DenseRaC: Joint 3D Pose and Shape Estimation by Dense Render-and-Compare

Yunlu Xu1,2, Song-Chun Zhu1, Tony Tung1 1Facebook Reality Labs, Sausalito 2University of California, Los Angeles (UCLA) merayxu@gmail.com, sczhu@stat.ucla.edu, tony.tung@fb.com

Motivation

In this paper, we propose an end-to-end framework for jointly estimating 3D human pose and shape from a monocular RGB image.

- **A Two-Stage Framework**
 - Existing frameworks: direct regression, little information about body details

 - **Part Mask Loss** \(L_{mask} \): GT part masks vs. part masks from rendered output
 - **Adversarial Loss** \(L_{advers} \): real/fake 3D body configurations

Experiments

- **MOCA Dataset**: large-scale synthetic dataset (2M+ images) from covering various camera views, human actions and body shapes, with fully paired ground truth.
 - **Pose**: from web-crawled Mocap sequences and 3D animations (260K frames)
 - **Body Shape**: 3D human scans (CAESAR dataset, 2,781 samples)
 - Random camera view, cropping and scaling.

Reference

A Render-and-Compare Framework

- **Minimizing differences between input and rendered output**
 - **Regression Loss** \(L_{reg} \): GT parameters vs. regressed parameters
 - **Reconstruction Loss** \(L_{rec} \): GT mesh/skeleton vs. reconstructed mesh/skeleton
 - **Reprojection Loss** \(L_{reproj} \): GT 2d landmarks (joints, dense landmarks from IUV) vs landmarks from rendered output

- **Flexibility** (beyond reconstruction)
 - **Part Mask Loss** \(L_{mask} \): GT part masks vs part masks from rendered output
 - **Adversarial Loss** \(L_{advers} \): real/fake 3D body configurations

3D Pose Estimation

- **MOCA Dataset**: ground truth mesh
 - **BodyNet**: ground truth mesh
 - **3D Human Body**: synthetic data

Semantic Segmentation

- **UP3D**: 3D Human Body
 - **HMR**: Human3.6M, MPI
 - **HRMS**: HRMS, MPI

Applications

- **Virtual Dressing**
 - Under-clothes body reconstruction + clothes simulation
 - Volumetric reconstruction + under-clothes body mesh fitting
 - Fidelity (visually plausible vs. details)
 - Robustness (crowd, occlusions)
 - Flexibility (beyond reconstruction)