CS6220: DATA MINING TECHNIQUES

1: Introduction

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

September 9, 2013

Course Information

Course homepage:

http://www.ccs.neu.edu/home/yzsun/classes/ 2013Fall CS6220/index.htm

- Class schedule
- Slides
- Announcement
- Assignments
- Piazza:

https://piazza.com/northeastern/fall2013/cs62 20/home

- Prerequisites
 - CS 5800 or CS 7800, or consent of instructor
 - More generally
 - You are expected to have background knowledge in data structures, algorithms, basic linear algebra, and basic statistics.
 - You will also need to be familiar with at least one programming language, and have programming experiences.

Meeting Time and Location

- When
 - Tuesdays, 6-9pm
- Where
 - Behrakis Health Sciences Center 310

Instructor and TA Information

- Instructor: Yizhou Sun
 - Homepage: <u>http://www.ccs.neu.edu/home/yzsun/</u>
 - Email: <u>yzsun@ccs.neu.edu</u>
 - Office: 320 WVH
 - Office hour: Wednesdays 3-5pm
- TA:
 - Moonyoung (Moon) Kang
 - Email: yerihyo@gmail.com
 - Office hours: Tuesdays 2-4pm at 472 WVH
 - Qizhen Ruan
 - Email: ruan.qi@husky.neu.edu
 - Office hours: Mondays 4:30-6:30pm at 102 Main Lab WVH

Grading

- Homework: 40%
- Midterm exam: 25%
- Course project: 30%
- Participation: 5%

Grading: Homework

- Homework: 40%
 - Four assignments are expected
 - 2 paper-based assignments
 - 2 program-based assignments
 - Deadline: 11:59pm of the indicated due date via *Blackboard* or class system
 - within 1 hour late: 90% max; within 8 hours late: 60% max; otherwise: 0%
 - No copying or sharing of homework!
 - But you can discuss general challenges and ideas with others

Grading: Midterm Exam

- Midterm exam: 25%
 - Closed book exam, but you can take a "cheating sheet" of A4 size

Grading: Course Project

- Course project: 30%
 - Group project (3-4 people for one group)
 - Goal: Choose one interesting problem, formalize it as a data mining task, collect data, provide solutions, and evaluate and compare your solutions.
 - You are expected to submit one project proposal early this semester, and your datasets, code, and a project report at the end of the semester
 - You are expected to present your project at the end of the semester.

Grading: Participation

- Participation (5%)
 - In-class participation
 - Online participation (piazza)

Textbook

- Jiawei Han, Micheline Kamber, and Jian Pei. <u>Data Mining: Concepts</u> and <u>Techniques</u>, <u>3rd edition</u>, Morgan Kaufmann, 2011
- References
 - "Data Mining" by Pang-Ning Tan, Michael Steinbach, and Vipin Kumar (<u>http://www-users.cs.umn.edu/~kumar/dmbook/index.php</u>)
 - "Machine Learning" by Tom Mitchell (<u>http://www.cs.cmu.edu/~tom/mlbook.html</u>)
 - "Introduction to Machine Learning" by Ethem ALPAYDIN (<u>http://www.cmpe.boun.edu.tr/~ethem/i2ml/</u>)
 - "Pattern Classification" by Richard O. Duda, Peter E. Hart, David G. Stork (<u>http://www.wiley.com/WileyCDA/WileyTitle/productCd-</u> 0471056693.html)
 - "The Elements of Statistical Learning: Data Mining, Inference, and Prediction" by Trevor Hastie, Robert Tibshirani, and Jerome Friedman (<u>http://www-stat.stanford.edu/~tibs/ElemStatLearn/</u>)
 - "Pattern Recognition and Machine Learning" by Christopher M. Bishop (<u>http://research.microsoft.com/en-</u> <u>us/um/people/cmbishop/prml/</u>)

Course Content

- By data types:
 - matrix data
 - set data
 - sequence data
 - time series
 - graph and network (Next Semester: Advanced Topics)
- By functions:
 - Classification
 - Clustering
 - Frequent pattern mining
 - Prediction
 - Similarity search
 - Ranking

Goal of the Course

- Know what is data mining and the basic algorithms
- Know how to apply algorithms to real-world applications
- Provide a starting course for research in data mining

1. Introduction

• Why Data Mining?

- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Big Data Challenges

- Video 1: Big Data Challenges (Ads by DataStax)
 - <u>http://www.youtube.com/watch?v=or6Pse8fxD</u>
 <u>4</u>
- Video 2: Explaining Big Data
 - <u>http://www.youtube.com/watch?v=7D1CQ_LOiz</u>
 <u>A</u>

1. Introduction

- Why Data Mining?
- What Is Data Mining?

- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

Knowledge Discovery (KDD) Process

Data Mining in Business Intelligence

KDD Process: A Typical View from ML and Statistics

• This is a view from typical machine learning and statistics communities

1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Multi-Dimensional View of Data Mining

Data to be mined

- Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks
- Knowledge to be mined (or: Data mining functions)
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels
- <u>Techniques utilized</u>
 - Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.
- <u>Applications adapted</u>
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Matrix Data

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

Set Data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Sequence Data

SYNTENIC ASSEMBLIES FOR CG15386

MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
NEWC	ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD106	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
NEWC	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
W501	CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
MD199	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
C1674	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
SIM4	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

Time Series

Weekly U.S. Retail Gasoline Prices, Regular Grade

Source: Energy Information Administration

Graph / Network

1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Data Mining Function: Association and Correlation Analysis

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
- Association, correlation vs. causality
 - A typical association rule
 - Diaper → Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?

Data Mining Function: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...

Data Mining Function: Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications

Data Mining Function: Others

- Prediction
- Similarity search
- Ranking

. . .

Outlier detection

Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of "patterns" and knowledge
 - Some may fit only certain dimension space (time, location, ...)
 - Some may not be representative, may be transient, ...
- Evaluation of mined knowledge → directly mine only interesting knowledge?
 - Descriptive vs. predictive
 - Coverage
 - Typicality vs. novelty
 - Accuracy
 - Timeliness

•

1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Data Mining: Confluence of Multiple Disciplines

1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Applications of Data Mining

- Web page analysis: from web page classification, clustering to PageRank & HITS algorithms
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis: classification, cluster analysis (microarray data analysis), biological sequence analysis, biological network analysis
- Data mining and software engineering (e.g., IEEE Computer, Aug. 2009 issue)
- Social media
- Game

Example

- Street Bump Boston Project
 - http://www.cityofboston.gov/doit/apps/streetbu mp.asp

1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
 - What Kinds of Data Can Be Mined?
 - What Kinds of Patterns Can Be Mined?
 - What Kinds of Technologies Are Used?
 - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Major Issues in Data Mining (1)

- Mining Methodology
 - Mining various and new kinds of knowledge
 - Mining knowledge in multi-dimensional space
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a networked environment
 - Handling noise, uncertainty, and incompleteness of data
 - Pattern evaluation and pattern- or constraint-guided mining
- User Interaction
 - Interactive mining
 - Incorporation of background knowledge
 - Presentation and visualization of data mining results

Major Issues in Data Mining (2)

- Diversity of data types
 - Handling complex types of data
 - Mining dynamic, networked, and global data repositories
- Efficiency and Scalability
 - Efficiency and scalability of data mining algorithms
 - Parallel, distributed, stream, and incremental mining methods
- Data mining and society
 - Social impacts of data mining
 - Privacy-preserving data mining

Where to Find References? DBLP, CiteSeer, Google

- Data mining and KDD (SIGKDD: CDROM)
 - Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
 - Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD
- Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM)
 - Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA
 - Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc.
- <u>AI & Machine Learning</u>
 - Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
 - Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc.
- Web and IR
 - Conferences: SIGIR, WWW, CIKM, etc.
 - Journals: WWW: Internet and Web Information Systems,
- <u>Statistics</u>
 - Conferences: Joint Stat. Meeting, etc.
 - Journals: Annals of statistics, etc.
- Visualization
 - Conference proceedings: CHI, ACM-SIGGraph, etc.
 - Journals: IEEE Trans. visualization and computer graphics, etc.

Recommended Reference Books

- E. Alpaydin. Introduction to Machine Learning, 2nd ed., MIT Press, 2011
- S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan Kaufmann, 2002
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
- U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996
- U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, 2009
- B. Liu, Web Data Mining, Springer 2006
- T. M. Mitchell, Machine Learning, McGraw Hill, 1997
- Y. Sun and J. Han, Mining Heterogeneous Information Networks, Morgan & Claypool, 2012
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
- S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005