CS6220: DATA MINING TECHNIQUES

Matrix Data: Prediction

Instructor: Yizhou Sun

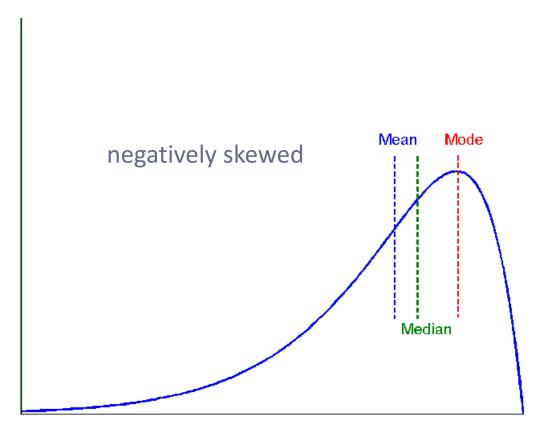
yzsun@ccs.neu.edu

September 17, 2013

Today's Schedule

- Course Project Introduction
- Course System Introduction
- Linear Regression Model
- Decision Tree

Feedbacks



Example: Life-span; exam score

Feedbacks

- Learn data mining algorithms
- Apply to real-world problems
- Programming experience in data mining
- Research experience in data mining
 - Next semester: CS7280 Topics in DB Mining, data mining on information networks
- Differences between machine learning, information retrieval, and data mining?
- Good preparation for Map-Reduce course
- Mining related Internship
- Startup

How to learn these algorithms?

- Three levels
 - When it is applicable?
 - Input, output, strengths, weaknesses, time complexity
 - How it works?
 - Pseudo-code, work flows, major steps
 - Can work out a toy problem by pen and paper
 - Why it works?
 - Intuition, philosophy, objective, derivation, proof

Matrix Data: Prediction

Matrix Data

- Linear Regression Model
- Model Evaluation and Selection
- Summary

Example

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	M	1	70	50	1	12	1.73
R1002	M	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	M	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	M	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	M	1	69	67	1	12	3.25

A matrix of $n \times p$:

- n data objects / points
- p attributes / dimensions

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Attribute Type

- Numerical
 - E.g., height, income
- Categorical / discrete
 - E.g., Sex, Race

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

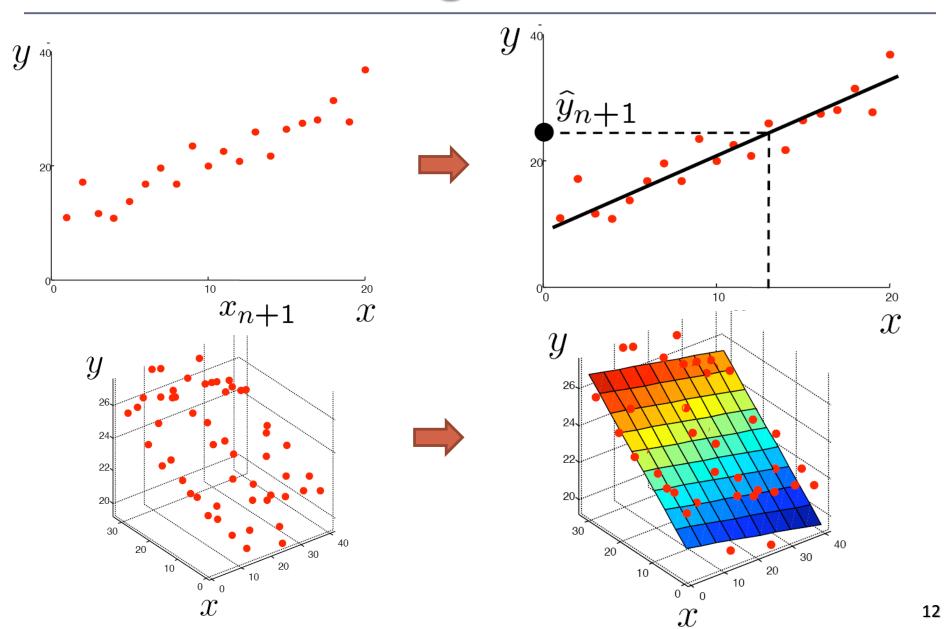
Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Linear Regression

- Ordinary Least Square Regression
- Linear Regression with Probabilistic
 Interpretation

