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Episode 1 

Backgrounds, Intuitions, and Frameworks 



Background of image modeling 

texton (token) vs. texture (Julesz, 

Marr) 

 

Julesz: 

Texton -> bars, edges, terminators 

Texture -> sharing common 

statistics on certain features 

 

Marr:  

model parsimonious, enough to 

reconstruct  



Background of image modeling 

Texton modeling -- over-

complete dictionary theory: 

wavelets, Fourier, ridgelets, 

image pyramids, and sparse 

coding. 

  

Texture modeling -- Markov 

random field (MRF): FRAME. 



Intuition of Primal Sketch   

Primal Sketch: 

  

Sketchable vs. non-

sketchable 

 

Sketchable: primitive 

dictionary 

Non-sketchable: simplified 

FRAME model 



Background of video modeling 

4 types of regions 

 

Trackable motion: kernel 

tracking, contour tracking, key-

point tracking 

 

Intrackable motion (textured 

motion): dynamic texture (DT), 

STAR, ARMA,  LDS 



Background of video modeling 

Intrackability: Characterizing Video Statistics and 

Pursuing Video Representations 

Haifeng Gong, Song-Chun Zhu 



Intuition of Video Primal Sketch 

Category 4 regions into two classes: implicit 

regions, explicit region. 

 

Explicit region:  

sketchable and trackable, sketchable and non-

trackable, non-sketchable and trackable  

Modeling with sparse coding 

 

Implicit region: 

Non-sketchable and non-trackable 

Modeling with ST-FRAME 
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Episode 2 

Texture Modeling 
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FRAME - Overview  

Filters, Random Fields and Maximum Entropy (FRAME): 
Towards a Unified Theory for Texture Modeling 

 
Songchun Zhu, Yingnian Wu, David Mumford IJCV 

1998 

Texture: a set of images sharing common 

statistics on certain features. 



FRAME - Minimax Entropy Principle 

f(I): underlying probability of a texture,  

p(I): estimate probability distribution of f(I) from an textured image. 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 

A point on f is a constrained stationary point if and only if the 

direction that changes f violates at least one of the constraints. 



FRAME - Minimax Entropy Principle 

To satisfy multiple constraints we can state that at the stationary points, the 

direction that changes f is in the “violation space” created by the constraints 

acting jointly.  

That is, a stationary point satisfies: 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 



FRAME - Minimax Entropy Principle 

Function Z has the following nice properties: 

Property 2 tells us the Hessian matrix of function log Z is the covariance matrix of log Z and 

is positive definite. Therefore, Z is log concave.  It is easy to prove log p(x) is convex, either. 

Given a set of consistent constraints, the solution for                    is unique. 



FRAME - Minimax Entropy Principle 

Considering a closed form solution is not available in general, we seek 

numerical solutions by solving the following equations iteratively. 

Gradient Descent 



FRAME - Minimax Entropy Principle 



FRAME – Deriving the FRAME Model 

Fourier transformation 



FRAME – Deriving the FRAME Model 



FRAME – Deriving the FRAME Model 

The Dirac delta can be loosely thought of 

as a function on the real line which is 

zero everywhere except at the origin, 

where it is infinite, 

and which is also constrained to 

satisfy the identity 



FRAME – Deriving the FRAME Model 



FRAME – Deriving the FRAME Model 

Plugging the above equation into the constraints of  

Maximum Entropy distribution, we get 



FRAME – Choice of Filters 

k is the number of filters selected to model f(I) and pk(I) the best estimate of f(I) given k filters  



FRAME – Choice of Filters 



FRAME – Choice of Filters 

Constructing a filter bank B using five kinds of filters 



FRAME – Synthesized Texture 

Gibbs sampling or a Gibbs sampler is an algorithm to generate a sequence of samples 

from the joint probability distribution of two or more random variables.  

 

The purpose of such a sequence: 

1. approximate the joint distribution;  

2. approximate the marginal distribution of one of the variables, or some subset of 

the variables;  

3. compute an integral (such as the expected value of one of the variables). 



FRAME – Synthesized Texture 



FRAME – Synthesized Texture 



FRAME – Synthesized Texture 



FRAME – Synthesized Texture 

is not a function of 

θ1 and thus is the 

same for all values 

of θ1  



FRAME – Synthesized Texture 



FRAME – Detailed Framework 



FRAME – Detailed Framework 



Simplified Version in Primal Sketch 

To segment the whole texture region into small ones, the clustering process is maximizing a 

posterior, with the assumption that each sub-region obeying a multivariate Gaussian distribution: 



Simplified Version in Primal Sketch 



Simplified Version in Primal Sketch 



Adapted Version in Video Primal Sketch (ST-FRAME) 



Episode 3 

Texton Modeling 
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Sparse Coding 

The image coding theory assumes that I is the weighted sum 

of a number of image bases Bi indexed by i for its position, scale, 

orientation etc. Thus one obtains a “generative model”, 



Sparse Coding 

Sparse Coding: 

 

Definition:  modeling 

data vectors as sparse 

linear combinations of 

basis elements. 

