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Matrix Data: Classification: Part 3 
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Announcement 

•Assignment 1 is out 

•Deadline (10/14/2013, 11:59pm) 
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Matrix Data: Classification: Part 3 

•SVM (Support Vector Machine) 

•kNN (k Nearest Neighbor) 

•Other Issues 

•Summary 
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Classification: A Mathematical Mapping 

• Classification: predicts categorical class labels 

• E.g., Personal homepage classification 

• xi = (x1, x2, x3, …), yi = +1 or –1 

• x1 : # of word “homepage” 

• x2 : # of word “welcome” 

• Mathematically, x  X = n, y  Y = {+1, –1},  

• We want to derive a function f: X  Y  
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SVM—Support Vector Machines 

• A relatively new classification method for both linear and 

nonlinear data 

• It uses a nonlinear mapping to transform the original training 

data into a higher dimension 

• With the new dimension, it searches for the linear optimal 

separating hyperplane (i.e., “decision boundary”) 

• With an appropriate nonlinear mapping to a sufficiently high 

dimension, data from two classes can always be separated by a 

hyperplane 

• SVM finds this hyperplane using support vectors (“essential” 

training tuples) and margins (defined by the support vectors) 
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SVM—History and Applications 

• Vapnik and colleagues (1992)—groundwork from Vapnik & 

Chervonenkis’ statistical learning theory in 1960s 

• Features: training can be slow but accuracy is high owing to their 

ability to model complex nonlinear decision boundaries (margin 

maximization) 

• Used for: classification and numeric prediction 

• Applications:  

• handwritten digit recognition, object recognition, speaker 

identification, benchmarking time-series prediction tests  
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SVM—General Philosophy 

Support Vectors 

Small Margin Large Margin 
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SVM—Margins and Support Vectors 
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SVM—When Data Is Linearly Separable 

m 

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples 
associated with the class labels yi 

There are infinite lines (hyperplanes) separating the two classes but we want to 
find the best one (the one that minimizes classification error on unseen data) 

SVM searches for the hyperplane with the largest margin, i.e., maximum 
marginal hyperplane (MMH) 
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SVM—Linearly Separable 

 A separating hyperplane can be written as 

W ● X + b = 0 

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias) 

 For 2-D it can be written as 

w0 + w1 x1 + w2 x2 = 0 

 The hyperplane defining the sides of the margin:  

H1: w0 + w1 x1 + w2 x2 ≥ 1    for yi = +1, and 

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1 

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the  

sides defining the margin) are support vectors 

 This becomes a constrained (convex) quadratic optimization problem: 

Quadratic objective function and linear constraints  Quadratic 

Programming (QP)  Lagrangian multipliers 



Maximum Margin Calculation 

•w: decision hyperplane normal vector 

•xi: data point i 

•yi: class of data point i (+1 or -1) 
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wT x + b = 0 

wTxa + b = 1 

wTxb + b = -1 

ρ 

𝜌 =
2

||𝒘||
 



SVM as a Quadratic Programming  

•QP 

 

 

 

 

•A better form 
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Objective: Find w and b such that 𝜌 =
2

||𝒘||
  is 

maximized;  

Constraints: For all {(xi , yi)} 

wTxi + b ≥ 1 if yi=1;    

wTxi + b ≤ -1   if yi = -1 

Objective: Find w and b such that Φ(w) =½ wTw  is 

minimized;  

Constraints: for all {(xi ,yi)}:    yi (w
Txi + b) ≥ 1 



Solve QP 

•This is now optimizing a quadratic function 
subject to linear constraints 

•Quadratic optimization problems are a well-
known class of mathematical programming 
problem, and many (intricate) algorithms exist 
for solving them (with many special ones built 
for SVMs) 

•The solution involves constructing a dual 
problem where a Lagrange multiplier αi is 
associated with every constraint in the 
primary problem: 
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Primal Form and Dual Form 

 
 
 
 
 
 
 
 
 
 

• More derivations: 
http://cs229.stanford.edu/notes/cs229-notes3.pdf 
 14 

Objective: Find w and b such that Φ(w) =½ wTw  is 

minimized;  

Constraints: for all {(xi ,yi)}:    yi (w
Txi + b) ≥ 1 

Objective: Find α1…αn such that 
Q(α) =Σαi  - ½ΣΣαiαjyiyjxi

Txj is maximized and  
 
Constraints 
(1)  Σαiyi = 0 
(2) αi ≥ 0 for all αi 

Primal 

Dual 

Equivalent under some conditions: KKT conditions 

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
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The Optimization Problem Solution 
• The solution has the form:  

 

 

 

• Each non-zero αi indicates that corresponding xi is a support vector. 

