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Reminder 

•Course project proposal due this 
Wednesday (10/16) 

• Submit pdf file in blackboard 

• Sign-up for discussions on next Friday (15mins 

for each group) 

• Meet in my office 

•Homework 2 will be out today, and will be 
due two weeks later 
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Matrix Data: Clustering: Part 2 

•Revisit K-means 

 

•Mixture Model and EM algorithm 

 

•Kernel K-means 

 

•Summary 
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Recall K-Means 

• Objective function 

• 𝐽 =   ||𝑥𝑖 − 𝑐𝑗||
2

𝐶 𝑖 =𝑗
𝑘
𝑗=1  

• Total within-cluster variance 

• Re-arrange the objective function 

• 𝐽 =   𝑤𝑖𝑗||𝑥𝑖 − 𝑐𝑗||
2

𝑖
𝑘
𝑗=1  

• 𝑤𝑖𝑗 ∈ {0,1}  

• 𝑤𝑖𝑗 = 1, 𝑖𝑓 𝑥𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗; 𝑤𝑖𝑗 =
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

• Looking for: 

• The best assignment 𝑤𝑖𝑗   

• The best center 𝑐𝑗 
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Solution of K-Means 

• Iterations 
• Step 1: Fix centers 𝑐𝑗, find assignment 𝑤𝑖𝑗 that 
minimizes 𝐽 
• => 𝑤𝑖𝑗 = 1, 𝑖𝑓 ||𝑥𝑖 − 𝑐𝑗||

2 is the smallest 
 

• Step 2: Fix assignment 𝑤𝑖𝑗, find centers that 
minimize 𝐽 
• => first derivative of 𝐽 = 0 

• => 
𝜕𝐽

𝜕𝑐𝑗
= −2 𝑤𝑖𝑗(𝑥𝑖 − 𝑐𝑗) =𝑖 0 

• =>𝑐𝑗 =
 𝑤𝑖𝑗𝑥𝑖𝑖

 𝑤𝑖𝑗𝑖
  

• Note  𝑤𝑖𝑗𝑖  is the total number of objects in cluster j 
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𝐽 =  𝑤𝑖𝑗||𝑥𝑖 − 𝑐𝑗||
2

𝑖

𝑘

𝑗=1
 













Converges! Why? 



Limitations of K-Means 

•K-means has problems when clusters are 
of differing 

• Sizes 

• Densities 

• Non-Spherical Shapes 
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Limitations of K-Means: Different 
Density  and Size 
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Limitations of K-Means: Non-Spherical 
Shapes 
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Demo 

•http://webdocs.cs.ualberta.ca/~yaling/Clu
ster/Applet/Code/Cluster.html 
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http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html


Connections of K-means to Other 
Methods 
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K-means 

Gaussian 
Mixture 
Model 

Kernel K-
means 
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•Kernel K-means 
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Fuzzy Set and Fuzzy Cluster 

•Clustering methods discussed so far 
• Every data object is assigned to exactly one cluster 

•Some applications may need for fuzzy or 
soft cluster assignment  
• Ex. An e-game could belong to both entertainment 

and software 

•Methods: fuzzy clusters and probabilistic 
model-based clusters 

•Fuzzy cluster:  A fuzzy set S: FS : X → [0, 1] 
(value between 0 and 1) 
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Probabilistic Model-Based Clustering 

• Cluster analysis is to find hidden categories. 

• A hidden category (i.e., probabilistic cluster) is a distribution over the data 
space, which can be mathematically represented using a probability density 
function (or distribution function). 

 
 Ex.  categories for digital cameras sold 

 consumer line vs. professional line 

 density functions f1, f2 for C1, C2 

 obtained by probabilistic clustering 

 
 A mixture model assumes that a set of observed objects is a mixture 

of instances from multiple probabilistic clusters, and conceptually 

each observed object is generated independently 

 Our task: infer a set of k probabilistic clusters that is mostly likely to 

generate D using the above data generation process 
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Mixture Model-Based Clustering 

•A set C of k probabilistic clusters C1, …,Ck 

with probability density functions f1, …, fk, 

respectively, and their probabilities ω1, …, 

ωk. 

•Probability of an object o generated by 

cluster Cj is:   

•Probability of o generated by the set of 

cluster C is: 

 20 

 𝑤𝑗
𝑗

= 1 



Maximum Likelihood Estimation 

•Since objects are assumed to be 

generated independently, for a data 

set D = {o1, …, on}, we have, 

 

 

•Task: Find a set C of k probabilistic 

clusters s.t. P(D|C) is maximized 
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The EM (Expectation Maximization) 
Algorithm 

• The (EM) algorithm: A framework to approach maximum 
likelihood or maximum a posteriori estimates of parameters in 
statistical models. 

