
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

BeaconGNN: Large-Scale GNN Acceleration with
Out-of-Order Streaming In-Storage Computing

Yuyue Wang1, Xiurui Pan2, Yuda An2, Jie Zhang2†, Glenn Reinman1†

1UCLA, 2Peking University
yuyue@cs.ucla.edu, jiez@pku.edu.cn, reinman@cs.ucla.edu

Abstract—Prior in-storage computing (ISC) solutions show
fundamental drawbacks when applied to GNN acceleration. First,
they obey a strict ordering of GNN neighbor sampling. Such
serialization fails to utilize flash internal parallelism. Second, the
I/O sizes generated by GNN are much smaller than the minimum
flash access granularity. The limited channel bandwidth is wasted
when serving the requests. Third, the prior solutions rely on
firmware-based request processing, making the backend I/O
throughput constrained by the embedded core processing power.

To address these challenges, we propose BeaconGNN, an in-
storage computing (ISC) design for GNN that supports both
large-scale graph structures and feature tables. First, it utilizes
a novel graph format to enable out-of-order GNN neighbor
sampling, improving flash resource utilization. Second, it deploys
near-data processing engines across multiple levels of the flash
hierarchy (i.e., controller, channel, and die). Specifically, flash-
die-level samplers perform neighbor samplings while reducing
channel transfer simultaneously. Flash-channel-level command
routers communicate with backend dies without the involvement
of flash firmware. Lastly, a spatial accelerator is attached to the
device bus to accelerate GNN computation. With our software
and hardware co-design, BeaconGNN achieves up to 11.6×
higher throughput and 4× better energy efficiency than the state-
of-the-art ISC design.

I. INTRODUCTION

Recently, Graph Neural Networks (GNNs) have become
increasingly prevalent in multiple computing domains such
as social networks, recommendation systems, and pandemic
prediction [14], [16], [57], [64], [72], [76]. This is because
GNNs excel at capturing complex relationships and depen-
dencies inherent in large-scale graph-structured data.

The GNN task consists of two main stages: data preparation
and GNN computation. During the data preparation stage,
nodes are sampled from the graph and their corresponding
vectors are retrieved from the feature table, both of which
are passed to the subsequent computation stage. In real-world
industrial scenarios, the sizes of these graphs and feature tables
scale to over hundreds of GBs or even reach TBs [11], [43],
[82], surpassing the memory capacity of a single machine. This
motivates system designers to accommodate the huge amount
of data in high-volume and cost-effective storage such as solid-
state drives (SSDs) [41], [42], [54], [58], [70]. Furthermore,
the GNN computation stage performs highly parallelizable
aggregation and update operations on graph embeddings. This
has led to the widespread adoption of hardware acceleration,
such as GPUs and ASICs.

† Jie Zhang and Glenn Reinman are corresponding authors.

Unfortunately, as GNN data initially resides in the storage,
the data preparation stage incurs intensive data transfer be-
tween storage and processors (i.e., CPU and GPU), which
imposes huge burdens on the traditional computing system
[79]–[81]. In particular, the thin PCIe bus narrows down
the I/O bandwidth while the software stack of storage and
GPUs introduces redundant data copies and multiple address
translations [24]. Moreover, the I/O access latency in SSDs
is still considerably higher than that of the main memory,
resulting in a significant portion of the total latency being
attributed to the data preparation.

To address these challenges, recent advances in storage
technologies have provided promising solutions. One such
advancement is in-storage computing (ISC), which leverages
SSD-embedded processors (i.e., low-end general-purpose pro-
cessors) to process simple tasks [20], [38], [62] or incorporates
FPGAs/ASICs to accelerate heavy computations [27], [52],
[60], [68]. This technology eliminates expensive data transfer,
which breaks the I/O bottleneck imposed by the thin PCIe bus.
Another emerging technique, called ultra-low latency (ULL)
flash, significantly reduces the SSD read (sense) latency to 3
µs [36], [37]. These two techniques present great opportunities
to revive architectural designs for higher GNN performance.

Various prior studies have explored the feasibility of lever-
aging ISC to accelerate GNN tasks [39], [40], [44]. Their
common objective is to identify the I/O-intensive part of
the GNN task and offload it to in-storage compute engines.
Specifically, GList [44] optimizes operations associated with
the GNN feature table. It fetches the feature vectors from flash
and sends them to an SSD-internal FPGA for computation.
As vectors are processed within the SSD, PCIe traffic is
eliminated. In a separate study, SmartSage [40] targets the in-
storage graph structure by using the SSD-embedded processor
to conduct neighbor sampling. This filters out unused nodes,
thereby reducing the number of nodes transmitted back to the
host. Despite the success in reducing I/O traffic, prior work
has fundamental design drawbacks that prevent them from
fully utilizing the potential benefits of ISC. To make matters
worse, these weaknesses also become obstacles to optimizing
the GNN performance by adapting to the emerging ULL flash.

The first drawback is the inefficiency in sampling multiple
hops of neighbors. SmartSage manages part of the graph meta-
data on the host and requires inter-hop communication to be
carried out between the host and storage. This communication
acts as a barrier that enforces a serialized order of execution

between earlier and later hops, ultimately resulting in the
under-utilization of flash bandwidth due to a lack of internal
parallelism. Second, the GNN data preparation stage exhibits
a random and small I/O pattern that does not align well with
the page-granular flash channel transfer. This mismatch causes
significant read amplification [13] and wasted bandwidth on
flash channels, resulting in I/O throughput reduction (in section
III, we conduct two experiments to measure the negative
impact of the two drawbacks, as shown in Figure 7). Lastly,
in conventional SSDs, the backend flash I/O is processed
by the flash firmware. However, firmware-based processing
is restricted by the capability of the embedded processor
and internal DRAM in SSD, and cannot keep up with the
accumulated throughput of ULL flash [80].

Based on the above analysis, we gain three insights into
designing a better ISC system for GNN. First, the hop-by-hop
ordering of data preparation in prior work compromises the
internal parallelism of the SSD. One feasible way to address
this is to remove the host from the control path and run
the entire procedure as a non-intermittent ISC task. Second,
conventional page-level channel transfer performs poorly with
the small random I/O pattern in the GNN task. We identify
that flash dies have abundant area budgets in the control layer
[10], where we can place additional logic to filter unused data
to improve transfer efficiency. Third, the flash firmware cannot
process a substantial volume of flash I/O efficiently, slowing
down the overall progress of data preparation. A potential
solution lies in implementing customized hardware-based flash
I/O control mechanisms to accelerate the processing.

To address the aforementioned challenges, we propose Bea-
conGNN, an ISC design for GNN that supports both large-
scale graph structures and feature tables. In BeaconGNN, we
co-design the software (i.e., GNN engine and flash firmware)
and hardware (i.e., SSD internal architecture) to accelerate the
entire GNN task flow in the SSD. To eliminate the inter-
hop host-SSD communication and the ordering constraint
between hops of neighbor sampling, we propose DirectGraph,
a novel GNN graph format directly indexed with flash physical
addresses, with the co-designed host interface and SSD flash
firmware to construct the new graph. The SSD controller can
now directly locate GNN data in flash without the involvement
of the host-side filesystem and NVMe storage stack. To
better suit the small random I/O of GNN and exploit the
ultra-low latency feature of ULL flash, we deploy near-data
processing engines across multiple levels of the flash hierarchy
(i.e., controller, channel, and die). Specifically, to eliminate
unnecessary channel transfer, we customize the flash-die-level
control logic to sample neighbors, retrieve feature vectors, and
return only useful data through the channel. To improve the
backend-I/O processing efficiency, we implement the control
path in hardware. At the flash interface controller, requests to
sample more neighbors are forwarded to destination channels
and dies without the involvement of the embedded processor.
This fully unleashes the high throughput of ULL flash. Finally,
we integrate a spatial accelerator into the SSD internal bus to
perform vectorized embedding aggregation and GEMM-based

0
3

1

49

10
20

6
7

50

51

#hop1 sample: 3
#hop2 sample: 2

② Fetch
feature vectors

Sampled vectors

Graph

① Sample
node neighbors

Subgraph

Data preparation

③ Computation

Aggregation Update Final result

Feature table

Fig. 1: Typical GNN task flow.

embedding update of the GNN computation stage. With our
software and hardware co-design, we achieve up to 27.3×,
11.6× overall throughput, and 9.86×, 4× energy efficiency
compared to the baseline CPU-centric GNN system and state-
of-the-art ISC-for-GNN design, respectively.

The main contributions of this work are as follows:
1) We observe that the coarse-grain hop-by-hop in-order

neighbor sampling and page-granular flash channel transfer
are performance bottlenecks of ISC GNN acceleration. And
we further observe that firmware-based flash I/O processing
is inefficient when adapting ISC-for-GNN to ULL-flash.

2) We propose DirectGraph, a new GNN data format directly
indexed with the flash physical address, and develop the
algorithm and system support (customized flash request and
flash firmware function).

3) We propose die-level processing units to offload neighbor
sampling and feature lookup operations onto flash chips.

4) We redesign the flash backend control interface, enabling
hardware-based flash I/O processing and streaming-like
GNN data preparation.

