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Abstract

In this report, we discuss a content-based video coding approach, i.e. video primal sketch. Unlike
traditional video coding approaches, video primal sketch seeks to capture different mid-level cues
and use them to explain the video data. The algorithm first segmented the video data into two
different kinds of regions: explicit region and implicit region, and then model each region by a
corresponding mid-level video representations. Specifically, explicit region is represented by sparse
coding model, where static or moving primitives, such as moving corners, lines, extinguished
feature points, are coded by a generalized dictionary. While implicit region is represented by
FRAME model, using spatio-temporal filters to match feature statistics, i.e. histograms.
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1 Introduction

Video coding is an important research orientation due to its huge space cost in transferring and storage. Due to the
wide varieties of motion patterns of videos, current video coding techniques represent the video data similar to classical
image coding, i.e. treating all the data as uniform signals. However, a key drawback of classical coding methods, such
as H.264, JEPG, lies in the little information given by the compressed video codings. That is, we cannot obtain certain
video content before decoding a compressed video. Based upon this. content-based video coding aims at discovering
content in videos and prioritizing on coding key components. The goal of content-based video coding is not only
providing an approach for video compression and coding, but also supporting high-level tasks such as motion tracking
and action recognition.

Video primal sketch [12] studies a generic content-based video representation, by integrating two regimes of repre-
sentations. As illustrated in Fig. 1, an input frame is separated into explicit region and implicit region by binarizing
the sketchability map [9, 2] and trackability map [3]. Explicit region including sketchable or trackable parts are mod-
eled by a sparse coding model, and implicit region containing non-sketchable and intrackable parts are synthesized by
FRAME model. These two models are integrated in the hybrid representation, i.e. video primal sketch.

The rest of this report is organized as follows. We first present the explicit region representation and sparse coding
model in Section 2, and then introduce the implicit region representation and FRAME model in Section 3. The total
video representation is summarized in Section 4

2 Explicit Region Representation

In this section, we briefly discuss the explicit region representation, i.e. sparse coding model. The explicit region Iex
is decomposed into Tex disjoint video bricks. A video brick is a 11 × 11 pixels ×3 frames spatio-temporal volume,
which record the basic unit of motion. To represent the explicit region, we aim at learning a dictionary W from the
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Figure 1: The framework of video primal sketch. Given a input video, the algorithm first segments the video into
explicit region and implicit region using sketchability [2] and trackability [3] map. The explicit region is represented
by sparse coding model [5] while the implicit region while the implicit region is represented by FRAME model [11].
The synthesized video is obtained by integrating the explicit representations and implicit representations.

training data, which could code the motion variations of all video bricks in the video. In the following discussion of
this section, we simplify the notation of the explicit region Iex as I and the number of video bricks Tex as T .

2.1 Linear Generative Model

a. Most models of sparse coding [4, 6, 5] are based on the linear generative model. In this model, given a n-dimensional
set of real-numbered input vectors νi ∈ Rn, the goal of sparse coding is to determine k n-dimensional basis vectors
W = [w1, . . . , wk] ∈ Rn×k along with a sparse k-dimensional vector of coefficients αi = [α1

i , . . . , α
k
i ] ∈ Rk for each

input vector, so that a linear combination of the basis vectors with proportions given by the coefficients results in a
close approximation to the input vector: νi ≈

∑k
j=1 wjα

j
i .

b. Given a finite training set of input vectors {ν1, . . . , νm}, the empirical cost function is defined as

fm(D)
4
=

1

m

m∑
i=1

l(νi,W ), (1)

where W ∈ Rn×k is the dictionary, each column of W representing a basis vector, and l is a loss function such that
l(νi,W ) measures the coding residual. In general, we have k � m and overcomplete dictionary with k > n are
allowed. This problem is also known as Lasso [7, 8] in the literature of statistics.

c. l(νi,W ) is defined as the optimal value of the l1-sparse coding problem:

l(νi,W )
4
= min

α

1

2
‖νi −Wαi‖22 + θ‖αi‖1, (2)

where θ is a regularization parameter. Note though l1 penalty yields a sparse solution for αi, it is still different from
the effective sparsity ‖αi‖0 (i.e. the number of nonzero elements of αi).

d. A special issue in the lost function is that if W can be arbitrarily large, α would be arbitrarily small. To prevent
this, we add constraints to limit each column of W :

C 4= {W ∈ Rn×k s.t.∀i = 1, . . . , k, w>i wi ≤ 1}, (3)

where C is called the convex set of dictionaries satisfying this constraints.
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e. The problem of minimizing the empirical cost fm(W ) is not convex with respect to W , but it can be rewritten as a
joint optimization problem with respect to the dictionary W and the coefficients α = {α1, . . . , αT }. The problem is
not jointly convex but convex with respect to each of the two variables W and αi when the other is fixed:

min
W,α

1

m

m∑
i=1

(
1

2
‖νi −Wαi‖22 + θ‖αi‖1

)
. (4)

f. As proposed by Lee et al [4], Equ.(4) can be solved by alternating between the two variables, minimizing over one
while keeping the other one fixed.

