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Announcement 

•Homework 1 due next Monday (10/14) 

•Course project proposal due next 
Wednesday (10/16) 

•Submit pdf file in blackboard 

•Sign-up for discussions on next Friday (15mins 

for each group) 
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• Hierarchical Methods 

• Density-Based Methods 

• Evaluation of Clustering 

• Summary 
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What is Cluster Analysis? 

• Cluster: A collection of data objects 

• similar (or related) to one another within the same group 

• dissimilar (or unrelated) to the objects in other groups 

• Cluster analysis (or clustering, data segmentation, …) 

• Finding similarities between data according to the characteristics 

found in the data and grouping similar data objects into clusters 

• Unsupervised learning: no predefined classes (i.e., learning by 
observations vs. learning by examples: supervised) 

• Typical applications 

• As a stand-alone tool to get insight into data distribution  

• As a preprocessing step for other algorithms 
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Applications of Cluster Analysis 

• Data reduction 

• Summarization: Preprocessing for regression, PCA, classification, 

and association analysis 

• Compression: Image processing: vector quantization 

• Prediction based on groups 

• Cluster & find characteristics/patterns for each group 

• Finding K-nearest Neighbors 

• Localizing search to one or a small number of clusters 

• Outlier detection: Outliers are often viewed as those “far away” 

from any cluster 
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Clustering: Application Examples 

• Biology: taxonomy of living things: kingdom, phylum, class, order, 
family, genus and species 

• Information retrieval: document clustering 

• Land use: Identification of areas of similar land use in an earth 
observation database 

• Marketing: Help marketers discover distinct groups in their 
customer bases, and then use this knowledge to develop 
targeted marketing programs 

• City-planning: Identifying groups of houses according to their 
house type, value, and geographical location 

• Earth-quake studies: Observed earth quake epicenters should 
be clustered along continent faults 

• Climate: understanding earth climate, find patterns of 
atmospheric and ocean 6 



Basic Steps to Develop a Clustering Task 

• Feature selection 

• Select info concerning the task of interest 

• Minimal information redundancy 

• Proximity measure 

• Similarity of two feature vectors 

• Clustering criterion 

• Expressed via a cost function or some rules 

• Clustering algorithms 

• Choice of algorithms 

• Validation of the results 

• Validation test (also, clustering tendency test) 

• Interpretation of the results 

• Integration with applications 
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Quality: What Is Good Clustering? 

• A good clustering method will produce high quality clusters 

• high intra-class similarity: cohesive within clusters 

• low inter-class similarity: distinctive between clusters 

• The quality of a clustering method depends on 

• the similarity measure used by the method  

• its implementation, and 

• Its ability to discover some or all of the hidden patterns 
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Requirements and Challenges 
• Scalability 

• Clustering all the data instead of only on samples 

• Ability to deal with different types of attributes 

• Numerical, binary, categorical, ordinal, linked, and mixture of these  

• Constraint-based clustering 

• User may give inputs on constraints 

• Use domain knowledge to determine input parameters 

• Interpretability and usability 

• Others  

• Discovery of clusters with arbitrary shape 

• Ability to deal with noisy data 

• Incremental clustering and insensitivity to input order 

• High dimensionality 
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Partitioning Algorithms: Basic Concept 

• Partitioning method: Partitioning a dataset D of n objects into a set of k 

clusters, such that the sum of squared distances is minimized (where ci is 

the centroid or medoid of cluster Ci) 

 

 

• Given k, find a partition of k clusters that optimizes the chosen partitioning 

criterion 

• Global optimal: exhaustively enumerate all partitions 

• Heuristic methods: k-means and k-medoids algorithms 

• k-means (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the 

center of the cluster 

• k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects in the 

cluster   
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The K-Means Clustering Method  

• Given k, the k-means algorithm is implemented in four steps: 

• Partition objects into k nonempty subsets 

• Compute seed points as the centroids of the clusters of the 

current partitioning (the centroid is the center, i.e., mean 

point, of the cluster) 

• Assign each object to the cluster with the nearest seed point   

• Go back to Step 2, stop when the assignment does not 

change 
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An Example of K-Means Clustering 

K=2 

 

Arbitrarily 
partition 
objects into 
k groups 

Update the 
cluster 
centroids 

Update the 
cluster 
centroids 

 

Reassign  objects Loop if 
needed 

The initial data set 

 Partition objects into k nonempty 

subsets 

 Repeat 

 Compute centroid (i.e., mean 

point) for each partition  

 Assign each object to the 

cluster of its nearest centroid   

 Until no change 
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Comments on the K-Means Method 

• Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t  is # 

iterations. Normally, k, t << n. 