II. BACKGROUND

A. Graph Neural Networks

GNNs have been developed in multiple variations to fit
various domains [22], [35], [69], [77]. In this paper, we focus
on large-scale GNNs with high computation and communica-
tion demands. As a representative work of large-scale GNNs,
GraphSage [22] effectively reduces both computation and
communication burdens via two optimizations: mini-batch pro-
cessing and neighbor samplings. Mini-batch processing selects
a small batch of nodes as targets and generates corresponding
k-hop subgraphs. Each k-hop subgraph consists of the target
along with neighboring nodes within a maximum distance of
k hops. Subsequent computations are confined to these small-
scale subgraphs. On the other hand, neighbor sampling selects
only a small subset of nodes at each hop when generating
subgraphs. This approach controls subgraph scales when graph
nodes have a very large number of neighbors.

GNN computation stage is performed through multiple
iterations of message passing, where each graph node collects
the embedding information from its neighboring nodes and
updates its own embedding with the gathered information.
Suppose that we have a graph G(V, E) along with a set of
node features X ∈ Rd×|V|. For each node u ∈ V , its feature

DRAM

DMA

Host interface controller

PCIe bus

Cache register

NAND flash
memory array

Data register
Cache register

NAND flash
memory array

Data register
Plane 0 Plane 1

Multiplex interface

Die 1 Die 2
Block

0
Block

1
......

Block
K

Page
0

Page
1

......
Page

N

Embedded
processor

NAND
chip

NAND
chip

NAND
chip

NAND
chip

Flash
backend

Flash interface controller

SSD controller
frontend

Fig. 2: Overview of the SSD internal architecture.

vector Xu is used as the initial embedding vector h
(0)
u . Then

at iteration k, we update its embedding vector h
(k)
u with the

following message-passing rule:

h(k+1)
u = AGGREGATE(k)({h(k)

v ,∀v ∈ N (u) ∪ {u}}) (1)

Here N(u) denotes the neighborhood of node u, that is,
the set of nodes that have a distance of 1 hop from node u.
AGGREGATE(k)is a neural network that aggregates embedding
vectors of N(u) and combines them with its own h

(k)
u to

generate a new one, h(k+1)
u . At the first iteration, every node

aggregates structural and feature information from the local
neighborhood. As these iterations continue, the aggregation
process gradually extends to nodes that are farther away from
the starting node. For a GNN with K layers, the final output
embedding h

(K)
u , u ∈ V has been updated for K times and

encodes the information of the K hop neighbors.
Figure 1 illustrates the decomposition of GNN taskflow. In

the first step, we construct a subgraph by sampling multiple
hops of neighbors from the target node. In the second step,
we fetch node feature vectors from the feature table X . In the
last step, we process K iterations of the message passing to
aggregate information in the subgraph. After the last iteration,
the embedding vector of the target node is the final result.

B. Solid-State Drives

1) Architecture: The left half of Figure 2 shows the typical
architecture of commodity solid-state drives (SSDs) [8], [12],
[30]. It consists of the SSD controller frontend and the flash
backend. At the frontend, an embedded processor runs the
flash firmware with a low-end DRAM acting as its main
memory. It communicates with the host and flash backend
through the host and flash interface controllers, respectively. It
also manages the DMA transfer among the flash, DRAM, and
host. All of these components are interconnected through an
internal I/O bus. At the backend, the flash media is connected
to the flash interface controller via multiple flash channels,
which allow for parallel data transfer between the frontend and
the flash media. Each channel connects multiple flash chips,
which can also be accessed simultaneously.

SQ/CQ pairs

Data buffer
Page
Page
Page

Host memory
NVMe doorbell PCIe configure

I/O poller

LBA PPA

FTL

Manage requests

Flash I/O
scheduler

Cache Mapping table Request queues

Flash firmware

Polling Flash
interface

SSD
DRAM

Dependency queue

Wait req queue
per (channel, die)

Empty req pool

SSD

Hardware
threads

❶

❷

❸

❹

❺

❻

data control/addr

Fig. 3: IO processing in flash firmware.

The flash chip is organized into multiple hierarchies, as
shown in the right half of Figure 2. A chip typically contains
two flash dies, which multiplex the same I/O path. A die
consists of a 3D-stacked NAND flash memory array and the
underlying peripheral circuitry. The flash memory array is
further organized as multiple blocks, each block containing
hundreds of 4KB pages. The erase operation is conducted
at the granularity of flash blocks while the minimum unit
of read and program operations is a page. Due to flash
intrinsics, dirty pages cannot be overwritten before invoking
the erase operation [50]. The underlying layer controls these
flash operations and manages data and cache registers (i.e.,
page-size SRAM) to buffer flash pages; it also has a redundant
area budget, which provides the opportunity to customize some
compute logic for in-flash computing [10].

2) I/O processing: Figure 3 shows how the SSD processes
host I/O requests [7], [23], [29], [34]. On the data plane, flash
firmware manages a cache in the SSD DRAM, which buffers
page transfers from the host memory to the flash backend, and
vice versa. On the control plane, flash firmware runs hardware
threads for three functions to serve host I/O requests: I/O
poller, flash translation layer (FTL), and flash I/O scheduler.

A single host I/O request is performed in four steps. First,
the I/O poller acquires a new request from the host (1 ,
2). Second, FTL maps the logical page address (LPA) in

the request to the physical page address (PPA) (3). Third,
the poller asks the flash I/O scheduler to complete the I/O
operation on the backend flash media (4 , 5). Finally, the
I/O poller signals the host that the request is complete (6).

In the first and last steps, the I/O poller repeatedly checks
and updates submission/completion queue entries in the host
memory (1 , 6) [45], [56]. The heads and tails of queues
are tracked by NVMe doorbell registers on the host interface
(2). In the second step, the mapping table is stored in
DRAM. In the third step, the scheduler processes flash I/O
by communicating with the flash interface controller. The
scheduler continuously polls flash channel/chip status through
the channel control interface, and initiates I/O operations once
the necessary hardware resources are ready (4). To manage
ongoing/waiting requests and resolve dependencies among
them, the scheduler also maintains several request queues in
DRAM for tracking purposes (5).

Design In-SSD
data Offload function Benefits

GList Feature
table

Table lookup;
GNN computation

Shorten the transfer
of feature vectors

SmartSage Graph
structure Neighbor sampling Avoid the transfer of

full neighbor lists

Our target Both Full-stage
(entire GNN task)

Scale well for graph
and feature table;

adapt to ULL flash

TABLE I: Comparison of prior work and our design target.

C. ISC for GNN

There exist multiple ISC approaches that offload different
GNN operations to storage [40], [44]. While GList [44]
offloads operations related to the feature table, SmartSage [40]
offloads operations associated with the graph structure. These
approaches are promising to reduce I/O transfers for their spe-
cific operations. However, they suffer from certain limitations.
First, neither GList nor SmartSage is a full-stage offloading
system. Consequently, they are inefficient when dealing with
large-scale GNNs where both graph structures and feature
tables reside in storage. Second, GList and SmartSage were
originally designed for traditional SSDs that have high read
latencies. It remains unclear whether they can be effectively
adapted to ULL flash.

Table I summarizes the key features of these two prior
works and outline our design goal, that is, a full-stage ISC
offloading system that efficiently supports large-scale GNNs
while leveraging the advantage of ULL flash.

III. CHALLENGE AND MOTIVATION

To meet our design target, a straightforward approach is
to integrate the offloading solutions from both GList and
SmartSage into a unified architecture and utilize ULL flash as
the backend media. This combined solution shall be referred
to as BeaconGNN-1.0.

Figure 4 shows the BeaconGNN-1.0 architecture. The host
application controls the execution of the entire GNN task while
all data-intensive operations, including neighbor sampling,
feature table lookup, and GNN computation, are offloaded to
the SSD. Communication between the host and SSD is done
via the host-side NVMe driver, in which offloading operations
are performed as customized NVMe commands.

For each operation, the associated in-storage data (neighbor
lists and embedding vectors) are indexed by multiple layers
of address translation. In the host user space, the GNN
application is responsible for managing metadata that maps
the graph node index to sections in the graph data file. It then
calls the file system to get LPAs that point to section locations
in the SSD device. Next, LPAs are sent through the PCIe bus
to the SSD, where the flash firmware performs the LPA-PPA
translation and reads flash pages into the cache in the SSD
DRAM. Subsequently, according to the data type, neighbor
lists are filtered by the firmware sampler and sent back to the
application, while feature vectors are used as inputs to the
FPGA kernel for the GNN computation.

Sampler
Metadata (map node id to file

offset of neighbor/feature)

User space Kernel space

N
VM

e
dr

iv
er

Host

LBAsSampled nodes
Sampled nodes

SSD

FTL

DRAM cacheFPGA
Feature vectors

Firmware

Pages

ULL flash
backend

Neighbors

PPA

PCIe

Fi
le

 s
ys

te
m LBA

Fig. 4: The architecture of BeaconGNN-1.0.

0

3

2

1 5

4

Hop 2

Target

Host-SSD communication

×2

Hop 1 Hop 3

(a) Generate subgraph for v0.

✕ PPA unknown

DRAM

1 4, 5,

3

4

52

1 4, 5,

✕ PPA unknown

Neighbor lists Sampled neighbors
4 5

FlashTransferring

(b) A moment in the second hop sampling.

Fig. 5: Example of challenge 1.

Challenge 1: Inter-hop sampling barrier
In BeaconGNN-1.0, node neighbors are sampled hop by

hop. After completing all samplings in a particular hop, the
SSD sends these sampled nodes to the host, which performs
the necessary host-side address translation (from node index
to LPA) and commands the SSD to sample for the next hop.

