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Abstract—Security of medical embedded systems is of vital
importance. Wireless medical devices used in wireless health
applications employ large number of sensors and are in particular
susceptible to security attacks. They are often not physically
secured and are usually used in hostile environments. We have
developed theoretical and statistical framework for creating
semantic attacks where data is altered in such a way that the con-
sequences include incorrect medical diagnosis and treatment. Our
approach maps a semantic attack to an instance of optimization
problem where medical damage is maximized under constraints
of the probability of detection and root cause tracing. We use
a popular medical shoe to demonstrate that low energy and
low cost of embedded medical devices increases the probability
of successful attacks. We have proposed two types of semantic
attacks, respectively calibration attack, and time synchronization
attack under two scenarios, a shoe with 99 pressure sensors and
a shoe with 20 pressure sensors. We test the effects of the attacks
and compare them. Our results indicate that it is surprisingly
easy to attack several essential medical metrics and to alter
corresponding medical diagnosis.

I. INTRODUCTION

Wireless sensor networks are widely applied and embedded
in medical devices. The automatic sense data collection enables
doctors to keep track of the patient’s health status and prevent
possible emergency. For example, by analysing the trend
of a patient’s daily sensor data, any abnormality can easily
be detected by a remote doctor, so that facilitating remote
diagnose.

However, due to the fact that wireless sensor networks are
usually exposed in open and hostile environment, security has
emerged to be an important issue. More importantly, for wire-
less medical devices, the integrity of sensor data has become
especially important because it directly affects or even decides
the diagnose of a doctor. Traditional cryptographic approaches
employ the problem of high power consumption while power
is the main constrain in wireless sensor networks, so that
many lightweight security protocols are proposed to secure
the sensor networks [1][2][3][4]. Meanwhile, hardware based
technology has been proposed to secure the sensor network
[5][6]. Moreover, techniques that enabled security compromise
of popular and important devices such as pacemaker [7],
implantable cardiac defibrillator[8] and insulin pumps are
proposed [9][10][11][12]. The defence technology to check the
data integrity in wireless sensor networks is proposed in [13].

While the previous efforts emphasized vulnerabilities of
used wireless security protocols and their potential fixes, we
propose the concept of semantic attack. Semantic attacks focus

on actual alteration of collected sensor data in such a way
that semantic conclusion of medical experts are altered. This
attack can be taken by any one who has the access to the
sensor reading or the store of sensor data. The attack leads
to incorrect diagnose, results in the medical well being of
a subject being compromised. Specifically, in this paper, we
analysis the approach and the effect of semantic attacks on
a medical shoe. The key issue is that in the attack, how to
alter the sensor data so that the diagnose result is dramatically
altered while avoiding the doctor from suspecting the data
integrity. In another word, the attacker should not modify the
sensor data too much or too obviously.

Our proposed semantic attacks can be applied in real sce-
narios. For example, if a malicious attacker is able to break
into the computer of a medical expert or even simper, he/she
somehow has the access to the data of the patients. His/her
goal now is to modify the data which he/she has access to, so
that to mislead the diagnose from the medical expert. Note
that in real scenario, this malicious party can even be the
manufacturer for the medical shoes so that the back doors
are made to the embedded sensors, hence, he/she can easily
access and tamper the sensor data. This can be very dangerous
if the medical expert will draw wrong conclusion of the patient
because of the modified data. However, from the perspective of
attacker, he/she can not be too aggressive, otherwise too much
deviation from the original data can easily lead the medical
expert to suspect the data might has been tampered. Therefore,
to summarize, the attacker aims at modifying the data of the
patient in such a way that the diagnose can be abused to a
maximum extend while keeping the medical expert from being
suspicious.

In this paper, we have proposed two approaches of semantic
attacks. One is calibration attack and the other is timing
synchronization attack. We introduce the preliminaries and
metrics in Section II and Section III. In Section IV, we discuss
the algorithms of the two attacks. Finally we conclude the
paper with Section V summarizing our findings and stating
our conclusions.

II. PRELIMINARIES

We evaluate our semantic attacks on Hermes medical shoe
platform [14]. The medical shoe consists of 99 pressure sensors
distributed about the bottom of the shoe numbering from
sensor 1 to sensor 99. Based on the medical shoe, we collect
the sensor pressure readings over all the 99 sensors for each
shoe sampled at 50HZ. We test four persons, for each of them,
we test seven different scenarios namely walk, jump, lean, run,
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stand, limp, slow-walk. In this paper, we focus on slow-walk,
walk and run readings and calculate the impact of our attacks
mechanisms.

