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Episode 1

Backgrounds, Intuitions, and Frameworks



Background of image modeling

texton (token) vs. texture (Julesz,
Marr)

Julesz:

£ Texton -> bars, edges, terminators
Texture -> sharing common
statistics on certain features

Marr:
model parsimonious, enough to
reconstruct

Figure 1: Natural image with interweaving textures and structures.



Background of image modeling

Texton modeling -- over-

complete dictionary theory:
ridgelets,

Image pyramids, and sparse
¢ coding.

Texture modeling -- Markov

random field (MRF): FRAME.

Figure 1: Natural image with interweaving textures and structures.



Intuition of Primal Sketch

(d) texture regions Sy__

(e) synthesized textures Iy

(c) sketchable image I,

(f) synthesized image I*¥"

Primal Sketch:

Sketchable vs. 1
sketchable

Sketchable: primitive
dictionary

Non-sketchable: simplified
FRAME model



Background of video modeling

4 types of regions

Sketchable Non-sketchable

(a) Moving Edge
(b) Moving Bar
(c) Moving Blob
(d) Moving Corner|

Trackable motion: kernel
tracking, contour tracking, key-
point tracking

“ 34" Trackable (g) Moving Kernel

(it dpeed (h) Flat Area

il Moving Edge

s+ Intrackable = 4

< (f) High-speed (1) Texture
Moving Bar Motion

Intrackable motion (textured
motion): dynamic texture (DT),

STAR, ARMA, LDS Figure 1. The four types of local video phenomenon characterized
by two criteria, sketchability and trackability .




Background of video modeling
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Intuition of Video Primal Sketch
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(b) Sketchability Map (¢) Textured Motion Synthesis

Category 4 regions into two classes: implicit
regions, explicit region.

Explicit region:

sketchable and trackable, sketchable and non-
trackable, non-sketchable and trackable
Modeling with sparse coding

Implicit region:
Non-sketchable and non-trackable " ._ '
M Odel i ng Wlth ST— FRAM E (¢) Trackabhlity Map (d) Sctchablc.n‘Trdckabl Parts

Reconstruction




The Framework of Primal Sketch

Synthesized
Primitives

Region of
Primitives AT
Sketch Pursuit
Synthesized
Image

Input Image E : lllllllllllllllllllllllllll .

Region of : Texture Clustering Synthesized
Texture . and Modeling Texture




The Framework of Video Primal Sketch

input TN

Dictionar
Video y

Explicit Sparse
Region Coding

Sketchability &

Trackability Map Previous Two
Frames

Implicit
Region

ST-FRAME

Synthesized
Primitives

Synthesized
Texture

Synthesized
Frame




Episode 2

Texture Modeling



The Framework of Primal Sketch

Region of
Primitives

Input Image

Region of
Texture

Sketch Graph

Texture Clustering
and Modeling

Synthesized
Primitives

Synthesized
Image

Synthesized
Texture




The Review of Video Primal Sketch

input TN

Dictionar
Video y

Synthesized

. Primitives
Explicit Sparse

Region

Synthesized
Sketchability & - Frame

/
Trackability Map Previous Two
Frames
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Synthesized
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FRAME - Minimax Entropy Principle

f(1): underlying probability of a texture,
p(l): estimate probability distribution of f(I) from an textured image.

a. Entropy entropy(p = — [ p(I) log p(I) dI stands for the expected coding length. On the other hand, entropy
is the negative Ku]lback Lmbler distance, up to a constant, between p(I) and the uniform distribution, the latter

stands for noise images. To minimize the entropy, p(/) should be made as "orderly” (or far away from the uniform
distribution) as possible.



FRAME - Minimax Entropy Principle

b. To constrain the complexity, we choose an optimal set of features, while it has the minimum entropy. Denoted the
feature set S,,, the set of all possible probability distributions p( ) that satisfy the constraints in S, as €2,,.
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FRAME - Minimax Entropy Principle

¢. The maximum entropy principle suggests that the probability distribution in €2,, with maximum entropy is the best
estimate of p([1).



FRAME - Minimax Entropy Principle

10 Principle of Maximum Entropy

In Bayesian probability theory, the principle of maximum entropy 1s an axiom. It states that. subject to precisely stated
prior data, which must be a proposition that expresses testable information, the probability distribution which best
represents the current state of knowledge 1s the one with largest information theoretical entropy.

Let some precisely stated prior data or testable information about a probability distribution function be given. Consider
the set of all trial probability distributions that encode the prior data. Of those, the one that maximizes the information
entropy 1s the proper probability distribution under the given prior data.



FRAME - Minimax Entropy Principle

d. The minimax principle means that p*(/) should satisfy the constraints and as “orderly” as possible along some
dimensions (2,,, and should also be as random as possible in other unconstrained dimensions.
| 4 <so -:T 3 2 — =




FRAME - Minimax Entropy Principle

e. The problem is reformed as follows

maximize —/p(f) log p(I)dlI,

subjectm/qbi(f)f(f}df = piy, t=1,...,m.



FRAME - Minimax Entropy Principle

fix.v)

Figure 1: Find xand yto maximize f( 1
f( ; y) Figure 2: Contour map of Figure 1. The red line &

subject to a constraint (shown in red) g(‘T! y) =C shows the constraint 9(1'1 y) = ¢ The blue lines
are cantours off(;[:. y) The point where the red

line tangentially touches a blue contour is our
solution.