Figure 5 (a) illustrates the process of sampling three hops
of neighbors. Operations in different hops are separated by
barriers at each iteration of host-SSD communication. Figure
5 (b) zooms in the procedure of the second hop: The SSD has
sampled v4, v5 from N (1) while still reading N (2), N (3).
At this moment, flash dies that store N (4), N (5) are idle, but
their samplings must wait until the current hop and subsequent
host-SSD communication are completed. This highlights how
the strict hop-by-hop order becomes a barrier that prevents
the overlap of neighbor sampling from different hops and
adversely affects the parallel utilization of flash dies.
Challenge 2: Page-granular channel transfer

The page-granular channel transfer wastes bandwidth for
random I/Os smaller than the page size. This issue is evident
in the GNN data-preparation stage, where both neighbor
sampling and feature table lookup acquire useful data (sampled
nodes, feature vectors) that occupies only a small portion of
the page. As a result, the time spent on transferring entire
pages significantly prolongs the delay of data preparation.

Figure 6 shows an example in which 4 ULL-flash dies on the
same channel are read simultaneously. Initially, every die reads
a page in parallel, but later pages are queued at the channel
bus, awaiting sequential transfer. This negatively affects flash
I/O throughput, especially for ULL flash, whose sequential
transfer dominates the total latency. The experiment in Figure
7a gives a vivid demonstration: increasing active ULL-flash
dies from 1 to 8 brings merely 49% throughput improvement
but undertakes 7.7× average latency.

Read Read

Transfer Transfer Transfer Transfer ...

Die timeline (x4)

3us 20us 3us

5us 5us 5us 5us

Channel timeline

Fig. 6: Example of challenge 2.

1

2

3

4

5

N
o

rm
. t

h
ro

u
g

h
p

u
t

 Normal SSD ULL flash

0 1 2 3 4 5 6 7 8

10

20

30

40

A
v

g
.

la
te

n
cy

 (
u

s
)

Active flash die

(a) Performance of flash requests for
normal SSD and ULL-flash.

5 10 15 20 25
0

20

40

60

80

100

120

#
 A

ct
iv

e
 f

la
s

h
 d

ie

Time (×100us)

 Sync
 Async
 Wasted

(b) The overheads of hop-by-hop or-
dering in multihop data preparation.

Fig. 7: Motivation data.

Challenge 3: Firmware-scheduled flash I/O
Given that the small random I/O is already supported, the

bottleneck of flash I/O shifts to the processing capability of the
flash firmware owing to three reasons. First is request queue
management. In GNN tasks, there is no read-write dependency
among flash I/O requests, and thus unnecessary to manage
them in DRAM. Second is DMA-configured data transfer
between DRAM and NAND flash. In neighbor sampling, the
sample address of (k+1)th hop depends on the sample result
of the kth hop. Writing/reading data to/from DRAM delays
the time for the (k+1)th hop to be ready. Last is polling-based
checking for flash status. There are many more channels and
dies than processor threads available to perform the polling.
Therefore, the processing of a specific flash die will be delayed
until its time slot. These factors all together severely affect the
backend I/O throughput.

IV. DIRECTGRAPH AND BEACONGNN-2.0

A. DirectGraph GNN format

Based on the first challenge in Section III, we infer that
multi-level address translations enforce the hop-by-hop order
of neighbor sampling. However, since most GNN data in real-
world scenarios are static without any changes over a long
period of time, such translations are unnecessary. To exploit
this feature, we propose DirectGraph, a GNN format that
embeds flash physical addresses directly into the graph to
eliminate redundant translation.

Figure 8 illustrates the layout of DirectGraph. We organize
the entire GNN graph into two types of pages: primary and
secondary pages, both of which are aligned to the physical
flash pages. Each of the primary and secondary pages contains
one or more variable-length sections, named primary and
secondary sections, respectively.

P-section

S-section

P-sections of neighbor nodes

1 2 43 5

1 5

High-degree
node is split into
multiple sections

Low-degree nodes
are compacted into

one page

S-sections of this node

4 Feature vector

3/5 List of phy addr

2 Neighbor count

1 Section header

Fig. 8: DirectGraph example pages.

NVMe Stack

GNN runtime

Core

Accelerator
DRAM

Flash interface

Channel 1Channel n ... Chip

Sampler

Chip

Sampler
...

Ctrl

Ctrl

(Node id, PPA)

Sample cmd

Feature vectors,
sampled node

Subgraph structure
& feature

GNN
model

Feature
vectors

data control, addr

Fig. 9: The architecture of BeaconGNN-2.0.

Each node stores information (i.e., feature vector and neigh-
bor list) in a primary section until the section fulfills an entire
primary page. Afterward, excessive neighbors will be placed
in secondary sections across one or more secondary pages. It is
worth noting that primary sections that store low-degree nodes
cannot occupy entire primary pages, resulting in severe space
waste. To avoid this, multiple primary sections are organized
into a linked array and compacted into a single primary page.

Each section begins with a header to maintain several
metadata including its type, length, and node index. Moreover,
a primary section records the neighbor count and addresses
of associated secondary sections. To locate neighbors without
indirection, each neighbor index is mapped to a 4-byte physical
address. This address comprises 28 bits for flash page indexing
and 4 bits for in-page section indexing in the context of a 1TB
SSD with 4KB pages (i.e., log2

1TB
4KB = 28). Using larger pages

means more bits can be used for section indexing, and thus
more sections can be stored in a single page.

With DirectGraph, the host provides primary section ad-
dresses only for target nodes at the start of a mini-batch.
Afterward, all subsequent data addressing is done inside the
SSD without translation. To read the neighbor list of a node,
the page storing its primary section is read first, followed by
any pages storing secondary sections. Then sampling takes
place, and the results are used to sample the next hop.
Similarly, feature vector lookup is performed by reading the
flash page containing the primary section of the node.

B. BeaconGNN-2.0

To tame the three challenges in Section III, we propose
a new architecture: BeaconGNN-2.0, as illustrated in Figure

Data bus

ADDR register

CMD register

Status register

Control logic

TRNGSampler

Flash memory array

Data register Data register
Cache register Cache register

GNN
configuration

Control bus

data control, addr
existing path

Fig. 10: Flash architecture with die-level hardware sampler.

9. BeaconGNN-2.0 has significant improvements over its
predecessor BeaconGNN-1.0. Similarly to BeaconGNN-1.0, it
offloads the entire GNN workflow to storage. Nevertheless, it
requires minimal host intervention and has more optimization
with respect to the I/O efficiency of GNN data preparation.

At the software level, BeaconGNN runs a GNN engine in
the flash firmware, which schedules the data preparation and
GNN computation stages. It utilizes DirectGraph as the GNN
data format to simplify multi-level address translations. Details
on how to construct DirectGraph are given in Section VI.
DirectGraph also allows BeaconGNN-2.0 to break the inter-
hop barriers and sample neighbors out of order.

At the hardware level, BeaconGNN optimizes SSD internal
communication pathways for GNN and deploys near-data
processing engines at different levels of storage organization,
such as flash dies, flash channels, and the SSD controller. To
be specific, first, at the flash-die level, a sampler performs
neighbor sampling and feature vector retrieval. It then gener-
ates new flash commands for subsequent sampling operations
near the SRAM buffer. Second, at the flash-channel level, an
inter-channel router is added to the flash interface controller,
which extracts sampling commands from the channel data
stream and forwards them to destinations. These two designs
ensure that the data preparation is handled entirely inside the
flash backend. Third, at the SSD-controller level, a spatial
accelerator is attached to the SSD internal bus, which performs
the embedding aggregations and updates to compute the final
result. The subgraphs and sampled feature vectors, together
with model parameters, are stored inside the SSD DRAM.

V. MULTI-LEVEL NEAR-DATA PROCESSING ENGINES

A. Die-level sampler

Figure 10 shows the functional diagram of a two-plane
flash die. Our processing logic is implemented in the control
circuitry associated with the flash memory array.

The processing logic comprises a set of GNN configuration
registers, a sampler, and a true random number generator
(TRNG), all shared by two planes. The existing control logic
is also modified to receive command parameters from the data
bus and store them in configuration registers; it is also respon-
sible for initiating the execution of the sampler. The sampler,

GNN configure
register port

Section
iterator

Cache register
output port

Vector retriever

Node sampler
Section offset

Data register input port

Command
generator

Feature vector

Vector length

Hop id,
#sample, addr

Random number

data control, addr
#hop, hop id, #sample

Page type, #neighbor,
sampled node

New cmdIndex

Length

Fig. 11: Microarchitecture of the die-level sampler.

configured by the GNN configuration registers, operates with
data read from cache registers and written to data registers
through two one-directional buses, respectively. Finally, the
TRNG generates random numbers for random samplings.

Our die supports two new commands, a global GNN con-
figuration command, which sets basic GNN configurations for
each die before the task begins; a sampling command, which
reads a page and performs neighbor sampling on the page. The
configuration command sets the number of hops, the sample
count per hop, and the length of the feature vector; while the
essential elements to reconstruct the subgraph (i.e., hop id,
sampling count, and metadata) are offered by the sampling
command at runtime. At sampling runtime, the specified page
is read from the flash memory array to the cache register, from
where the sampler samples neighbors, generates new sampling
commands and writes them to the data register. In addition to
this general procedure, there are two special cases. First, the
sampler needs to retrieve feature vectors for primary pages;
second, the sampler stops sampling more neighbors at the final
hop. When the above process finishes, the data register content
transfers off the die over the data bus.

