diag (v1, - -, Yn—1) is a nonnegative diagonal matrix. It follows
k—1=Tr(Z)—1=Tr(QrQ") = Tr(Q"Qr) = Tx(I).
Therefore, we can reduce (1.12) to
(1.13) max Tr(WsWJQIQ") = Tr(Q"WsWgQr)
Tr(l) =k — 1,
I,1>=1%*=0.
Let M (QTWsWEQ), -+, X1 (QTWsWI'Q) be the eigenvalues of the matrix

QTWsWZQ listed in the order of decreasing values. The optimal solution of
(1.13) can be achieved if and only if
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k—1
Tr(QTWsWEQT) = > A(QTWsWEQ).

i=1

Note that for any matrix @ satisfying Condition C.1, the summation of the
first k — 1 largest eigenvalues of the matrix QT WsWZ'Q are independent of
the choice of Q. This gives us an easy way to solve (1.13) and correspondingly
(1.12). The algorithmic scheme for solving (1.12) can be described as follows:

Algorithm:

Stephbose a matrix @ satisfying C.1,

Steps2:singular value decomposition method to compute the first £ — 1
largest eigenvalues of the matrix QT WsWZ'Q and their corresponding
eigenvectors v, - -+, Vg—1,

Stepet3:
1 k—1
Z=—e" ) Qu;.
—ee + ;(Qv ) Qu
It should be mentioned that if £k = 2, then Step 2 in the above algorithm
uses the eigenvector corresponding to the largest eigenvalue of QT WsWZ1'Q.
This eigenvector has an important role in Shi and Malik’ work [25] (See also

[28]) for image segmentation where the clustering problem with & = 2 was
discussed.

LP Relaxation

In this subsection, we propose an LP relaxation for (1.7). First we observe
that if s; and s;, s; nd s; belong to the same clusters, then s; and s; belong
to the same cluster. In such a circumstance, from the definition of the matrix
Z we can conclude that

Zij = Lk = Ligy = Ly = Ljj = Lk
Such a relationship can be partially characterized by the following inequality
Zij + Ziy < Zy + Zjg,.
Correspondingly, we can define a metric polyhedron MET* by
MET = {Z = (2] : 215 < 215, 255 + 2ik < Zii + Zjk }-
Therefore, we have the following new model

4 A similar polyhedron MET had been used by Karisch and Rendl, Leisser and
Rendl in their works [16, 17] on graph partitioning. We changed slightly the
definition of MET in [17] to adapt to our problem.
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(1.14) min Tr(WsW¢ (I - Z))
Ze=¢e,Tr(Z) =k,
Z >0,
Z € MET.

If the optimal solution of (1.14) is not a feasible solution of (1.7), then we
need to refer to the rounding procedure that we described earlier to extract a
feasible solution for (1.7).

Solving (1.14) directly for large-size data set is clearly unpractical due to
the huge amount (O(n?)) of constraints. In what follows we report some pre-
liminary numerical results for small-size data set. Our implementation is done
on an IBM RS-6000 workstation and the package CPLEX 7.1 with AMPL in-
terface is used to solve the LP model (1.14).

The first data set we use to test our algorithm is the Soybean data (small)
from the UCI Machine Learning Repository °, see also [21]. This data set has
47 instances and each instance has 35 normalized attributes. It is known this
data set has 4 clusters. As shown by the following table, for k from 2 to 4, we
found the exact clusters by solving (1.14).

The Soybean data
k|Objective| CPU time(s)
21404.4593 4.26
3| 215.2593 1.51
41 205.9637 1.68

The second test set is the Ruspini data set from [24]. This data set, consist-
ing of 75 points in N2 with four groups, is popular for illustrating clustering
techniques [15]. The numerical result is listed as follows:

The Ruspini’s data
k|Objective| CPU time(s)
2| 893380 27.81

3| 510630 66.58
4
5

12881 7.22
10127 9.47

We observed that in our experiments, for all cases k = 2,-- -5, the solution of
(1.14) is not feasible for (1.7). However, the resulting matrix is quite close to
a feasible solution of (1.7). Therefore, we use the classical K-means to get the
final clusters. After a few iterations, the algorithm terminated and reported
the numerical results that match the best known results in the literature for
the same problem.

The third test set is the Spath’s postal zones data [26]. This data set con-
tains 89 entities and each entity has 3 features. Correspondingly, we transform
all the entities into points in R3. It is known that the data set has 7 groups.

5 hittp://www.ics.uci.edu/ mlearn/MLRepository.html
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In all cases that k runs from 2 to 9, we were able to find the exact solution of
(1.7) via solving (1.14).