FRAME - Minimax Entropy Principle

A point on f is a constrained stationary point if and only if the
direction that changes f violates at least one of the constraints.

Vfp)=2AVyg(p) = Vip)—AVg(p) = 0



FRAME - Minimax Entropy Principle

To satisfy multiple constraints we can state that at the stationary points, the
direction that changes f is in the “violation space” created by the constraints
acting jointly.

That is, a stationary point satisfies:

g(p) =10
¢(p) =0 these mean the point satisfies all constraints

gu(p) =0

M
Vip) - Z A Va(p) = 0 this means the point is a stationary point
k=1



FRAME - Minimax Entropy Principle

e. The problem is reformed as follows

maximize —/p(f) log p(I)dlI,

subjectm/qbi(f)f(f}df = piy, t=1,...,m.



FRAME - Minimax Entropy Principle

According to Lagrange multipliers, the identification of stationary points is

/ oD FDNA] — s = 0, i=1.....n

V(= [ p0og p(Dan = YAV [ 6D (D1 - ) =0
The solution (Aq, ..., A ) is deduced as follows -
V(- f p(D)log p(DD) = SN [ DDl = ) =0

(— [p(I)log p(1)dI) <~ O(f ¢:(I)f(I)dl — pii)
ol a ZA 8! B

& —p(I)log p(I) — Z)u@i(f)f(f) =
i=1

& log p(I) = —Z Nioi(T

1 —E Asdi (1)
qf;”jj("?—):Ee =1 1



FRAME - Minimax Entropy Principle

- i Aidi(d)

where Z = [ e = dI is the partition function.

Function Z has the following nice properties:

. dlogZz 102 _ P
i) o Eg'—)‘f—"Ep[fiﬁ:(“]— Hi,
.. O log Z

i) Tron = Belloi(D = m)(65(1) ~ )l

Property 2 tells us the Hessian matrix of function log Z is the covariance matrix of log Z and
Is positive definite. Therefore, Z is log concave. It is easy to prove log p(x) is convex, either.
Given a set of consistent constraints, the solution for (A1,....A.) IS unique.



FRAME - Minimax Entropy Principle

Considering a closed form solution is not available in general, we seek
numerical solutions by solving the following equations iteratively.

pral Eyrmyloi(I)] — piy i =1,...,n. Gradient Descent



FRAME - Minimax Entropy Principle

f. In summary, given the model complexity n, an optimal probability model p(I') or equivalently an optimal probability
model p([) should be derived from the following criterion.

p*(I') = arg min{ arg max entropy(p(/)) } (4)
Shes pelly,



FRAME - Deriving the FRAME Model

a. To reduce the dimensionality of the distribution f(7). f(I) is transformed into the linear combination of one
dimensional marginal distributions. The author proves that if the marginal distributions of F'¢) % I for all £ are
matched, the underlying distribution f(/) can be eventually matched. Considering the complexity of the model, a
fixed number of filters are employed to represent f (7).

t(x)
/N N\
/ \// to+ 1ty + 1
ey =§cos 2nvix
Fourier transformation /,/"“\{)ﬂ J{ioj_a_/fji/_:; //’"‘\\

/ 0 \ \ Ny / \ ;
/ N\ N/ \N/ /
s N\ IN_ S ~
\ / \
N Y ty = =—cos 2wvyx
N - 2




FRAME - Deriving the FRAME Model

b. Three assumptions are proposed to further constrain the complexity of FRAME model.

I. Texture discrimination can be captured by the locally supported filters F'(*),
2. The texture is homogenous such that f([/) is translation invariant with respect to the pixel location 7.

3. For any probability distribution p([), if p(I) has the same marginal distribution f“(z) as f([), for all o« =
1,2,..., K, then p(I) is considered to be perceptually a good enough approximation to f(7).



FRAME - Deriving the FRAME Model

Given an image I and a filter F'* with o=
1,2,...,K being an index of filter. we let
I'“(v) = F' % I(v) be the filter response at location

v. and I'Y) the filtered image. The marginal empirical The Dirac oosely thought of
distribution (histogram) of I'*' is as a function on the real line whic
( zero everywhere except at the origin,
{a’ - o} | -y e . - .
H® () 2’5 (z-17@) where it is infinite,
LEP

) 400, =0

where §( ) is the Dirac delta function. The marginal o(x) = 0 20

distribution of f(I) with respect to F'® at location v ' '

is denoted by and which is also constrained to

satisfy the identity
£9(2) = f f FOdL= E([5(z ~19(9))]. .
T (7)=z / O(zx)dr =



FRAME - Deriving the FRAME Model

c. The constraints set © = {p(I)|E,[6(I'™)(7) —z)] = f\*)(z) ¥z VYa ¥} defines that = takes continuous real values,
hence there are infinite number of constraints and A takes the form as a function of z. Assumed that the filter responses
1) are quantified into L discrete values, and the model can be represented as

p(1) = & ST Tl A8 @) () ©
changing the order of summations, we get:

1 K Lo yfedgpla)
p (I) = ~ eea—1 2ity A Hj

7 ; (7)



FRAME - Deriving the FRAME Model

Plugging the above equation into the constraints of
Maximum Entropy distribution, we get

dxe) 1 8z

_ obs(o) _ (ex) obsalo)
dt _EB‘M‘-’”J_H = Ep(H) = H ’



