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What is GNN, why does it matters

* Graph, a universal structure
* Social network
 Recommendation system
* Pandemic...

* Graph information F my
* Node: a vector of feature ~ @ ~
* Edge: relation between nodes -

Nodes and edges provide rich information to analyze




They used to be processed in separate

Page Rank

Data type

Edge (connection)

Representation

Adjacency matrix, ...

Analysis method

Classical graph analytics algorithms (e.g. page rank)

Node

Feature vectors

Machine learning to extract high level features




They used to be processed in separate
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Edge (connection) | Adjacency matrix, ... [ Classical graph analytics algorithms (e.g. page rank)

Node Feature vectors Machine learning to extract high level features




Graph neural network (GNN)
bridges the two domains

Data preparation
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Graph neural network (GNN)
bridges the two domains

Data preparation
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Graph neural network (GNN)
bridges the two domains

_________________________________________

__________________________________________

___________________________________________

GNN extracts both graph structure and node features




System-level challenge of GNN

* The dataset is getting larger and larger

500 Million 200 (Int16) 50 Billion (200 + 400) GB

* Easily exceeds the Server DIMM Capacity

Several hundreds of GB




System-level challenge of GNN

* The dataset is getting larger and larger

500 Million 200 (Int16) 50 Billion (200 + 400) GB

* But entirely fits into a single Solid-State Drive (SSD)!

Several TBs




SSD: The way they were
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SSD internal architecture (simplified)




SSD: The way they were

High flash sensing delay

: (.

- N “
[”40-100 us read ] PCle Demux

[ 1\ J I\ J

SSD internal architecture (simplified)




SSD: The way they were

Narrow PCIe 3.0 x4 bandwidth
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SSD: The way they were

Block granular interface
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SSD internal architecture (simplified)

Interface
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SSD: The way they were
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[ <4 GB/s read ] SSD internal architecture (simplified)
Interface Transferring data outside SSD is slow,

[ 4 KB block ] and causes read amplification! UCLA




In-storage computing

Two types of offloads:
* Early predicate execution

Demux .
: [Processor] /Mux M E.g. Database filter

BN J * Compute in-situation
E.g. Database aggregate

FPGA/ASIC/Multi-core

offload computations Both reduces data movement

SSD internal architecture w/ compute units (simplified)




SSD: The way they are

Slow PCle interconnect?
* PCle 4.0: 2GB/s per lane!
* PCle 5.0: even faster
* Not a convincing motivation any longer




SSD: The way they are

Flash are high latency media?
e Ultra-low latency Z-SSD (3 pus flash read)
* More pressure to host storage stack (~ 10 us)




SSD: The way they are

Technology shifts bring new
challenges and opportunities!




Challenge 1: host-SSD communication
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Challenge 1: host-SSD communication

GNN subgraph generation:
iterations of node sampling




Challenge 1: host-SSD communication

%2 GNN subgraph generation:
‘ iterations of node sampling

Hop1 Hop2 Hop 3




Challenge 1: host-SSD communication

To sample a new hop: need the host to locate

Node id

d

/" Neighbor list location )
Host-side (file offset)
Runtime & OS 1

Flash location

\_(LBA) )




Challenge 1: host-SSD communication

5

2

* Resubmission requests traverse
the whole OS stack

* Layer batch amortizes
communication, but brings barriers

# Active flash die

0

3 10 15 20 25
Time (X 100us)




Challenge 2: SSD channel amplification

* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s




Challenge 2: SSD channel amplification

* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s

Die timeline (x4)

< Read > ................ T ................ < Read >
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Channel timeline
{ Transfer X Transfer X Transfer > Transfer -
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Challenge 2: SSD channel amplification
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* Channel transfer rate: 800 MT/s
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Challenge 2: SSD channel amplification

MNommal S50 el | flash
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* Flash sense time: 3 ps
* Channel transfer rate: 800 MT/s

Die timeline (x4)
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Challenge 3: Firmware-based backend I/0

* Scheduler polls 'ssD o
/O completion . €«—>» data <«—> control/addr

Flash firmware

! Hardware

' SSSS threads
" Flash I/O Pq """"""""""
__scheduler 4

SSD

___________________________________________________________________




Challenge 3: Firmware-based backend I/0

Dependency queue

i(—)data <—> control/addr HH |

Wait req queue

per (channel, die)

* Manage request | Flash firmware ((rrawarsy || T EFE
: threads Empty req pool
M !