• Then the classifying function will have the form: 

 

 

 

• Notice that it relies on an inner product between the test point x and the 
support vectors xi 

• We will return to this later. 

• Also keep in mind that solving the optimization problem involved computing 
the inner products xi

Txj between all pairs of training points. 
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w  =Σαiyixi             b= yk- w
Txk for any xk such that αk 0 

f(x) = Σαiyixi
Tx + b 
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Why Is SVM Effective on High Dimensional Data? 

 The complexity of trained classifier is characterized by the # of support 

vectors rather than the dimensionality of the data 

 The support vectors are the essential or critical training examples —they lie 

closest to the decision boundary (MMH) 

 If all other training examples are removed and the training is repeated, the 

same separating hyperplane would be found 

 The number of support vectors found can be used to compute an (upper) 

bound on the expected error rate of the SVM classifier, which is independent 

of the data dimensionality 

 Thus, an SVM with a small number of support vectors can have good 

generalization, even when the dimensionality of the data is high 
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Soft Margin Classification   

• If the training data is not 
linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples. 

• Allow some errors 

•Let some points be 
moved to where they 
belong, at a cost 

• Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin) 
 

ξj 

ξi 

Sec. 15.2.1 
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Soft Margin Classification 
Mathematically 

• The old formulation: 

 

 

 

 

• The new formulation incorporating slack variables: 

 

 

 

 

• Parameter C can be viewed as a way to control overfitting 

• A regularization term (L1 regularization) 

Find w and b such that 

Φ(w) =½ wTw  is minimized and for all {(xi ,yi)} 
yi (w

Txi + b) ≥ 1 

Find w and b such that 

Φ(w) =½ wTw + CΣξi     is minimized and for all {(xi ,yi)} 
yi (w

Txi + b) ≥ 1- ξi     and    ξi ≥ 0 for all i 

Sec. 15.2.1 
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Soft Margin Classification – Solution 
• The dual problem for soft margin classification: 

 

 

 

 

 

• Neither slack variables ξi  nor their Lagrange multipliers appear in the dual 
problem! 

• Again, xi with non-zero αi will be support vectors. 

• Solution to the dual problem is: 

Find α1…αN such that 

Q(α) =Σαi  - ½ΣΣαiαjyiyjxi
Txj is maximized and  

(1)  Σαiyi = 0 

(2)  0 ≤ αi ≤ C for all αi 

w  = Σαiyixi              

b = yk(1- ξk) - w
Txk where k = argmax αk’ 

k’ f(x) = Σαiyixi
Tx + b 

w is not needed explicitly 

for classification! 

Sec. 15.2.1 
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Classification with SVMs 

• Given a new point x, we can score its projection 
onto the hyperplane normal: 

• I.e., compute score: wTx + b = Σαiyixi
Tx + b 

• Decide class based on whether < or > 0 

 

• Can set confidence threshold t. 

-1 
0 

1 

Score > t: yes 

Score < -t: no 

Else: don’t know 

Sec. 15.1 
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Linear SVMs:  Summary 

• The classifier is a separating hyperplane. 
 

• The most “important” training points are the support vectors; 
they define the hyperplane. 
 

• Quadratic optimization algorithms can identify which training 
points xi are support vectors with non-zero Lagrangian 
multipliers αi.  
 

• Both in the dual formulation of the problem and in the 
solution, training points appear only inside inner products:  

Find α1…αN such that 

Q(α) =Σαi  - ½ΣΣαiαjyiyjxi
Txj is maximized and  

(1)  Σαiyi = 0 

(2)  0 ≤ αi ≤ C for all αi 

f(x) = Σαiyixi
Tx + b 

Sec. 15.2.1 
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Non-linear SVMs 

• Datasets that are linearly separable (with some noise) work out 
great: 
 

 

 

• But what are we going to do if the dataset is just too hard?  
 