FRAME - Choice of Filters

k 1s the number of filters selected to model f(1) and p«(l) the best estimate of f(I) given K filters

a. Kullback-Leibler distance is applied to measure the difference between py(I) and f(7):

f(I)
pr(I)

Based on the definition of entropy, D( f, pi.) can be computed by

D(f,px) = entropy (pi(1)) — entropy(f(I)). (11)

D(f.px) = /f(f) log dI = Eg[log f(I)] — Ef[log px(1)]. (10)



FRAME - Choice of Filters

b. The desired filters are chosen by a stepwise greedy strategy. At the k-th step, Suppose S, = {F), F2) . FklY
has been selected from the filter bank B. Then at the (k 4 1)-th step, the (£ + 1)-th filter is chosen from the rest of the
filter bank according to the criterion below,

FURHY — argmax 1| HOovP) — gevmB) |, (12
FBleB /S



FRAME - Choice of Filters

Constructing a filter bank B using five kinds of filters

1. The intensity filter 4( ). and it captures the DC com- 4. The spectrum analyzers denoted by SP(T,#).
ponent. whose responses are the power of the Gabor pairs:
|(Gabor * I)(x, v)|°.
2. The isotropic center-swiround filters. ie. the 5. Some specially designed filters for one dimensional
Laplacian of Gaussian filters,| textures and the textons. ' '

3. The Gabor filters with both sine and cosine compo-
nents.



FRAME - Synthesized Texture

Gibbs sampling or a Gibbs sampler is an algorithm to generate a sequence of samples
from the joint probability distribution of two or more random variables.

The purpose of such a sequence:

1. approximate the joint distribution;

2. approximate the marginal distribution of one of the variables, or some subset of
the variables;

3. compute an integral (such as the expected value of one of the variables).



FRAME - Synthesized Texture

Another MCMC Method

Update a single parameter at a time

Sample from conditional distribution
when other parameters are fixed



FRAME - Synthesized Texture

Consider a particular choice of parameter values 8"

Define the next set of parameter values by :

a.Selecting component to update, say i

b.Sample value for 95’ *U from p0. |x,6.0,,.6 .0

i—1* i+l

-0)

Increment 7 and repeat previous steps.



FRAME - Synthesized Texture

N . - r'
Consider a particular choice of parameter values 8"

Define the next set of parameter values by :

a. Update each component, 1 .. £, in turn
b.Sample value for 8% from p(8, | x.6,.6;...6,)
c. Sample value for 61 from p(0, | x.6,.6,...6,)

z.Sample value for 8 from p(0, | x.6,.6,...0,_,)

Increment # and repeat previous steps.



FRAME - Synthesized Texture

Suppose that (67.6".....6%) ~ p(6,.6,.....6, | x)

Then (6.6".....6")is distributed as

P 16;....60,.x)p(6,....6, | x)= p(6,.6,....06, | x)

In fact... is not a function of
01 and thus is the
same for all values

09 ~ po|x)=> 0" ~ o x
p(O]x) p(0]x) of 0,

Eventually, we expect the Gibbs sampler to sample parameter values

from their posterior distribution



FRAME - Synthesized Texture

Algorithm 2. The Gibbs Sampler for w Sweeps

Given image I(v). flip_counter< 0

Repeat
Randomly pick a location v under the uniform
distribution.
Forval=10...., G — 1 with G being the number

of grey levels of I
Calculate p(I(v) = val | I{—v)) by
(L Ak, Sk).
Randomly flip I(v) <« val under p(val | I(—v)).
flip_counter «— flip_counter 4 1
Until flip_counter =w x M x N.

In Algorithm 2. to compute p(I(v) = val | I{—v)).
we set I(v) to val. due to Markov property. we only
need to compute the changes of I'® at the neighbor-
hood of v. The size of the neighborhood is determined
by the size of filter F'®). With the updated I'*). we
calculate H'', and the probability is normalized such

that Y01 p(I(7) = val | I(—7)) = 1.



FRAME - Detailed Framework

Algorithm 1: FRAME Model

Input: Input textured image /°"* (image size M x N, gray level ), bank of filters B
Output: Probability distribution of textured image p(I), synthesized textured image /Y™
Initialize k& = 0, Sy = {l, po(I) + uniform distribution I*¥" < uniform white noise image;
fora =1,....|B|do

Ct}mpute Iobs{r:t] b}.r applying F2 to Iaba .

Compute Histogram H°%5(®) of Jobs(e);
end
repeat
foreach F'?) ¢ B/S,. do

Compute 1597 by applying F(%) to I5v™

Compute histogram H*¥"(%) of sun(8) .

=T - B B L A

10 d(3) = % |Hub5(£3) — Hsyﬂ(ﬁ” ;

11 end

12 Choose the filter F'**1) according to d(k + 1) = max{d(3), F¥) € B/S.}:
13 Sk+1{—F{k+1}USk,k<—k+1;

14 Initialize \(*) < 0,0 =1,... k;



FRAME - Detailed Framework

repeat
Calculate H*v™(®) o =1,2,... k from [*¥";

17 Update A*, o = 1,2, ...,k and p([; Ay, Sy ) is updated;
18 Initialize flip counter ¢ < (), sweep times w ;
19 repeat
20 Randomly pick a location ¥ in 159" ;
21 forval =0.1,....G — 1do
22 | Calculate p( I(¥) = val|I(—7) ) by p(I; Ay, Si) :
23 end
24 Randomly flip I(7') < val under p( 1(v') = val|I{—7) ) :
25 ci—c+1;
26 until c = w x M < N;
27 until  [Ho0() — gsvnlo)| < ¢ fora =1,2,... k;