As illustrated in 11, the microarchitecture of the sampler
includes four components: a section iterator, a vector retriever,
a node sampler, and a command generator. The section iterator
traverses the page until it reaches the target section and then
transmits the section offset to both the vector retriever and
node sampler. The vector retriever transfers the feature vector
from the cache register to the data register. The node sampler
works differently for primary sections and secondary sections.
For primary sections, neighbors are sampled from the entire
neighbor range, including those stored in secondary sections.
When the sampling result falls within the page, the sampler
samples this neighbor, and generates a command to sample for
this neighbor; otherwise, the sampler generates a command to
sample from the secondary section that the sampling result
falls into (all commands for the same secondary section
will coalesce later to avoid redundant reads). For secondary
sections, neighbors are sampled only from the section itself.
Each sampling result is generated with a modulo operation
using a TRNG-generated random number.

B. Channel-level command router

At the flash interface controller, we customize its logic to
route sampling commands among all flash channels. Each

Sampling
cmdsIn

O
ut

channel I/O port

Cmd
type

Addr,
cmd type

Control logic

Addr, sizeData
DMA

Sampling
cmds Parser

data control, addr

Channel
status

Dispatch queue
round-robin

issuer
die 0
die n

Feature vector
Normal page

Sample result

In nIn 0

Out nOut 0

Crossbar

...

...
Channel
transfer

Fig. 12: Channel-level command router.

channel is customized with dispatch queues, a round-robin
command issuer, a data stream parser, and I/O ports connected
by a crossbar to other channels. The customized logic for one
channel is shown in Figure 12.

The channel can be controlled in two ways: traditional
firmware-based control and new hardware-automated control.
In the firmware-based approach, the channel control logic
and DMA are configured by the flash firmware, while the
regular page-size I/O goes through the conventional flash-
chip↔DRAM path. In the hardware-automated approach,
when a sampling command completes, the parser is activated
to read sampling results from the channel bus, classify them
into new sampling commands and feature vectors, and forward
them to the crossbar and the SSD DRAM. The modified
DMA transfers feature vectors without configuring the DRAM
address and transfer size every time. To buffer sampling
commands from other channels, dispatch queues are employed
for each channel, with each flash die coupled with a separate
queue. The queues are polled by a command issuer in a round-
robin manner, which signals the channel control logic to issue
commands when detecting the die is idle.

At a higher level, in&out ports for sampling commands of
each channel are connected by a crossbar. The crossbar routes
the sampling commands to destination channels according to
their addressing information.

C. Bus-attached spatial accelerator

At the SSD level, a spatial accelerator is attached to the
internal bus, providing a 1D vector array for feature aggrega-
tion, a 2D systolic array for GEMM-based feature update, and
an SRAM buffer to cache data and provide low latency and
high bandwidth access for these compute units. The SRAM
buffer is shared by both vector and systolic arrays and can
be configured to flexibly support different input/weight/output
data partitions. Data from the flash backend are first written
into SSD DRAM and then sent to the accelerator.

VI. SYSTEM SUPPORT FOR BEACONGNN

A. Flash firmware support for DirectGraph

We customize the flash firmware to reserve a list of physical
blocks for the host to perform direct manipulation, which
bypasses the regular FTL. This manipulation interface is
exposed to the host as customized NVMe commands via the
ioctl system call.

Before the GNN task, the host fetches block addresses
from this list. It then processes the original GNN dataset and

Algorithm 1: DirectGraph construction
Input:
ppa list, a list of empty PPA
G(V, E), graph structure
X ∈ Rd×|V|, node feature table
/* Initialize metadata for nodes and allocated pages.

*/

node infos← map()
p pages, s pages← 2× ordered map()
/* Allocate space node by node. */

for v in V do
info← node metadata()
info.neighbor n← len(N (v))
calculate the number and sizes of the primary and

secondary sections of v and record them in info.
for each section of v do

/* ∗_pages refers to either p_pages or s_pages

according to the section type. */

find a page with sufficient available space from
∗ pages. If it fails, get a page from ppa list and
add it to the map.

record the address of this section in info, and
(v, sectionindex) in ∗ pages[v].

node infos[v]← info

allocate a page-size buffer buf in memory
for each page in p pages ∪ s pages do

/* Write sections to buf. */

for each v, section in page do
write the section header to buf according to
node info[v]

if section is primary then
write all v’s secondary page addresses, and Xv

(v’s feature vector) to buf
for each neighbor in section do

write neighbor’s primary section address to
buf

flush buf to page.PPA in the SSD

flushes the converted DirectGraph directly into these desig-
nated blocks. The allocation of physical flash to DirectGraph
is done at the block granularity to minimize metadata (block-
level bitmap, length=Nblock) management and modifications
to the regular FTL. Subsequently, these blocks are marked
in firmware and exempted from the regular allocation and
garbage collection processes within the FTL.

B. DirectGraph construction

The conversion to DirectGraph involves two steps: mapping-
based metadata collection and subsequent serialization to the
SSD. In Step 1, we determine the required space for each
section and establish mappings between these sections and
the physical pages. This calculation is based solely on the
lengths of the neighbor list and the feature vector. In Step
2, we construct each DirectGraph page in the host buffer. For
each page section, we fill its entries using information from its
corresponding neighbor list fragment and metadata prepared in
Step 1. Additionally, primary sections are filled with features.
Once all sections are written to the buffer, the page is then
flushed to the SSD. Further details are in Algorithm 1.

C. ONFI commands for sampling

ONFI is the most common standard interface for com-
municating with flash chips. We customize two ONFI com-
mands to configure global GNN parameters and perform the
sampling operation, respectively. Data associated with the
new commands are transferred over the existing data bus,
with communication handled by the extended control logic
described in Sections V-A and V-B. Figure 13 shows the
formats of the global configurations, the sampling parameters,
and the sampling results.

D. Flash-firmware based GNN engine

During the GNN workflow, the host’s involvement occurs
at two points. First, before the task begins, the host sends
converted graph data and essential task information (e.g.,
GNN model parameters, sampling configuration, and mini-
batch size) to the SSD. Second, at the start of a mini-batch,
the host informs the SSD of target nodes and their primary-
section addresses via customized NVMe commands, similar
to what Section VI-A describes. Throughout the rest of the
mini-batch, the flash firmware acts as the GNN engine to
schedule the workflow. In each mini-batch, the feature vectors
and information to reconstruct subgraphs (i.e., batch id, last
node id, and current node id in the sampling result) for the last
mini-batch are already stored inside DRAM. Therefore, the
firmware pipelines the data preparation of the current mini-
batch with the computation of the last mini-batch, making
the spatial accelerator and flash backend work simultaneously.
This overlapped execution scheme achieves higher resource
utilization and task throughput.

E. Security and privacy support

In BeaconGNN, although DirectGraph bypasses the host file
system and SSD FTL, the block interface of host OS and the
standard functionality of FTL remain intact. Therefore, host-
side applications can continue their regular storage operations
on the SSD and avail themselves of the security and privacy
features inherent to the host file system.

Moreover, BeaconGNN enforces data isolation between reg-
ular storage I/O accesses and DirectGraph manipulations. On
the one hand, DirectGraph blocks are designated as unusable
within the FTL, rendering them invisible to the host storage
stack and preventing any inadvertent access or modification
from regular storage I/O requests. On the other hand, to thwart
potential malicious intent, wherein customized BeaconGNN
commands might be leveraged to circumvent the storage stack
and tamper with normal storage data, the firmware imposes
stringent verification procedures. Initially, during the flushing
of DirectGraph to the flash, the firmware rigorously checks that
writing destination addresses, and section addresses embedded
in page contents, are all restricted to blocks allocated for this
DirectGraph. Subsequently, the firmware does the same check
for primary section addresses of received target nodes in every
mini-batch. Finally, section headers are checked by on-die
samplers at runtime. In case the section is not found or the

type is incorrect, the sampler stops immediately and returns
the control to SSD firmware.

F. Reliability and error resilience

Flash-based SSDs are susceptible to two common reliability
challenges. Primarily, data stored in flash pages are prone
to errors over time due to various factors, including charge
leakage from memory cells [31]. BeaconGNN incorporates
two optimizations to prevent corruption within DirectGraph.
First, during idle time, BeaconGNN firmware periodically
performs data scrubbing [31] for DirectGraph blocks. It first
reads a flash block and checks every page with the Error
Correction Code (ECC) module of the SSD controller. As
pages in the same block have similar retention characteristics,
once an error is found, the entire physical block is erased and
re-programmed with corrected content. Second, BeaconGNN
uses SLC Z-NAND flash, which has an extremely low raw
bit error rate (RBER) (less than 10−7) [19]. Consequently,
corruption instances are drastically rare, and any dangerous
runtime error will be caught by on-die checking (cf. Section
VI-E), imposing negligible impact on the overall reliability
and performance.