 

• How about … mapping data to a higher-dimensional space: 

0 

x2 

x 

0 x 

0 x 

Sec. 15.2.3 



23 

Non-linear SVMs:  Feature spaces 

•General idea: the original feature space 
can always be mapped to some higher-
dimensional feature space where the 
training set is separable: 

Φ:  x → φ(x) 

Sec. 15.2.3 



24 

The “Kernel Trick” 

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj 

• If every data point is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes: 

K(xi,xj)= φ(xi) 
Tφ(xj) 

• A kernel function is some function that corresponds to an inner product in 
some expanded feature space. 

• Example:  

 2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
, 

 Need to show that K(xi,xj)= φ(xi) 
Tφ(xj): 

 K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1

 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2= 

       = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2   xj2

2  √2xj1  √2xj2]  

       = φ(xi) 
Tφ(xj)    where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2] 

Sec. 15.2.3 
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SVM:  Different Kernel functions 

 Instead of computing the dot product on the transformed data, 

it is math. equivalent to applying a kernel function K(Xi, Xj) to 

the original data, i.e., K(Xi, Xj) = Φ(Xi)
TΦ(Xj)  

 Typical Kernel Functions 

 

 

 

 

 *SVM can also be used for classifying multiple (> 2) classes and 

for regression analysis (with additional parameters) 
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*Scaling SVM by Hierarchical Micro-Clustering 

• SVM is not scalable to the number of data objects in terms of training time 

and memory usage 

• H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with 

Hierarchical Clusters”, KDD'03) 

• CB-SVM (Clustering-Based SVM) 

• Given limited amount of system resources (e.g., memory), maximize the 

SVM performance in terms of accuracy and the training speed 

• Use micro-clustering to effectively reduce the number of points to be 

considered 

• At deriving support vectors, de-cluster micro-clusters near “candidate vector” 

to ensure high classification accuracy 

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf
http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf
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*CF-Tree: Hierarchical Micro-cluster 

 Read the data set once, construct a statistical summary of the data (i.e., 

hierarchical clusters) given a limited amount of memory 

 Micro-clustering: Hierarchical indexing structure 

 provide finer samples closer to the boundary and coarser samples 

farther from the boundary 
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*Selective Declustering: Ensure High Accuracy 

• CF tree is a suitable base structure for selective declustering 

• De-cluster only the cluster Ei such that 

• Di – Ri < Ds, where Di is the distance from the boundary to the center point of 

Ei and Ri is the radius of Ei 

• Decluster only the cluster whose subclusters have possibilities to be the 

support cluster of the boundary 

• “Support cluster”: The cluster whose centroid is a support vector 
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*CB-SVM Algorithm: Outline 

• Construct two CF-trees from positive and negative data sets 
independently 

• Need one scan of the data set 

• Train an SVM from the centroids of the root entries 

• De-cluster the entries near the boundary into the next level 

• The children entries de-clustered from the parent entries are 

accumulated into the training set with the non-declustered 

parent entries 

• Train an SVM again from the centroids of the entries in the 
training set 

• Repeat until nothing is accumulated  
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*Accuracy and Scalability on Synthetic Dataset 

• Experiments on large synthetic data sets shows better accuracy 
than random sampling approaches and far more scalable than 
the original SVM algorithm 
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SVM Related Links 

• SVM Website: http://www.kernel-machines.org/ 

• Representative implementations 

• LIBSVM: an efficient implementation of SVM, multi-class 

classifications, nu-SVM, one-class SVM, including also various 

interfaces with java, python, etc. 