28 until d(k) < €




Simplified Version in Primal Sketch

To segment the whole texture region into small ones, the clustering process is maxir
posterior, with the assumption that each sub-region obeying a multivariate Gaussian dlstrlbutlon

.

sk = arg max p(Snsk|Ia_ )

= argmaxp(fa__ [Snsk)P(Shsk)
M
= arg min Z E(IA, o o Snskm) + E(Snsk)s
m=1

1 1
E(lpnlSusim) = —51081Eml =5 3 (h(u,) = ) TS5 (i, v) = him),

{u:-i-"jeﬁnﬁk:m
where E(Syq) follows the Potts model



Simplified Version in Primal Sketch

E(Snak} - = Z }‘-nSk{s(i:j)v (17)
pINMJPIEﬁDER.iapQEﬁnskJ

where py ~ po means that p; and py are two pixels that are neighbors of each other. A g (= 0)
is the parameter for the Potts model which favorites identical labelling for neighboring pixels.

d(i,j) =0, if i = 5. Otherwise d(z,7) = 1.



Simplified Version in Primal Sketch

-

sk = argmax p(Snsk|Ia )

= argmax p(fa__ [Snsk)P(Shsk)

M
— El-rg ]Tli11 Z E(Iﬁnﬁk,m|5n5kfm) —|_ E(SnSk):
m=1
1 1
B |Sasm) = —5108[Eml =5 3 (h(w,0) — hn) TS5t (h(u 0) = o),
{uavjeﬁ-nﬁk,m
E(Spsk) = — > Anskd (i, 7),

P1~pz2.,p1 Eﬁnﬁk,upz Ehnsk,_}



Adapted Version in Video Primal Sketch (ST-FRAME)

Static Filter

Motion Filter

Flicker Filter

Cabor

Intensity

Gradient

-2 -1 ot

15
Gl
=]~
i/
]

Static filters. Laplacian of Gaussian (LoG), Gabor, gra-
dient, or intensity filter on a single frame. They capture
statistics of spatial features.

Motion filters. Moving LoG, Gabor or intensity filters
in different velocities and orientations over three frames.
Specifically, Gabor motion filters move perpendicularly to
their orientations.

Flicker filters. One static filter with opposite signs at two
frames. It contrasts the static filter responses between two
consequent frames and detect the change of dynamics.



Episode 3

Texton Modeling



The Framework of Primal Sketch

Region of
Primitives

Input Image

Region of
Texture

Sketch Graph

Texture Clustering
and Modeling

Synthesized
Primitives

Synthesized
Image

Synthesized
Texture




The Review of Video Primal Sketch

input TN

Dictionar
Video y

Synthesized

. Primitives
Explicit Sparse

—— .y

N ————

Synthesized

Sketchability & Frame

Trackability Map Previous Two
Frames

Synthesized

” Texture
Implicit

. ST-FRAME
Region




Sparse Coding

The image coding theory assumes that | is the weighted sum
of a number of image bases Bi indexed by i for its position, scale,
orientation etc. Thus one obtains a “generative model”,
K
I= CkBk+E, BEE&B,
k=1
where B} are selected from a dictionary Apg, ¢ are the coeflicients, and € is the residual error

modeled by Gaussian white noise.



Sparse Coding

Sparse Coding:

Definition: modeling
data vectors as sparse
linear combinations of
basis elements.

Edge

i 1.4 108 -

rFdILE - 80
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Sparse Coding

Online Dictionary Learning for Sparse Coding
ICML 2009

Julien Mairal

Francis Bach

Jean Ponce

Guillermo Sapiro

Characteristic: Online Dictionary Learning
(Incremental Learning)



Sparse Coding

Classical Dictionary Learning:

Given a finite training set of signals X = {x;, x,, x,} € R"™", optimize the
empirical cost function:

s 1y
fﬂ(D) — EZE(X?;,D),
i=1

where D € R™%¥ is the dictionary, each column representing a basis vector, and 1
Is a loss function measuring the reconstruction residual.



Sparse Coding

Intuitive Explanation of Sparse Coding:

Given n samples with dimension of each
sample m, usually n >> m, constructing an
over-complete dictionary D with k bases, k

>=m, each sample only uses a few bases in D.

e T %



http://www.eb.waseda.ac.jp/murata/mai.kinukawa/images/kitei.png

Sparse Coding

. 1
minimize I(x,D) = min =||x — Da|2 H{A||a]|
acRk 2

where A 1s a regularization parameter.

L1 — Norm Penalty

LO — Norm Penalty : Aharon et al. (2006)



Sparse Coding

Problems of using L1 — norm penalty:
L1 — norm is not equivalent to sparsity.

*The ¢, norm of a vector x in R™ is defined, for p > 1, by

%[, = (327, |x[i]|P)*/P. Following tradition. we denote by

|x||o the number of nonzero elements of the vector x. This “/p”
sparsity measure is not a true norm.



Sparse Coding

|
E(X__'D) i min _||X—DC}:||§—|—}‘||(};|| A convex set. &
acRk 2

To prevent D from being arbitrarily large (which
would lead to arbitrarily small values of

), it is common to constrain its columns (d; );f"zl to have

an f9 norm less than or equal to one. We will call C the
convex set of matrices verifying this constraint:

2+ & I v T

C={DeR™" st Vj=1,...,k, d:d; <1}. (3
{ J ' T 77 = } ( ) A nen-convex set, with a &l

line-segment outside the set.