• E-step assigns objects to clusters according to 

the current fuzzy clustering or parameters of 

probabilistic clusters 

•𝑤𝑖𝑗
𝑡 = 𝑝 𝑧𝑖 = 𝑗 𝜃𝑗

𝑡 , 𝑥𝑖 ∝ 𝑝 𝑥𝑖 𝐶𝑗
𝑡 , 𝜃𝑗
𝑡 𝑝(𝐶𝑗

𝑡) 

• M-step finds the new clustering or parameters 

that maximize the expected likelihood 
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Case 1: Gaussian Mixture Model 

•Generative model 

• For each object: 

• Pick its distribution component: 
𝑍~𝑀𝑢𝑙𝑡𝑖 𝜔1, … , 𝜔𝑘  

• Sample a value from the selected distribution: 
𝑋~𝑁 𝜇𝑍, 𝜎𝑍

2  

•Overall likelihood function 

•𝐿 𝐷| 𝜃 =   𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗 , 𝜎𝑗
2)𝑗𝑖  

• Q: What is 𝜃 here? 
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Estimating Parameters 

• 𝑙 𝐷; 𝜃 =  log 𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗 , 𝜎𝑗
2)𝑗𝑖  

• Considering the first derivative of 𝜇𝑗: 

•
𝜕𝑙

𝜕𝑢𝑗
=  

𝜔𝑗

 𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)𝑗

𝑖

𝜕𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝜇𝑗
 

•       =  
𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)𝑗

𝑖
1

𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝜇𝑗
 

•       =  
𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)𝑗

𝑖

𝜕𝑙𝑜𝑔𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑢𝑗
 

 
24 𝑤𝑖𝑗 = 𝑃(𝑍 = 𝑗|𝑋 = 𝑥𝑖 , 𝜃) 𝜕𝑙(𝑥𝑖)/𝜕𝜇𝑗  

Intractable! 



Apply EM algorithm 

• An iterative algorithm 
• E(expectation)-step 

• Evaluate the weight 𝑤𝑖𝑗 when 𝜇𝑗 , 𝜎𝑗 , 𝜔𝑗are given 

• 𝑤𝑖𝑗 =
𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝜔𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)𝑗

 

• M(maximization)-step 

• Evaluate 𝜇𝑗 , 𝜎𝑗 , 𝜔𝑗  when 𝑤𝑖𝑗’s are given that maximize the 
weighted likelihood 

• It is equivalent to Gaussian distribution parameter 
estimation when each point has a weight belonging to 
each distribution 

• 𝜇𝑗 =
 𝑤𝑖𝑗𝑥𝑖𝑖

 𝑤𝑖𝑗𝑖
; 𝜎𝑗
2 =
 𝑤𝑖𝑗 𝑥𝑖−𝜇𝑗

2

𝑖

 𝑤𝑖𝑗𝑖
; 𝜔𝑗 ∝  𝑤𝑖𝑗𝑖  
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K-Means: A Special Case of Gaussian 
Mixture Model 

•When each Gaussian component with 
covariance matrix 𝜎2𝐼 

• Soft K-means 

•𝑝 𝑥𝑖 𝜇𝑗 , 𝜎
2 ∝ exp {− 𝑥𝑖 − 𝜇𝑗

2
/𝜎2} 

•When 𝜎2 → 0 

• Soft assignment becomes hard assignment 

•𝑤𝑖𝑗 → 1, 𝑖𝑓 𝑥𝑖 is closest to 𝜇𝑗 (why?) 
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Distance! 



Case 2: Multinomial Mixture Model 

•Generative model 
• For each object: 

• Pick its distribution component: 
𝑍~𝑀𝑢𝑙𝑡𝑖 𝜔1, … , 𝜔𝑘  

• Sample a value from the selected distribution: 
𝑋~𝑀𝑢𝑙𝑡𝑖 𝛽𝑍1, 𝛽𝑍2, … , 𝛽𝑍𝑚  

•Overall likelihood function 

•𝐿 𝐷| 𝜃 =   𝜔𝑗𝑝(𝒙𝑖|𝜷𝑗)𝑗𝑖  

• 𝜔𝑗 = 1; 𝛽𝑗𝑙𝑙 = 1 𝑗  

• Q: What is 𝜃 here? 
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Application: Document Clustering 

•A vocabulary containing m words 

•Each document i: 

• A m-dimensional vector: 𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑚  

• 𝑐𝑖𝑙 is the number of occurrence of word l 

appearing in document i 

• Under unigram assumption 

• 𝑝 𝒙𝑖 𝜷𝑗 =
( 𝑐𝑖𝑙)!𝑚

𝑐𝑖1!…𝑐𝑖𝑚!
𝛽𝑗1
𝑐𝑖1 …𝛽𝑗𝑚

𝑐𝑖𝑚  
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Length of document 

Constant to all parameters 



Example 
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Estimating Parameters 

• 𝑙 𝐷; 𝜃 =  log 𝜔𝑗𝑗  𝑐𝑖𝑙𝑙𝑜𝑔𝛽𝑗𝑙𝑙𝑖  

•Apply EM algorithm 

• E-step:  

•w𝑖𝑗 =
𝜔𝑗𝑝(𝒙𝑖|𝜷𝑗)