• SVM-light: simpler but performance is not better than LIBSVM, 

support only binary classification and only in C  

• SVM-torch: another recent implementation also written in C 

http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/


Matrix Data: Classification: Part 3 

•SVM (Support Vector Machine) 

•kNN (k Nearest Neighbor) 

•Other Issues 

•Summary 
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Lazy vs. Eager Learning 

• Lazy vs. eager learning 

• Lazy learning (e.g., instance-based learning): Simply stores 
training data (or only minor processing) and waits until it is given 
a test tuple 

• Eager learning (the above discussed methods): Given a set of 
training tuples, constructs a classification model before receiving 
new (e.g., test) data to classify 

• Lazy: less time in training but more time in predicting 

• Accuracy 

• Lazy method effectively uses a richer hypothesis space since it 
uses many local linear functions to form an implicit global 
approximation to the target function 

• Eager: must commit to a single hypothesis that covers the entire 
instance space 
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Lazy Learner: Instance-Based Methods 

• Instance-based learning:  

• Store training examples and delay the processing (“lazy 
evaluation”) until a new instance must be classified 

• Typical approaches 

• k-nearest neighbor approach 

• Instances represented as points in a Euclidean 
space. 

• Locally weighted regression 

• Constructs local approximation 



35 

The k-Nearest Neighbor Algorithm 

• All instances correspond to points in the n-D space 

• The nearest neighbor are defined in terms of Euclidean 
distance, dist(X1, X2) 

• Target function could be discrete- or real- valued 

• For discrete-valued, k-NN returns the most common value 
among the k training examples nearest to xq 

• Vonoroi diagram: the decision surface induced by 1-NN for a 
typical set of training examples 
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Discussion on the k-NN Algorithm 

• k-NN for real-valued prediction for a given unknown tuple 

• Returns the mean values of the k nearest neighbors 

• Distance-weighted nearest neighbor algorithm 

• Weight the contribution of each of the k neighbors according to their 

distance to the query xq 

• Give greater weight to closer neighbors 

• 𝑦𝑞 =
∑𝑤𝑖𝑦𝑖

∑𝑤𝑖
, where 𝑥𝑖’s are 𝑥𝑞’s nearest neighbors 

• Robust to noisy data by averaging k-nearest neighbors 

• Curse of dimensionality: distance between neighbors could be 
dominated by irrelevant attributes    

• To overcome it, axes stretch or elimination of the least relevant 

attributes 

2),(

1

i
xqxd

w



Similarity and Dissimilarity 

• Similarity 

• Numerical measure of how alike two data objects are 

• Value is higher when objects are more alike 

• Often falls in the range [0,1] 

• Dissimilarity (e.g., distance) 

• Numerical measure of how different two data objects are 

• Lower when objects are more alike 

• Minimum dissimilarity is often 0 

• Upper limit varies 

• Proximity refers to a similarity or dissimilarity 
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Data Matrix and Dissimilarity Matrix 

• Data matrix 

• n data points with p 

dimensions 

• Two modes 

 

 

• Dissimilarity matrix 

• n data points, but registers 

only the distance  

• A triangular matrix 

• Single mode 
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Proximity Measure for Nominal Attributes 

• Can take 2 or more states, e.g., red, yellow, blue, green 

(generalization of a binary attribute) 

• Method 1: Simple matching 

• m: # of matches, p: total # of variables 

 

• Method 2: Use a large number of binary attributes 

• creating a new binary attribute for each of the M nominal states 
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Proximity Measure for Binary Attributes 

• A contingency table for binary data 

 

• Distance measure for symmetric binary 

variables:  

• Distance measure for asymmetric binary 

variables:  

• Jaccard coefficient (similarity measure 

for asymmetric binary variables):  

 Note: Jaccard coefficient is the same as “coherence”: 

Object i 

Object j 
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Dissimilarity between Binary Variables 

• Example 

 

 

 

 

• Gender is a symmetric attribute 

• The remaining attributes are asymmetric binary 

• Let the values Y and P be 1, and the value N 0 
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Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Standardizing Numeric Data 

• Z-score:  

• X: raw score to be standardized, μ: mean of the population, σ: standard 

deviation 

• the distance between the raw score and the population mean in units of 

the standard deviation 

• negative when the raw score is below the mean, “+” when above 

• An alternative way: Calculate the mean absolute deviation 

 

where 

 

• standardized measure (z-score): 

• Using mean absolute deviation is more robust than using standard deviation  





x

 z

.)...
21

1
nffff

xx(xn m 

|)|...|||(|1
21 fnffffff

mxmxmxns 

f

fif

if s

mx
 z




42 



Example:  
Data Matrix and Dissimilarity Matrix 
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point attribute1 attribute2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