The Spath’s Postal Zone data
k| Objective |CPU time(s)
6.0255 x 1011|  283.26
2.9451 % 10"  418.07
1.0447 % 1011 99.54
5.9761 % 1010 60.67
3.5908 % 1010 52.55
2.1983 * 1010 61.78
1.3385 % 1010 26.91
7.8044 % 10° 18.04

© 00 O U Wi

It is worthwhile mentioning that, as shown in the tables, the running time
of the algorithm does not increase as the cluster number k increases. Actually,
from a theoretical viewpoint, the complexity of the algorithm for solving (1.14)
is independent of k. This indicates our algorithm is scalable to large data set,
while how to solve (1.14) efficiently still remains a challenge. In contrast, the
complexity of the approximation algorithms in [22] increases with respect to
k.

1.4 Relations to Other Clustering Methods

In the previous sections, we proposed and analyzed the 0-1 SDP model for
MSSC. In this section, we consider the more general 0-1 SDP model for clus-
tering

(1.15) max Tr(WZ)
Ze =r¢,Tr(Z) =Kk,
72>0,72°=2,72=27",

where W is the so-called affinity matrix whose entries represent the similarities
or closeness among the entities in the data set. In the MSSC model, we use the
geometric distance between two points to characterize the similarity between
them. In this case, we have W;; = slTsj. However, we can also use a general
function ¢(s;, s;) to describe the similarity relationship between s; and s;. For
example, let us choose

llsi—=sl°

(116) Wij = ¢(SZ‘,SJ') =exp o , o>0.

In order to apply the classical K-means algorithm to (1.15), we first use the
singular eigenvalue decomposition method to decompose the matrix W into
the product of two matrices, i.e., W = UTU. In this case, each column of U
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can be cast as a point in a suitable space. Then, we can apply the classical
K-means method for MSSC model to solving problem (1.15). This is exactly
the procedure what the recently proposed spectral clustering follows. However,
now we can interpret the spectral clustering as a variant of MSSC in a different
kernel space. It is worthwhile mentioning that certain variants of K-means can
be adapted to solve (1.15) directly without using the SVD decomposition of
the affinity matrix.

We note that recently, the k-ways normalized cut and spectral clustering
received much attention in the machine learning community, and many inter-
esting results about these two approaches have been reported [7, 20, 23, 25,
28, 29, 30]. In particular, Zha et’al [30] discussed the links between spectral
relaxation and K-means. Similar ideas was also used in [23]. An SDP relax-
ation for normalized k-cut was discussed [29]. The relaxed SDP in [29] takes a
form quite close to (1.10). As we pointed out in Section 3, the main difference
between the relaxed model in [29] and (1.10) lies in the constraint.

In fact, with a closer look at the model for normalized k-cut in [29], one
can find that it is a slight variant of the model (1.15). To see this, let us
recall the exact model for normalized k-cut [29]. Let W be the affinity matrix
defined by (1.16) and X be the assignment matrix in the set Fj defined by

Fr={X:Xe" =e" 2, €{0,1}}.

Let d = We™ and D = diag (d). The exact model for normalized k-cut in [29]
can be rewritten as

(1.17) max Tr((X"DX) 'XTWX)
XeFr
If we define . )
Z=D:X(XT"DX)'XTDz,
then we have . .
72*=2,7"=27>0,Zd% =d>.

Following a similar process as in the proof of Theorem 1.2.1, we can show that
the model (1.17) equals to the following 0-1 SDP:

(1.18) max ﬁ(D—%WD—%z)

Zd® =dz, Tr(Z) =k,
72>0,72°=2,72=27".

The only difference between (1.15) and (1.18) is the introduction of the scaling
matrix D. However, our new unified model (1.15) provides more insight for
clustering problem and opens new avenues for designing new efficient cluster-
ing methods. It is also interesting to note that when we use SDP relaxation
to solve (1.15), the constraint Z < I can be waived without any influence on
the solution, while such a constraint should be kept in the SDP relaxation for
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(1.18). This will definitely impact the numerical efficiency of the approach. It
will be helpful to compare these two models in real application to see what is
the role of the scaling matrix D.

1.5 Conclusions

In this paper, we reformulated the classical MSSC as a 0-1 SDP. Our new
model not only provides a unified framework for several existing clustering
approaches, but also opens new avenues for clustering. Several LP/SDP relax-
ations are suggested to attack the underlying 0-1 SDP. Preliminary numerical
tests indicate that these approaches are feasible, and have a lot of potential
for further improvement.

Several important issues regarding the new framework remain open. The
first is how to estimate the approximate rate of the approximation solution
obtained from the relaxed LP/SDP problems. Secondly, the issue of how to
design a rounding procedure without using the classical K-means heuristics
to extract a feasible solution deserves further study. Thirdly, for specific clus-
tering problem, how to choose a suitable affinity matrix, or in other words,
how to find a suitable kernel space needs to be investigated. The last, but also
the most important issue, is to develop efficient optimization algorithms for
solving the relaxed problems so that these techniques can be applied to large
size data set. We hope future study can help us to address these questions.
Acknowledgement The authors thank the two anonymous referees for their
useful comments.

