BeaconGNN: Large-Scale GNN Acceleration with
Asynchronous In-Storage Computing

Yuyue Wang?, Xiurui Pan?, Yuda An?,
Jie Zhang?, Glenn Reinman'

1
Samuel
UCLA School of Engineering

N) PEKING
) UNIVERSITY

What is GNN, why does it matters

* Graph, a universal structure
* Social network
 Recommendation system
* Pandemic...

* Graph information F my
* Node: a vector of feature ~ @ ~
* Edge: relation between nodes -

Nodes and edges provide rich information to analyze

They used to be processed in separate

Page Rank

Data type

Edge (connection)

Representation

Adjacency matrix, ...

Analysis method

Classical graph analytics algorithms (e.g. page rank)

Node

Feature vectors

Machine learning to extract high level features

They used to be processed in separate

Hidden Hidden Hidden Ot
fayer 1 fayer 2 fayver N faver

Page Rank

Data type Representation Analysis method

Edge (connection) | Adjacency matrix, ... [Classical graph analytics algorithms (e.g. page rank)

Node Feature vectors Machine learning to extract high level features

Graph neural network (GNN)
bridges the two domains

Data preparation

| node neighbors ,'("
4 v .
Subgraph ,' \

__

\\\\\‘_’j
< J :
. . N ' Hhop1 sample: 3 g
#hop2 sample: 2| __~

—

Graph neural network (GNN)
bridges the two domains

Data preparation

Feature table

@ Fetch . 5
. feature vectors 5 R
! v 4 .
. | Sampled vectors

__

Graph neural network (GNN)
bridges the two domains

__

GNN extracts both graph structure and node features

System-level challenge of GNN

* The dataset is getting larger and larger

500 Million 200 (Int16) 50 Billion (200 + 400) GB

* Easily exceeds the Server DIMM Capacity

Several hundreds of GB

System-level challenge of GNN

* The dataset is getting larger and larger

500 Million 200 (Int16) 50 Billion (200 + 400) GB

* But entirely fits into a single Solid-State Drive (SSD)!

Several TBs

SSD: The way they were

Capacity
[N x100 GB] _arge number of flash chips

. (

|) (
Demux
| Procesor e -

| _ Y, \ Yy

1

SSD internal architecture (simplified)

SSD: The way they were

High flash sensing delay

: (.

- N “
[”40-100 us read] PCle Demux

[1\ J I\ J

SSD internal architecture (simplified)

SSD: The way they were

Narrow PCIe 3.0 x4 bandwidth

[

|) (
i orev [Ty Fosh g Flash g

~

PCle Demux
Throughput DU J C)
[<4 GB/s read] SSD internal architecture (simplified)

SSD: The way they were

Block granular interface

. (.

: 1L)
Demux
" Prcessr) e -

[1\ J I\ J

SSD internal architecture (simplified)

Interface

| 4KBblock |

SSD: The way they were

[

|) [
ML_orav_{IGEyy Flash g Flash

~

PCle Demux
Throughput DU J C)
[<4 GB/s read] SSD internal architecture (simplified)
Interface Transferring data outside SSD is slow,

[4 KB block] and causes read amplification! UCLA

In-storage computing

Two types of offloads:
* Early predicate execution

Demux .
: [Processor] /Mux M E.g. Database filter

BN J * Compute in-situation
E.g. Database aggregate

FPGA/ASIC/Multi-core

offload computations Both reduces data movement

SSD internal architecture w/ compute units (simplified)

SSD: The way they are

Slow PCle interconnect?
* PCle 4.0: 2GB/s per lane!
* PCle 5.0: even faster
* Not a convincing motivation any longer

SSD: The way they are

Flash are high latency media?
e Ultra-low latency Z-SSD (3 pus flash read)
* More pressure to host storage stack (~ 10 us)

SSD: The way they are

Technology shifts bring new
challenges and opportunities!

Challenge 1: host-SSD communication

—
(D
Target | .
(0) I| GNN subgraph generation:
| . . .
j | iterations of node sampling
|
(3)

L —

Hop 1

Challenge 1: host-SSD communication

GNN subgraph generation:
iterations of node sampling

Challenge 1: host-SSD communication

%2 GNN subgraph generation:
‘ iterations of node sampling

Hop1 Hop2 Hop 3

Challenge 1: host-SSD communication

To sample a new hop: need the host to locate

Node id

d

/" Neighbor list location)
Host-side (file offset)
Runtime & OS 1

Flash location

_(LBA))

Challenge 1: host-SSD communication

5

2

* Resubmission requests traverse
the whole OS stack

* Layer batch amortizes
communication, but brings barriers

Active flash die

0

3 10 15 20 25
Time (X 100us)

Challenge 2: SSD channel amplification

* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s

Challenge 2: SSD channel amplification

* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s

Die timeline (x4)

< Read > T < Read >
3us 20us 3us

Channel timeline
{ Transfer X Transfer X Transfer > Transfer -
5uUs 5uUs 5us 5us

Challenge 2: SSD channel amplification

MNommal S50 el | flash

o

t

* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s

Die timeline (x4)

