
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

October 1, 2013

Matrix Data: Classification: Part 3

mailto:sun22@illinois.edu

Announcement

•Assignment 1 is out

•Deadline (10/14/2013, 11:59pm)

2

Matrix Data: Classification: Part 3

•SVM (Support Vector Machine)

•kNN (k Nearest Neighbor)

•Other Issues

•Summary

3

Classification: A Mathematical Mapping

• Classification: predicts categorical class labels

• E.g., Personal homepage classification

• xi = (x1, x2, x3, …), yi = +1 or –1

• x1 : # of word “homepage”

• x2 : # of word “welcome”

• Mathematically, x  X = n, y  Y = {+1, –1},

• We want to derive a function f: X  Y

4

x

x x

x

x x

x

x

x

x o o
o

o
o

o

o

o

o o

o
o

o

5

SVM—Support Vector Machines

• A relatively new classification method for both linear and

nonlinear data

• It uses a nonlinear mapping to transform the original training

data into a higher dimension

• With the new dimension, it searches for the linear optimal

separating hyperplane (i.e., “decision boundary”)

• With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by a

hyperplane

• SVM finds this hyperplane using support vectors (“essential”

training tuples) and margins (defined by the support vectors)

6

SVM—History and Applications

• Vapnik and colleagues (1992)—groundwork from Vapnik &

Chervonenkis’ statistical learning theory in 1960s

• Features: training can be slow but accuracy is high owing to their

ability to model complex nonlinear decision boundaries (margin

maximization)

• Used for: classification and numeric prediction

• Applications:

• handwritten digit recognition, object recognition, speaker

identification, benchmarking time-series prediction tests

7

SVM—General Philosophy

Support Vectors

Small Margin Large Margin

8

SVM—Margins and Support Vectors

9

SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples
associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to
find the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

10

SVM—Linearly Separable

 A separating hyperplane can be written as

W ● X + b = 0

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

 For 2-D it can be written as

w0 + w1 x1 + w2 x2 = 0

 The hyperplane defining the sides of the margin:

H1: w0 + w1 x1 + w2 x2 ≥ 1 for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the

sides defining the margin) are support vectors

 This becomes a constrained (convex) quadratic optimization problem:

Quadratic objective function and linear constraints  Quadratic

Programming (QP)  Lagrangian multipliers

Maximum Margin Calculation

•w: decision hyperplane normal vector

•xi: data point i

•yi: class of data point i (+1 or -1)

11

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

𝜌 =
2

||𝒘||

SVM as a Quadratic Programming

•QP

•A better form

12

Objective: Find w and b such that 𝜌 =
2

||𝒘||
 is

maximized;

Constraints: For all {(xi , yi)}

wTxi + b ≥ 1 if yi=1;

wTxi + b ≤ -1 if yi = -1

Objective: Find w and b such that Φ(w) =½ wTw is

minimized;

Constraints: for all {(xi ,yi)}: yi (w
Txi + b) ≥ 1

Solve QP

•This is now optimizing a quadratic function
subject to linear constraints

•Quadratic optimization problems are a well-
known class of mathematical programming
problem, and many (intricate) algorithms exist
for solving them (with many special ones built
for SVMs)

•The solution involves constructing a dual
problem where a Lagrange multiplier αi is
associated with every constraint in the
primary problem:

 13

Primal Form and Dual Form

• More derivations:
http://cs229.stanford.edu/notes/cs229-notes3.pdf
 14

Objective: Find w and b such that Φ(w) =½ wTw is

minimized;

Constraints: for all {(xi ,yi)}: yi (w
Txi + b) ≥ 1

Objective: Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and

Constraints
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Primal

Dual

Equivalent under some conditions: KKT conditions

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf

The Optimization Problem Solution
• The solution has the form:

• Each non-zero αi indicates that corresponding xi is a support vector.

• Then the classifying function will have the form:

• Notice that it relies on an inner product between the test point x and the
support vectors xi

• We will return to this later.