• Comment: Often terminates at a local optimal 

• Weakness 

• Applicable only to objects in a continuous n-dimensional space  

• Using the k-modes method for categorical data 

• In comparison, k-medoids can be applied to a wide range of data 

• Need to specify k, the number of clusters, in advance (there are ways to 

automatically determine the best k (see Hastie et al., 2009) 

• Sensitive to noisy data and outliers 

• Not suitable to discover clusters with non-convex shapes 
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Variations of the K-Means Method 

• Most of the variants of the k-means which differ in 

• Selection of the initial k means 

• Dissimilarity calculations 

• Strategies to calculate cluster means 

• Handling categorical data: k-modes 

• Replacing means of clusters with modes 

• Using new dissimilarity measures to deal with categorical objects 

• Using a frequency-based method to update modes of clusters 

• A mixture of categorical and numerical data: k-prototype method 
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What Is the Problem of the K-Means Method? 

• The k-means algorithm is sensitive to outliers ! 

• Since an object with an extremely large value may substantially distort the 

distribution of the data 

• K-Medoids:  Instead of taking the mean value of the object in a cluster as a 

reference point, medoids can be used, which is the most centrally located 

object in a cluster 
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PAM: A Typical K-Medoids Algorithm 
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The K-Medoid Clustering Method 

• K-Medoids Clustering: Find representative objects (medoids) in clusters 

• PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987) 

• Starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of the 

resulting clustering 

• PAM works effectively for small data sets, but does not scale well for large 

data sets (due to the computational complexity) 

• Efficiency improvement on PAM 

• CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples 

• CLARANS (Ng & Han, 1994): Randomized re-sampling 
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Hierarchical Clustering 

• Use distance matrix as clustering criteria.  This method does not 
require the number of clusters k as an input, but needs a 
termination condition  

Step 0 Step 1 Step 2 Step 3 Step 4 

b 

d 

c 

e 

a 
a b 

d e 

c d e 

a b c d e 

Step 4 Step 3 Step 2 Step 1 Step 0 

agglomerative 

(AGNES) 

divisive 

(DIANA) 
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AGNES (Agglomerative Nesting) 

• Introduced in Kaufmann and Rousseeuw (1990) 

• Implemented in statistical packages, e.g., Splus 

• Use the single-link method and the dissimilarity matrix   

• Merge nodes that have the least dissimilarity 

• Go on in a non-descending fashion 

• Eventually all nodes belong to the same cluster 
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Dendrogram: Shows How Clusters are Merged 

Decompose data objects into a several levels of nested partitioning (tree of 

clusters), called a dendrogram 

 

A clustering of the data objects is obtained by cutting the dendrogram at 

the desired level, then each connected component forms a cluster 
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DIANA (Divisive Analysis) 

• Introduced in Kaufmann and Rousseeuw (1990) 

• Implemented in statistical analysis packages, e.g., Splus 

• Inverse order of AGNES 

• Eventually each node forms a cluster on its own 
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Distance between Clusters 

• Single link:  smallest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = min(tip, tjq) 

• Complete link: largest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = max(tip, tjq) 

• Average: avg distance between an element in one cluster and an element in 

the other, i.e.,  dist(Ki, Kj) = avg(tip, tjq) 

• Centroid: distance between the centroids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Ci, Cj) 

• Medoid: distance between the medoids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Mi, Mj) 

• Medoid: a chosen, centrally located object in the cluster 

X X 
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Centroid, Radius and Diameter of a Cluster (for numerical 
data sets) 

• Centroid:  the “middle” of a cluster 

 

• Radius: square root of average distance from any point of the 

cluster to its centroid 

 

• Diameter: square root of average mean squared distance 

between all pairs of points in the cluster 
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Example: Single Link vs. Complete Link 
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Extensions to Hierarchical Clustering 

• Major weakness of agglomerative clustering methods 

• Can never undo what was done previously 

• Do not scale well: time complexity of at least O(n2), where n is 

the number of total objects 

• Integration of hierarchical & distance-based clustering 

• *BIRCH (1996): uses CF-tree and incrementally adjusts the 

quality of sub-clusters 

• *CHAMELEON (1999): hierarchical clustering using dynamic 

modeling 
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Probabilistic Hierarchical Clustering 

• Algorithmic hierarchical clustering 

• Nontrivial to choose a good distance measure  

• Hard to handle missing attribute values 

• Optimization goal not clear: heuristic, local search 

• Probabilistic hierarchical clustering 

• Use probabilistic models to measure distances between clusters 

• Generative model: Regard the set of data objects to be clustered as a 

sample of the underlying data generation mechanism to be analyzed 

• Easy to understand, same efficiency as algorithmic agglomerative clustering 

method, can handle partially observed data 

• In practice, assume the generative models adopt common distributions 

functions, e.g., Gaussian distribution or Bernoulli distribution, governed by 

parameters 
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*A Probabilistic Hierarchical Clustering Algorithm 