 

 



Sparse Coding 

Online Dictionary Learning for Sparse Coding  

ICML 2009 

Julien Mairal 
Francis Bach 

Jean Ponce 
Guillermo Sapiro 

Characteristic: Online Dictionary Learning 

(Incremental Learning) 



Sparse Coding 

Classical Dictionary Learning: 

 
 Given a finite training set of signals                                              , optimize the         

           empirical cost function: 

 

 

 

           where                    is the dictionary, each column representing a basis vector, and        

           is a loss function measuring the reconstruction residual. 

   



Sparse Coding 

Intuitive Explanation of Sparse Coding: 

 

       Given n samples with dimension of each 

sample m, usually n >> m, constructing an 

over-complete dictionary D with k bases, k 

>= m, each sample only uses a few bases in D. 

http://www.eb.waseda.ac.jp/murata/mai.kinukawa/images/kitei.png


Sparse Coding 

Key:  

  

 minimize 

 

L1 – Norm Penalty 

 

L0 – Norm Penalty : Aharon et al. (2006)  



Sparse Coding 

Problems of using L1 – norm penalty: 

       L1 – norm is not equivalent to sparsity.  



Sparse Coding 

To prevent D from being arbitrarily large (which 

would lead to arbitrarily small values of  



Sparse Coding 



Sparse Coding 

To solve this problem, an expectation-maximum (EM) 

like algorithm is employed. 

 

Alternate between the two variables, minimizing over 

one while keeping the other one fixed. 



Sparse Coding 

Extend the empirical cost to the expected cost: Bottou and Bousquet (2008) 

where the expectation is taken relative to the (unknown) 

probability distribution p(x) of the data. 



Sparse Coding 

Calculating dictionary in classical sparse coding 
 

 

First order stochastic gradient descent:  Aharon and Elad (2008) 

 

 

of the (unknown) distribution p(x). 



Sparse Coding 

Online Dictionary Learning: 
 
1. Based on stochastic approximations. 
2. Processing one sample at a time. 
3. Not requiring explicit learning rate 

tuning. 

Classical first-order stochastic 
gradient descent 
 
1. Good initialization of      . 
2. minimizes a sequentially 

quadratic local approximations 
of the expected cost. 



Sparse Coding 

Sparse Coding Step: 

Dictionary Update Step: 



Sparse Coding 

Motivation: 

 

 

 



Sparse Coding 

Due to the convexity of  

 

 

dictionary D convergence to a global 

optimum is guaranteed. 



Sparse Coding 

Key:  

  

 

 



Adapted Version in Explicit Region Modeling 



Adapted Version in Explicit Region Modeling  

A primitive   



Adapted Version in Explicit Region Modeling  

a minority of noisy bricks are trackable 

over time but not sketchable; thus we 

cannot find specific shared primitives to 

represent them. 

Trackable and 
Sketchable Regions 

Trackable and Non-
sketchable Regions 



Adapted Version in Explicit Region Modeling  



Adapted Version in Explicit Region Modeling  

In order to alleviate computational 

complexity, α are calculated by filter 

responses.  

 

The fitted filter F gives a raw sketch 

of the trackable patch and extracts 

information. such as type and 

orientation, for generating the 

primitive. 



Sketch Pursuit for Primal Sketch  



Sketch Pursuit for Primal Sketch  

The selected image primitives is indexed by k = 1, 2, …, K, 



Sketch Pursuit for Primal Sketch  

The sketch graph is a layer of hidden representation which has to be inferred from 

the image, 



Sketch Pursuit for Primal Sketch  

Probability model for the primal sketch representation: 

Sparse Coding Residual Error 

FRAME Residual Error 

Dictionary Coding Length FRAME Coding Length 



Sketch Pursuit for Primal Sketch  

The dictionary of image primitives 

designed for the sketch graph Ssk 

consists of eight types of primitives in 

increasing degree of connection:  

 

0. blob. 

1. terminators, edge, ridge. 

2. multi-ridge, corner. 

3. junction. 

4. cross. 



Sketch Pursuit for Primal Sketch  

These primitives have a 

center landmark and l = 0 

~ 4 axes (arms) for 

connecting with other 

primitives. For arms, the 

photometric property is 

represented by the 

intensity profiles. 



Sketch Pursuit for Primal Sketch  

For the center of a primitive, considering the 

arms may overlap with each other, a pixel p 

with L arms overlapped is modeled by:  



Sketch Pursuit for Primal Sketch  

divide the set of vertices V into 5 subsets according to their degrees of connection, 

According to Gestalt laws, the closure and continuity are preferred in the 

perceptual organization. Thus we penalize terminators, edges, ridge. 