Sparse Coding

Note that the problem of minimizing the empirical cost
fn(D) is not convex with respect to D. It can be rewrit-
ten as a joint optimization problem with respect to the dic-
tionary D and the coefficients o = [a, ..., ay] of the
sparse decomposition, which is not jointly convex, but con-
vex with respect to each of the two variables D and o« when
the other one is fixed:
, 1« /1 )
min  — 3" (Sl — Dl B+ Mleillh). @)

DeC,acRF*m 1 £ \2



Sparse Coding

0 23 (L Dal+ Al
DEC:}I;]EHkaﬂ o Z 9 X xil|2 Q|1 05

To solve this problem, an expectation-maximum (EM)
like algorithm is employed.

Alternate between the two variables, minimizing over
one while keeping the other one fixed.




Sparse Coding

Extend the empirical cost to the expected cost: Bottou and Bousquet (2003
1 T
fn(D) = EZE(XmD)a
=1

f(D) = Ex[i(x,D)] = lim f,(D)

n— oo

where the expectation is taken relative to the (unknown)
probability distribution p(x) of the data.



Sparse Coding

Calculating dictionary in classical sparse coding

First order stochastic gradient descent: Aharon and Elad (2008)
D, =I¢|Di—y — ZVpl(x,, Diy)],  (6)

where p 1s the gradient step, Il¢ 1s the orthogonal projec-
tor on C, and the training set xi, X2, ... are 1.1.d. samples p

of the (unknown) distribution p(x).



Sparse Coding

Classical first-order stochastic

Online Dictionary Learning: ’
gradient descent

1. Based on stochastic approximations.

2. Processing one sample at a time.

3. Not requiring explicit learning rate ¢
tuning.

1. Good initialization of 72 .

2. minimizes a sequentially
guadratic local approximations
of the expected cost.



Algorithm 1 Online dictionary learning,.

Require: x € R™ ~ p(x) (random variable and an algo-

. rithm to draw 1.i.d samples of p), A € R (regulanzation

Spa rse COdln g parameter), Dy € R™* (initial dictionary), 7' (num-
ber of iterations).

1: Ap«— 0, Bg « 0 (reset the “past” information).

2: fort=1toT do

3:  Draw x; from p(x).

4: (Sparse coding: compute using LARS

1
| | aZawminglx-Dialf+Nall| ®
Sparse Coding Step: . ack
1 111 . — T
computing th‘e C?ECDIH]JDSIHDI] oy of 5: ﬂ A1t ogay. \
x¢ over the dictionary Dy

o Bg — Bg_l + Xl .
7: | Compute D; using Algorithm 2, with D; _; as warm
restart, so that

Dictionary Update Step: </ D, £ arg min — Z—nxi Day|3 + Allag]];.

D, 1s computed by minimizing over C the function oee

= ar min1 1 r — r
\ = ]%gﬁ' t[?H{D DA,;) - Tr(D Bt})j

1 1 (9
fi(D) = tZEHT’Cz‘ ~ Do [ + Allexil s,
i=1 &: end for

9: Return D (learned dictionary).




Sparse Coding

Motivation:

e The quadratic function f: aggregates the past informa-
tion computed during the previous steps of the algorithm,

f+ acts as a surrogate for f;.

e Since ft 1s close to ft_L D; can be obtained efficiently
using D;_; as warm restart.



Sparse Coding

Algorithm 2 Dictionary Update.
Require: D = [dy,...,ds] € R™** (input dictionary),

: A=[ay,....,a] e RF** =3 a;al,
Due to the convexity of B=[by,...,by] e ™k =5 x,al.
. 1 =1 1: repeat
Ja
f*(D}:EZ§||X"_DHT'||%+}‘||QT'|I1= 2. forj=1tokdo
i=1 3 Update the j-th column to optimize for (9):
. 1
dictionary D convergence to a global uj F(bj — Daj) + d;.
37
. . (10)
optimum is guaranteed. d. ! -
7 max(||ujlfz, 1) 7
4.  end for
5: until convergence

[=a]

p
D, =1l¢ [Dt—l - ;ng(Xh Di_1)] : Return D (updated dictionary).




Sparse Coding

, 1 /1
min — 3 (5Ixi — Deul 3+ Afaillr)

DeC,acRF*" N r

where A is a regularization parameter.



Adapted Version in Explicit Region Modeling

The explicit region A, of a video I is decomposed into
.., disjoint domains (usually n., = O(10?)).

MNex

ﬁex — U ﬂL113:.:._1'- [3)

i=1




Adapted Version in Explicit Region Modeling

A primitive can be represented by a motion primitive B; € Ap,

I(:‘E! y.,t) - HiBi(:‘C: Y, t) =+ €, V(’I, y..t:] S ﬂex,i- (4) o L B ll.\') o

1 . .(10.14)

B; means the ith primitive from the primitive dictionary
A g, which fits the brick I, best. Here i indexes the pa-
rameters such as type, position, orientation and scale of B;.
cv; 18 the corresponding coefficient. € represents the residue,
which 1s assumed to be 1.1.d. Gaussian.