• Also keep in mind that solving the optimization problem involved computing
the inner products xi

Txj between all pairs of training points.

15

w =Σαiyixi b= yk- w
Txk for any xk such that αk 0

f(x) = Σαiyixi
Tx + b

16

Why Is SVM Effective on High Dimensional Data?

 The complexity of trained classifier is characterized by the # of support

vectors rather than the dimensionality of the data

 The support vectors are the essential or critical training examples —they lie

closest to the decision boundary (MMH)

 If all other training examples are removed and the training is repeated, the

same separating hyperplane would be found

 The number of support vectors found can be used to compute an (upper)

bound on the expected error rate of the SVM classifier, which is independent

of the data dimensionality

 Thus, an SVM with a small number of support vectors can have good

generalization, even when the dimensionality of the data is high

17

Soft Margin Classification

• If the training data is not
linearly separable, slack
variables ξi can be added to
allow misclassification of
difficult or noisy examples.

• Allow some errors

•Let some points be
moved to where they
belong, at a cost

• Still, try to minimize training
set errors, and to place
hyperplane “far” from each
class (large margin)

ξj

ξi

Sec. 15.2.1

18

Soft Margin Classification
Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting

• A regularization term (L1 regularization)

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (w

Txi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (w

Txi + b) ≥ 1- ξi and ξi ≥ 0 for all i

Sec. 15.2.1

19

Soft Margin Classification – Solution
• The dual problem for soft margin classification:

• Neither slack variables ξi nor their Lagrange multipliers appear in the dual
problem!

• Again, xi with non-zero αi will be support vectors.

• Solution to the dual problem is:

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and

(1) Σαiyi = 0

(2) 0 ≤ αi ≤ C for all αi

w = Σαiyixi

b = yk(1- ξk) - w
Txk where k = argmax αk’

k’ f(x) = Σαiyixi
Tx + b

w is not needed explicitly

for classification!

Sec. 15.2.1

20

Classification with SVMs

• Given a new point x, we can score its projection
onto the hyperplane normal:

• I.e., compute score: wTx + b = Σαiyixi
Tx + b

• Decide class based on whether < or > 0

• Can set confidence threshold t.

-1
0

1

Score > t: yes

Score < -t: no

Else: don’t know

Sec. 15.1

21

Linear SVMs: Summary

• The classifier is a separating hyperplane.

• The most “important” training points are the support vectors;
they define the hyperplane.

• Quadratic optimization algorithms can identify which training
points xi are support vectors with non-zero Lagrangian
multipliers αi.

• Both in the dual formulation of the problem and in the
solution, training points appear only inside inner products:

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and

(1) Σαiyi = 0

(2) 0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Sec. 15.2.1

22

Non-linear SVMs

• Datasets that are linearly separable (with some noise) work out
great:

• But what are we going to do if the dataset is just too hard?

• How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

Sec. 15.2.3

23

Non-linear SVMs: Feature spaces

•General idea: the original feature space
can always be mapped to some higher-
dimensional feature space where the
training set is separable:

Φ: x → φ(x)

Sec. 15.2.3

24

The “Kernel Trick”

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj

• If every data point is mapped into high-dimensional space via some
transformation Φ: x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

• A kernel function is some function that corresponds to an inner product in
some expanded feature space.

• Example:

 2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xi
Txj)

2
,

 Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

 K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1

 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

 = [1 xi1
2 √2 xi1xi2 xi2

2 √2xi1 √2xi2]T [1 xj1
2 √2 xj1xj2 xj2

2 √2xj1 √2xj2]

 = φ(xi)
Tφ(xj) where φ(x) = [1 x1

2 √2 x1x2 x2
2 √2x1 √2x2]

Sec. 15.2.3

25

SVM: Different Kernel functions

 Instead of computing the dot product on the transformed data,

it is math. equivalent to applying a kernel function K(Xi, Xj) to

the original data, i.e., K(Xi, Xj) = Φ(Xi)
TΦ(Xj)