@ SETITISTISRPReS @

3us 20us 3us
Channel timeline

{ Transfer X Transfer X Transfer X Transfer -
dus dus dus 5us

Jou
o

= N W
o o O
DI'I.I.I

1
1 2 3 4 5 6 T 8
Actve llash die

Avg, latency (us) Norm. throughput

Challenge 2: SSD channel amplification

MNommal S50 el | flash

t

* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s

Die timeline (x4)

@ SETITISTISRPReS @

3us 20us 3us
Channel timeline

{ Transfer X Transfer X Transfer X Transfer -
dus dus dus 5us

Jou
o

= N W
o o O
DI'I.I.I

|
1 2 3 4 5 6 T 8
Actve llash die

Flash dies are underutilized ' . :
Flash channels transfer useless data Limited improvement UCLA

E
=
5
:
]
€
-
=
z
g
1y
g
=
3
-

Challenge 3: Firmware-based backend I/0

* Scheduler polls 'ssD o
/O completion . €«—>» data <«—> control/addr

Flash firmware

! Hardware

' SSSS threads
" Flash I/O Pq """"""""""
__scheduler 4

SSD

Challenge 3: Firmware-based backend I/0

Dependency queue

i(—)data <—> control/addr HH |

Wait req queue

per (channel, die)

* Manage request | Flash firmware ((rrawarsy || T EFE
: threads Empty req pool
M !

. Flash /O : .
__Scheduler i ;i
IVIAa\na é' "

ge r'questsw ;!

Request queues

Challenge 3: Firmware-based backend I/0

<«—>» data <«——> control/addr

Flash firmware @
i _ <

* Locate next ,
request address | = R

\ i
Mapping table/

Challenge 3: Firmware-based backend I/0

Controller has 1-4 cores, while backend
flash has about 100 dies in active

Huge mismatchl!

Optimization 1: Address translation fusion

Node id

Neighbor list location
(file offset)

d

\ Flash location (LBA)

\

J

x Cross host-SSD resubmit

Optimization 1: Address translation fusion

Node id

[l] x Redundant FTL lookup

Flash location (PPA)

Optimization 1: Address translation fusion

Static graph with address mapping stored in flash

Primary secton S-page1 Secondary section
header i . | header
type length : i type length
node index - : node index
content - ----ETR?g-e--1---: content
neighbors ; : neighbor (m+1) addr
optional secondary ! neighbor (m+2) addr
section addrs 5 5
feaure vector | Bpage?
neighbor1addr p—mir—mmmm:\| | 77
neighbor m addr neighbor n addr

DirectGraph format

Optimization 2: In-flash sampling

Flash dies area budget
Add more control logic (offload sampling & vector retrieving)

Data b

Contral bu
Flash chip

ﬂ F
Multiplex interface

S

<«—>» existing path

ADDR register

v

CMD reqister

Status register

1

_)

Control logic

Area budget

v \

—» Data register Data register

Cache register | Cache register

Flash memory array

Optimization 2: In-flash sampling

FSM to sample node features, generate resubmit request

<«—>» existing path «<—>» data <«—> control, addr

Data b
Control bys 1A T
Flash chi GNN
p \ ADDR register configuration_) Sampler TRNG
AE Ct/ID ot vV \
| | 'COISEl [L5 Dataregister| | Data register

i X I

Status register

)

Multiplex interface > Control logic -

Cache register | Cache register
| |

Optimization 2: In-flash sampling

FSM to sample node features, generate resubmit request

. . sample
Example task: primary section ——5 nodes

Get: 3 nodes (primary section sample request), 1 resubmit
request to sample 2 nodes from a secondary section

Optimization 3: Hardware-based resubmission

Route commands between channels (n - 0)

<«—>» data <«—> control, addr

In0 |.. ‘\ Dispatch quete |
1 | = >>§ |
Crossbar = Sampling R Rt i sl
8 <« -mds — Parser |«
| (LSam le result
w : > ° - Channel
OUt nil (A " < Narmal-baca » channel |/O port flanng

Router at channel N

Optimization 3: Hardware-based resubmission

Route commands between channels (n - 0)

<—» data <«—> control, addr

In0 |. Mo ' Dispatch queue :
A Sampling E&.’\ round-robin
e — — >
1) cmds | issuer '

Crossbar E
<
\ i O A
1 < ' I — Channel
L_,_'Out nll ™ Normal page—» channel 1/0 port 1—)ransfer

Router at channel O

Overall architecture

* GNN runtime
* Interact w/ host
e Submit flash request
e Schedule DNN execution

<—>» data <«—> control, addr

v (Node i%/ Subgraph structure

GNN
model

\ 2 Ctrl
Core
Ctrl ¢
Accelerator Feature
A vectors

Overall architecture

Overall architecture

<—>» data <«—>» control, addr

y (Nodeid, PPA)
; ,'
) s
Accelerator (<> A < % X >
* Flash die LR~ S i
» Sample/Retrieval [[T 17| | |Sameler) | Sampler
* Generate new requests || LLShe Chip

