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2: Data Pre-Processing

- Getting to know your data Q\\
 Basic Statistical Descriptions of Data

« Data Visualization

- Data Pre-Processing

« Data Cleaning
« Data Integration
« Data Reduction

« Data Transformation and Data Discretization



Basic Statistical Descriptions of Data

- Central Tendency

- Dispersion of the Data

- Graphic Displays




Measuring the Central Tendency

1 n
- Mean (algebraic measure) (sample vs. population): X = — z X
Note: n is sample size and N is population size. p =1
- Weighted arithmetic mean: Z W, X;

o =1
- Trimmed mean: chopping extreme values X = - n
- Median: Zwi

- Middle value if odd number of values, or average of the

lL[:

2.x
N

frequency

middle two values otherwise age
- Estimated by interpolation (for grouped data): 1-5
. n/2—(> freq)l. . 6-15
median =L, +( Z ywidth 16-20
- Mode freqmedian 21_50
- Value that occurs most frequently in the data 51-80
81-110

- Unimodal, bimodal, trimodal

- Empirical formula:  mean — mode = 3 x (mean — median)
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Symmetric vs. Skewed Data

« Median, mean and mode of

. .- symmetric
symmetric, positively and

Mean
Median
Mode

negatively skewed data

Mode Mean Mean Mode
1 1 1 1 1 1

positively skewed negatively skewed

1 : : 1 : '
Median Median




Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
- Quartiles: Q, (25" percentile), Q, (75" percentile)
- Inter-quartile range: IQR = Q;—Q,
- Five number summary: min, Q,, median, Q;, max

- Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot

outliers individually
- Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: o)

- Variance: (algebraic, scalable computation)
1 &, ., 1 &, 19 » _ 1S 0 1<, o
2= X -X)P=—N¥x -ZIx)?] o=—)> (X—u)=—) %" —
12060 = D - 0K NZ u NZ u

- Standard deviation s (or o) is the square root of variance s2(or ?



Lower Upper
Lower Cuartile Quartile Upper
Extreme Median Extreme

Boxplot Analysis

10 20 o 40 500 a0 0 80 90 100

 Five-number summary of a distribution
« Minimum, Q1, Median, Q3, Maximum

- Boxplot ; -
- Data is represented with a box Ny |

el 3 e 9L

« The ends of the box are at the first and third
quartiles, i.e., the height of the box is IQR

- The median is marked by a line within the box .

- Whiskers: two lines outside the box extended to sz ﬂ
Minimum and Maximum —

« Qutliers: points beyond a specified outlier threshold,
plotted individually



3-D Boxplots

ispersion

Visualization of DataD




Properties of Normal Distribution Curve

- The normal (distribution) curve

- From p—o to p+o: contains about 68% of the measurements (p:
mean, o: standard deviation)

* From p—20 to p+20: contains about 95% of it
« From p—3o0 to p+30: contains about 99.7% of it

68% 95% 99.7%

+3



Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies

- Scatter plot: each pair of values is a pair of coordinates and

plotted as points in the plane
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Histogram Analysis

- Histogram: Graph display of tabulated
frequencies, shown as bars

- It shows what proportion of cases fall
into each of several categories

- Differs from a bar chart in that it is the
area of the bar that denotes the value,
not the height as in bar charts, a crucial
distinction when the categories are not
of uniform width

- The categories are usually specified as
non-overlapping intervals of some
variable. The categories (bars) must be
adjacent
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Histograms Often Tell More than Boxplots

= The two histograms
shown in the left may
have the same boxplot
representation

- = The same values
N for: min, Q1,
median, Q3, max
= But they have rather
different data
distributions

12



Scatter plot

- Provides a first look at bivariate data to see clusters of points,
outliers, etc

- Each pair of values is treated as a pair of coordinates and plotted
as points in the plane
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Positively and Negatively Correlated Data

- The left half fragment is positively

correlated

- The right half is negative correlated
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Uncorrelated Data
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2: Data Pre-Processing

- Getting to know your data

 Basic Statistical Descriptions of Data
+ Data Visualization @

- Data Pre-Processing

« Data Cleaning
« Data Integration
« Data Reduction

« Data Transformation and Data Discretization
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3D Scatter Plot
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long, wvall

depth

Scatterplot Matrices

+HOTR0—

Used by_ermission of M. Ward, Worcester Polytechnic Institute

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots]
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Landscapes

news articles
visualized as
a landscape

Used by permission of B. Wright, Visible Decisions Inc.

Pacific Northwest Laboratory

- Visualization of the data as perspective landscape

- The data needs to be transformed into a (possibly artificial) 2D spatial
representation which preserves the characteristics of the data
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Parallel Coordinates

-« n equidistant axes which are parallel to one of the screen axes and correspond
to the attributes

- The axes are scaled to the [minimum, maximum]: range of the corresponding
attribute

- Every data item corresponds to a polygonal line which intersects each of the
axes at the point which corresponds to the value for the attribute

o

—

Attr. 1 Attr. 2 Attr. 3 Attr. k
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Parallel Coordinates of a Data Set




Visualizing Text Data

- Tag cloud: visualizing user-generated tags

= The importance of
tag is represented
by font size/color
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Visualizing Social/Information Networks
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23



2: Data Pre-Processing

- Getting to know your data
 Basic Statistical Descriptions of Data

« Data Visualization

- Data Pre-Processing @

« Data Cleaning
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« Data Transformation and Data Discretization
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Major Tasks in Data Preprocessing