 Typical Kernel Functions

 *SVM can also be used for classifying multiple (> 2) classes and

for regression analysis (with additional parameters)

26

*Scaling SVM by Hierarchical Micro-Clustering

• SVM is not scalable to the number of data objects in terms of training time

and memory usage

• H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with

Hierarchical Clusters”, KDD'03)

• CB-SVM (Clustering-Based SVM)

• Given limited amount of system resources (e.g., memory), maximize the

SVM performance in terms of accuracy and the training speed

• Use micro-clustering to effectively reduce the number of points to be

considered

• At deriving support vectors, de-cluster micro-clusters near “candidate vector”

to ensure high classification accuracy

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf
http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf

27

*CF-Tree: Hierarchical Micro-cluster

 Read the data set once, construct a statistical summary of the data (i.e.,

hierarchical clusters) given a limited amount of memory

 Micro-clustering: Hierarchical indexing structure

 provide finer samples closer to the boundary and coarser samples

farther from the boundary

28

*Selective Declustering: Ensure High Accuracy

• CF tree is a suitable base structure for selective declustering

• De-cluster only the cluster Ei such that

• Di – Ri < Ds, where Di is the distance from the boundary to the center point of

Ei and Ri is the radius of Ei

• Decluster only the cluster whose subclusters have possibilities to be the

support cluster of the boundary

• “Support cluster”: The cluster whose centroid is a support vector

29

*CB-SVM Algorithm: Outline

• Construct two CF-trees from positive and negative data sets
independently

• Need one scan of the data set

• Train an SVM from the centroids of the root entries

• De-cluster the entries near the boundary into the next level

• The children entries de-clustered from the parent entries are

accumulated into the training set with the non-declustered

parent entries

• Train an SVM again from the centroids of the entries in the
training set

• Repeat until nothing is accumulated

30

*Accuracy and Scalability on Synthetic Dataset

• Experiments on large synthetic data sets shows better accuracy
than random sampling approaches and far more scalable than
the original SVM algorithm

31

SVM Related Links

• SVM Website: http://www.kernel-machines.org/

• Representative implementations

• LIBSVM: an efficient implementation of SVM, multi-class

classifications, nu-SVM, one-class SVM, including also various

interfaces with java, python, etc.

• SVM-light: simpler but performance is not better than LIBSVM,

support only binary classification and only in C

• SVM-torch: another recent implementation also written in C

http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/

Matrix Data: Classification: Part 3

•SVM (Support Vector Machine)

•kNN (k Nearest Neighbor)

•Other Issues

•Summary

32

33

Lazy vs. Eager Learning

• Lazy vs. eager learning

• Lazy learning (e.g., instance-based learning): Simply stores
training data (or only minor processing) and waits until it is given
a test tuple

• Eager learning (the above discussed methods): Given a set of
training tuples, constructs a classification model before receiving
new (e.g., test) data to classify

• Lazy: less time in training but more time in predicting

• Accuracy

• Lazy method effectively uses a richer hypothesis space since it
uses many local linear functions to form an implicit global
approximation to the target function

• Eager: must commit to a single hypothesis that covers the entire
instance space

34

Lazy Learner: Instance-Based Methods

• Instance-based learning:

• Store training examples and delay the processing (“lazy
evaluation”) until a new instance must be classified

• Typical approaches

• k-nearest neighbor approach

• Instances represented as points in a Euclidean
space.

• Locally weighted regression

• Constructs local approximation

35

The k-Nearest Neighbor Algorithm

• All instances correspond to points in the n-D space

• The nearest neighbor are defined in terms of Euclidean
distance, dist(X1, X2)

• Target function could be discrete- or real- valued

• For discrete-valued, k-NN returns the most common value
among the k training examples nearest to xq

• Vonoroi diagram: the decision surface induced by 1-NN for a
typical set of training examples

 .