2.2 Sparse Coding

a. LARS-Lasso algorithm is a regular method to solve the sparse coding coefficients. This algorithm is derived from
Lasso algorithm [7], a constrained version of ordinary least squares (OLS), and improved by B.Efron et al. [1] to
reduce the computational burden by at least an order of magnitude.

b. LARS algorithm is a forward selection procedure, starting with all coefficients equal to zero. Given an input video
brick νi, we first find the basis most correlated with response, saywi1 , and take the largest step possible in the direction
of this basis until some other basis, say wi2 , has as much correlation with the current residual. LARS then proceeds in
a direction equiangular between the two bases until a third basis wi3 enters the ”most correlated” set. LARS algorithm
then proceeds equiangularly among wi1 , wi2 and wi3 , i.e. along the ”least angle direction”, etc. In the following
discussion of this subsection, we drop the notation of index i of video brick νi and coding αi for notation simplicity.

c. Formally, suppose that α̂A is the current LARS estimate, i.e. the estimated coding at the |A|-th iteration, the current
correlation is thus computed as

ĉ = W>(ν −Wα̂W), (5)

where Ĉ = max
i
{|ĉi|} denotes the current greatest absolute correlation,W the set of bases of which correlations equal

Ĉ. The next step of LARS algorithm updates α̂W by

α̂W+
= α̂W + η̂ uW , (6)

where η is the step length of next step, uW the direction vector. η and uW are computed as

η̂ = min+

wi∈W

(
Ĉ − ĉi

AW −W>uW
,

Ĉ + ĉi
AW +W>uW

)
,

uW =WAW(W>W)−1 1,

(7)

where min+ denotes the minimum only considers positive components and AW is defined as

AW = (1> (W>W)−1 1)−
1
2 . (8)

d. A Lasso solution α̂ requires the following restriction

sign(α̂i) = sign(ĉi). (9)

However, LARS algorithm does not enforce this restriction. The Lasso modification, i.e. LARS-Lasso algorithm, can
yield all LARS solutions to satisfy this restriction. Specifically, in Equ.(6), α̂W+

will change sign at

ηi = − α̂i
sign(ĉi) · (AW(W>W)−1 1)i

. (10)

Let η̃ = min
ηi>0
{ηi}. The restriction will be violated if η̃ is less than η̂. So the LARS-Lasso algorithm makes the

following modifications when the ongoing LARS step reaches η̃ = η̂ :

α̂W+ = α̂W + η̃ uW ,

W+ =W \wi.
(11)

For detailed explanations and proofs, please check [1].
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2.3 Dictionary Learning

a. Classical dictionary learning [6] consists of a sequence of updates of W via projected first-order stochastic gradient
descent:

Wt = ΠC

(
Wt−1 −

ρ

t
∇W l(νt,Wt−1)

)
, (12)

where ρ is the learning rate, ΠC is the orthogonal projector on C.

b. Online dictionary learning [5] performs stochastic gradient descent on the new sample of the training set and
alternates classical sparse coding steps for computing the decomposition of αt of νt over the dictionaryWt−1 obtained
at the the previous iteration, with dictionary update steps where the new dictionary Wt is computed by minimizing
over C the function

f̂t(W )
4
=

1

t

t∑
i=1

1

2
‖νi −Wαi‖22 + θ‖αi‖, (13)

where coefficients αi are computed during the previous steps of the algorithm.

Applying the above mechanisms, representing the explicit region is equivalent to learning the dictionary W and com-
puting the codings α = {α1, . . . , αT }. The process is summarized in Algorithm 1.

Algorithm 1: Representing explicit region with sparse coding
Input: explicit region I , regularization parameter θ, number of video bricks T .
Output: codings α = {α1, . . . , αT }, learned dictionary W = [w1, . . . , wk] ∈ Rn×k.