Additionally, flash blocks have a limited number of pro-
gram/erase (P/E) cycles. As P/E operations accumulate, a
block becomes increasingly prone to error and ultimately
wears out. To extend SSD lifespan, FTL employs a mecha-
nism called wear leveling to evenly distribute P/E operations
across all flash blocks. However, in the case of BeaconGNN,
where flash blocks accommodating DirectGraph are pinned
and isolated from conventional FTL operations, other regular
blocks end up bearing the brunt of most P/E cycles. To mitigate
this, when the discrepancy in P/E counts between DirectGraph
blocks and regular blocks reaches a certain threshold, the
firmware initiates a reclamation process. Specifically, it mi-
grates DirectGraph to clean regular blocks while updating the
embedded physical addresses to these new locations. Then old
DirectGraph blocks rejoin the regular FTL management.

G. End-to-end processing

BeaconGNN operates in two modes, namely regular-I/O
and acceleration modes. In regular-I/O mode, it handles reg-
ular storage requests, DirectGraph construction (cf. Section
VI-A), and preparation of GNN task (cf. Section VI-D). In
acceleration mode, it receives mini-batched jobs from the host
and starts execution. During this period, any incoming regular
storage requests are deferred to the end of the current mini-
batch. Note that, due to the small size of DirectGraph metadata
and GNN task data, the page table remains in SSD-DRAM
without swapping to flash, allowing BeaconGNN to serve
regular storage requests quickly even in acceleration mode.

VII. EVALUATION

A. Experiment setup

Evaluation platforms. We construct six GNN acceleration
systems and evaluate their performance behaviors.

Global configuration data

Hop Hop-i sample
count

Feature
length

Sample parameters
Sample
count

OrderBatch id Last
node id Hop id

Sample results
Last

node idBatch id Hop id Address Feature vectorSample
count

Cmd,
vec?

Current
node id

Fig. 13: Data transfer for customized ONFI commands. Data
in deep grey are repeated; data in light grey is optional.

• CPU-centric (CC): The host controls the execution of the
entire GNN task. It samples neighbors on the host CPU and
performs GNN computation on a discrete DNN accelerator.
Neighbor lists and feature vectors are retrieved via the block
device interface and transferred through the PCIe bus.
• BeaconGNN-1.0 (BG-1): It combines state-of-the-art ISC
designs to offload the entire GNN task (cf. Section III). It
samples neighbors with SSD processor cores and utilizes an
accelerator on SSD-bus for GNN computation.
• BG-DG: This design extends BG-1 with DirectGraph to
eliminate multi-level address translations. It offloads neighbor
sampling as a single NVMe command and relaxes the hop-
by-hop ordering constraint.
• BG-SP: This design extends BG-1 with die-level samplers.
Only retrieved features and sampled neighbors are transferred
over flash channels to improve the throughput of flash backend.
• BG-DGSP: It combines features of BG-DG and BG-SP.
• BeaconGNN-2.0 (BG-2): This design extends BG-DGSP
with command routing at the channel level and thus enables
hardware-automated backend I/O processing.
Performance modeling. To flexibly model the various systems
above, we implement an event-driven cycle-accurate simulator
in Python. Our simulator is inspired by existing works such
as SimpleSSD [18] and MQSim [67]. It accurately models
the latency of traditional SSD components (i.e., embedded
processor cores, SSD DRAM, and multi-level flash backend)
and the customized multi-level processing engines introduced
by our design. Specifically, the SSD-level and PCIe discrete
DNN accelerators are modeled using the systolic array simu-
lator ScaleSim-2.0 [61]. The SSD-level accelerator is config-
ured to meet SSD resource budgets [51], while the discrete
accelerator is configured as a server-scale TPU [26], which
has comparable performance and higher energy efficiency than
GPUs for GEMM workloads, and represents the state-of-the-
art solution in the traditional Von Neumann architecture. The
detailed configurations are listed in Table II.
Area and Power estimation. We model the power of tradi-
tional SSD components with McPAT [46] and DRAMPower
[4], similar to what SimpleSSD does. To estimate the area
and power of die-level and channel-level processing engines,
we implement them in Verilog HDL and synthesize them
by using the Synopsys Design Compiler [66] at openPDK
40nm technology node [1]. The router logic for all channels
brings in total 1.26% additional area to the SSD controller [2]
while the sampler (including configuration registers and the
TRNG) takes less than 0.1% area of the ULL flash die [9].
For DNN accelerators, we estimate the energy consumption

Simulation Configuration
Controller &

Host I/F
4 ARM Cortex-A9 Cores

NVMe, PCIe 4.0 ×4
DRAM DDR4-3200, 25.6 GB/s, 1GB

Flash
Memory

16 Channels, 4 Packages, 2 Dies, 2 Planes
1024 Blocks, 1024 Pages, Page size = 4KB

NV-DDR3 800MT/s, 8bit Channel Bus

SSD-level
Accelerator

64× 64 systolic array, 64-width vector unit
6MB shared scratchpad, precision FP16

area 27.2 mm2, frequency 800MHz

Discrete
Accelerator

128× 128 systolic array, 128-width vector unit
32MB shared scratchpad, precision FP16

frequency 1GHz
Timing

Parameters
page read latency=3 µs

host-side software stack latency=10 µs

Energy
Parameters

Operation Voltage = 3.3 V
IREAD, IPROG, IERASE = 25 mA

IBUSIDLE = 5mA, ISTDBY = 10 µA
PCIe PHY=7.5 pJ/bit [47]

host memory read/write=40 pJ/bit sampler=5.23 mW

TABLE II: System simulation configurations.

Dataset Graph structure FeaturesNodes Edges Avg degree
Reddit 37.3M 53.9B 1445 602
Amazon 265.9M 79.8B 300 200
Movielens 22.2M 59.2B 2666 30
OGBN 179.1M 5.0B 28 32
PPI 9.1M 8.8B 965 256

TABLE III: GNN dataset information.

of SRAM with CACTI-7.0 [3] in the 32nm technology node
while scaling the energy of arithmetic units also to 32nm [63].
Workloads. To evaluate our approach, we adopted the same
large-scale GNN datasets as [40], taken from Pytorch Geo-
metric [15]. We also follow the same methodology as [40] to
synthesize benchmarks by scaling up real datasets. The details
of these benchmarks are listed in Table III.

To prepare the datasets for testing, we convert each of them
into the DirectGraph format and store them entirely in the
SSD. Nodes in the graph are represented as INT-32 scalar,
while features are represented in the form of FP-16 vectors,
with the dimension specified by the respective dataset.

We adopt a GNN model that operates on 3-hop subgraphs
with 3 neighbors sampled for each node (i.e., a total of 40
nodes in the generated subgraph for each target node). We
use vector sum as the aggregation function and a perception
layer for embedding updates. All intermediate embeddings are
represented by 128-dimensional FP-16 vectors.

B. Performance improvement

Throughput. Figure 14 compares the throughput of different
platforms on five workloads. The results are normalized to the
baseline CC. We first evaluate two prior designs (i.e., Smart-
Sage and GList) individually, which offload data sampling and
GNN computation respectively. Compared to CC, they achieve
2.11×, 1.42× throughput on average. BG-1, which combines
their solutions without further optimizations, achieves 2.35×
throughput on average. BG-DG has a marginal improvement
over BG-1, because the high latency of transferring whole
pages suppresses the flash chip utilization at a low level.

reddit amazonmovielens ogbn PPI
0

1

2

3
N

or
m

.
th

ro
u

gh
pu

t CC BG-1 BG-DG

SmartSage GList

reddit amazonmovielens ogbn PPI
0

5

10

15

20

25

30
 BG-SP BG-DGSP BG-2

Fig. 14: Throughput on five large-scale GNN datasets.

BG-SP samples nodes and features near flash dies and thus
breaks this bottleneck, thereby achieving a giant speedup of
5.47× over BG-1. Furthermore, in BG-SPDG, the out-of-
order sampling takes effect and brings an additional 20%
improvement. Finally, BG-2 removes the flash firmware from
the data preparation path, outperforming BG-DGSP by 41%
and obtaining an overall 21.70× speedup.
Flash resource utilization. To understand the root causes for
the performance difference among BG-SP, BG-DGSP, and
BG-2, we first delve into their flash resource utilization. Figure
15(a-e) depict the number of active flash channels and dies
over time. BG-SP contains three remarkable low-utilization
valleys. They correspond to the sampling barriers, where one
hop of sampling is about to finish, and thus many idle flash
resources are wasted. In contrast, BG-DGSP has exhibited
more consistent high utilization ever since the beginning. This
is because resources that should have been idle in BG-SP
are utilized by samplings of later hops prior to the end of
the current hop. However, both BG-SP and BG-DGSP have
low utilization compared to the total available resources (16
channels, 128 dies). Compared to BG-SP, BG-2 significantly
increases the utilization for both flash channels and dies (by
76%) and effectively reduces the total sampling latency (by
78%) for most datasets. This massive leap is achieved by
removing flash firmware from the sampling path.