References

1. Agarwal, P.K. and Procopiuc. (2002). Exact and approximation algorithms for
clustering. Algorithmica, 33, 201-226.

2. Bradley,P.S., Fayyad, U.M., and Mangasarian, O.L.(1999). Mathematical Pro-
gramming for data mining: formulations and challenges. Informs J. Comput.,
11, 217-238.

3. Du Merle, O., Hansen, P., Jaumard, B. and Mladenovi¢, N. (2000). An interior-
point algorithm for minimum sum of squares clustering. SIAM J. Sci. Comput.,
21, 1485-1505.

4. Ghosh J.(2003). Scalable Clustering. In N. Ye, Editor, The Handbook of Data
Mining, Lawrence Erlbaum Associate, Inc, pp. 247-277.

5. Goemans, M.X. (1997). Semidefinite programming in combinatorial optimiza-
tion. Mathematical Programming. 79, 143-161.

6. Gordon, A.D. and Henderson, J.T. (1977). Al algorithm for Euclidean sum of
squares classification. Biometrics. 33, 355-362.

7. Gu, M., Zha, H., Ding, C., He, X. and Simon, H. (2001). Spectral relaxation
models and structure analysis for k-way graph Clustering and bi-clustering.
Penn State Univ Tech Report.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A new theoretical framework for K-means-type clustering 93

Hansen, P. & Jaumard B. (1997). Cluster analysis and mathematical program-
ming. Math. Programming, 79(B), 191-215.

Hansen, P., Jaumard, B. and Mladenovié, N. (1998). Minumum sum of squares
clustering in a low dimensional space. J. Classification, 15, 37-55.

Hasegawa, S., Imai, H., Inaba, M., Katoh, N. and Nakano, J. (1993). Efficient
algorithms for variance-based k-clustering. In Proc. First Pacific Conf. Comput.
Graphics Appl., Seoul, Korea. 1, 75-89. World Scientific. Singapore.

Howard, H.(1966). Classifying a population into homogeneous groups. In
Lawrence, J.R. Eds., Opertational Research in Social Science, Tavistock Publ.,
London.

Jain, A.K., & Dubes, R.C. (1988). Algorithms for clustering data. Englewood
Cliffs, NJ: Prentice Hall.

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999). Data clustering: A review.
ACM Computing Surveys, 31, 264-323.

Jancey, R.C.(1966). Multidimensional group analysis. Australian J. Botany, 14,
127-130.

Kaufman, L. and Peter Rousseeuw, P. (1990). Finding Groups in Data, an In-
troduction to Cluster Analysis, John Wiley.

Karisch, S.E. and Rendl, F. (1998). Semidefinite programming and graph
equipartition. Fields Institute Communications. 18, 77-95.

Leisser, A. and Rendl, F. (2003). Graph partitioning using linear and semidefi-
nite programming. Mathematical Programming (B), 95,91-101.

McQueen, J.(1967). Some methods for classification and analysis of multivariate
observations. Computer and Chemistry, 4, 257-272.

Mangasarian, O.L. (1997). Mathematical programming in data mining. Data
Min. Knowl. Discov., 1, 183-201.

Meila, M. and Shi, J. (2001). A random walks view of spectral segmentation.
Int’l Workshop on Al & Stat.

Michalski, R.S. and Chilausky, R.L. (1980a). Learning by being told and learning
from examples: An experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for soybean disease
diagnosis. International Journal of Policy Analysis and Information Systems,
4(2), 125-161.

Matousek, J. (2000). On approximate geometric k-clustering. Discrete Comput.
Geom., 24, 61-84.

Ng, A.Y., Jordan, M.I. and Weiss, Y. (2001). On spectral clustering: Analysis
and an algorithm. Proc. Neural Info. Processing Systems, NIPS, 14.

Ruspini, E.H. (1970). Numerical methods for fuzzy clustering. Inform. Sci., 2,
319-350.

Shi,J. and Malik, J. (2000). Normalized cuts and image segmentation. JEEE.
Trans. on Pattern Analysis and Machine Intelligence, 22, 888-905.

Spath, H. (1980). Algorithms for Data Reduction and Classification of Objects,
John Wiley & Sons, Ellis Horwood Ltd.

Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. J.
Amer. Statist. Assoc., 58, 236-244.

Weiss, Y. (1999). Segmentation using eigenvectors: a unifying view. Proceedings
IEEFE International Conference on Computer Vision, 975-982.

Xing, E.P. and Jordan, M.I. (2003). On semidefinite relaxation for normalized
k-cut and connections to spectral clustering. Tech Report CSD-03-1265, UC
Berkeley.