Dissimilarity Matrix  

(with Euclidean Distance) 

x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

Data Matrix 



Distance on Numeric Data: Minkowski Distance 

• Minkowski distance: A popular distance measure 

 

 

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-
dimensional data objects, and h is the order (the distance so 
defined is also called L-h norm) 

• Properties 

• d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness) 

• d(i, j) = d(j, i)  (Symmetry) 

• d(i, j)  d(i, k) + d(k, j)  (Triangle Inequality) 

• A distance that satisfies these properties is a metric 
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Special Cases of Minkowski Distance 

• h = 1:  Manhattan (city block, L1 norm) distance  

• E.g., the Hamming distance: the number of bits that are different 

between two binary vectors 

 

 

• h = 2:  (L2 norm) Euclidean distance 

 

 

• h  .  “supremum” (Lmax norm, L norm) distance.  

• This is the maximum difference between any component 

(attribute) of the vectors 
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Example: Minkowski Distance 
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Dissimilarity Matrices 

point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1) 

Euclidean (L2) 

Supremum  



Ordinal Variables 

• An ordinal variable can be discrete or continuous 

• Order is important, e.g., rank 

• Can be treated like interval-scaled  

• replace xif  by their rank  

• map the range of each variable onto [0, 1] by replacing i-th object 

in the f-th variable by 

 

 

• compute the dissimilarity using methods for interval-scaled 

variables 
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Attributes of Mixed Type 

• A database may contain all attribute types 
• Nominal, symmetric binary, asymmetric binary, numeric, 

ordinal 
• One may use a weighted formula to combine their effects 

 
 
 

• f  is binary or nominal: 

dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise 
• f  is numeric: use the normalized distance 
• f  is ordinal  

• Compute ranks rif and   
• Treat zif as interval-scaled 
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 Cosine Similarity 
 

• A document can be represented by thousands of attributes, each recording the 
frequency of a particular word (such as keywords) or phrase in the document. 

 

 

 

 

 

• Other vector objects: gene features in micro-arrays, … 

• Applications: information retrieval, biologic taxonomy, gene feature mapping, ... 

• Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then 

             cos(d1, d2) =  (d1  d2) /||d1|| ||d2|| ,  

   where  indicates vector dot product, ||d||: the length of vector d 

49 



 Example: Cosine Similarity 
 

• cos(d1, d2) =  (d1  d2) /||d1|| ||d2|| ,  

   where  indicates vector dot product, ||d|: the length of vector d 

 

• Ex: Find the similarity between documents 1 and 2. 

 

d1 =  (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) 

d2 =  (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) 

 

d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 

||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5  = 6.481 

||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5       = 4.12 

cos(d1, d2 ) = 0.94 

50 



Model Selection for kNN 

•The number of neighbors k 

•Small k: overfitting (high variance) 

•Big k: bringing too many irrelevant points (high 

bias) 

•More discussions: 

http://scott.fortmann-roe.com/docs/BiasVariance.html 

 

•The distance function 
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Matrix Data: Classification: Part 3 

•SVM (Support Vector Machine) 

•kNN (k Nearest Neighbor) 

•Other Issues 

•Summary 
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Ensemble Methods: Increasing the Accuracy 

• Ensemble methods 

• Use a combination of models to increase accuracy 

• Combine a series of k learned models, M1, M2, …, Mk, with the 

aim of creating an improved model M* 

• Popular ensemble methods 

• Bagging: averaging the prediction over a collection of classifiers 

• Boosting: weighted vote with a collection of classifiers 
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Bagging: Boostrap Aggregation 

• Analogy: Diagnosis based on multiple doctors’ majority vote 

• Training 

• Given a set D of d tuples, at each iteration i, a training 

set Di of d tuples is sampled with replacement from D 

(i.e., bootstrap) 

• A classifier model Mi is learned for each training set Di 

• Classification: classify an unknown sample X  

• Each classifier Mi returns its class prediction 

• The bagged classifier M* counts the votes and assigns 

the class with the most votes to X 

• Prediction: can be applied to the prediction of continuous values by taking the 
average value of each prediction for a given test tuple 
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Performance of Bagging 
• Accuracy 
• Often significantly better than a single classifier derived from D 