The Linear Regression Problem



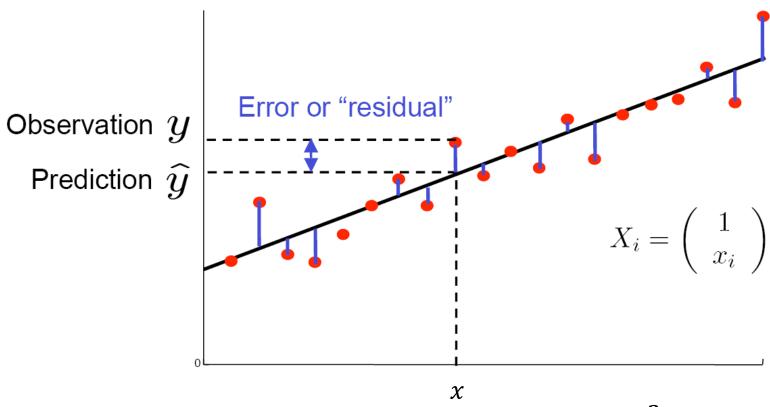
Formalization

- Data: n independent data objects
 - y_i , i = 1, ..., n
 - $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ip})^T$, i = 1, ..., n
 - Usually a constant factor is considered, say, $x_{i0} = 1$
- Model:
 - y: dependent variable
 - x: explanatory variables
 - $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T$: weight vector
 - $y = \mathbf{x}^T \boldsymbol{\beta} = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$

A 2-step Process

- Model Construction
 - Use training data to find the best parameter β , denoted as $\hat{\beta}$
- Model Usage
 - Model Evaluation
 - Use test data to select the best model
 - Feature selection
 - Apply the model to the unseen data: $\hat{y} = x^T \hat{\beta}$

Least Square Estimation



Cost function:
$$J(\boldsymbol{\beta}) = \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - \boldsymbol{y}_{i})^{2}$$

Matrix form: $J(\boldsymbol{\beta}) = (X\boldsymbol{\beta} - \boldsymbol{y})^{T} (X\boldsymbol{\beta} - \boldsymbol{y})$

 $X: n \times (p+1)$ matrix

Ordinary Least Squares (OLS)

• Goal: find $\widehat{\beta}$ that minimizes $J(\beta)$

•
$$J(\boldsymbol{\beta}) = (X\boldsymbol{\beta} - y)^T (X\boldsymbol{\beta} - y)$$

= $\beta^T X^T X \boldsymbol{\beta} - y^T X \boldsymbol{\beta} - \boldsymbol{\beta}^T X^T y + y^T y$

- Ordinary least squares
 - Set first derivative of $J(\beta)$ as 0

$$\bullet \frac{\partial J}{\partial \boldsymbol{\beta}} = 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} - 2\mathbf{y}^T \mathbf{X} = 0$$

$$\bullet \Rightarrow \widehat{\beta} = (X^T X)^{-1} X^T y$$

Online Updating

- Gradient Descent
 - Move in the direction of steepest descend



$$\boldsymbol{\beta}^{(t+1)} := \boldsymbol{\beta}^{(t)} - \eta \frac{\partial J}{\partial \boldsymbol{\beta}} |_{\boldsymbol{\beta} = \boldsymbol{\beta}^{(t)}},$$
Where $J(\boldsymbol{\beta}) = \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2} = \sum_{i} J_{i}(\boldsymbol{\beta})$

$$\frac{\partial J}{\partial \boldsymbol{\beta}} = \sum_{i} \frac{\partial J_{i}}{\partial \boldsymbol{\beta}} = \sum_{i} 2\boldsymbol{x}_{i}(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})$$

• When a new observation, *i*, comes in, only need to

update:
$$\boldsymbol{\beta}^{(t+1)}$$
:= $\boldsymbol{\beta}^{(t)} + 2\eta(y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)}) \boldsymbol{x}_i$

If the prediction for object i is smaller than the real value, β should move forward to the direction of x_i

Other Practical Issues

- What if X^TX is not invertible?
 - Add a small portion of identity matrix, λI , to it (ridge regression*) $\sum_{i} (y_i \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{i=1}^{p} \beta_i^2$
- What if some attributes are categorical?
 - Set dummy variables
 - E.g., x = 1, if sex = F; x = 0, if sex = M
 - Nominal variable with multiple values?
 - Create more dummy variables for one variable
- What if non-linear correlation exists?
 - Transform features, say, x to x^2