Adapted Version in Explicit Region Modeling

IIIIIIIIIII

a minority of noisy bricks are trackable

over time but not sketchable; thus we Ridge
cannot find specific shared primitives to
represent them.
- pgommon 5 Trackable and .
Sketchable Regions Edge
A -

Trackable and Non-
B sketchable Regions

FdlLE B0
PENLLEA -0
Tm™rTINED

rra—="im=

FL 1.4 018 -
HETTANER



Adapted Version in Explicit Region Modeling

Based on the representation in eqn(4), the probabilistic
model of trackable parts in Iy__ is defined as

1= - )ZJ
S S I T
i = 202
{I,y,f}Eﬁcm:i '

where B = (By, ..., B,,__) represents the selected primitive
setand n = A, ;|-



Adapted Version in Explicit Region Modeling

In order to alleviate computational
complexity, a are calculated by filter

responses.

The fitted filter F gives a raw sketch
of the trackable patch and extracts
information. such as type and
orientation, for generating the
primitive.

. RVRNRY e
I -
A || KU
S o
=

Figure 4. Some examples of primitives in a frame of video. Each
group shows the original local image I, the best fitted filter F', the

fitted primitive B € A p and the velocity (u, v), which represents
the motion of B.



Sketch Pursuit for Primal Sketch

The image lattice A is divided into the sketchable and non-sketchable parts for the structural

and textural parts respectively.
A= II"151{ L il'lnsk: ﬂsk A ﬁnsk = (. (6)

The sketchable part is further divided into a number of disjoint patches with each patch being

fitted by an image primitive.

Ak = URAakk, Acery N Ageky = 0, k1 # ko, (7)



Sketch Pursuit for Primal Sketch

The selected image primitives is indexed by k =1, 2, ..., K,
k= (Htc:.pcrlc:g'ica]: 6'gﬁ:i:rmn}t-ri{:: thcrtometric:}: (8)
where 6;,,0l0gical 18 the type (degree of arms) of the primitive (blob, terminator, corner, junctions

etc), Ogeometric collects the locations of the landmarks of the primitive, and 6,}otometric collects the

intensity profiles of the arms of the primitive.



Sketch Pursuit for Primal Sketch

The sketch graph is a layer of hidden representation which has to be inferred from
the image,

Ssk — {I{! (ﬂ-sk,k: Bkvak):l k= l:l 2'.! I{}|1

where S, decides the sketchable part of the image, B;. is the image patch for primitive &k, and
ap is the address variable pointing to the neighbors of the vertex Sek 1 = (Ask k. Br). We adopt

the following generative image model on Agy

Irn,k=Br+n, k=12 __ K. (9)



Sketch Pursuit for Primal Sketch

Probability model for the primal sketch representation:

p(Ia, Sqx. mk) Sparse Coding Residual Error

1

( I mn
= 7 exp{— (L(u,v) — Bk(“:'U)}] [Z Zhjmhh (Iﬁn km)ﬂ

5 A1 () A m=1 =1

E(5) i (S} N\ (13)
/ \\ FRAME Residual Error

Dictionary Coding Length FRAME Coding Length




Sketch Pursuit for Primal Sketch

The dictionary of image primitives
designed for the sketch graph Ssk
consists of eight types of primitives in

 PHYESRY | U]

iy
-anci i ElFsIN NSNS

S

increasing degree of connection:

R T ]

0. blob.

1. terminators, edge, ridge.
2. multi-ridge, corner.

3. junction.

4. Cross.

Al 7 o
EXNFSINNENE
HIES FEEEND

o N~ Jtjo
RYEAGRENAEE
ldlﬂﬂﬂl—l

=\

=K

X

SN b

~~
2]
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Sketch Pursuit for Primal Sketch

I derivative

tStJ.ITIEI[E__M al
These primitives have a f H‘x

— T 1ot -
center landmark and 1 = 0 i / -
~ 4 axes (arms) for B \ ok B _
connecting with other ) \( L w el o el w ]
primitives. For arms, the / A ® o § ok o F w8 oo
photometric property is _
(a) Edge profile (b) Ridge profile

represented by the

intensity profiles.
Figure 8: (a) The edge profile is represented by 5 parameters. The illustration of the computing of the

scale for a blurred edpge. The blurring seale is measured by the distance between the extremes of the

second derivative. (b) The representation of a ridge profile with 8 parameters.



Sketch Pursuit for Primal Sketch

For the center of a primitive, considering the
arms may overlap with each other, a pixel p
with L arms overlapped is modeled by:

AP

1 & ;
_EZ

where [) = Ef:l Ei:—_l the intensities of the profiles at this pixel p as A7, A5, .. AT,

the distances from the point p to the center lines of these arms as dy, da, ..., dp.



Sketch Pursuit for Primal Sketch

divide the set of vertices V into 5 subsets according to their degrees of CC
V=VuViulsuVyuVy, (15)
where V; is the set of vertices with degree i. Then we have
-4
E(Sx) =) AalVal: (16)

d=0

where |Vy| is the cardinality of the set Vy, and Ay can be interpreted as the coding length
associated with each types of vertices. Ay = 1.0. Ay = 5.0, X2 = 2.0, A3 = 3.0, = 4.0.

According to Gestalt laws, the closure and continuity are preferred in the
perceptual organization. Thus we penalize terminators, edges, ridge.



Sketch Pursuit for Primal Sketch

The Sketch Pursuit Algorithm consists of two phases:

Phase 1: Deterministic pursuit of the sketch graph Ssk in a procedure similar to matching pursuit.
It sequentially add new strokes (primitives of edges/ridges) that are most prominent.