• For noise data: not considerably worse, more robust  

• Proved improved accuracy in prediction 

• Example 
• Suppose we have 5 completely independent classifiers… 

• If accuracy is 70% for each 

• The final prediction is correct, if at least 3 classifiers make the correct 
prediction 
• 3 are correct: 5

3
× (.7^3)(.3^2) 

• 4 are correct: 5
4
× (.7^4)(.3^1) 

• 5 are correct: 5
5
× (.7^5)(.3^0) 

• In all, 10 (.7^3)(.3^2)+5(.7^4)(.3)+(.7^5) 
• 83.7% majority vote accuracy 

• 101 Such classifiers 

• 99.9% majority vote accuracy 
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Boosting 

• Analogy: Consult several doctors, based on a combination of 
weighted diagnoses—weight assigned based on the previous 
diagnosis accuracy 

• How boosting works? 
• Weights are assigned to each training tuple 

• A series of k classifiers is iteratively learned 

• After a classifier Mt is learned, the weights are updated to allow 
the subsequent classifier, Mt+1, to pay more attention to the 

training tuples that were misclassified by Mt 
• The final M* combines the votes of each individual classifier, 

where the weight of each classifier's vote is a function of its 
accuracy 

• Boosting algorithm can be extended for numeric prediction 
• Comparing with bagging: Boosting tends to have greater accuracy, 

but it also risks overfitting the model to misclassified data 
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Adaboost (Freund and Schapire, 1997) 

• Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd) 

• Initially, all the weights of tuples are set the same (1/d) 

• Generate k classifiers in k rounds.  At round t, 

• Tuples from D are sampled (with replacement) to 
form a training set Dt of the same size based on its 
weight 

• A classification model Mt is derived from Dt 

• If a tuple is misclassified, its weight is increased, 
o.w. it is decreased 

• 𝑤𝑡+1,𝑗 ∝ 𝑤𝑡,𝑗 × exp −𝛼𝑡  if j is correctly classified 

• 𝑤𝑡+1,𝑗 ∝ 𝑤𝑡,𝑗 × exp 𝛼𝑡  if j is incorrectly classified 
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AdaBoost 
• Error rate: err(Xj) is the misclassification 

error of tuple Xj. Classifier Mt error rate 
(𝜖𝑡 = error(Mt)) is the sum of the weights 
of the misclassified tuples:  
 
 

• The weight of classifier Mt’s vote is 

𝛼𝑡 =
1

2
l𝑛
1 − 𝑒𝑟𝑟𝑜𝑟(𝑀𝑡)

𝑒𝑟𝑟𝑜𝑟(𝑀𝑡)
 

• Final classifier M* 

𝑀∗ 𝑥 = 𝑠𝑖𝑔𝑛( 𝛼𝑡𝑀𝑡(𝑥)

𝑡

) 
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AdaBoost Example 

• From “A Tutorial on Boosting” 

• By Yoav Freund and Rob Schapire 

•Note they use ℎ𝑡 to represent classifier instead 
of 𝑀𝑡 
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Round 1 
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Round 2 
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Round 3 
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Final Model 
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Random Forest (Breiman 2001)  

• Random Forest:  

• Each classifier in the ensemble is a decision tree classifier and is generated 

using a random selection of attributes at each node to determine the split 

• During classification, each tree votes and the most popular class is returned 

• Two Methods to construct Random Forest: 

• Forest-RI (random input selection):  Randomly select, at each node, F 

attributes as candidates for the split at the node. The CART methodology is 

used to grow the trees to maximum size 

• Forest-RC (random linear combinations):  Creates new attributes (or features) 

that are a linear combination of the existing attributes (reduces the correlation 

between individual classifiers) 

• Comparable in accuracy to Adaboost, but more robust to errors and outliers  

• Insensitive to the number of attributes selected for consideration at each 
split, and faster than bagging or boosting 
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Classification of Class-Imbalanced Data Sets 

• Class-imbalance problem: Rare positive example but numerous 
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.  