94 Jiming Peng and Yu Xia

30. Zha, H., Ding, C., Gu, M., He, X. and Simon, H. (2002). Spectral Relaxation
for K-means Clustering. In Dietterich, T., Becker, S. and Ghahramani, Z. Eds.,
Advances in Neural Information Processing Systems 14, pp. 1057-1064. MIT
Press.



Part 11

Recent Advances in Data Mining






Clustering Via Decision Tree Construction

Bing Liu!, Yiyuan Xia2, and Philip S. Yu3

! Department of Computer Science University of Illinois at Chicago 851 S. Morgan
Street Chicago, IL 60607-7053 1iub@cs.uic.edu

2 School of Computing National University of Singapore 3 Science Drive 2,
Singapore 117543 xiayy@comp.nus.edu.sg

3 IBM T. J. Watson Research Center Yorktown Heights, NY 10598
psyuCus.ibm.com

Clustering is an exploratory data analysis task. It aims to find the intrinsic
structure of data by organizing data objects into similarity groups or clus-
ters. It is often called unsupervised learning because no class labels denoting
an a priori partition of the objects are given. This is in contrast with su-
pervised learning (e.g., classification) for which the data objects are already
labeled with known classes. Past research in clustering has produced many
algorithms. However, these algorithms have some shortcomings. In this pa-
per, we propose a novel clustering technique, which is based on a supervised
learning technique called decision tree construction. The new technique is able
to overcome many of these shortcomings. The key idea is to use a decision
tree to partition the data space into cluster (or dense) regions and empty (or
sparse) regions (which produce outliers and anomalies). We achieve this by
introducing virtual data points into the space and then applying a modified
decision tree algorithm for the purpose. The technique is able to find "natural”
clusters in large high dimensional spaces efficiently. It is suitable for clustering
in the full dimensional space as well as in subspaces. It also provides easily
comprehensible descriptions of the resulting clusters. Experiments on both
synthetic data and real-life data show that the technique is effective and also
scales well for large high dimensional datasets.

1 Introduction

Clustering aims to find the intrinsic structure of data by organizing objects
(data records) into similarity groups or clusters. Clustering is often called un-
supervised learning because no classes denoting an a priori partition of the
objects are known. This is in contrast with supervised learning, for which the
data records are already labeled with known classes. The objective of super-
vised learning is to find a set of characteristic descriptions of these classes.
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In this paper, we study clustering in a numerical space, where each di-
mension (or attribute) has a bounded and totally ordered domain. Each data
record is basically a point in the space. Clusters in such a space are commonly
defined as connected regions in the space containing a relatively high density
of points, separated from other such regions by a region containing a relatively
low density of points [12].

Clustering has been studied extensively in statistics [5], pattern recog-
nition [16], machine learning [15], and database and data mining (e.g.,
(25, 32, 7, 14, 1, 2, 3, 8, 10, 11, 20, 21, 22, 23, 29, 30, 31]). Existing al-
gorithms in the literature can be broadly classified into two categories [24]:
partitional clustering and hierarchical clustering. Partitional clustering deter-
mines a partitioning of data records into k groups or clusters such that the
data records in a cluster are more similar or nearer to one another than the
data records in different clusters. Hierarchical clustering is a nested sequence
of partitions. It keeps merging the closest (or splitting the farthest) groups of
data records to form clusters.

In this paper, we propose a novel clustering technique, which is based
on a supervised learning method called decision tree construction [26]. The
new technique, called CLTree (CLustering based on decision Trees), is quite
different from existing methods, and it has many distinctive advantages. To
distinguish from decision trees for classification, we call the trees produced by
CLTree the cluster trees.

Decision tree building is a popular technique for classifying data of various
classes (at least two classes). Its algorithm uses a purity function to partition
the data space into different class regions. The technique is not directly appli-
cable to clustering because datasets for clustering have no pre-assigned class
labels. We present a method to solve this problem.

The basic idea is that we regard each data record (or point) in the dataset
to have a class Y. We then assume that the data space is uniformly distributed
with another type of points, called non-existing points. We give them the class,
N. With the N points added to the original data space, our problem of par-
titioning the data space into data (dense) regions and empty (sparse) regions
becomes a classification problem. A decision tree algorithm can be applied to
solve the problem. However, for the technique to work many important issues
have to be addressed (see Section 2). The key issue is that the purity function
used in decision tree building is not sufficient for clustering.

We use an example to show the intuition behind the proposed technique.
Figure 1(A) gives a 2-dimensional space, which has 24 data (Y") points rep-
resented by filled rectangles. Two clusters exist in the space. We then add
some uniformly distributed N points (represented by "0”) to the data space
(Figure 1(B)). With the augmented dataset, we can run a decision tree algo-
rithm to obtain a partitioning of the space (Figure 1(B)). The two clusters
are identified.

The reason that this technique works is that if there are clusters in the
data, the data points cannot be uniformly distributed in the entire space.
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Fig. 1. Clustering using decision trees: an intuitive example

By adding some uniformly distributed N points, we can isolate the clusters
because within each cluster region there are more Y points than N points.
The decision tree technique is well known for this task.