_
+

_ xq

+

_ _
+

_

_

+

.

.
.

. .

36

Discussion on the k-NN Algorithm

• k-NN for real-valued prediction for a given unknown tuple

• Returns the mean values of the k nearest neighbors

• Distance-weighted nearest neighbor algorithm

• Weight the contribution of each of the k neighbors according to their

distance to the query xq

• Give greater weight to closer neighbors

• 𝑦𝑞 =
∑𝑤𝑖𝑦𝑖

∑𝑤𝑖
, where 𝑥𝑖’s are 𝑥𝑞’s nearest neighbors

• Robust to noisy data by averaging k-nearest neighbors

• Curse of dimensionality: distance between neighbors could be
dominated by irrelevant attributes

• To overcome it, axes stretch or elimination of the least relevant

attributes

2),(

1

i
xqxd

w

Similarity and Dissimilarity

• Similarity

• Numerical measure of how alike two data objects are

• Value is higher when objects are more alike

• Often falls in the range [0,1]

• Dissimilarity (e.g., distance)

• Numerical measure of how different two data objects are

• Lower when objects are more alike

• Minimum dissimilarity is often 0

• Upper limit varies

• Proximity refers to a similarity or dissimilarity

37

Data Matrix and Dissimilarity Matrix

• Data matrix

• n data points with p

dimensions

• Two modes

• Dissimilarity matrix

• n data points, but registers

only the distance

• A triangular matrix

• Single mode

38

























npx...nfx...n1x

...............

ipx...ifx...i1x

...............

1px...1fx...11x























0...)2,()1,(

:::

)2,3()

...ndnd

0dd(3,1

0d(2,1)

0

Proximity Measure for Nominal Attributes

• Can take 2 or more states, e.g., red, yellow, blue, green

(generalization of a binary attribute)

• Method 1: Simple matching

• m: # of matches, p: total # of variables

• Method 2: Use a large number of binary attributes

• creating a new binary attribute for each of the M nominal states

39

p
mp

jid


),(

Proximity Measure for Binary Attributes

• A contingency table for binary data

• Distance measure for symmetric binary

variables:

• Distance measure for asymmetric binary

variables:

• Jaccard coefficient (similarity measure

for asymmetric binary variables):

 Note: Jaccard coefficient is the same as “coherence”:

Object i

Object j

40

Dissimilarity between Binary Variables

• Example

• Gender is a symmetric attribute

• The remaining attributes are asymmetric binary

• Let the values Y and P be 1, and the value N 0

41

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N

75.0
211

21
),(

67.0
111

11
),(

33.0
102

10
),(



















maryjimd

jimjackd

maryjackd

Standardizing Numeric Data

• Z-score:

• X: raw score to be standardized, μ: mean of the population, σ: standard

deviation

• the distance between the raw score and the population mean in units of

the standard deviation

• negative when the raw score is below the mean, “+” when above

• An alternative way: Calculate the mean absolute deviation

where

• standardized measure (z-score):

• Using mean absolute deviation is more robust than using standard deviation





x

 z

.)...
21

1
nffff

xx(xn m 

|)|...|||(|1
21 fnffffff

mxmxmxns 

f

fif

if s

mx
 z




42

Example:
Data Matrix and Dissimilarity Matrix

43

point attribute1 attribute2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

Dissimilarity Matrix

(with Euclidean Distance)

x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

Data Matrix

Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-
dimensional data objects, and h is the order (the distance so
defined is also called L-h norm)

• Properties

• d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

• d(i, j) = d(j, i) (Symmetry)

• d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

• A distance that satisfies these properties is a metric

44

Special Cases of Minkowski Distance

• h = 1: Manhattan (city block, L1 norm) distance

• E.g., the Hamming distance: the number of bits that are different

between two binary vectors

• h = 2: (L2 norm) Euclidean distance

• h  . “supremum” (Lmax norm, L norm) distance.