Phase 2: Refine the sketch graph Ssk to achieve better Gestalt organization by reversible graph
operators, in a process of maximizing a posterior probability (MAP).



Sketch Pursuit for Primal Sketch

Phase 1

(b} edge/ridge strength

o \-4.?_4:“ \‘\:x;

S YL
e T | e
e NS T R ) i e ST AN
1"\‘&‘\ x T -‘t"/'/ }-—@\%\Bi
e A S o
‘Q"P < S T
E LAY

Blob-Edge-Ridge (BER) Detector for a proposal
map Sg.

Acting as a prior for sketch pursuit algorithm.

(e) blob strength (f) proposed blobs



Sketch Pursuit for Primal Sketch

Phase 1

This operation is called creation and defined as graph operator O1.
The reverse operation O’1 proposes to remove one stroke.

operators graph change illustration

04,07 create / remove a stroke @ — *—o




Sketch Pursuit for Primal Sketch

Phase 1

This operation is called growing and defined as graph operator O2,
This operator can be applied iteratively until no proposal is accepted.
Then a curve is obtained.

(J2.0%5 | grow / shrink a stroke

*~—eo > o—o® J




Sketch Pursuit for Primal Sketch

Phase 1

The sketch pursuit phase | applies
operators O1 and O2 iteratively until no
more strokes are accepted.

Phase | provides an initialization state
for sketch pursuit phase II.

a L~
e S -
) iteration 1 ) iteration 10 (¢) iteration 20
e |[=hr | [esbil
"”@ TN P T 1 B s
2 l ﬁ& \ KF;T S :E
S | IR

(d) iteration 50

{e) iteration 100

(f) iteration 180



Sketch Pursuit for Primal Sketch

Probability model for the primal sketch representation:

p(Ia, Sqx. mk) Sparse Coding Residual Error

1

( I mn
= 7 exp{— (L(u,v) — Bk(“:'U)}] [Z Zhjmhh (Iﬁn km)ﬂ

5 A1 () A m=1 =1

E(5) i (S} N\ (13)
/ \\ FRAME Residual Error

Dictionary Coding Length FRAME Coding Length




Sketch Pursuit for Primal Sketch

Phase 1

Using a simplified primal sketch model , _
Sparse Coding Residual Error

1
PI{IA-. Ssk-. Sns.k; &sk} ] E exp

p(w,v) is the local intensity mean around pixel (wu,v).

Simplify FRAME Residual Error
as a local Gaussian distribution.



Sketch Pursuit for Primal Sketch

Phase 1 we add a stroke Sg o1 into Sg, then S = Sac U Sac kg1, A = Ansk — Aak k41, and the

probability changes to

1 1 ,
pr(In. So. Spac Ask) EEXP{_ETJE ( L,Z:l (L(w, v) — Bi(u,v))
=1 {u.v)ENak i
+ (T(u,v) — p(u,v))?)} (19)
(w0) e,

Comparing (19) and (18). define

pIn. S5 .5 g0 Aek)

AL = 1
°gp(1 ,Sskﬁsnsk,:xsk}
> Y (M) — s 0))? — (L w) — By ()2},

To (wv)EAk K41

which is called image coding length gain by adding a new stroke.



Sketch Pursuit for Primal Sketch

Phase 1

From each end of the accepted stroke Sk i, we search the connected points in S until a

linelet is formed within a pre-specified average fitting error per pixel. We denote it as a new

proposed stroke Sg jro1.

{
O Grow a stroke o @ |
Q Grow a stroke




Sketch Pursuit for Primal Sketch

Phase 2

Sketch Pursuit by Reversible Graph Operators In the sketch pursuit phase II. the
sketch graph Sy is refined to achieve better Gestalt organization by the ten pairs of the reversible

graph operators discussed above, in a process of maximizing a posterior (MAP).

{Ss;kr Snsk}* = arg IIIMPII{SSI':-. Sn5k|Ia"L:. A)



Sketch Pursuit for Primal Sketch

connect / disconnect vertices

On O extend one stroke and cross / *—e I — ._¢_{
4,y
disconnect and combine

*—o
O O extend two strokes and cross / I ) }
Overall 10 graph operators is - | disconnect and combine ] ] L
proposed facilitate the sketch 0p.0p | e o comectedtioles | oo o o= e
pursuit process to transverse the [Dreak astioke - |
Sketch graph Space O—;.IO% combine two parallel strokes / * ——» —

split one into two parallel

} merge two vertices [/ split a >—< — ><
Os, Og

vertex - - N
Sim pl itied Version (Jg,04 | create / remove a blob @ e .
of DDMCMC - - _

switch between a stroke(s) and

a blob




Sketch Pursuit for Primal Sketch

Phase 2

Input image.

Sketch map after Phase 1.

Sketch map after Phase 2.

The zoom-in view of the upper

rectangle in b.

e. Applying O3 — connecting two
vertices.

f. Applying O5 — extending two

strokes and cross.

R i

(D (e) ()



Sketch Pursuit for Primal Sketch

Phase 2

]
, 111
L Ll [

H

Figure 13: One result of the primal sketch model. (a) input image; (b) raw sketch graph after sketch
pursuit phase I; (e) final sketch graph after sketch pursuit phase II; {d) reconstructed image from our

primal sketch model.