We now answer two immediate questions: (1) how many N points should
we add, and (2) can the same task be performed without physically adding the
N points to the data? The answer to the first question is that it depends. The
number changes as the tree grows. It is insufficient to add a fixed number of V
points to the original dataset at the beginning (see Section 2.2). The answer
to the second question is yes. Physically adding N points increases the size
of the dataset and also the running time. A subtle but important issue is
that it is unlikely that we can have points truly uniformly distributed in a
very high dimensional space because we would need an exponential number
of points [23]. We propose a technique to solve the problem, which guarantees
the uniform distribution of the N points. This is done by not adding any N
point to the space but computing them when needed. Hence, CLTree is able
to produce the partition in Figure 1(C) with no N point added to the original
data.

The proposed CLTree technique consists of two steps:

1. Cluster tree construction: This step uses a modified decision tree algorithm
with a new purity function to construct a cluster tree to capture the
natural distribution of the data without making any prior assumptions.

2. Cluster tree pruning: After the tree is built, an interactive pruning step
is performed to simplify the tree to find meaningful /useful clusters. The
final clusters are expressed as a list of hyper-rectangular regions.

The rest of the paper develops the idea further. Experiment results on both
synthetic data and real-life application data show that the proposed technique
is very effective and scales well for large high dimensional datasets.

1.1 Our contributions

The main contribution of this paper is that it proposes a novel clustering
technique, which is based on a supervised learning method [26]. It is fun-
damentally different from existing clustering techniques. Existing techniques
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form clusters explicitly by grouping data points using some distance or den-
sity measures. The proposed technique, however, finds clusters implicitly by
separating data and empty (sparse) regions using a purity function based on
the information theory (the detailed comparison with related work appears in
Section 5). The new method has many distinctive advantages over the existing
methods (although some existing methods also have some of the advantages,
there is no system that has all the advantages):

e C(CLTree is able to find "natural” or ”true” clusters because its tree building
process classifies the space into data (dense) and empty (sparse) regions
without making any prior assumptions or using any input parameters.
Most existing methods require the user to specify the number of clusters to
be found and/or density thresholds (e.g., [25, 32, 21, 7, 14, 1, 2, 3, 10, 23]).
Such values are normally difficult to provide, and can be quite arbitrary. As
a result, the clusters found may not reflect the ”true” grouping structure
of the data.

e CLTree is able to find clusters in the full dimension space as well as in
any subspaces. It is noted in [3] that many algorithms that work in the
full space do not work well in subspaces of a high dimensional space. The
opposite is also true, i.e., existing subspace clustering algorithms only find
clusters in low dimension subspaces [1, 2, 3]. Our technique is suitable
for both types of clustering because it aims to find simple descriptions of
the data (using as fewer dimensions as possible), which may use all the
dimensions or any subset.

e It provides descriptions of the resulting clusters in terms of hyper-rectangle
regions. Most existing clustering methods only group data points together
and give a centroid for each cluster with no detailed description. Since
data mining applications typically require descriptions that can be easily
assimilated by the user as insight and explanations, interpretability of
clustering results is of critical importance.

e It comes with an important by-product, the empty (sparse) regions. Al-
though clusters are important, empty regions can also be useful. For exam-
ple, in a marketing application, clusters may represent different segments
of existing customers of a company, while the empty regions are the profiles
of non-customers. Knowing the profiles of non-customers allows the com-
pany to probe into the possibilities of modifying the services or products
and/or of doing targeted marketing in order to attract these potential
customers. Sparse regions also reveal outliers and anomalies, which are
important for many applications.

e [t deals with outliers effectively. Outliers are data points in a relatively
empty region. CLTree is able to separate outliers from real clusters be-
cause it naturally identifies sparse and dense regions. When outliers are
concentrated in certain areas, it is possible that they will be identified as
small clusters. If such outlier clusters are undesirable, we can use a simple
threshold on the size of clusters to remove them. However, sometimes such
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small clusters can be very useful as they may represent exceptions (or un-
expected cases) in the data. The interpretation of these small clusters is
dependent on applications.

2 Building Cluster Trees

This section presents our cluster tree algorithm. Since a cluster tree is basically
a decision tree for clustering, we first review the decision tree algorithm in [26].
We then modify the algorithm and its purity function for clustering.

2.1 Decision tree construction

Decision tree construction is a well-known technique for classification [26].
A database for decision tree classification consists of a set of data records,
which are pre-classified into ¢(> 2) known classes. The objective of decision
tree construction is to partition the data to separate the ¢ classes. A decision
tree has two types of nodes, decision nodes and leaf nodes. A decision node
specifies some test on a single attribute. A leaf node indicates the class.