• For a set of objects partitioned into m clusters C1, . . . ,Cm, the quality can be 
measured by,  

 

where P() is the maximum likelihood 

• If we merge two clusters Cj1 and Cj2 into a cluster Cj1∪Cj2, then, the change in 
quality of the overall clustering is 

 

 

 

 

• Distance between clusters C1 and C2: 
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Density-Based Clustering Methods 

• Clustering based on density (local cluster criterion), such as 
density-connected points 

• Major features: 
• Discover clusters of arbitrary shape 

• Handle noise 

• One scan 

• Need density parameters as termination condition 

• Several interesting studies: 

• DBSCAN: Ester, et al. (KDD’96) 

• OPTICS: Ankerst, et al (SIGMOD’99). 

• DENCLUE: Hinneburg & D. Keim  (KDD’98) 

• CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based) 
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DBSCAN: Basic Concepts 

• Two parameters: 

• Eps: Maximum radius of the neighborhood 

• MinPts: Minimum number of points in an Eps-
neighborhood of that point 

• NEps(q): {p belongs to D | dist(p,q) ≤ Eps} 

• Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if   

• p belongs to NEps(q) 

• core point condition: 

              |NEps (q)| ≥ MinPts  

MinPts = 5 

Eps = 1 cm 

p 

q 
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Density-Reachable and Density-Connected 

• Density-reachable:  

• A point p is density-reachable from a 

point q w.r.t. Eps, MinPts if there is a 

chain of points p1, …, pn, p1 = q, pn = p 

such that pi+1 is directly density-reachable 

from pi  

• Density-connected 

• A point p is density-connected to a point 

q w.r.t. Eps, MinPts if there is a point o 

such that both, p and q are density-

reachable from o w.r.t. Eps and MinPts 

p 

q 
p2 

p q 

o 

37 



DBSCAN: Density-Based Spatial Clustering of Applications 
with Noise 

• Relies on a density-based notion of cluster:  A cluster is defined as 
a maximal set of density-connected points 

• Noise: object not contained in any cluster is noise 

• Discovers clusters of arbitrary shape in spatial databases with 
noise 

Core 

Border 

Noise 

Eps = 1cm 

MinPts = 5 
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DBSCAN: The Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

• If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), 
where n is the number of database objects. Otherwise, the complexity is O(n2) 39 



DBSCAN: Sensitive to Parameters 

DBSCAN online Demo:  

http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html 
40 
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Questions about Parameters 

•Fix Eps, increase MinPts, what will 
happen? 

•Fix MinPts, decrease Eps, what will 
happen? 
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*OPTICS:  A Cluster-Ordering Method (1999) 

• OPTICS: Ordering Points To Identify the Clustering Structure 

• Ankerst, Breunig, Kriegel, and Sander (SIGMOD’99) 

• Produces a special order of the database wrt its density-based 

clustering structure   

• This cluster-ordering contains info equiv to the density-based 

clusterings corresponding to a broad range of parameter settings 

• Good for both automatic and interactive cluster analysis, 

including finding intrinsic clustering structure 

• Can be represented graphically or using visualization techniques 

• Index-based time complexity:  O(N*logN) 
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OPTICS: Some Extension from DBSCAN 

• Core Distance of an object p: the smallest value ε’ such that the ε-
neighborhood of p has at least MinPts objects 

•Let Nε(p): ε-neighborhood of p, ε is a distance 

value; card(Nε(p)): the size of set Nε(p)  

•Let MinPts-distance(p): the distance from p to its 

MinPts’ neighbor 

 

Core-distanceε, MinPts(p) =  Undefined, if card(Nε(p)) < MinPts 

                               MinPts-distance(p), otherwise 
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• Reachability Distance of object p from core object q is the min 
radius value that makes p density-reachable from q 
• Let distance(q,p) be the Euclidean distance between q and p  

 

Reachability-distanceε, MinPts(p, q) = 

Undefined, if q is not a core object 

max(core-distance(q), distance(q, p)), otherwise 
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Core Distance & Reachability Distance 

 

45 
𝜺 = 𝟔𝒎𝒎, 𝑴𝒊𝒏𝑷𝒕𝒔 = 𝟓 





Reachability-
distance 

Cluster-order of the objects 

undefined 

‘ 
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Output of OPTICS: cluster-ordering 