Data cleaning

 I1ll in missing values, smooth noisy data, identify or remove outliers, and

resolve mconsistencies
Data integration
+ Integration of multiple databases or files
Data reduction
« Dimensionality reduction
« Numerosity reduction
« Data compression
Data transformation and data discretization

« Normalization

25
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Data Cleaning

Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g.,
instrument faulty, human or computer error, transmission error

- mcomplete: lacking attribute values, lacking certain attributes of interest, or

containing only aggregate data

o9

- e.g., Occupation="" (missing data)

° NOISy: containing noise, errors, or outliers
- e.g., Salary="-10" (an error)

- Inconsistent: containing discrepancies in codes or names, €.g.,
- Age="42", Birthday=“03/07/2010"
- Was rating “1, 2, 3”, now rating “A, B, C”

+ discrepancy between duplicate records

- Intentional (e.g., disguised missing data)

- Jan. 1 as everyone’s birthday?

27



How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when
doing classification)—not effective when the % of missing values
per attribute varies considerably

- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with

- a global constant : e.g., “unknown”, a new class?!

- the attribute mean

- the attribute mean for all samples belonging to the same class:

smarter

* the most probable value: inference-based such as Bayesian

formula or decision tree

28



How to Handle Noisy Data?

* Binning
- first sort data and partiton mto (equal-frequency) bins

 then one can smooth by bin means, smooth by bin median,
smooth by bin boundaries, etc.

« Regression

- smooth by hitting the data into regression functions
e Clustering

» detect and remove outliers
« Combined computer and human inspection

- detect suspicious values and check by human (e.g., deal with
possible outliers)

29
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Data Integration

Data integration:

« Combines data from multiple sources mto a coherent store
Schema integration: e.g., A.cust-id = B.cust-#

- Integrate metadata from different sources
Entity identification problem:

« Identify real world entities from multiple data sources, e.g., Bill Clinton =
William Clinton

Detecting and resolving data value conflicts

- For the same real world entity, attribute values from different sources are

different

 Possible reasons: different representations, ditlerent scales, e.g., metric vs.

British units
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Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much
smaller in volume but yet produces the same (or almost the same) analytical
results

- Why data reduction? — A database/data warehouse may store terabytes of
data. Complex data analysis may take a very long time to run on the complete
data set.

- Data reduction strategies

« Dimensionality reduction, e.g., remove unimportant attributes
« Wavelet transforms
* Principal Components Analysis (PCA)
« Feature subset selection, feature creation

« Numerosity reduction (some simply call it: Data Reduction)
» Regression and Log-Linear Models
» Histograms, clustering, sampling
 Data cube aggregation

« Data compression
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2: Data Pre-Processing

- Getting to know your data
 Basic Statistical Descriptions of Data

« Data Visualization

- Data Pre-Processing

« Data Cleaning
« Data Integration
« Data Reduction

+ Data Transformation and Data Discretization @
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Data Transformation

A function that maps the entire set of values of a given attribute to a new

set of replacement values s.t. each old value can be identified with one of
the new values

- Methods

« Smoothing: Remove noise from data

 Attribute/feature construction
« New attributes constructed from the given ones

- Normalization: Scaled to fall within a smaller, specified range
* min-max normalization
* z-score normalization
» normalization by decimal scaling

« Discretization
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Normalization

- Min-max normalization: to [new_min,, new_max,]
o V—mina
V = -

MaXa— MINa

- Ex. Let income range $12,000 to $98,000 normalized to [0.0, 1.0]. Then

. 73,600-12,000
S ’ S (1.0-0)+0=0.716
$73,000 1s mapped to 98.000-12.000 -0 O

- Z-score normalization (1: mean, o: standard deviation):
' V — U

OA
« IEx. Let u = 54,000, ¢ = 16,000. Then

(Nnew _max.—new __min.) +New _ mina

Vv

73,600 -54,000
16,000

=1.225

- Normalization by decimal scaling

_v
10

V Where | is the smallest integer such that Max(|jv’[) < 1
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Discretization

- Three types of attributes

- Nominal—values from an unordered set, e.g., color, profession
« Ordinal—values from an ordered set, e.g., military or academic rank
- Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
« Interval labels can then be used to replace actual data values
« Reduce data size by discretization
 Discretization can be performed recursively on an attribute

* Prepare for further analysis, e.g., classification

37



Simple Discretization: Binning

- Equal-width (distance) partitioning
« Divides the range into /NVintervals of equal size: uniform grid
- 1f A and B are the lowest and highest values of the attribute, the width of
intervals will be: W= (B -A)/V.
 The most straightforward, but outliers may dominate presentation

« Skewed data 1s not handled well

- Equal-depth (frequency) partitioning
- Divides the range into /Vintervals, each containing approximately same
number of samples
« Good data scaling

- Managing categorical attributes can be tricky
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Binning Methods for Data Smoothing

ISorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28,
29, 34

* Partition into equal-frequency (equi-depth) bins:
-Bin1:4,8,9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

* Smoothing by bin means:
-Bin1:9,9,9,9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

* Smoothing by bin boundaries:
-Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

39



transactions

Data cleaning

Data integration

_—
Data reduction attributes attributes
Al A2 A3 Al26 - Al A3 .. All5
Tl g TI
T2 S T4
T3 —*g
T4 £ Ti456
T2000

Data transformation —2.32,100,59,48 —» —0.02,0.32,1.00,0.59,0.48
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