1 Initialize: dictionary W0 ← 0, Φ0 ← 0, Ψ0 ← 0 ;
2 for t = 1, . . . , T do
3 Draw video brick νt from I ;

4 Compute sparse coding using LARS-Lasso algorithm αt
4
= arg min

α

1
2‖νt −Wt−1α‖22 + θ‖α‖1 ;

5 Φt ← Φt−1 + αtα
>
t ;

6 Ψt ← Ψt−1 + νtα
>
t ;

7 repeat
8 for i = 1, . . . , k do

9 Compute dictionary Wt
4
= arg min

W

1
t

t∑
i=1

1
2‖νi −Wαi‖22 + θ‖αi‖1

10 (i) zi ← 1
Φii

(ψi −Wt−1φi) + wt−1,i ;
11 (ii) Update the i-th column of dictionary wt,i ← 1

max(‖zi‖2,1)zi ;
12 end
13 until convergence;
14 end

3 Implicit Region Representation

In this section, we briefly introduce the implicit region representation. The implicit region Iim is first segmented into
Tim homogenous subregions by taking the explicit parts as boundary conditions. Each subregion Iim,i is assumed to
be independent and modeled by a FRAME model. In the following discussion of this section, we focus on modeling
a single homogenous subregion and simplify the notation of Iim,i as I .

3.1 The Minimax Entropy Principle

a. Entropy ξ(P (I)) = −
∫
P (I) logP (I)dI stands for the expected coding length. On the other hand, entropy is the

negative Kullback-Leibler distance, up to a constant, between P (I) and the uniform distribution, the latter stands for
noise images. To minimize the entropy, P (I) should be made as ”orderly” (or far away from the uniform distribution)
as possible.
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b. To constrain the complexity, we choose an optimal set of features, while it has the minimum entropy. Denoted the
feature set Sm, the set of all possible probability distributions P (I) that satisfy the constraints in Sm as Ωm.

c. The maximum entropy principle suggests that the probability distribution in Ωm with maximum entropy is the best
estimate of P (I).

d. The minimax entropy principle [10] means that P ∗(I) should satisfy the constraints and as ”orderly” as possible
along some dimensions Ωm, and should also be as random as possible in other unconstrained dimensions.

e. The problem is reformed as follows

maximize −
∫
P (I) logP (I)dI,

subject to
∫
φi(I)f(I)dI = µi, i = 1, . . . ,m.

(14)

According to Lagrange multipliers, the identification of stationary points is∫
φi(I)f(I)dI − µi = 0, i = 1, 2, . . . ,m

∇(−
∫
P (I) logP (I)dI)−

m∑
i=1

λi∇(

∫
φi(I)f(I)dI − µi) = 0

(15)

The solution [λ1, λ2, . . . , λm] is deduced as follows

∇(−
∫
P (I) logP (I)dI)−

m∑
i=1

λi∇(

∫
φi(I)f(I)dI − µi) = 0

⇔
∂(−

∫
P (I) logP (I)dI)

∂I
−

m∑
i=1

λi
∂(
∫
φi(I)f(I)dI − µi)

∂I
= 0

⇔ −P (I) logP (I)−
m∑
i=1

λiφi(I)f(I) = 0

⇔ logP (I) = −
m∑
i=1

λiφi(I)

⇔ P (I) =
1

Z
e
−

m∑
i=1

λiφi(I)
,

(16)

where Z =
∫
e
−

m∑
i=1

λiφi(I)
dI is the partition function.

Based on simple proof, the Hessian matrix of log Z is the covariance matrix of vector [φ1(I), φ2(I), . . . , φm(I)], and
is positive definite. Thus, log Z is concave, and the solution for [λ1, λ2, . . . , λm] is unique. Considering a closed form
solution is not available in general, we seek numerical solutions by solving the following equations iteratively.

dλi
dt

= EP (I;Λ)[φi(I)]− µi, i = 1, . . . ,m. (17)

f. In summary, given the model complexity m, an optimal probability model p(I) or equivalently an optimal probabil-
ity model p(I) should be derived from the following criterion.

P ∗(I) = arg min
Sm∈S

{ arg max
P∈Ωm

ξ(P (I)) }. (18)

3.2 Deriving the FRAME Model

a. To reduce the dimensionality of the distribution f(I). f(I) is transformed into the linear combination of one
dimensional marginal distributions. S.C. Zhu et al [11] prove that if the marginal distributions of filter gi ∗ I for all i
are matched, the underlying distribution f(I) can be eventually matched. Considering the complexity of the model, a
fixed number of filters are employed to represent f(I).

b. Three assumptions are proposed to further constrain the complexity of FRAME model [11].

5



1. Discrimination of implicit image region can be captured by the locally supported filters gi.

2. The implicit image region is homogenous such that f(I) is translation invariant with respect to the pixel
location ~p.

