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Background

Latent feature (embedding) detection for nodes in the network.
Input: a network of nodes and links (e.g. Twitter).

Figure 1 : Twitter network
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Background

Output: node representation in a vector space RK (K = 1 below).
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Background

Applications:

Understand people’s tastes/opinions & Advertising

Clustering / Classification (lower dimensional vector representation)

Visualization (2D/3D vector representation)

How to estimate node representation in a network?
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Intuition

Simple and intuitive on homogeneous networks (i.e. single type of node
and edge).

Figure 2 : Friendship between people
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Intuition

Simple and intuitive on homogeneous networks (i.e. single type of node
and edge).

Homophily assumption: connected nodes (neighbors) should be close
in vector space (e.g. [MSLC01, ME11])

Random walk-based approaches: propagation (e.g. [PARS14])
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Challenge

How about heterogeneous networks (i.e. networks with multiple types of
edges)?

Figure 2 : Multiple types of edges: follow, mention, retweet on Twitter
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Challenge

Possible solutions:

Require domain knowledge or experts to assign weights to each type
of link, e.g. wretweet = 2× wfollow

... not realistic for most cases; thus not easily generalized

Task-specific (even if network is the same)
... makes it even trickier

Cross validation on weight assignments (w1,w2, · · · ,wT ) ∈ RT

... too expensive; unable to enumerate all possible configurations
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Challenge

Our proposed method:

Able to detect users’ latent features in heterogeneous networks

Able to automatically learn and interpret weights (strength) for each
type of links

Scalable to large networks
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Model

Networks with a single link type:

Similarity in the network: neighbors

Similarity in the vector space RK : inner product

Probability model of link generation, while preserving similarity in two
spaces.
A directed link ui → uj is the outcome of the interaction of ui ’s
representation pi ∈ RK and uj ’s representation qj ∈ RK .

Yupeng Gu (UCLA) July 7, 2017 10 / 22



Model

Networks with a single link type:

Similarity in the network: neighbors

Similarity in the vector space RK : inner product

Probability model of link generation, while preserving similarity in two
spaces.
A directed link ui → uj is the outcome of the interaction of ui ’s
representation pi ∈ RK and uj ’s representation qj ∈ RK .

Yupeng Gu (UCLA) July 7, 2017 10 / 22



Model

Networks with a single link type:

Similarity in the network: neighbors

Similarity in the vector space RK : inner product

Probability model of link generation, while preserving similarity in two
spaces.
A directed link ui → uj is the outcome of the interaction of ui ’s
representation pi ∈ RK and uj ’s representation qj ∈ RK .

Yupeng Gu (UCLA) July 7, 2017 10 / 22



Model

The binary status (presence/absence) of a social link from ui to uj is
modeled as a Bernoulli event with parameter

p(eij = 1) = σ(pi · qj + bj) (1)

where σ(x) = 1/(1 + e−x) and bj is a bias (popularity) term for ub.

Model parameters: {pi}Ni=1, {qi}Ni=1 ⊂ RK , {bi}Ni=1 ⊂ R.
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Model

The log-likelihood of observing the whole network G is then

log p(G ) =
∑

(i ,j):eij=1

log p(eij = 1) +
∑

(i ,j):eij=0

log
(

1− p(eij = 1)
)

(2)

Negative sampling strategy is used to speed up computation:

log p(G ) ≈
∑

(i ,j):eij=1

log p(eij = 1) +
∑

(i ,j):eij∈S−

log
(

1− p(eij = 1)
)

(3)

where |S−| = |{(i , j)|eij = 1}|.

Standard optimization techniques (e.g. stochastic gradient descent) can
be applied on the objective function to infer model parameters.
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Model

Networks with multiple link types (r = 1, · · · ,R):

pi remains the same; while q
(r)
i and b

(r)
i becomes relation-specific.

Accordingly, the probability for a link of type r is generalized to

p(e
(r)
ij = 1) = σ(pi · q

(r)
j + b

(r)
j ) (4)

Objective function

J =
R∑

r=1

wr ·
( ∑

(i ,j):e
(r)
ij =1

log p(eij = 1)+
∑

(i ,j):eij∈S
(r)
−

log
(
1−p(eij = 1)

))
(5)

s.t ( R∏
r=1

wr

)1/R
= 1

Model parameter wr ∈ R+ indicates the strength of each type of link.
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Optimization

Optimization is done by updating {w} and {P,Q, b} iteratively (fixing
each other).

Update relation weight w

closed-form solution using Lagrange multiplier

Update vector representation P ,Q, b

stochastic gradient ascent

Time complexity: O(
∑R

r=1 Er ) where Er is the number of edges of type r
(for each iteration). Usually requires a few iterations to converge.
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Experiment

Data description

We first identify all members of the 113th U.S. congress (2013-2015)
on Twitter.

We then use Twitter’s REST and streaming API to collect a subset of
their followees and followers.

All users’ recent tweets are collected to extract their mention and
retweet behaviors.

A heterogeneous network is built with 3 relations.

Relation follow mention retweet
Number of users 46,477 34,775 30,990
Number of links

(including multiplicity)
1,764,956 2,395,813 718,124

Table 1 : Statistics for Twitter Dataset
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Evaluation

(a) Ideology distribution for core users (follow more
than 20 politicians)

(b) Ideology distribution for peripheral users

Figure 3 : Political ideology distribution of Twitter users
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Evaluation

Figure 4 : Average ideology for Twitter users in each state. Darker red means
more conservative, while darker blue means more liberal.
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Evaluation

Relation r follow mention retweet

Weight wr 0.866 1.035 1.117

Table 2 : Weights of different link types
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Case Studies
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Conclusion

A scalable approach on political ideology detection for Twitter users.

Our method is easily generalized to other social networks and
information networks.

Future work: incorporate text information (if available) in order to
leverage sentiment information.
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Thanks! Q&A

Email: ypgu@cs.ucla.edu

Homepage: http://web.cs.ucla.edu/~ypgu/
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