• This is the maximum difference between any component

(attribute) of the vectors

||...||||),(
2211 pp j

x
i

x
j

x
i

x
j

x
i

xjid 

45

)||...|||(|),(22

22

2

11 pp j
x

i
x

j
x

i
x

j
x

i
xjid 

Example: Minkowski Distance

46

Dissimilarity Matrices

point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum

Ordinal Variables

• An ordinal variable can be discrete or continuous

• Order is important, e.g., rank

• Can be treated like interval-scaled

• replace xif by their rank

• map the range of each variable onto [0, 1] by replacing i-th object

in the f-th variable by

• compute the dissimilarity using methods for interval-scaled

variables

47

1

1






f

if

if M

r
z

},...,1{
fif

Mr 

Attributes of Mixed Type

• A database may contain all attribute types
• Nominal, symmetric binary, asymmetric binary, numeric,

ordinal
• One may use a weighted formula to combine their effects

• f is binary or nominal:

dij
(f) = 0 if xif = xjf , or dij

(f) = 1 otherwise
• f is numeric: use the normalized distance
• f is ordinal

• Compute ranks rif and
• Treat zif as interval-scaled

)(
1

)()(
1),(

f
ij

p
f

f
ij

f
ij

p
f

d
jid














1

1






f

if

M
r

z
if

48

 Cosine Similarity

• A document can be represented by thousands of attributes, each recording the
frequency of a particular word (such as keywords) or phrase in the document.

• Other vector objects: gene features in micro-arrays, …

• Applications: information retrieval, biologic taxonomy, gene feature mapping, ...

• Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

 cos(d1, d2) = (d1  d2) /||d1|| ||d2|| ,

 where  indicates vector dot product, ||d||: the length of vector d

49

 Example: Cosine Similarity

• cos(d1, d2) = (d1  d2) /||d1|| ||d2|| ,

 where  indicates vector dot product, ||d|: the length of vector d

• Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)

d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25

||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481

||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12

cos(d1, d2) = 0.94

50

Model Selection for kNN

•The number of neighbors k

•Small k: overfitting (high variance)

•Big k: bringing too many irrelevant points (high

bias)

•More discussions:

http://scott.fortmann-roe.com/docs/BiasVariance.html

•The distance function

51

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Matrix Data: Classification: Part 3

•SVM (Support Vector Machine)

•kNN (k Nearest Neighbor)

•Other Issues

•Summary

52

Ensemble Methods: Increasing the Accuracy

• Ensemble methods

• Use a combination of models to increase accuracy

• Combine a series of k learned models, M1, M2, …, Mk, with the

aim of creating an improved model M*

• Popular ensemble methods

• Bagging: averaging the prediction over a collection of classifiers

• Boosting: weighted vote with a collection of classifiers

53

Bagging: Boostrap Aggregation

• Analogy: Diagnosis based on multiple doctors’ majority vote

• Training

• Given a set D of d tuples, at each iteration i, a training

set Di of d tuples is sampled with replacement from D

(i.e., bootstrap)

• A classifier model Mi is learned for each training set Di

• Classification: classify an unknown sample X

• Each classifier Mi returns its class prediction

• The bagged classifier M* counts the votes and assigns

the class with the most votes to X

• Prediction: can be applied to the prediction of continuous values by taking the
average value of each prediction for a given test tuple

54

Performance of Bagging
• Accuracy
• Often significantly better than a single classifier derived from D

• For noise data: not considerably worse, more robust

• Proved improved accuracy in prediction

• Example
• Suppose we have 5 completely independent classifiers…

• If accuracy is 70% for each

• The final prediction is correct, if at least 3 classifiers make the correct
prediction
• 3 are correct: 5

3
× (.7^3)(.3^2)

• 4 are correct: 5
4
× (.7^4)(.3^1)

• 5 are correct: 5
5
× (.7^5)(.3^0)