However, die utilization when running reddit and PPI
is low even with BG-2. This is because these workloads
have high-dimensional features whose accumulated channel-
transfer time outweighs the die-read time. Similarly, channel
utilization in movielens and OGBN is low because their
features are short and transfer quickly, making reading flash
dies the bottleneck. amazon exhibits the highest utilization
of both flash channels and dies, and its average degree and
feature length are representative in common large-scale GNNs.
Therefore, we use amazon in later experiments.
Overall latency breakdown. Figure 15f shows the latency
breakdown with amazon workload. For baseline CC, the
PCIe transfer among the host, the SSD, and the accelerator
takes a large part of the entire latency because the PCIe
link bandwidth (even high-end Gen4×4) is lower compared
to the internal bandwidth in SSD. BG-1 eliminates most
PCIe transfer and spends the most time on the flash; BG-DG
supports the DirectGraph feature, which nevertheless helps
little with this high latency. From BG-SP to BG-2, flash I/O
latency gradually decreases. We also observe that the host-side
delay is just a minor part of total latency, and most latency

reductions come from optimizing the flash I/O.
Hop timeline. Figure 16 shows the timeline of different hops
in the data preparation stage. A GNN with k hops of neighbors
performs k+1 steps: k samplings and the kth-hop feature
retrieval. For BG-1 and BG-SP, these hops are performed in
strict order with distinct gaps between, and each hop is longer
than its prior one. BG-DG, BG-DGSP, and BG-2 overlap these
hops and thus achieve lower latency. Among them, BG-2 has
the shortest overall time by creating the largest overlap.
command latency breakdown. Figure 17 shows the latency
breakdown of a flash command. The lifetime start/end point
is the time when its address information/result is available
at the frontend controller. On all the examined platforms,
the command consumes only a small portion of the lifetime
on its own flash processing. However, a large portion of its
lifetime is wasted by waiting (wait_before_flash and
wait_after_flash) due to the high contention of flash
I/O resources. BG-SP drastically reduces the waiting time of
both types by cutting down most flash transfers. BG-DG and
BG-DGSP have 41%, 42% longer wait_before_flash
than BG-1 and BG-DG, respectively. This is because Direct-
Graph allows more commands to be ready to issue at each
moment, and as the number of ready commands increases, the
waiting latency turns out to accumulate. Finally, BG-2 imple-
ments specialized hardware rather than embedded processor
cores to process sampling commands, resulting in a 68% wait
time reduction compared to BG-DGSP.

C. Sensitivity test

In this subsection, we examine the sensitivity of our design.
For each test in Figure 18, we keep the same configuration
on all BG-X platforms and vary one system/architecture con-
figuration to observe the effect. The results of each test are
normalized to the lowest point.
Batch size. We sweep the mini-batch size in the (32, 64,
128, 256) range. BG-1 and BG-DG keep low regardless of
the batch size; BG-SP gradually gets close to BG-DGSP
with the increasing batch size, indicating that a large batch
alleviates the underutilized sampling valley; BG-DGSP itself
converges to a limit imposed by the processing capability
of flash firmware; BG-2 scales best and shows no obvious
convergence in our test range.
Channel bandwidth. We configure the channel bandwidth
to other common values: 333 MB/s for low-end SSDs, 1600
MB/s for high-end SSDs, and 2400 MB/s for state-of-the-art
models. BG-1 and BG-DG improves significantly with the in-
creasing bandwidth because page-granular channel transfer is
their biggest bottleneck; BG-SP and BG-DGSP are constraint
by the flash firmware processing; BG-2 improves little with
bandwidths higher than 800 MB/s, because the total effective
throughput of flash dies already saturates.
Controller core number. We vary the number of SSD
embedded-processor cores from 1 to 8. BG-SP and BG-DGSP
are initially close to the baseline, but gradually widen the gap
with more cores added; BG-2 is not affected by the number

4

8

12

16
#

 A
ct

iv
e

 c
h

a
nn

e
l BG-SP BG-DGSP BG-2 BG-SP BG-DGSP BG-2

0 100 200 300 400 500 600

16

32

48

64

Time (ms)

#
 A

ct
iv

e
 d

ie

(a) Reddit.

4

8

12

16

#
 A

ct
iv

e
 c

h
a

nn
e

l BG-SP BG-DGSP BG-2

0 100 200 300 400

20
40
60
80

100
120

#
 A

ct
iv

e
 d

ie

Time (ms)
(b) Amazon.

1

2

3

#
 A

ct
iv

e
 c

h
a

nn
e

l BG-SP BG-DGSP BG-2

0 100 200 300 400

20
40
60
80

100
120

#
 A

ct
iv

e
 d

ie

Time (ms)
(c) Movielens.

1

2

3

4

#
 A

ct
iv

e
 c

h
a

nn
e

l BG-SP BG-DGSP BG-2

0 100 200 300

20
40
60
80

100
120

#
 A

ct
iv

e
 d

ie

Time (ms)
(d) OGBN.

4

8

12

16

#
 A

ct
iv

e
 c

h
a

nn
e

l BG-SP BG-DGSP BG-2

0 100 200 300

20
40
60
80

100
120

#
 A

ct
iv

e
 d

ie

Time (ms)
(e) PPI.

CC BG-1 BG-DG
BG-SP

BG-DGSP
BG-2

0

1

2

3

4

22

23

24

57

58

La
te

n
cy

 (
×

10
0
ms

)

 DNN compute
 PCIe transfer
 Flash I/O
 Host delay

(f) Amazon overall latency breakdown.

Fig. 15: (a-e) shows the number of active flash channels/chips during the stage of GNN data preparation for five datasets,
respectively. (f) shows the breakdown of the overall latency to complete a batch of processing for amazon workload.

BG-1
BG-D

G
BG-S

PBG-D
GSP
BG-2

0 200 400 600 800 1000 2200 2400
Hop execution timeline (ms)

 hop_0 hop_1 hop_2 hop_3

Fig. 16: Hop execution timeline in GNN data preparation.

BG-1
BG-DG
BG-SP

BG-DGSP
BG-2

0 100 200 300 400 500 600

Command latency breakdown (ms)

 wait_before_flash
 flash read
 wait_after_flash
 channel_transfer

Fig. 17: Sample command latency breakdown.

of cores, but the gap between it and BG-DGSP narrows with
the increasing number of cores.
Flash channel number. We keep the die number per channel
constant and vary the channel number. BG-1 and BG-DG con-
stantly improve as the number of channels increases, as more

channels provide higher bandwidth for both flash read and
transfer; BG-SP and BG-DGSP show improvement only with
low channel numbers, because firmware processing quickly
becomes the primary constraint after 8 channels; BG-2’s linear
scaling stops at 16 channels because at this point the total
channel bandwidth approaches the read/write bandwidth of
SSD DRAM; as the channel bandwidth continues growing,
the DRAM transfer becomes the bottleneck.
Flash die number. We keep the number of channels constant
and vary the number of dies per channel. BG-1 and BG-DG
keep low, showing that page-granular transfer is inefficient
even for two dies. BG-SP and BG-DGSP increase first and
finally converge to the firmware-processing limit, while BG-2
scales linearly until 16 dies/channel when the channel cannot
provide enough bandwidth to transfer for all dies.
Flash page size. We vary the size of flash pages from 2 KB
to 16 KB. BG-1 and BG-DG perform better with small pages
due to less read amplification; BG-SP and BG-DGSP slightly
improve with larger pages because more neighbors are stored
in one page, and fewer pages need to be read; BG-2 shows
no significant variance for different page sizes.

D. Energy improvement
Figure 19 shows the energy breakdown/efficiency for

amazon on all simulated platforms. CC spends 57% of total
energy to transfer data outside storage. BG-1 and BG-DG,
although limiting data transfer within the storage, still transfer
entire pages to the SSD internal DRAM, which consumes
75% of total energy. BG-SP, BG-DGSP, and BG-2 eliminate

32 64 128 256
2
4
6
8

10
12
14

N
o

rm
. t

hr
ou

gh
p

ut
BG-1 BG-2 BG-DG
BG-SP BG-DGSP

(a) Batch size.
800 1600 2400400

0
4
8

12
16
20
24
28

N
o

rm
. t

hr
ou

gh
p

ut

BG-1 BG-2 BG-DG
BG-SP BG-DGSP

(b) Channel bandwidth (MB/s).
1 2 4 8

0
2
4
6
8

10
12

N
o

rm
. t

hr
ou

gh
p

ut

BG-1 BG-2 BG-DG
BG-SP BG-DGSP

(c) # Embedded processor core.

4 8 16 32
0

10

20

30

40

N
o

rm
. t

h
ro

u
g

hp
ut

(d) # Flash channel.
2 4 8 16

0
2
4
6
8

10
12
14

N
o

rm
. t

h
ro

u
g

hp
ut

(e) # Flash die/channel.
2 4 8 16

0
8

16
24
32
40

N
o

rm
. t

h
ro

u
g

hp
ut

(f) Flash page size (KB).

Fig. 18: Sensitivity analysis.

24%

33%

33%

75% 75%

25% 26% 26%

3%

7% 7%

18% 17% 17%

8%
18% 18%

57% 57% 58%

CC BG-1 BG-DG
BG-SP

BG-DGSP
BG-2

0

20

40

60

80

100

E
ne

rg
y

br
ea

kd
ow

n
(%

)

 PCIe Main memory Compute
 Flash SSD DRAM

0

2

4

6

8

10
 Energy efficiency

axis

Fig. 19: Energy breakdown and effi-
ciency for amazon dataset.

TABLE IV: Raw data volume and inflation with DirectGraph.

Dataset reddit amazon movielens OGBN PPI
Raw size (GB) 242.6 397.2 221.8 30.02 37.1

Inflate ratio 2.8% 4.1% 3.5% 32.3% 3.5%

aforementioned energy consumption, spending 57% energy on
the flash backend, and 43% on the frontend DRAM buffer
and accelerator computation. For energy efficiency, BG-2
outperforms CC and BG-1 by 9.86× and 4.25×, respectively.
Finally, our calculation shows that BG-2 consumes 13.4W
power, on average, which is far below the 75W limitation of
PCIe power supply [59].