Effects of Parameter Setting 
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Extract DBSCAN-Clusters 
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Density-Based Clustering: OPTICS & Applications 
demo: http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo  

http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo
http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo
http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo


*DENCLUE: Using Statistical Density Functions 

• DENsity-based CLUstEring by Hinneburg & Keim  (KDD’98) 

• Using statistical density functions: 

 

 

 

• Major features 

• Solid mathematical foundation 

• Good for data sets with large amounts of noise 

• Allows a compact mathematical description of arbitrarily shaped clusters 

in high-dimensional data sets 

• Significant faster than existing algorithm (e.g., DBSCAN) 

• But needs a large number of parameters 
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• Overall density of the data space can be calculated as the 
sum of the influence function of all data points 
• Influence function: describes the impact of a data point within its 

neighborhood 

• Clusters can be determined mathematically by identifying 
density attractors 
• Density attractors are local maximal of the overall density function 

• Center defined clusters: assign to each density attractor the points 

density attracted to it 

• Arbitrary shaped cluster: merge density attractors that are connected 

through paths of high density (> threshold) 

 

Denclue: Technical Essence 
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Density Attractor 

52 

Can be detected by hill-climbing procedure of finding local maximums 



Noise Threshold 

•Noise Threshold 𝜉 

•Avoid trivial local maximum points 

•A point can be a density attractor only if 

𝑓 𝑥 ≥ 𝜉 
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Center-Defined and Arbitrary 
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Evaluation of Clustering 

•Assessing Clustering Tendency 

 

•Determining the number of clusters 

 

•Measuring clustering quality 
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Assessing Clustering Tendency 

• Assess if non-random structure exists in the data by measuring 
the probability that the data is generated by a uniform data 
distribution 

• Test spatial randomness by statistic test: Hopkins Statistic 
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Determine the Number of Clusters 

• Empirical method 

• # of clusters ≈√n/2 for a dataset of n points 

• Elbow method 

• Use the turning point in the curve of sum of within cluster variance w.r.t  the # 
of clusters 

• Cross validation method 

• Divide a given data set into m parts 

• Use m – 1 parts to obtain a clustering model 

• Use the remaining part to test the quality of the clustering 

• E.g., For each point in the test set, find the closest centroid, and use the 
sum of squared distance between all points in the test set and the closest 
centroids to measure how well the model fits the test set 

• For any k > 0, repeat it m times, compare the overall quality measure w.r.t. 
different k’s, and find # of clusters that fits the data the best 
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Measuring Clustering Quality 

• Two methods: extrinsic vs. intrinsic   

• Extrinsic: supervised, i.e., the ground truth is available 

• Compare a clustering against the ground truth using certain 

clustering quality measure 

• Ex. Purity, BCubed precision and recall metrics, normalized 

mutual information 

• Intrinsic: unsupervised, i.e., the ground truth is unavailable 

• Evaluate the goodness of a clustering by considering how well 

the clusters are separated, and how compact the clusters are 

• Ex. Silhouette coefficient 
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Purity 

•Let 𝑪 = 𝑐1, … , 𝑐𝑘  be the output 
clustering result, 𝜴 = 𝜔1, … , 𝜔𝑘  be the 
ground truth clustering result (ground 
truth class) 

•𝑝𝑢𝑟𝑖𝑡𝑦 𝐶, Ω =
1

𝑁
 max𝑗 |𝑐𝑘 ∩ 𝜔𝑗|𝑘  
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Normalized Mutual Information 

•𝑁𝑀𝐼 Ω, 𝐶 =
𝐼(Ω,𝐶)

𝐻 Ω 𝐻(𝐶)
 

• 𝐼 Ω, 𝐶 = 

 

 

 

•𝐻 Ω = 
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Precision and Recall 

•P = TP/(TP+FP) 

•R = TP/(TP+FN) 

•F-measure: 2P*R/(P+R) 
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  Same cluster Different clusters 

Same class TP FN 

Different classes FP TN 
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Summary 
• Cluster analysis groups objects based on their similarity  and has 

wide applications 

• Measure of similarity can be computed for various types of data 

• K-means and K-medoids algorithms are popular partitioning-
based clustering algorithms 

• Birch and Chameleon are interesting hierarchical clustering 
algorithms, and there are also probabilistic hierarchical 
clustering algorithms 

• DBSCAN, OPTICS, and DENCLU are interesting density-based 
algorithms 

• Quality of clustering results can be evaluated in various ways  

• Clustering evaluation 
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*BIRCH (Balanced Iterative Reducing and 
Clustering Using Hierarchies) 