From a geometric point of view, a decision tree represents a partitioning
of the data space. A serial of tests (or cuts) from the root node to a leaf node
represents a hyper-rectangle. For example, the four hyper-rectangular regions
in Figure 2(A) are produced by the tree in Figure 2(B). A region represented
by a leaf can also be expressed as a rule, e.g., the upper right region in Figure
2(A) can be represented by X > 3.5,Y > 3.5 — O, which is also the right
most leaf in Figure 2(B). Note that for a numeric attribute, the decision tree
algorithm in [26] performs binary split, i.e., each cut splits the current space
into two parts (see Figure 2(B)).
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Fig. 2. An example partition of the data space and its corresponding decision tree

The algorithm for building a decision tree typically uses the divide and
conquer strategy to recursively partition the data to produce the tree. Each
successive step greedily chooses the best cut to partition the space into two
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parts in order to obtain purer regions. A commonly used criterion (or purity
function) for choosing the best cut is the information gain [26]*.

The information gain criterion is derived from information theory. The
essential idea of information theory is that the information conveyed by a
message depends on its probability and can be measured in bits as minus the
logarithm to base 2 of that probability.

Suppose we have a dataset D with g classes, C1,...,Cy. Suppose further
that we have a possible test x with m outcomes that partitions D into m
subsets D1, ..., D,,. For a numeric attribute, m = 2, since we only perform
binary split. The probability that we select one record from the set D of data
records and announce that it belongs to some class C; is given by:

freq(Cj;, D)
D]

where freq(Cj, D)represents the number of data records (points) of the class
C; in D, while |D| is the total number of data records in D. So the information

that it conveys is:
freq(C;,D)\ .
—log, ( bits
1D
To find the expected information needed to identify the class of a data record
in D before partitioning occurs, we sum over the classes in proportion to their
frequencies in D, giving:

freq(Cj, D freq(Cj, D)
info(D Z frean D) xlogz(rquJ)

Now, suppose that the dataset D has been partitioned in accordance with
the m outcomes of the test xz. The expected amount of information needed
to identify the class of a data record in D after the partitioning had occurred
can be found as the weighted sum over the subsets, as:

D
infoX(D) = Z |DZ| x info(D1i)
where |D;| represents the number of data records in the subset D; after the
partitioning had occurred. The information gained due to the partition is:

gain(X) =info(D) —info, (D)

Clearly, we should maximize the gain. The gain criterion is to select the test
or cut that maximizes the gain to partition the current data (or space).

The procedure for information gain evaluation is given in Figure 3. It
evaluates every possible value (or cut point) on all dimensions to find the cut
point that gives the best gain.

“In [26], it can also use the information gain ratio criterion, which is the normal-
ized gain. The normalization is used to avoid favoring a categorical attribute that
has many values. Since we have no categorical attribute, this is not a problem.
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1 for each attribute A4; € {A1, Az,, Aq} do
/*A1, Ag, ,and Ag are the attributes of D*/
2 for each value z of A; in D do
/*each value is considered as a possible cut*/
compute the information gain at =

end
Select the test or cut that gives the best information gain to partition the
space

3
4 end
5
6

Fig. 3. The information gain evaluation

Scale-up decision tree algorithms: Traditionally, a decision tree al-
gorithm requires the whole data to reside in memory. When the dataset is
too large, techniques from the database community can be used to scale up
the algorithm so that the entire dataset is not required in memory. [4] intro-
duces an interval classifier that uses data indices to efficiently retrieve portions
of data. SPRINT [27]and RainForest [18] propose two scalable techniques
for decision tree building. For example, RainForest only keeps an AVC-set
(attribute-value, classLabel and count) for each attribute in memory. This is
sufficient for tree building and gain evaluation. It eliminates the need to have
the entire dataset in memory. BOAT [19] uses statistical techniques to con-
struct the tree based on a small subset of the data, and correct inconsistency
due to sampling via a scan over the database.

2.2 Building cluster trees: Introducing IN points

We now present the modifications made to the decision tree algorithm in [26]
for our clustering purpose. This sub-section focuses on introducing N points.
The next sub-section discusses two changes that need to be made to the
decision tree algorithm. The final sub-section describes the new cut selection
criterion or purity function.

As mentioned before, we give each data point in the original dataset the
class Y, and introduce some uniformly distributed ”"non-existing” N points.
We do not physically add these N points to the original data, but only assume
their existence.