• Traditional methods assume a balanced distribution of classes and 
equal error costs: not suitable for class-imbalanced data 

• Typical methods for imbalance data in 2-class classification:  

• Oversampling: re-sampling of data from positive class 

• Under-sampling: randomly eliminate  tuples from negative class 

• Threshold-moving: moves the decision threshold, t, so that the 
rare class tuples are easier to classify, and hence, less chance of 
costly false negative errors 

• Ensemble techniques: Ensemble multiple classifiers introduced 
above 

• Still difficult for class imbalance problem on multiclass tasks 

65 



Multiclass Classification 

• Classification involving more than two classes (i.e., > 2 Classes)  

• Method 1. One-vs.-all (OVA): Learn a classifier one at a time  

• Given m classes, train m classifiers: one for each class 

• Classifier j: treat tuples in class j as positive & all others as negative 

• To classify a tuple X, the set of classifiers vote as an ensemble  

• Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes 

• Given m classes, construct m(m-1)/2 binary classifiers 

• A classifier is trained using tuples of the two classes 

• To classify a tuple X, each classifier votes.  X is assigned to the class with 

maximal vote 

• Comparison 

• All-vs.-all tends to be superior to one-vs.-all 

• Problem: Binary classifier is sensitive to errors, and errors affect vote count 
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Semi-Supervised Classification 

• Semi-supervised: Uses labeled and unlabeled data to build a classifier 

• Self-training:  

• Build a classifier using the labeled data 

• Use it to label the unlabeled data, and those with the most confident label 

prediction are added to the set of labeled data 

• Repeat the above process 

• Adv: easy to understand; disadv: may reinforce errors 

• Co-training: Use two or more classifiers to teach each other 

• Each learner uses a mutually independent set of features of each tuple to train a 

good classifier, say f1 

• Then f1 and f2 are used to predict the class label for unlabeled data X 

• Teach each other: The tuple having the most confident prediction from f1 is 

added to the set of labeled data for f2, & vice versa  

• Other methods, e.g., joint probability distribution of features and labels 
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Active Learning 

• Class labels are expensive to obtain 

• Active learner: query human (oracle) for labels 

• Pool-based approach: Uses a pool of unlabeled data 

• L: a small subset of D is labeled, U: a pool of unlabeled data in D 

• Use a query function to carefully select one or more tuples from U and 
request labels from an oracle (a human annotator) 

• The newly labeled samples are added to L, and learn a model 

• Goal: Achieve high accuracy using as few labeled data as possible 

• Evaluated using learning curves: Accuracy as a function of the number of 
instances queried (# of tuples to be queried should be small) 

• Research issue: How to choose the data tuples to be queried? 

• Uncertainty sampling: choose the least certain ones 

• Reduce version space, the subset of hypotheses consistent w. the training 
data 

• Reduce expected entropy over U: Find the greatest reduction in the total 
number of incorrect predictions 
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Transfer Learning: Conceptual Framework 

• Transfer learning: Extract knowledge from one or more source tasks and apply 

the knowledge to a target task 

• Traditional learning: Build a new classifier for each new task 

• Transfer learning: Build new classifier by applying existing knowledge learned 

from source tasks 
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Transfer Learning: Methods and Applications 

• Applications: Especially useful when data is outdated or distribution changes, e.g., 
Web document classification, e-mail spam filtering 

• Instance-based transfer learning:  Reweight some of the data from source tasks 
and use it to learn the target task 

• TrAdaBoost (Transfer AdaBoost) 

• Assume source and target data each described by the same set of attributes 
(features) & class labels, but rather diff. distributions 

• Require only labeling a small amount of target data 

• Use source data in training: When a source tuple is misclassified, reduce the 
weight of such tupels so that they will have less effect on the subsequent classifier 

• Research issues 

• Negative transfer: When it performs worse than no transfer at all 

• Heterogeneous transfer learning: Transfer knowledge from different feature 
space or multiple source domains 

• Large-scale transfer learning 
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Matrix Data: Classification: Part 3 

•SVM (Support Vector Machine) 

•kNN (k Nearest Neighbor) 

•Other Issues 

•Summary 

 

72 



• Support Vector Machine 
• Support vectors; Maximum marginal hyperplane; 

Linear separable; Linear inseparable; Kernel tricks 

• Instance-Based Learning 

• Lazy learning vs. eager learning; K-nearest neighbor 

algorithm; Similarity / dissimilarity measures 

•Other Topics 

• Ensemble; Class imbalanced data; multi-class 

classification; semi-supervised learning; active learning; 

transfer learning  
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