Probabilistic Interpretation

- Model: $y_i = x_i^T \beta + \varepsilon_i$
 - $\varepsilon_i \sim N(0, \sigma^2)$
 - $y_i | x_i, \beta \sim N(x_i^T \beta, \sigma^2)$
 - $E(y_i|x_i) = x_i^T \beta$
- Likelihood:
 - $L(\boldsymbol{\beta}) = \prod_{i} p(y_i | x_i, \beta)$ $= \prod_{i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y_i x_i^T \boldsymbol{\beta})^2}{2\sigma^2}\}$
- Maximum Likelihood Estimation
 - find $\widehat{\beta}$ that maximizes $L(\beta)$
 - arg max $L = \arg \min J$, Equivalent to OLS!

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection

Summary

Model Selection Problem

Basic problem:

 how to choose between competing linear regression models

Model too small:

• "underfit" the data; poor predictions; high bias; low variance

Model too big:

• "overfit" the data; poor predictions; low bias; high variance

Model just right:

balance bias and variance to get good predictions

Bias and Variance

True predictor $f(x): x^T \beta$

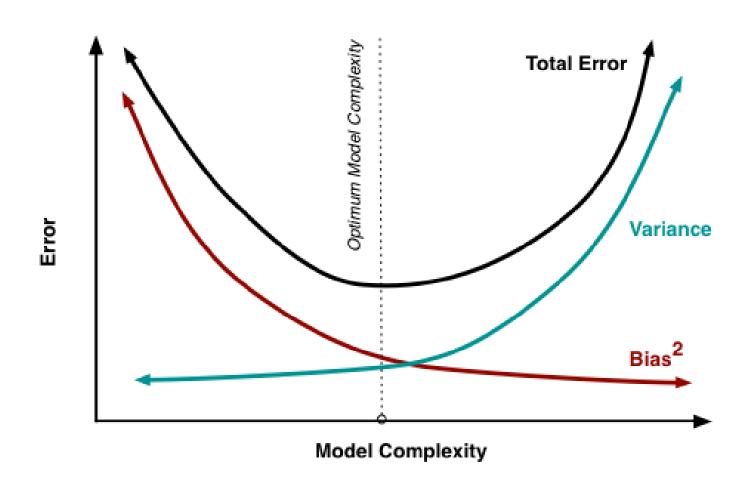
- Bias: $E(\hat{f}(x)) f(x)$ Estimated predictor $\hat{f}(x)$: $x^T \hat{\beta}$
 - How far away is the expectation of the estimator to the true value? The smaller the better.
- Variance: $Var\left(\hat{f}(x)\right) = E(\hat{f}(x) E\left(\hat{f}(x)\right))$
 - How variant is the estimator? The smaller the better.
- Reconsider the cost function

Can be considered as

•
$$E[(\hat{f}(x) - f(x) - \varepsilon)^2] = bias^2 + variance + noise$$

Note $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2$

Bias-Variance Trade-off



Cross-Validation

- Partition the data into K folds
 - Use K-1 fold as training, and 1 fold as testing
 - Calculate the average accuracy best on K training-testing pairs
 - Accuracy on validation/test dataset!
 - Mean square error can again be used: $\sum_i (x_i^T \widehat{\beta} y_i)^2 / n$

AIC & BIC

- AIC and BIC can be used to test the quality of statistical models
 - AIC (Akaike information criterion)
 - $AIC = 2k 2\ln(\hat{L})$,
 - where k is the number of parameters in the model and \widehat{L} is the likelihood under the estimated parameter
 - BIC (Bayesian Information criterion)
 - BIC = $kln(n) 2ln(\hat{L})$,
 - Where n is the number of objects

Stepwise Feature Selection

- Avoid brute-force selection
 - 2^p
- Forward selection
 - Starting with the best single feature
 - Always add the feature that improves the performance best
 - Stop if no feature will further improve the performance
- Backward elimination
 - Start with the full model
 - Always remove the feature that results in the best performance enhancement
 - Stop if removing any feature will get worse performance

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Summary

- What is matrix data?
 - Attribute types
- Linear regression
 - OLS
 - Probabilistic interpretation
- Model Evaluation and Selection
 - Bias-Variance Trade-off
 - Mean square error
 - Cross-validation, AIC, BIC, step-wise feature selection