We now determine how many N points to add. We add a different number
of N points at each node in tree building. The number of N points for the
current node E is determined by the following rule (note that at the root node,
the number of inherited N points is 0):

Figure4 gives an example. The (parent) node P has two children nodes L
and R. Assume P has 1000 Y points and thus 1000 N points, stored in P.Y
and P.N respectively. Assume after splitting, L has 20 Y points and 500 N
points, and R has 980 Y points and 500 N points. According to the above
rule, for subsequent partitioning, we increase the number of N points at R to
980. The number of N points at L is unchanged.
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1 If the number of N points inherited from the parent node of FE is less than
the number of Y points in F then
2 the number of N points for F is increased to the number of Y points
in £
3 else the number of inherited N points from its parent is used for F
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Fig. 5. The effect of using a fixed number

Fig. 4. Distributing N points of N points

The basic idea is that we use an equal number of N points to the number
of Y (data) points (in fact, 1:1 ratio is not necessary, see Section 4.2.2). This is
natural because it allows us to isolate those regions that are densely populated
with data points. The reason that we increase the number of N points of a
node (line 2) if it has more inherited Y points than N points is to avoid the
situation where there may be too few N points left after some cuts or splits.
If we fix the number of N points in the entire space to be the number of Y
points in the original data, the number of N points at a later node can easily
drop to a very small number for a high dimensional space. If there are too few
N points, further splits become difficult, but such splits may still be necessary.
Figure 5 gives an example.

In Figure 5, the original space contains 32 data (Y') points. According
to the above rule, it also has 32 N points. After two cuts, we are left with
a smaller region (region 1). All the Y points are in this region. If we do
not increase the number of N points for the region, we are left with only
32/2% = 8N points in region 1. This is not so bad because the space has only
two dimensions. If we have a very high dimensional space, the number of NV
points will drop drastically (close to 0) after some splits (as the number of N
points drops exponentially).

The number of N points is not reduced if the current node is an N node
(an N node has more N points than'Y points) (line 3). A reduction may cause
outlier Y points to form Y nodes or regions (a Y node has an equal number of
Y points as N points or more). Then cluster regions and non-cluster regions
may not be separated.
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2.3 Building cluster trees: Two modifications to the decision tree
algorithm

Since the N points are not physically added to the data, we need to make two
modifications to the decision tree algorithm in [26] in order to build cluster
trees:

1. Compute the number of N points on the fly: From the formulas in Section
2.1, we see that the gain evaluation needs the frequency or the number
of points of each class on each side of a possible cut (or split). Since we
do not have the N points in the data, we need to compute them. This is
simple because we assume that the N points are uniformly distributed in
the space. Figure 6 shows an example. The space has 25 data (Y') points
and 25 N points. Assume the system is evaluating a possible cut P. The
number of N points on the left-hand-side of P is 25 % 4/10 = 10. The
number of Y points is 3. Likewise, the number of N points on the right-
hand-side of P is 15 (25 - 10), and the number of Y points is 22. With
these numbers, the information gain at P can be computed. Note that by
computing the number of N points, we essentially guarantee their uniform
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Fig. 6. Computing the number of N Fig. 7. Cutting on either side of data
points points

2. Fvaluate on both sides of data points: In the standard decision tree build-
ing, cuts only occur on one side of data points [26]. However, for our
purpose, this is not adequate as the example in Figure 7 shows. Figure
7 gives 3 possible cuts. cut; and cuts are on the right-hand-side of some
data points, while cuty is on the left-hand-side. If we only allow cuts on
the right-hand-side of data points, we will not be able to obtain a good
cluster description. If we use cuty, our cluster will contain a large empty
region. If we use cuts, we lose many data points. In this case, cuty is the
best. It cuts on the left-hand-side of the data points.
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2.4 Building cluster trees: The new criterion for selecting the best
cut

Decision tree building for classification uses the gain criterion to select the
best cut. For clustering, this is insufficient. The cut that gives the best gain
may not be the best cut for clustering. There are two main problems with the
gain criterion:

1. The cut with the best information gain tends to cut into clusters.
2. The gain criterion does not look ahead in deciding the best cut.

Let us see an example. Figure 8(A) shows a space with two clusters, which
illustrates the first problem. Through gain computation, we find the best cuts
for dimension 1 (d;-cut), and for dimension 2 (da-cut) respectively. Clearly,
both cuts are undesirable because they cut into clusters. Assume d; _cut gives
a better information gain than ds_cut. We will use d;_cut to partition the
space. The cluster points on the right of d;_cut from both clusters are lost.

This problem occurs because at cluster boundaries there is normally a
higher proportion of N points than that of cluster centers for clusters whose
data points follow a normal-like distribution (cluster centers are much denser
than boundaries) as we assume that the N points are uniformly distributed in
the entire area. The gain criterion will find a balanced point for partitioning,
which tends to be somewhere inside the clusters.