Sketch Pursuit for Primal Sketch  

The Sketch Pursuit Algorithm consists of two phases: 

 
Phase 1: Deterministic pursuit of the sketch graph Ssk in a procedure similar to matching pursuit. 

It sequentially add new strokes (primitives of edges/ridges) that are most prominent. 

 
Phase 2: Refine the sketch graph Ssk to achieve better Gestalt organization by reversible graph 

operators, in a process of maximizing a posterior probability (MAP). 

Coarse to Fine 



Sketch Pursuit for Primal Sketch  

Phase 1 

Blob-Edge-Ridge (BER) Detector for a proposal 

map  

Acting as a prior for sketch pursuit algorithm. 



Sketch Pursuit for Primal Sketch  

Phase 1 

This operation is called creation and defined as graph operator O1. 

The reverse operation O’1 proposes to remove one stroke. 



Sketch Pursuit for Primal Sketch  

Phase 1 

This operation is called growing and defined as graph operator O2. 

This operator can be applied iteratively until no proposal is accepted. 

Then a curve is obtained. 



Sketch Pursuit for Primal Sketch  

Phase 1 

The sketch pursuit phase I applies 

operators O1 and O2 iteratively until no 

more strokes are accepted. 

Phase I provides an initialization state 

for sketch pursuit phase II. 



Sketch Pursuit for Primal Sketch  

Probability model for the primal sketch representation: 

Sparse Coding Residual Error 

FRAME Residual Error 

Dictionary Coding Length FRAME Coding Length 



Sketch Pursuit for Primal Sketch  

Phase 1 

Using a simplified primal sketch model 
Sparse Coding Residual Error 

Simplify FRAME Residual Error 
as a local Gaussian distribution. 



Sketch Pursuit for Primal Sketch  

Phase 1 



Sketch Pursuit for Primal Sketch  

Phase 1 

Grow a stroke 

Grow a stroke 



Sketch Pursuit for Primal Sketch  

Phase 2 



Sketch Pursuit for Primal Sketch  

Phase 2 

Overall 10 graph operators is 

proposed facilitate the sketch 

pursuit process to transverse the 

sketch graph space. 

Simplified Version 
of DDMCMC 



Sketch Pursuit for Primal Sketch  

Phase 2 

a. Input image. 

b. Sketch map after Phase 1. 

c. Sketch map after Phase 2. 

d. The zoom-in view of the upper 

rectangle in b. 

e. Applying O3 – connecting two 

vertices. 

f. Applying O5 – extending two 

strokes and cross. 



Sketch Pursuit for Primal Sketch  

Phase 2 



Sketch Pursuit for Primal Sketch  

Probability model for the primal sketch representation: 

Sparse Coding Residual Error 

FRAME Residual Error 

Dictionary Coding Length FRAME Coding Length 



Sketch Pursuit for Primal Sketch  

Phase 2 

Simplify FRAME Residual Error 
as a local Gaussian distribution. 

Sparse Coding 
Residual Error 

Dictionary 
Coding Length 



Sketch Pursuit for Primal Sketch  

Phase 2 



Episode 4 

Reviews, Problems, Explanations, and Vista  
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Problem in Video Primal Sketch  

Major region: implicit region 

Major model parameters: explicit parameters 



Problem in Video Primal Sketch  

Major error: error from reconstructing explicit regions 



Problem in Video Primal Sketch  

Special dictionary for 

trackable and non-

sketchable region. 

Modeling trackable and 

non-sketchable region 

with Sparse Coding or 

FRAME ? 



Problem in Video Primal Sketch  



Problem in Both Methods 

Probability model for the primal sketch representation: 

Simplified as  



Problem in Methods  

Probability model for the video primal sketch representation: 

inconsistent energy measurement! 



Explanations - Contrary vs. Uniform 

2. Reviewing two method in a dialectic way. 
 

The problem caused by metaphysics:  constrained 
observation, huge gap between two categories. 

1. The central problems of primal sketch & video primal sketch: 
 

The great complexity caused by mixing two totally 
irrelevant model together.  

S. C. Zhu 
“Eternal Debate” 

The Collapse of 
Classical Physics 

a. 相对论排除了绝对时
空观的牛顿幻觉， 
b. 量子论排除了可控测

量过程中的牛顿迷梦，
c. 混沌论则排除了拉普
拉斯可预见性的狂想. 



Vista 

3. The philosophical purpose of image / video segmentation: 
 

Magnifying the difference among different parts of the image / video. 

4. Complement method to ameliorate these two modeling method 
 

Intuition: particle wave duality, texture & texton, coexist for each 
atom in image / video, observation decides which state dominates. 



Vista 

5. Schrödinger Equation / Uncertain Principle: 
 

The particle position we observe is the integral of a probability wave. 

6. The new intuition of video modeling 
 

Texton texture duality:  (1). Integral of a single probability wave – 
trackable, sketchable motion, (2). Integral of the composition of 
several probability wave – dynamic texture 



QUESTIONS? 