Sketch Pursuit for Primal Sketch

Probability model for the primal sketch representation:

p(Ia, Sqx. mk) Sparse Coding Residual Error

1

( I mn
= 7 exp{— (L(u,v) — Bk(“:'U)}] [Z Zhjmhh (Iﬁn km)ﬂ

5 A1 () A m=1 =1

E(5) i (S} N\ (13)
/ \\ FRAME Residual Error

Dictionary Coding Length FRAME Coding Length




Sketch Pursuit for Primal Sketch

Phase 2

From the initialization result of the sketch pursuit phase I, by applying a set of graph operators,
the sketch pursuit phase II maximizes a simplified version of the joint probability (13).

Sparse Coding
Z >, (I, “}'_Bff'[“fl'nz]/ Residual Error

[u ’L}E "L,,_k k

+[ Z (I{u.,t!]l—;.i[u,l']}zi#E(SskH: (21)

Eu:‘v}e‘im—;k \
/ Dictionary

Simplify FRAME Residual Error
as a local Gaussian distribution.

1
pff{IJ"L-.Ssk-.Snsk;&sk} A — X {—

VA

Coding Length



Sketch Pursuit for Primal Sketch

Phase 2

arg IIIMPII{SSI':; Sn5k|I."L:. -&sk]

= HIUHIMPH{LL Sskes Snsk; Ask) (23)
02 Z > (X(u,v) — By(u,v))?

T k=1 (uv)ENag
+ Y (T(wv) — p(w.0)?) + E(Sa)
(H:U)Ea"inﬁk
= argminLy + Lg

= arg min

= argmin £(S., Spsk) (24)

where £4 = g (S50 S mens (10 0) = Bi(u,0))? 4+ 5 ayn o (L. 0) — pa(u,v))?) s called
image coding length, Lg = FE(S.) is called sketch coding length, £(S., Spar) = L£4 + Lg is
called total coding length.



Episode 4

Reviews, Problems, Explanations, and Vista



The Framework of Primal Sketch

Synthesized
Primitives

Region of
Primitives AT
Sketch Pursuit
Synthesized
Image

Input Image E : lllllllllllllllllllllllllll .

Region of : Texture Clustering Synthesized
Texture . and Modeling Texture




The Review of Video Primal Sketch

input TN

Dictionar
Video y

Explicit Sparse
Region Coding

Sketchability &

Trackability Map Previous Two
Frames

Implicit
Region

ST-FRAME

Synthesized
Primitives

Synthesized
Texture

Synthesized
Frame




Problem in Video Primal Sketch

Video Resolution 288 %352 pixels
Explicit Region 31,644 pixels~ 30%
Primitive Number 300
Primitive Width 11 pixels
Explicit Parameters 3.600 =~ 3.6%
Implicit parameters | 15x(11+12+45)=420

Table 1. The parameters in video primal sketch model for the water
bird video in Fig.2

Major region: implicit region
Major model parameters: explicit parameters




Problem in Video Primal Sketch

Example | Size(Pixels) | Error({s_ ) | Error(/y,, )
1 190330 5.37% 0.59%
2 288x352 3.07% 0.16%
3 288x352 2.8% 0.17%

Table 4. Error assessment of synthesized videos.

Major error: error from reconstructing explicit regions




Problem in Video Primal Sketch

Modeling trackable and
non-sketchable region
with Sparse Coding or
FRAME ?

Special dictionary for
trackable and non-

sketchable region.

EETTANER



Problem in Video Primal Sketch

Sketchable Non-sketchable
(a) Moving Edge
(b) Moving Bar
(¢) Moving Blob

Trackable (g) Moving Kemel

(d) Moving Corner

(e) High-speed | (1)) Flat Area
Moving Edge '
Intrackable
(f) High-speed
Moving Bar

(1) Textured
Motion



Problem in Both Methods

Probability model for the primal sketch representation:

P(If‘u S:-.k n&.k)

1 K n
- el Y X () - B zzamuwm)‘]
0 k=1 (u, V)EA Gk m=1i=1

_Eﬁssk) ( nsk)}
Simplified as Yo (h(u,0) = hm) TES N (R(w, v) — hiy)

{u:?-’)eﬁ-nﬁk__m




Problem in Methods

Probability model for the video primal sketch representation:

p(IB.F,a,j3) = (12)
1 S (I(:I"" Y, t) T &’iBt' (9_7, yt))z
Zop{=2 D 202

inconsistent energy measurement!



Explanations - Contrary vs. Uniform

1. The central problems of primal sketch & video primal sketch:

The great complexity caused by mixing two totally
irrelevant model together.

2. Reviewing two method in a dialectic way.

The problem caused by metaphysics: constrained
observation, huge gap between two categories.

S. C. Zhu
“Eternal Debate”

The Collapse of
Classical Physics
a. AXHEHRER 14X
W AR i
b. T IRHER 1 Al
AR R A ek A
c. VRV TIHERR 1 Hii%
PR LA A AR



3. The philosophical purpose of image / video segmentation:

Magnifying the difference among different parts of the image / video.

4. Complement method to ameliorate these two modeling method

Intuition: particle wave duality, texture & texton, coexist for each
atom in image / video, observation decides which state dominates.



5. Schrodinger Equation / Uncertain Principle:

The particle position we observe is the integral of a probability wave.

6. The new intuition of video modeling

Texton texture duality: (1). Integral of a single probability wave —
trackable, sketchable motion, (2). Integral of the composition of
several probability wave — dynamic texture



QUESTIONS?