3. For any probability distribution P (I), if P (I) has the same marginal distribution fi(z) as f(I), for all i =
1, 2, . . . ,m, then P (I) is considered to be perceptually a good enough approximation to f(I).

c. The constraints set Ω = {P (I) |EP [δ(Ii(~p) − z)] = fi(z), ∀z ∀i ∀~p } defines that z takes continuous real values,
hence there are infinite number of constraints and λ takes the form as a function of z. Assumed that the filter responses
Ii are quantified into l discrete values, and the model can be represented as

P ∗(I) =
1

Z
exp

∑
~p

m∑
i=1

l∑
j=1

λji · δ(Ii(~p)− z
j
i )

 , (19)

changing the order of summations, we get

P ∗(I) =
1

Z
exp

 m∑
i=1

l∑
j=1

λji h
j
i

 , (20)

where hji =
∑

~p δ(Ii(~p) − zji ) is the histogram of Ii at the j-th bin. Denoting hi =
[
h1
i , h

2
i , . . . , h

l
i

]
, λi =[

λ1
i , λ

2
i , . . . , λ

l
i

]
, P ∗(I) can be rewritten in a simple parameterized form:

P ∗(I) =
1

Z
e
∑m

i=1<λi, hi>, (21)

which has the following properties:

1. P (I) is specified by Λ = {λ1, λ2, . . . , λm }.
2. Given an image I , its histograms H = {h1, h2, . . . , hm } are sufficient statistics, i.e. P (I) is a function of
{h1, h2, . . . , hm }.

d. Because there is no analytical solution for Λ = {λ1, λ2, . . . , λm }, the numerical solution is obtained by solving
the following equation recursively.

dλi
dt

=
1

Z

∂Z

∂λi
− hi = EP (hi)− hi, (22)

where EP (hi) is the expected histogram of the filter responses Ii where implicit image region I follows P (I; Λ) with
the current Λ.

f. The analytical form of EP (hi) is unavailable. To obtain EP (hi), a synthesized implicit image region I is sampled
by Gibbs sampler given P (I; Λ). Hence the histogram hi of I is used to estimate EP (hi).

3.3 The Choice of Filters

a. Assume the estimated probability distribution is Pi(I), Kullback-Leibler distance is applied to measure the differ-
ence between Pi(I) and f(I):

D(f, Pi) =

∫
f(I) log

f(I)

Pi(I)
dI = Ef [log f(I)]− Ef [logPi(I)]. (23)

Based on the definition of entropy, D(f, Pm) can be computed by

D(f, Pi) = ξ(Pi(I))− ξ(f(I)). (24)

b. The desired filters are chosen by a stepwise greedy strategy. At the i-th step, Suppose Si = {g1, g2, . . . , gi} has
been selected from the filter bank B. Then at the (i+1)-th step, the (i+1)-th filter is chosen from the rest of the filter
bank according to the criterion below,

gi+1 = arg max
gj∈B\Si

1

2
|hj − h̃j |. (25)

Applying the mechanisms mentioned above, the algorithm of synthesizing an implicit subregion is summarized in
Algorithm 2.

6



Algorithm 2: Synthesizing implicit image region with FRAME model
Input: implicit subregion I , bank of filters B.
Output: probability distribution of implicit image region P (I), synthesized implicit image region Ĩ .

1 Initialize: i← 0, S0 = ∅, P0(I)← uniform distribution, I ← uniform white noise image.
2 foreach gi ∈ B do
3 Compute Ii by applying gi to I ;
4 Compute histogram hi of Ii ;
5 end
6 repeat
7 foreach gj ∈ B\Si do
8 Compute Ĩj by applying gj to Ĩ ;
9 Compute histogram h̃j of Ĩj ;

10 d(j) = 1
2 |hj − h̃j | ;

11 end
12 Choose the filter gi+1 according to d(i+1) = max { d(j), gj ∈ B\Si } ;
13 Si+1 ← gi+1

⋃
Si, i← i+ 1 ;

14 Initialize λj ← 0, j = 1, . . . , i ;
15 repeat
16 Calculate h̃j , j = 1, 2, . . . , i from Ĩ ;
17 Update λj , j = 1, 2, . . . , i and P (I;Si,Λi) is updated ;
18 Apply Gibbs sampler to flip Ĩ for w sweeps under P (I;Si,Λi) ;
19 until 1

2 |hj − h̃j | < ε, for j = 1, 2, . . . , i;
20 until d(i) < ε;

4 Hybrid Video Representation

a. In summary, the probabilistic models for explicit region and implicit region are

Iex ∼ P (Iex;W,α),

Iim ∼ P (Iim;S,Λ).
(26)

The joint probability model for the video primal sketch representation is defined as

P (I|W,S, α,Λ) =
1

Z
exp

− Tex∑
i=1

‖νi −Wαi‖2 −
Tim∑
i=1

m∑
j=1

< λi,j , hi,j >

 , (27)

where Z is the normalizing constant. Therefore, (W,S) can be viewed as the codebook of the video, while (α,Λ) the
compressed codings.
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