E. Performance on traditional SSD

We also evaluate benchmark performance using a simulated
20µs read-latency SSD. BG-1, BG-DG, BG-SP, BG-DGSP,
and BG-2 achieve on average 2.20×, 2.50×, 3.19×, 4.19×,
and 4.19× throughput improvement respectively against base-
line CC. Such results show that DirectGraph and die-level
sampling are effective not just for ULL flash, and these
two techniques together provide a significant advantage over
the BG-1 approach. Nevertheless, the negligible difference
between BG-DGSP and BG-2 shows that for such high read
latency, the firmware is sufficient for I/O processing and
channel-level routing is unnecessary.

F. DirectGraph storage efficiency

We calculate the storage inflation ratio for converting raw
datasets into DirectGraphs by using SSD configurations in
Table II. As illustrated in Table IV, all workloads except OGBN
incur minimal overhead when using DirectGraph formats. In
the case of OGBN, characterized by a low average degree of 28,
its DirectGraph consists mainly of short sections, remaining
unused space in flash pages even after section compaction.
However, given that most large-scale graphs follow the Den-
sification law [11], which means that the average degree
increases with the number of nodes, such space wastage exists
only in medium-scale graphs with small absolute volumes.

VIII. DISCUSSION

Limitation of SSD DRAM. In our design we use SSD DRAM
to buffer data between the flash backend and the accelerator,
but we notice that with high flash throughput, the DRAM
bandwidth becomes the bottleneck to GNN throughput. One
solution is to increase the memory bandwidth, using higher-
frequency DRAM or HBM; another is to enable direct I/O
between flash and accelerator SRAM, bypassing the DRAM.
Support for GNN query. Although in experiments we only
focus on GNN training, our design can also benefit real-time
GNN queries. GNN queries are small-batch inference requests,
for which the delay is critical. Our design reduces host-SSD
communication to one round and avoids the long congestion
time on flash channels, greatly improving the overall latency.
Practicality and future proof. BeaconGNN is practical re-
garding TDP and system-level TCO. For TDP, BeaconGNN
satisfies the PCIe power limitation and exhibits higher perfor-
mance per watt (cf. Section VII-D). For TCO, BeaconGNN
is more economical in terms of both capital and operational
expenditures. Specifically, its full-stage-ISC design saves PCIe
slots and expenses of deploying GPUs, and its system-level
energy reduction leads to lower running costs.

Moreover, as storage or compute requirements of GNN
workloads continue increasing, we expect that BeaconGNN
would scale out, forming computational storage arrays to
cope with such demands. Specifically, within a storage array,
multiple BeaconGNN SSDs communicate via direct P2P links
and work collaboratively. With such an architecture, both the
storage capacity and the computation power would increase
linearly with the number of SSDs, and the optimizations in
BeaconGNN continue to take effect.

IX. RELATED WORK

GNN acceleration. There are copious prior works on GNN
acceleration (both inference and training). Some works [17],
[65], [74], [78] design specialized compute engines and
dataflow to suit irregular GNN data pattern; some [5], [6], [55]
exploit the high feature sparsity and biased degree distribution

of GNN, to co-design the algorithm and hardware, and reduce
data access and compute redundancy; some [25], [75] utilize
emerging hardware such as ReRAM for their high parallelism
and energy efficiency. Specific to ISC for GNN, SmartSage
[40] and GList [44] are not designed to offload the entire
GNN taskflow to storage, whose limitations have been well
discussed in prior sections; GraphStore [39] stores both the
graph structure and the feature table in the SSD, but it
computes on a separate FPGA, with performance severely
constrained by the bandwidth of the FPGA-SSD P2P link.
Lastly, none of them removes host control or optimizes I/O
efficiency in the flash backend.
In-storage computing. In-storage computing (ISC) has been
proposed for many applications such as query processing
[38], [62], data analytics [20], [27], [68], [83], deep learning
inference/training [21], [32], [33], [48], [49], [51], [71], graph
processing [28], [53], and bioinformatics [52], [73]. While
existing research mainly focuses on processing data using
embedded cores or additional logic near the controller, there
remains a gap in exploring the potential of processing near
flash channels [51], [83] and dies [10], [21], [32]. To the
best of our knowledge, BeaconGNN is the first architecture
to exploit processing at multiple levels of SSD hierarchy,
with channel transfer, I/O communication, and computation
optimized altogether in a single design.

X. CONCLUSION

In this paper, we explore the design of offloading the
complete taskflow of large-scale GNN to ULL flash. We
identify that the strict GNN neighbor sampling order, the page-
granular flash channel transfer, and the firmware-based flash
request processing can become obstacles to high performance.
To address these issues, we propose BeaconGNN, an out-
of-order streaming in-storage computing system. It lifts the
in-order graph sampling restriction with a novel GNN graph
format, improves the flash channel transfer efficiency by
sampling neighbors at the flash die level, and accelerates the
flash request processing by routing commands directly among
channels. BeaconGNN improves the throughput and energy
efficiency by up to 11.6× and 4×, respectively, compared to
the state-of-the-art ISC design.

ACKNOWLEDGEMENT

Yuyue Wang is supported by Samsung under the Center
for Domain-Specific Computing (CDSC). Dr. Jie Zhang is
supported in part by the National Key Research and Develop-
ment Program of China under Grant No. 2023YFB4502702,
the Natural Science Foundation of China under Grant No.
62332021, and the Fundamental Research Funds for the Cen-
tral Universities, Peking University.

REFERENCES

[1] “Openpdks - open circuit design,” http://opencircuitdesign.com/open
pdks/.

[2] ARM, “Cortex-A9,” https://developer.arm.com/Processors/Cortex-A9.

[3] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[4] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens,
“Drampower: Open-source dram power & energy estimation tool,” URL:
http://www.drampower.info, vol. 22, 2012.

[5] C. Chen, K. Li, Y. Li, and X. Zou, “Regnn: A redundancy-eliminated
graph neural networks accelerator,” in 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 429–443.

[6] C. Chen, K. Li, X. Zou, and Y. Li, “Dygnn: Algorithm and architecture
support of dynamic pruning for graph neural networks,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
1201–1206.

[7] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 1, pp. 181–192, 2009.

[8] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed
data processing,” in 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. IEEE, 2011, pp. 266–277.

[9] Choe, Jeongdong, “Comparison of Current 3D NAND Chip Cell Archi-
tecture,” https://www.flashmemorysummit.com/Proceedings2019/08-07-
Wednesday/20190807 FTEC-202-1 Choe.pdf, 2019.

[10] M. Chun, J. Lee, S. Lee, M. Kim, and J. Kim, “Pif: In-flash acceleration
for data-intensive applications,” in Proceedings of the 14th ACM Work-
shop on Hot Topics in Storage and File Systems, 2022, pp. 106–112.

[11] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 191–198.

[12] C. Dirik and B. Jacob, “The performance of pc solid-state disks (ssds) as
a function of bandwidth, concurrency, device architecture, and system
organization,” ACM SIGARCH Computer Architecture News, vol. 37,
no. 3, pp. 279–289, 2009.

[13] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb.” in CIDR, vol. 3,
2017, p. 3.

[14] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The world wide web
conference, 2019, pp. 417–426.

[15] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[16] C. Gao, X. Wang, X. He, and Y. Li, “Graph neural networks for rec-
ommender system,” in Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, 2022, pp. 1623–1625.

[17] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt et al., “Awb-gcn: A graph convolutional network
accelerator with runtime workload rebalancing,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 922–936.

[18] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir,
and M. Jung, “Amber: Enabling precise full-system simulation with
detailed modeling of all ssd resources,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 469–481.

[19] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing flash memory: Anomalies,
observations, and applications,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009, pp.
24–33.

[20] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho et al., “Biscuit: A framework for near-
data processing of big data workloads,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 153–165, 2016.

[21] S. Gupta, J. Morris, M. Imani, R. Ramkumar, J. Yu, A. Tiwari,
B. Aksanli, and T. Š. Rosing, “Thrifty: Training with hyperdimensional
computing across flash hierarchy,” in Proceedings of the 39th Interna-
tional Conference on Computer-Aided Design, 2020, pp. 1–9.

[22] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[23] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
impact and interplay of ssd parallelism through advanced commands,
allocation strategy and data granularity,” in Proceedings of the interna-
tional conference on Supercomputing, 2011, pp. 96–107.

[24] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified address
translation for memory-mapped ssds with flashmap,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
2015, pp. 580–591.

[25] Y. Huang, L. Zheng, P. Yao, Q. Wang, X. Liao, H. Jin, and
J. Xue, “Accelerating graph convolutional networks using crossbar-based
processing-in-memory architectures,” in 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 1029–1042.

[26] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, “A domain-specific supercomputer for training deep
neural networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–
78, 2020.

[27] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and
Arvind, “Bluedbm: An appliance for big data analytics,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3S, pp. 1–13, 2015.

[28] S.-W. Jun, A. Wright, S. Zhang, S. Xu et al., “Grafboost: Using ac-
celerated flash storage for external graph analytics,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 411–424.

[29] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing resource uti-
lization in many-chip solid state disks,” in 2014 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2014, pp. 524–535.

[30] M. Jung, E. H. Wilson III, and M. Kandemir, “Physically addressed
queueing (paq) improving parallelism in solid state disks,” ACM
SIGARCH Computer Architecture News, vol. 40, no. 3, pp. 404–415,
2012.