III. METRICS AND FORMULATION

The goal of the semantic attacks is to mislead the diagnose
from the medical expert as much as possible. Maki [15] has
observed that stride-to-stride variability in speed has a strong
correlation with the risk of falling. Stride-to-stride variability
takes into account the average of differences between two
consecutive values of a specific feature. In our paper, we take
two metrics into consideration. One is the variability of stride
period, the other one is the variability of double support. By
attacking, we could change the variability of these two metrics
to the farthest extend.

In order to calculate the stride period variability, we add up
the pressure of all 99 sensors in each shoe separately at each
time slot. Figure 1 shows the left foot pressure waveform for
scenario walk and slow-walk, SP(i) represents stride period at
ith step. The peaks represent the moment of highest pressure
and hence representing the time when the foot contacts with
the ground. The stride period is defined as the number of time
slots between two successive pressure peaks. Then variation
is calculated by taking the average of all the absolute stride
period differences in every two consecutive steps.

Another metric is double support. Figure 2 shows left and
right foot waveforms together for the scenario of walking
and slow-walking. By definition, double support represents the
number of time slots when both feet are on ground. In Figure
2, we use 1000kPa as the threshold, and if both feet has total
pressure larger than 1000kPa, we regard that both feet are
on ground. The contacting time for ith step is ds(i). Similar
to stride period metric, variation is calculated by taking the
average of absolute double support time differences between
two consecutive steps.

V arSP = 1/n

n∑
i=1

|SP (i+ 1)− SP (i)| (1)

V arDS = 1/n

n∑
i=1

|
ds(i+1)

min(SP (i+1))
−

ds(i)

min(SP (i))
| (2)

Thus the variations for stride period and double support
metric can be calculated with Equation 1 and Equation 2.
Note that in Equation 2, min(SP (i)) represents the smaller
stride period between left foot and right foot in the ith step.
The instability of a patient can be calculated with Equation
3. The co-efficients γSP and γDS indicate the significance of
a particular metric. The medical specialists can adjust these
values according to the individual patient.

Instability = γSPV arSP + γDSV arDS (3)

IV. SEMANTIC ATTACKS

In following section, we propose two types of semantic
attacks ans test the effect of the attacks based on walk, slow-
walk and run dataset. We also use stride period and double
support as metrics.

A. Attack Modeling
The first type of attack is called calibration attack. In this

attack, we assume that the attacker can change the pressure
value of some number of sensors and the pressure at each time
slot can be changed by k percent. The second type of attack
is called timing synchronization attack, the attacker postpones
the pressure data of some number of sensors for certain time
slots. The idea behind the two attacks is that the attacker has
access to some number of sensors, he/she wants to alter the
variation of metrics. However, regarding each sensor, he/she
can not alter too much pressure reading or postponing too
much time slots, otherwise can easily be detected.

B. Scenarios
One scenario for the doctor is to use the summation of all the

99 sensors to generate the waveform of each metric. However,
another scenario is that the doctor can employ much fewer
number of sensors to generate the waveform of the metric. The
is due to the fact that many sensors are close to each other,
thus providing overlapping information. In this scenario, much
fewer sensors are required. Therefore, in the second scenario,
we assume that the doctor only uses twenty important sensors
to fetch the data and further makes the diagnosis based on that.

C. Attack Description
Since our semantic attacks want to mislead the medical

diagnosis as far as possible, as a result, the attacker wants to
alter the original V arSP and V arDS . The largest challenge
is to alter the variation to the maximum extend while not
being suspicious. Therefore, we use three constraints to avoid
suspicious. The first is to change only a limited number of
sensors, the second is to change the pressure values in calibra-
tion attack or the postponed time slot in timing synchronization
attack in a limited range. For calibration attack, K which is the
changed pressure needs to be smaller than k, and for timing
synchronization attack, T which is the postponed time slots
needs to be smaller than t, The last is that the number of
steps of individual patient cannot be changed beyond certain
percentage after the attack. The first constraint is based on
the assumption that the attacker only has limited access to
the pressure data he/she can change. Based on the above
assumption, we convert the problem into an optimization
problem where the goal is to maximize the variation within
the scope of constrains. The mathematics description is shown
as below.