• In all, 10 (.7^3)(.3^2)+5(.7^4)(.3)+(.7^5)
• 83.7% majority vote accuracy

• 101 Such classifiers

• 99.9% majority vote accuracy

55

Boosting

• Analogy: Consult several doctors, based on a combination of
weighted diagnoses—weight assigned based on the previous
diagnosis accuracy

• How boosting works?
• Weights are assigned to each training tuple

• A series of k classifiers is iteratively learned

• After a classifier Mt is learned, the weights are updated to allow
the subsequent classifier, Mt+1, to pay more attention to the

training tuples that were misclassified by Mt
• The final M* combines the votes of each individual classifier,

where the weight of each classifier's vote is a function of its
accuracy

• Boosting algorithm can be extended for numeric prediction
• Comparing with bagging: Boosting tends to have greater accuracy,

but it also risks overfitting the model to misclassified data

56

Adaboost (Freund and Schapire, 1997)

• Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)

• Initially, all the weights of tuples are set the same (1/d)

• Generate k classifiers in k rounds. At round t,

• Tuples from D are sampled (with replacement) to
form a training set Dt of the same size based on its
weight

• A classification model Mt is derived from Dt

• If a tuple is misclassified, its weight is increased,
o.w. it is decreased

• 𝑤𝑡+1,𝑗 ∝ 𝑤𝑡,𝑗 × exp −𝛼𝑡 if j is correctly classified

• 𝑤𝑡+1,𝑗 ∝ 𝑤𝑡,𝑗 × exp 𝛼𝑡 if j is incorrectly classified

57

𝛼𝑡: 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑡 , 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑒 𝑏𝑒𝑡𝑡𝑒𝑟

AdaBoost
• Error rate: err(Xj) is the misclassification

error of tuple Xj. Classifier Mt error rate
(𝜖𝑡 = error(Mt)) is the sum of the weights
of the misclassified tuples:

• The weight of classifier Mt’s vote is

𝛼𝑡 =
1

2
l𝑛
1 − 𝑒𝑟𝑟𝑜𝑟(𝑀𝑡)

𝑒𝑟𝑟𝑜𝑟(𝑀𝑡)

• Final classifier M*

𝑀∗ 𝑥 = 𝑠𝑖𝑔𝑛(𝛼𝑡𝑀𝑡(𝑥)

𝑡

)

58

 
d

j

tjtjt errwMerror)()(X

AdaBoost Example

• From “A Tutorial on Boosting”

• By Yoav Freund and Rob Schapire

•Note they use ℎ𝑡 to represent classifier instead
of 𝑀𝑡

59

Round 1

60

Round 2

61

Round 3

62

Final Model

63

𝑀∗

Random Forest (Breiman 2001)

• Random Forest:

• Each classifier in the ensemble is a decision tree classifier and is generated

using a random selection of attributes at each node to determine the split

• During classification, each tree votes and the most popular class is returned

• Two Methods to construct Random Forest:

• Forest-RI (random input selection): Randomly select, at each node, F

attributes as candidates for the split at the node. The CART methodology is

used to grow the trees to maximum size

• Forest-RC (random linear combinations): Creates new attributes (or features)

that are a linear combination of the existing attributes (reduces the correlation

between individual classifiers)

• Comparable in accuracy to Adaboost, but more robust to errors and outliers

• Insensitive to the number of attributes selected for consideration at each
split, and faster than bagging or boosting

64

Classification of Class-Imbalanced Data Sets

• Class-imbalance problem: Rare positive example but numerous
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

• Traditional methods assume a balanced distribution of classes and
equal error costs: not suitable for class-imbalanced data

• Typical methods for imbalance data in 2-class classification:

• Oversampling: re-sampling of data from positive class

• Under-sampling: randomly eliminate tuples from negative class

• Threshold-moving: moves the decision threshold, t, so that the
rare class tuples are easier to classify, and hence, less chance of
costly false negative errors