• Zhang, Ramakrishnan & Livny, SIGMOD’96 

• Incrementally construct a CF (Clustering Feature) tree, a hierarchical data 

structure for multiphase clustering 

• Phase 1: scan DB to build an initial in-memory CF tree (a multi-level 

compression of the data that tries to preserve the inherent clustering structure 

of the data)   

• Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the 

CF-tree  

• Scales linearly: finds a good clustering with a single scan and improves the 

quality with a few additional scans 

• Weakness: handles only numeric data, and sensitive to the order of the data 

record 
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Clustering Feature Vector in BIRCH 

Clustering Feature (CF):  CF = (N, LS, SS) 

N: Number of data points 

LS: linear sum of N points: 

 

SS: square sum of N points 

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

CF = (5, (16,30),(54,190)) 

(3,4) 

(2,6) 

(4,5) 

(4,7) 

(3,8) 




N

i
iX

1

2

1




N

i
iX

69 



CF-Tree in BIRCH 

• Clustering feature:  

• Summary of the statistics for a given subcluster 

• Registers crucial measurements for computing cluster and 
utilizes storage efficiently 

• A CF tree is a height-balanced tree that stores the 
clustering features for a hierarchical clustering  

• A nonleaf node in a tree has descendants or “children” 

• The nonleaf nodes store sums of the CFs of their children 

• A CF tree has two parameters 

• Branching factor: max # of children 

• Threshold: max diameter of sub-clusters stored at the leaf nodes 
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The CF Tree Structure 
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CF1 CF2 CF6 prev next CF1 CF2 CF4 prev next 

B = 7 

L = 6 

Root 

Non-leaf node 

Leaf node Leaf node 
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The Birch Algorithm 

• Cluster Diameter 

 

 

• For each point in the input 

• Find closest leaf entry 

• Add point to leaf entry and update CF  

• If entry diameter > max_diameter, then split leaf, and possibly parents 

• Algorithm is O(n) 

• Concerns 

• Sensitive to insertion order of data points 

• Since we fix the size of leaf nodes, so clusters may not be so natural 

• Clusters tend to be spherical given the radius and diameter measures 
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*CHAMELEON: Hierarchical Clustering Using Dynamic Modeling 
(1999) 

• CHAMELEON: G. Karypis, E. H. Han, and V. Kumar, 1999  

• Measures the similarity based on a dynamic model 

• Two clusters are merged only if the interconnectivity and 

closeness (proximity) between two clusters are high relative to 

the internal interconnectivity of the clusters and closeness of 

items within the clusters  

• Graph-based, and a two-phase algorithm 

1. Use a graph-partitioning algorithm: cluster objects into a large 

number of relatively small sub-clusters 

2. Use an agglomerative hierarchical clustering algorithm: find 

the genuine clusters by repeatedly combining these sub-

clusters 
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KNN Graphs & Interconnectivity 

• k-nearest graphs from an original data in 2D: 

 

 

 

 

• EC{Ci ,Cj } :The absolute inter-connectivity between Ci and Cj: the 
sum of the weight of the edges that connect vertices in Ci to 
vertices in Cj  

• Internal inter-connectivity of a cluster Ci : the size of its min-cut 
bisector ECCi (i.e., the weighted sum of edges that partition the 
graph into two roughly equal parts) 

• Relative Inter-connectivity (RI):   
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Edge Cut for Graphs 

 

75 

Min-cut that partitions the graph  
into roughly equal parts: size = 2 The edge cut between two clusters C1 and C2: 

Size =5 

C1 
C2 



Relative Closeness & Merge of Sub-Clusters 

• Relative closeness between a pair of clusters Ci and Cj : the 
absolute closeness between Ci and Cj normalized w.r.t. the 
internal closeness of the two clusters Ci and Cj  

 

 
•           and           are the average weights of the edges that belong in the min-

cut bisector of clusters Ci and Cj , respectively, and                is the average 

weight of the edges that connect vertices in Ci to vertices in Cj  

 

• Merge Sub-Clusters:   
• Merges only those pairs of clusters whose RI and RC are both above some 

user-specified thresholds  

• Merge those maximizing the function that combines RI and RC 
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Weight of edge is determined by KNN calculation 



 
 
 

Overall Framework of CHAMELEON 

Construct (K-NN) 

Sparse Graph Partition the Graph 

Merge Partition 

Final Clusters 

Data Set 

K-NN Graph 

P and q are connected if 
q is among the top k 
closest neighbors of p 

Relative interconnectivity:  
connectivity of c1 and c2 
over internal connectivity 

Relative closeness: 
closeness of c1 and c2 over 
internal closeness 77 
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CHAMELEON (Clustering Complex Objects) 