Next, we look at the second problem using Figure 8(B) (same as Figure
8(A)). Ideally, in this situation, we should cut at ds_cut2 or da_cut3, rather
than d;_cut (although it gives the highest gain). However, using the gain cri-
terion, we are unable to obtain dy_cut2 or ds_cut3 because the gain criterion
does not look ahead to find better cuts. There is also another piece of impor-
tant information that the gain criterion is unable to capture, the empty region
between dy_cut2 and da_cut3. Recognizing the empty region is very important
for clustering.
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Fig. 8. Problems with the gain criterion Fig. 9. Determining the best cut

The two problems result in severe fragmentation of clusters (each cluster
is cut into many pieces) and loss of data points. To overcome these problems,
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we designed a new criterion, which still uses information gain as the basis, but
adds to it the ability to look ahead. We call the new criterion the lookahead
gain criterion. For the example in Figure 8(B), we aim to find a cut that is
very close to ds_cut2 or do_cut3.

The basic idea is as follows: For each dimension i, based on the first cut
found using the gain criterion, we look ahead (at most 2 steps) along each
dimension to find a better cut ¢; that cuts less into cluster regions, and to find
an associated region r; that is relatively empty (measured by relative density,
see below). ¢; of the dimension ¢ whose r; has the lowest relative density is
selected as the best cut. The intuition behind this modified criterion is clear.
It tries to find the emptiest region along each dimension to separate clusters.

Definition (relative density): The relative density of a region r is com-
puted with r.Y/r.N, where .Y and r.N are the number of Y points and the
number of N points in r respectively. We use the example in Figure 9 (a
reproduction of Figure 8(A)) to introduce the lookahead gain criterion. The
algorithm is given in Figure 10. The new criterion consists of 3 steps:

1. Find the initial cuts (line 2, Figure 10): For each dimension i, we use
the gain criterion to find the first best cut point d;_cutl. For example, in
Figure 9, for dimension 1 and 2, we find d; _cutl, and dy_cutl respectively.
If we cannot find d;_cutl with any gain for a dimension, we ignore this
dimension subsequently.

2. Look ahead to find better cuts (lines 3 and 6, Figure 10): Based
on the first cut, we find a better cut on each dimension by further gain
evaluation. Our objectives are to find:

a) a cut that cuts less into clusters (to reduce the number of lost points),
and
b) an associated region with a low relative density (relatively empty).
Let us denote the two regions separated by d;_cutl along dimension ¢ as L;
and H;, where L; has a lower relative density than H;. d;_cutl forms one
boundary of L; along dimension i. We use b; to denote the other boundary
of L;. To achieve both 2a and 2b, we only find more cuts (at most two)
in L;. We do not go to H; because it is unlikely that we can find better
cuts there to achieve our objectives (since H; is denser). This step goes
as follows:
Along each dimension, we find another cut (d;-cut2) in L; that gives the
best gain. After d;_cut2 is found, if the relative density of the region be-
tween d;_cutl and d;_cut2 is higher than that between d;_cut2 and b;, we
stop because both objectives are achieved. If not, we find the third cut
(d;_cut3) by applying the same strategy. We seek the additional cut in
this case because if the region between d;_cut2 and b; is denser, it means
that there may be clusters in that region. Then, d;_cut2 is likely to cut
into these clusters.
For example, in Figure 9, we first obtain d;_cut2 and ds_cut2. Since the
relative density of the region between d;_cutl and dy_cut2 is higher than
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that between dj_cut2 and the boundary on the right (by), we stop for
dimension 1. We have found a better cut dy_cut2 and also a low density
region between d; _cut2 and the right space boundary (by).

However, for dimension 2, we now obtain a situation (in the region between
dy-cutl and the bottom space boundary, by) like that for dimension 1
before d;_cut2 is found. dy_cut2 cuts into another cluster. We then apply
the same method to the data points and the region between do_cutl and
ds_cut2 since the relative density is lower between them, another local
best cut ds_cut3 is found, which is a much better cut, i.e., cutting almost
at the cluster boundary. We now have two good cuts d;_cut2 and ds_cut3
for dimension 1 and 2 respectively. We also found two low density regions
associated with the cuts, i.e., the region between d;_cut2 and the right
space boundary (b1) for dimension 1, and the region between ds_cut2 and
do_cut3 for dimension 2.

3. Select the overall best cut (line 5, 7 and 10): We compare the relative
densities (r_density;) of the low density regions identified in step 2 of all
dimensions. The best cut in the dimension that gives the lowest r_density:
value is chosen as the best cut overall. In our example, the relative density
between ds_cut2 and ds_cut3 is clearly lower than that between dj_cut2
and the right space boundary, thus dy_cut3 is the overall best cut.

The reason that we use relative density to select the overall best cut is
because it is desirable to split at the cut point that may result in a big
empty (V) region (e.g., between dy_cut2 and dy_cut3), which is more likely
to separate clusters.

This algorithm can also be scaled up using the existing decision tree scale-
up techniques in [18, 27] since the essential computation here is the same
as that in decision tree building, i.e., the gain evaluation. Our new criterion
simply performs the gain evaluation more than once.

3 User-Oriented Pruning of Cluster Trees

The recursive partitioning method of building cluster trees will divide the
data space