• Ensemble techniques: Ensemble multiple classifiers introduced
above

• Still difficult for class imbalance problem on multiclass tasks

65

Multiclass Classification

• Classification involving more than two classes (i.e., > 2 Classes)

• Method 1. One-vs.-all (OVA): Learn a classifier one at a time

• Given m classes, train m classifiers: one for each class

• Classifier j: treat tuples in class j as positive & all others as negative

• To classify a tuple X, the set of classifiers vote as an ensemble

• Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes

• Given m classes, construct m(m-1)/2 binary classifiers

• A classifier is trained using tuples of the two classes

• To classify a tuple X, each classifier votes. X is assigned to the class with

maximal vote

• Comparison

• All-vs.-all tends to be superior to one-vs.-all

• Problem: Binary classifier is sensitive to errors, and errors affect vote count

66

Semi-Supervised Classification

• Semi-supervised: Uses labeled and unlabeled data to build a classifier

• Self-training:

• Build a classifier using the labeled data

• Use it to label the unlabeled data, and those with the most confident label

prediction are added to the set of labeled data

• Repeat the above process

• Adv: easy to understand; disadv: may reinforce errors

• Co-training: Use two or more classifiers to teach each other

• Each learner uses a mutually independent set of features of each tuple to train a

good classifier, say f1

• Then f1 and f2 are used to predict the class label for unlabeled data X

• Teach each other: The tuple having the most confident prediction from f1 is

added to the set of labeled data for f2, & vice versa

• Other methods, e.g., joint probability distribution of features and labels

68

+

̶

unlabeled labeled

Active Learning

• Class labels are expensive to obtain

• Active learner: query human (oracle) for labels

• Pool-based approach: Uses a pool of unlabeled data

• L: a small subset of D is labeled, U: a pool of unlabeled data in D

• Use a query function to carefully select one or more tuples from U and
request labels from an oracle (a human annotator)

• The newly labeled samples are added to L, and learn a model

• Goal: Achieve high accuracy using as few labeled data as possible

• Evaluated using learning curves: Accuracy as a function of the number of
instances queried (# of tuples to be queried should be small)

• Research issue: How to choose the data tuples to be queried?

• Uncertainty sampling: choose the least certain ones

• Reduce version space, the subset of hypotheses consistent w. the training
data

• Reduce expected entropy over U: Find the greatest reduction in the total
number of incorrect predictions

69

Transfer Learning: Conceptual Framework

• Transfer learning: Extract knowledge from one or more source tasks and apply

the knowledge to a target task

• Traditional learning: Build a new classifier for each new task

• Transfer learning: Build new classifier by applying existing knowledge learned

from source tasks

70

Traditional Learning Framework Transfer Learning Framework

Transfer Learning: Methods and Applications

• Applications: Especially useful when data is outdated or distribution changes, e.g.,
Web document classification, e-mail spam filtering

• Instance-based transfer learning: Reweight some of the data from source tasks
and use it to learn the target task

• TrAdaBoost (Transfer AdaBoost)

• Assume source and target data each described by the same set of attributes
(features) & class labels, but rather diff. distributions

• Require only labeling a small amount of target data

• Use source data in training: When a source tuple is misclassified, reduce the
weight of such tupels so that they will have less effect on the subsequent classifier

• Research issues

• Negative transfer: When it performs worse than no transfer at all

• Heterogeneous transfer learning: Transfer knowledge from different feature
space or multiple source domains

• Large-scale transfer learning

71

Matrix Data: Classification: Part 3

•SVM (Support Vector Machine)

•kNN (k Nearest Neighbor)

•Other Issues

•Summary

72

• Support Vector Machine
• Support vectors; Maximum marginal hyperplane;

Linear separable; Linear inseparable; Kernel tricks

• Instance-Based Learning

• Lazy learning vs. eager learning; K-nearest neighbor

algorithm; Similarity / dissimilarity measures

•Other Topics

• Ensemble; Class imbalanced data; multi-class

classification; semi-supervised learning; active learning;

transfer learning

73