 𝜔𝑗𝑝(𝒙𝑖|𝜷𝑗)𝑗
 

• M-step: maximize weighted likelihood 

 𝑤𝑖𝑗  𝑐𝑖𝑙𝑙𝑜𝑔𝛽𝑗𝑙𝑙𝑖  

• 𝛽𝑗𝑙 =
 𝑤𝑖𝑗𝑖 𝑐𝑖𝑙

  𝑤𝑖𝑗𝑐𝑖𝑙′𝑖𝑙′
; 𝜔𝑗 ∝  𝑤𝑖𝑗𝑖  
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Weighted percentage of word l in cluster j 



Better Way for Topic Modeling 

• Topic: a word distribution 

• Unigram multinomial mixture model 
• Once the topic of a document is decided, all its 
words are generated from that topic 

• PLSA (probabilistic latent semantic analysis) 
• Every word of a document can be sampled from 
different topics 

• LDA (Latent Dirichlet Allocation) 
• Assume priors on word distribution and/or 
document cluster distribution 
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Why EM Works? 

• E-Step: computing a tight lower bound f of the 

original objective function at 𝜃𝑜𝑙𝑑 

• M-Step: find 𝜃𝑛𝑒𝑤 to maximize the lower bound 

• 𝑙 𝜃𝑛𝑒𝑤 ≥ 𝑓 𝜃𝑛𝑒𝑤 ≥ 𝑓(𝜃𝑜𝑙𝑑) = 𝑙(𝜃𝑜𝑙𝑑) 
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*How to Find Tight Lower Bound? 

•   

 

 

• Jensen’s inequality 

•   

 

• When “=” holds to get a tight lower bound? 

• 𝑞 ℎ = 𝑝(ℎ|𝑑, 𝜃) 
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𝑞 ℎ : 𝑡ℎ𝑒 𝑡𝑖𝑔ℎ𝑡 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑  
𝑤𝑒 𝑤𝑎𝑛𝑡 𝑡𝑜 𝑔𝑒𝑡 



Advantages and Disadvantages of 
Mixture Models 

• Strength 

• Mixture models are more general than partitioning 

• Clusters can be characterized by a small number of parameters 

• The results may satisfy the statistical assumptions of the generative 

models 

• Weakness 

• Converge to local optimal (overcome: run multi-times w. random 

initialization) 

• Computationally expensive if the number of distributions is large, 

or the data set contains very few observed data points 

• Need large data sets 

• Hard to estimate the number of clusters 
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Kernel K-Means 
• How to cluster the following data? 

 
 
 
 
 

• A non-linear map: 𝜙:𝑅𝑛 → 𝐹 
• Map a data point into a higher/infinite dimensional space 

• 𝑥 → 𝜙 𝑥  

• Dot product matrix 𝐾𝑖𝑗  

• 𝐾𝑖𝑗 =< 𝜙 𝑥𝑖 , 𝜙(𝑥𝑗) > 
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Typical Kernel Functions 

•Recall kernel SVM: 
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Solution of Kernel K-Means 

• Objective function under new feature space: 

• 𝐽 =   𝑤𝑖𝑗||𝜙(𝑥𝑖) − 𝑐𝑗||
2

𝑖
𝑘
𝑗=1  

• Algorithm  
• By fixing assignment 𝑤𝑖𝑗 

• 𝑐𝑗 =  𝑤𝑖𝑗𝑖 𝜙(𝑥𝑖)/ 𝑤𝑖𝑗𝑖  

• In the assignment step, assign the data points to the 
closest center 

• 𝑑 𝑥𝑖 , 𝑐𝑗 = 𝜙 𝑥𝑖 −
 𝑤𝑖′𝑗𝑖′ 𝜙 𝑥𝑖′

 𝑤𝑖′𝑗𝑖′

2

= 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑖 −

2
 𝑤

𝑖′𝑗𝑖′
𝜙 𝑥𝑖 ⋅𝜙 𝑥𝑖′

 𝑤𝑖′𝑗𝑖′
+
  𝑤

𝑖′𝑗
𝑤𝑙𝑗𝜙 𝑥𝑖′ ⋅𝜙 𝑥𝑙𝑙𝑖′

( 𝑤𝑖′𝑗)^2 𝑖′
 

38 Do not really need to know 𝝓 𝒙 , 𝒃𝒖𝒕 𝒐𝒏𝒍𝒚 𝑲𝒊𝒋 



Advantages and Disadvantages of 
Kernel K-Means 

• Advantages 
• Algorithm is able to identify the non-linear structures. 

• Disadvantages 
• Number of cluster centers need to be predefined. 

• Algorithm is complex in nature and time complexity is 
large. 

• References 
• Kernel k-means and Spectral Clustering by Max 

Welling. 

• Kernel k-means, Spectral Clustering and Normalized 
Cut by Inderjit S. Dhillon, Yuqiang Guan and Brian 
Kulis. 

• An Introduction to kernel methods by Colin Campbell. 
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Summary 

•Revisit k-means 

• Derivative 

•Mixture models 

• Gaussian mixture model; multinomial mixture 

model; EM algorithm; Connection to k-means 

•Kernel k-means 

• Objective function; solution; connection to k-

means 
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