Minimize |V ar − V ar0|
Subject to

K ≤ k(T ≤ t)
N ≤ n
|S − S0|/S0 ≤ σ

where

(4)

• V ar is the variation after attack.
• V ar0 is the variation before attack.
• K is the pressure to be changed.
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Fig. 1: Total pressure waveform of walk and slow walk for stride period metric.

Fig. 2: Total pressure waveform of walk and slow walk for double support metric.

• T is the time slots to be postponed.
• N is the number of sensors attacked.
• S is the number of steps after attack.
• S0 is the number of steps before attack.
• n, k, and σ are constants.

D. Algorithm for Attacks
Theoretically, to solve the above problem, it is possible to

try all the combination of N sensors out of all the sensors
with each sensor changing pressure within K percentage
or postponing within T timeslots. However, this would be
exponential search space complexity, instead, we use dynamic
programming (DP.) to implement the problem. The pseudocode
is shown in Algorithm 1. We do the N-sensor selection step by
step. As described in Algorithm 1, the first step is to iteratively
choose each sensor to attack, vary its pressure in every time
slot by K percent, calculate the variation after attack. Then we
take the top M best attack situations from all the possibilities.
For the following steps, each step we iteratively select each
sensor to attack based on M best attack situations in previous
step. Keep top M best attack situations. We repeat the above
procedure for another N − 1 steps, thus to choose N sensors
which cause the maximum damage. In this way, we reduce
the exponential time complexity to O(|sensors|MN), where
|sensors| is the number of sensors in the system.

E. Experimental Results
We apply the two attacks to stride period and double support

metrics on walk, slow-walk and run dataset. For each situation,
we try both 99 sensors and 20 sensors scenario. We use the
average percentage change of variation across the four tested
persons to represent the effect of the attacks. Figure 3 shows
the results.

Algorithm 1 Dynamic Programming for Sensor Selection
Input: N - number of sensors to attack.
Input: M - number of optimal values to preserve in previous
DP. step.

vec = vector that contains the attack
situation.
for step from 1 to n do

for each sensor si do
for each attack situation veci do
Attack si under constrains on veci.
Generate new attack situation.

end for
end for
vec = TopM(all new situations)

end for
Output: vec

F. Evaluation

Through these figures, we can see that basically more the
change in pressure, the more effective is the attack. However,
in Figure 3a and 3b, it can be observed that the average
change in the percentage of variation when K is 10% is
higher than both when K is 15% and 20% respectively. This
abnormal phenomenon occurs because metric formulations
that transform the raw pressure data to variation is not a
linear function. Besides, the constrains that number of steps of
individual patient cannot be changed beyond certain percentage
after the attack also affect the result. Because the change of
pressure may lead to the result that number of steps change
beyond σ.
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Fig. 3: Average change percentage by calibration attack. (a) attack stride period metric on walk dataset. (b) attack stride period
metric on run dataset. Average change percentage by timing synchronization attack. (c) attack double support metric on walk
dataset. (d) attack double support metric on slow-walk dataset.

In general, a few conclusions can be drawn from the results.
(i) Both attacks can dramatically change the variation for both
stride period metric and double support metric. (ii) Within
certain scope, when the pressure of the sensors changes by
more percentage or postponed for more time slots, the attack
is more effective. (iii) The scenario with 99 sensors is more
resilient against attacks compared to the scenario with 20
sensors. (iv) The dataset of slow-walk is most resilient against
the attacks. The dataset of walk is the second and run dataset is
the worst. This is because run has higher variation than walk,
its waveform is more easy to be disrupted.

V. CONCLUSION

We have proposed and analysed the semantic attacks on
wireless medical devices. The proposed attack can not be
prevented or detected by traditional cryptography because the
attack is directly dealing with data after sampling. Traditional
cryptography can only guarantee the data to be safe through
the wireless channels. The semantic attacks can be converted
to an optimization problem in which we seek for the maximum
damage to the diagnose under the constrains of producing
unsuspicious data. Two types of attacks under two scenarios
are analysed over the dataset of slow walk, walk, and run.
Our results indicate that both attacks can be threatening to the
diagnose of the doctor.
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