[31] B. S. Kim, J. Choi, and S. L. Min, “Design tradeoffs for {SSD} reli-
ability,” in 17th USENIX Conference on File and Storage Technologies
(FAST 19), 2019, pp. 281–294.

[32] J. Kim, M. Kang, Y. Han, Y.-G. Kim, and L.-S. Kim, “Optimstore:
In-storage optimization of large scale dnns with on-die processing,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 611–623.

[33] S. Kim, Y. Jin, G. Sohn, J. Bae, T. J. Ham, and J. W. Lee, “Behemoth:
a flash-centric training accelerator for extreme-scale {DNNs},” in 19th
USENIX Conference on File and Storage Technologies (FAST 21), 2021,
pp. 371–385.

[34] T. Y. Kim, D. H. Kang, D. Lee, and Y. I. Eom, “Improving performance
by bridging the semantic gap between multi-queue ssd and i/o virtual-
ization framework,” in 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST). IEEE, 2015, pp. 1–11.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[36] S. Koh, J. Jang, C. Lee, M. Kwon, J. Zhang, and M. Jung, “Faster
than flash: An in-depth study of system challenges for emerging ultra-
low latency ssds,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2019, pp. 216–227.

[37] S. Koh, C. Lee, M. Kwon, and M. Jung, “Exploring system challenges
of ultra-low latency solid state drives,” in 10th {USENIX} Workshop on
Hot Topics in Storage and File Systems (HotStorage 18), 2018.

[38] G. Koo, K. K. Matam, T. I, H. K. G. Narra, J. Li, H.-W. Tseng,
S. Swanson, and M. Annavaram, “Summarizer: trading communication
with computing near storage,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
219–231.

[39] M. Kwon, D. Gouk, S. Lee, and M. Jung, “{Hardware/Software}{Co-
Programmable} framework for computational {SSDs} to accelerate
deep learning service on {Large-Scale} graphs,” in 20th USENIX
Conference on File and Storage Technologies (FAST 22), 2022, pp. 147–
164.

[40] Y. Lee, J. Chung, and M. Rhu, “Smartsage: training large-scale graph
neural networks using in-storage processing architectures,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 932–945.

[41] Y. Lee, Y. Kwon, and M. Rhu, “Understanding the implication of non-
volatile memory for large-scale graph neural network training,” IEEE
Computer Architecture Letters, vol. 20, no. 2, pp. 118–121, 2021.

[42] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “Pytorch-biggraph: A large scale graph embedding
system,” Proceedings of Machine Learning and Systems, vol. 1, pp. 120–
131, 2019.

[43] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, 2005, pp. 177–187.

[44] C. Li, Y. Wang, C. Liu, S. Liang, H. Li, and X. Li, “Glist: Towards
in-storage graph learning.” in USENIX Annual Technical Conference,
2021, pp. 225–238.

[45] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.
Gunawi, “The {CASE} of {FEMU}: Cheap, accurate, scalable and
extensible flash emulator,” in 16th USENIX Conference on File and
Storage Technologies (FAST 18), 2018, pp. 83–90.

[46] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd annual ieee/acm international symposium on microarchitecture,
2009, pp. 469–480.

[47] S. Li, F. Spagna, J. Chen, X. Wang, L. Tong, S. Gowder, W. Jia,
R. Nicholson, S. Iyer, R. Song et al., “A power and area efficient 2.5-16
gbps gen4 pcie phy in 10nm finfet cmos,” in 2018 IEEE Asian Solid-
State Circuits Conference (A-SSCC). IEEE, 2018, pp. 5–8.

[48] S. Li, F. Tu, L. Liu, J. Lin, Z. Wang, Y. Kang, Y. Ding, and Y. Xie,
“Ecssd: Hardware/data layout co-designed in-storage-computing archi-
tecture for extreme classification,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–14.

[49] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X. Li, “Cognitive {SSD}:
A deep learning engine for {In-Storage} data retrieval,” in 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019, pp. 395–410.

[50] C.-Y. Liu, J. Kotra, M. Jung, and M. Kandemir, “{PEN}: Design
and evaluation of {Partial-Erase} for 3d {NAND-Based} high density
{SSDs},” in 16th USENIX Conference on File and Storage Technologies
(FAST 18), 2018, pp. 67–82.

[51] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. De Gonzalo, Y. Li,
H. Franke, J. Xiong, J. Huang, and W.-m. Hwu, “Deepstore: In-storage
acceleration for intelligent queries,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
224–238.

[52] N. Mansouri Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Goll-
witzer, D. Senol Cali, C. Firtina, H. Mao, N. Almadhoun Alserr et al.,
“Genstore: a high-performance in-storage processing system for genome
sequence analysis,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 635–654.

[53] K. K. Matam, G. Koo, H. Zha, H.-W. Tseng, and M. Annavaram,
“Graphssd: graph semantics aware ssd,” in Proceedings of the 46th
international symposium on computer architecture, 2019, pp. 116–128.

[54] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman,
“Marius: Learning massive graph embeddings on a single machine,” in
15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI) 21, 2021.

[55] S. Mondal, S. D. Manasi, K. Kunal, and S. S. Sapatnekar, “Gnnie:
Gnn inference engine with load-balancing and graph-specific caching,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 565–570.

[56] NVM Express, Inc., “Nvme 2.0 specification,” https://nvmexpress.org/
specifications/, 2021.

[57] G. Panagopoulos, G. Nikolentzos, and M. Vazirgiannis, “Transfer graph
neural networks for pandemic forecasting,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 6, 2021, pp. 4838–
4845.

[58] Y. Park, S. Min, and J. W. Lee, “Ginex: Ssd-enabled billion-scale graph
neural network training on a single machine via provably optimal in-
memory caching,” in Proceedings of the VLDB Endowment, vol. 15,
no. 11, 2022.

[59] PCI-SIG. (2017) Pci express base specification 4.0. [Online]. Available:
https://pcisig.com/specifications

[60] Z. Ruan, T. He, and J. Cong, “{INSIDER}: Designing {In-Storage}
computing system for emerging {High-Performance} drive,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
379–394.

[61] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of
dnn accelerators using scale-sim,” in 2020 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). IEEE,
2020, pp. 58–68.

[62] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu,
and S. Swanson, “Willow: A {User-Programmable}{SSD},” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), 2014, pp. 67–80.

[63] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 97–108, 2014.

[64] C. Song, B. Wang, Q. Jiang, Y. Zhang, R. He, and Y. Hou, “Social
recommendation with implicit social influence,” in proceedings of the
44th international ACM SIGIR conference on research and development
in information retrieval, 2021, pp. 1788–1792.

[65] J. R. Stevens, D. Das, S. Avancha, B. Kaul, and A. Raghunathan, “Gn-
nerator: A hardware/software framework for accelerating graph neural
networks,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 955–960.

[66] Synopsys, “Design compiler,” https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/design-compiler-
graphical.html.

[67] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
“{MQSim}: A framework for enabling realistic studies of modern
{Multi-Queue}{SSD} devices,” in 16th USENIX Conference on File
and Storage Technologies (FAST 18), 2018, pp. 49–66.

[68] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad,
V. Alves, and N. Bagherzadeh, “Catalina: in-storage processing ac-
celeration for scalable big data analytics,” in 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP). IEEE, 2019, pp. 430–437.

[69] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[70] R. Waleffe, J. Mohoney, T. Rekatsinas, and S. Venkataraman, “Marius-
gnn: Resource-efficient out-of-core training of graph neural networks,”
in Proceedings of the Eighteenth European Conference on Computer
Systems, 2023, pp. 144–161.

[71] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks,
and G.-Y. Wei, “Recssd: near data processing for solid state drive
based recommendation inference,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 717–729.

[72] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: a survey,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1–37, 2022.

[73] W. Xu, J. Kang, and T. Rosing, “A near-storage framework for boosted
data preprocessing of mass spectrum clustering,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022, pp. 313–318.

[74] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 15–29.

[75] T. Yang, D. Li, Y. Han, Y. Zhao, F. Liu, X. Liang, Z. He, and L. Jiang,
“Pimgcn: a reram-based pim design for graph convolutional network
acceleration,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 583–588.

[76] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2018, pp.
974–983.

[77] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2018, pp.
974–983.

[78] H. You, T. Geng, Y. Zhang, A. Li, and Y. Lin, “Gcod: Graph convolu-
tional network acceleration via dedicated algorithm and accelerator co-
design,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2022, pp. 460–474.

[79] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir, and M. Jung, “Nvmmu:
A non-volatile memory management unit for heterogeneous gpu-ssd

architectures,” in 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE, 2015, pp. 13–24.

[80] J. Zhang and M. Jung, “Zng: Architecting gpu multi-processors with
new flash for scalable data analysis,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 1064–1075.

[81] J. Zhang, M. Kwon, H. Kim, H. Kim, and M. Jung, “Flashgpu: Placing
new flash next to gpu cores,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[82] Q. Zhao, J. Chen, M. Chen, S. Jain, A. Beutel, F. Belletti, and E. H.
Chi, “Categorical-attributes-based item classification for recommender
systems,” in Proceedings of the 12th ACM conference on recommender
systems, 2018, pp. 320–328.

[83] C. Zou and A. A. Chien, “Assasin: Architecture support for stream
computing to accelerate computational storage,” in 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2022,
pp. 354–368.