Overall architecture

Overall architecture

<—>» data <«—>» control, addr

I
A\]

C(Zre > v ' |'Feature vectors,
v sampled node
Accelerator [«> ClEE .
A [
-
Flash interface
| v Samplecmd | |
Channel n Channel 1

e Flash interface Overall architecture

* Route resubmit commands
UCLA

Overall architecture

* Flash die
e Sample/Retrieval Hardware-based
* Generate new requests =~ request resubmission

e Flash interface
e Route resubmit commands

Evaluation

cC CPU-centric architecture, with PCle Accelerator
128x128 systolic array, 32 MB SRAM, 1 GHz

BG-1 Basic in-storage computing architecture

BG-DG | BG-1 with DirectGraph GNN format

BG-SP BG-1 with in-flash node sampling and vector retrieving

BG-2 BG-DGSP with inter-channel hw-based command

resubmission

Interface NVMe, PCle 4.0 x4

Controller | 4 ARM Cortex-A9 Cores

DRAM DDR4-3200, 25.6 GB/s, 1 GB

Flash 16 Channel, 8 Die/Channel, 4 KB Page
3 us read, 800 MB/s channel transfer

ISC ISC: 64x64 systolic array

Accelerator

6 MB SRAM, 800 MHz

Simulated platforms

Default SSD configuration

UCLA

Evaluation

e BG-SP === BG-DGSP == BG-2

-
N O

&~ 0o

Active channel

—_—
N
o

0 100 200
Time (us)

Flash utilization for Amazon (Nodes

265.9M, Avg. Degree 300, Feature 200)

300

400

— = NN W
o o

Norm. throughput
o Ul o W;

I cc I 5G-1 [8G-DGI BG-SP [1BG-DGSP[_]BG-2

o

=

reddit

amazon

movielens

ogbhn

PPI

Throughput on five large-scale GNN dataset

Evaluation

B rop O M hop 1 [hop 2 hop_3

1 I [I T,

0 200

400

600 800 1000
Hop execution timeline (pis)

" 2200 2400

B wait_before_flash

[flash read

[Jwait_after flash
[] channel_transfer

0 100 200 300 400 500 600

Command latency breakdown (us)

UCLA

Evaluation

[(]PcCle [Main memory [] Compute

58 _ [Flash [l SSD DRAM -~ Energy efficiency
= | | |DNN compute 100 e wu]'C
! [___|PCle transfer | :13% 18% _a’"s__
’5\ 24:‘ - FIaSh I/O T gso - \ 7% T% - 8
S o3| I Host delay = b7 B74 B8¥%
o L 1
T 22 260} ‘ 6
~— j . 'é,-_é "l'll
> “ E \ |
S 4 S40 LA : {4
= 2 \ 18 N7l h7%
@ 3 = ~
— 2f E20H L {2
1 W 2 6"
0 0 0
cC 8G" gG-P%G- D RG2 cC 86 peP%e-Fe-06%R62
Latency breakdown on amazon dataset Energy breakdown on amazon dataset

UCLA

Takeaway

e Technical shifts, from both device and interconnect,
break tradition of ISC design

* Control & Data path of traditional I/O can be a new
bottleneck

e Automating such paths with hardware can offer huge
performance benefit

	BeaconGNN: Large-Scale GNN Acceleration with Asynchronous In-Storage Computing
	What is GNN, why does it matters
	They used to be processed in separate
	They used to be processed in separate
	Graph neural network (GNN) bridges the two domains
	Graph neural network (GNN) bridges the two domains
	Graph neural network (GNN) bridges the two domains
	System-level challenge of GNN
	System-level challenge of GNN
	SSD: The way they were
	SSD: The way they were
	SSD: The way they were
	SSD: The way they were
	SSD: The way they were
	In-storage computing
	SSD: The way they are
	SSD: The way they are
	SSD: The way they are
	Challenge 1: host-SSD communication
	Challenge 1: host-SSD communication
	Challenge 1: host-SSD communication
	Challenge 1: host-SSD communication
	Challenge 1: host-SSD communication
	Challenge 2: SSD channel amplification
	Challenge 2: SSD channel amplification
	Challenge 2: SSD channel amplification
	Challenge 2: SSD channel amplification
	Challenge 3: Firmware-based backend I/O
	Challenge 3: Firmware-based backend I/O
	Challenge 3: Firmware-based backend I/O
	Challenge 3: Firmware-based backend I/O
	Optimization 1: Address translation fusion
	Optimization 1: Address translation fusion
	Optimization 1: Address translation fusion
	Optimization 2: In-flash sampling
	Optimization 2: In-flash sampling
	Optimization 2: In-flash sampling
	Optimization 3: Hardware-based resubmission
	Optimization 3: Hardware-based resubmission
	Overall architecture
	Overall architecture
	Overall architecture
	Overall architecture
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Takeaway