_______________

. Flash /O : .
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Request queues




Challenge 3: Firmware-based backend I/0

<«—>» data <«——> control/addr

Flash firmware @
i _ <

* Locate next ,
request address | = R

\ i
Mapping table/

___________________________________________________________________




Challenge 3: Firmware-based backend I/0

Controller has 1-4 cores, while backend
flash has about 100 dies in active

Huge mismatchl!




Optimization 1: Address translation fusion

Node id

Neighbor list location
(file offset)

d

\ Flash location (LBA)

\

J

x Cross host-SSD resubmit




Optimization 1: Address translation fusion

Node id

[ l ] x Redundant FTL lookup

Flash location (PPA)




Optimization 1: Address translation fusion

Static graph with address mapping stored in flash

Primary secton S-page1 Secondary section
header i . | header
type length : i type length
node index - : node index
content - ----ETR?g-e--1---: content
# neighbors ; : neighbor (m+1) addr
optional secondary ! neighbor (m+2) addr
section addrs 5 5
feaure vector | Bpage?
neighbor1addr p—mir—mmmm:\| | 77
neighbor m addr neighbor n addr

DirectGraph format




Optimization 2: In-flash sampling

Flash dies area budget
Add more control logic (offload sampling & vector retrieving)
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Optimization 2: In-flash sampling

FSM to sample node features, generate resubmit request

<«—>» existing path «<—>» data <«—> control, addr

Data b
Control bys 1A T
Flash chi GNN
p ................. \ ADDR register configuration_) Sampler TRNG
AE Ct/ID ot vV \
| | 'COISEl [ L5 Dataregister| | Data register
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Optimization 2: In-flash sampling

FSM to sample node features, generate resubmit request

. . sample
Example task: primary section ——5 nodes

Get: 3 nodes (primary section sample request), 1 resubmit
request to sample 2 nodes from a secondary section




Optimization 3: Hardware-based resubmission

Route commands between channels (n - 0)
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Optimization 3: Hardware-based resubmission

Route commands between channels (n - 0)

<—» data <«—> control, addr

______________________
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Overall architecture

* GNN runtime
* Interact w/ host
e Submit flash request
e Schedule DNN execution

<—>» data <«—> control, addr

v (Node i%/ Subgraph structure

GNN
model

\ 2 Ctrl
Core
Ctrl ¢
Accelerator Feature
A vectors

Overall architecture




Overall architecture

<—>» data <«—>» control, addr
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Overall architecture

<—>» data <«—>» control, addr

I
A\ ]

C(Zre > v ' |'Feature vectors,
v sampled node
Accelerator [«> ClEE .
A [
-
Flash interface
| v Samplecmd | |
Channel n Channel 1

e Flash interface Overall architecture

* Route resubmit commands
UCLA




Overall architecture

* Flash die
e Sample/Retrieval Hardware-based
* Generate new requests =~ request resubmission

e Flash interface
e Route resubmit commands




Evaluation

cC CPU-centric architecture, with PCle Accelerator
128x128 systolic array, 32 MB SRAM, 1 GHz

BG-1 Basic in-storage computing architecture

BG-DG | BG-1 with DirectGraph GNN format

BG-SP BG-1 with in-flash node sampling and vector retrieving

BG-2 BG-DGSP with inter-channel hw-based command

resubmission

Interface NVMe, PCle 4.0 x4

Controller | 4 ARM Cortex-A9 Cores

DRAM DDR4-3200, 25.6 GB/s, 1 GB

Flash 16 Channel, 8 Die/Channel, 4 KB Page
3 us read, 800 MB/s channel transfer

ISC ISC: 64x64 systolic array

Accelerator

6 MB SRAM, 800 MHz

Simulated platforms

Default SSD configuration

UCLA




Evaluation

e BG-SP === BG-DGSP == BG-2
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Evaluation
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Evaluation
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Takeaway

e Technical shifts, from both device and interconnect,
break tradition of ISC design

* Control & Data path of traditional I/O can be a new
bottleneck

e Automating such paths with hardware can offer huge
performance benefit
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