CS6220: DATA MINING TECHNIQUES

Matrix Data: Clustering: Part 2

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

October 14, 2013


mailto:sun22@illinois.edu

Reminder

- Course project proposal due this
Wednesday (10/16)

» Submit pdf file in blackboard

- Sign-up for discussions on next Friday (15mins
for each group)

* Meet 1n my othice

-Homework 2 will be out today, and will be
due two weeks later



Matrix Data: Clustering: Part 2

-Revisit K-means &

- Mixture Model and EM algorithm

*Kernel K-means

*Summary



Recall K-Means

- Objective function

] = X5 Bew=j 1% — ¢
» Total within-cluster variance
- Re-arrange the objective function

_ vk 5
] = Zj=1 i wijllxi — ¢
"w;j €{0,1}

-w;; = 1,if x; belongs to cluster j;w;; =
0, otherwise

- Looking for:
* The best assignment w;;
* The best center ¢;

Ik




Solution of K-Meanks

: J=) w;i||x; — ci||?
- Iterations Ly 2,

- Step 1: Fix centers ¢j, find assignment w;; that
minimizes J
- =>w;; = 1,if ||x; — ¢j||* is the smallest

» Step 2: Fix assignment w;, find centers that
minimize |/
« => first derivative of ] =0

o =>5_Cj = —2 ZlWij(xi — C]) =0
2 Wijx

°=>Cj Lt
2 Wij

° Note ),; w;; is the total number of objects in cluster |
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Converges! Why?




Limitations of K-Means

- K-means has problems when clusters are
of differing

» S17e5
* Densities

* Non-Spherical Shapes
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Limitations of K-Means: Different

Original Points
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K-means (3 Clusters)
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Limitations of K-Means: Non-Spherical

1%
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10 15 -15 10

Original Points K-means (2 Clusters)

15
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Demo

- http://webdocs.cs.ualberta.ca/~yaling/Clu
ster/Applet/Code/Cluster.html

-- Previous Operation Records -- -+ -- Previous Operation Records -- ~
Algorithm : K-means ' Algorithm : K-means '
Data : User Defined _Ctose wingow | Data : User Defined Ctose window|
Number of Cluster : 2 Number of Cluster: 2

15


http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html

Connections of K-means to Other
Methods

? ¥

Gaussian
. Kernel K-
Mixture P aane
Model

16



Matrix Data: Clustering: Part 2

* Revisit K-means

- Mixture Model and EM algorithm &

*Kernel K-means

*Summary
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Fuzzy Set and Fuzzy Cluster

» Clustering methods discussed so far

- Every data object 1s assigned to exactly one cluster

-Some applications may need for fuzzy or
soft cluster assignment

- Ex. An e-game could belong to both entertainment
and soltware

-Methods: fuzzy clusters and probabilistic

model-
*Fuzzy C

nased clusters

uster: A fuzzysetS: F.: X —> [0, 1]

(value between 0 and 1)
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Probabilistic Model-Based Clustering

- Cluster analysis is to find hidden categories.

- A hidden category (i.e., probabilistic cluster) is a distribution over the data
space, which can be mathematically represented using a probability density
function (or distribution function).

Prob* Consumer line Professional line

= EX. categories for digital cameras sold
= consumer line vs. professional line
= density functions f, f, for C;, C,

1
I
|
1 .
>
1000 Price

= oObtained by probabilistic clustering

= A mixture model assumes that a set of observed objects is a mixture
of instances from multiple probabilistic clusters, and conceptually
each observed object is generated independently

= Our task: infer a set of k probabillistic clusters that is mostly likely to
generate D using the above data generation process

19



Mixture Model-Based Clustering

*A set C of k probabilistic clusters C,, ...,C,

wit
res
W, .

n probability density functions f,, ..., f,

nectively, and their probabilities w,, ...,

- Probability of an object o generated by
cluster C;is: P(0|Cj) = w; f;(0)

* Probability of o generated by the set of
cluster Cis: p(o|c) = Zw}fj ZW,_l



Maximum Likelihood Estimation

- Since objects are assumed to be
generated independently, for a data
set D ={o,, ..., 0.}, we have,

n k
P(D|C) = HP 10 =11 > wifiton)

i=1j=1

- Task: Find a set C of k probabilistic
clusters s.t. P(D|C) is maximized

21



The EM (Expectation Maximization)

Algorithm

- The (EM) algorithm: A framework to approach maximum
likelihood or maximum a posteriori estimates of parameters in
statistical models.

- E-step assigns objects to clusters according to
the current fuzzy clustering or parameters of
probabilistic clusters

wi; = p(z; = jl6f,x;) « p(x;|CF, 67 )p(C)
* M-step finds the new clustering or parameters
that maximize the expected likelthood

22



Case 1: Gaussian Mixture Model

*Generative model

- For each object:

* Pick its distribution component:
Z~Multi(wq, ..., W)

- Sample a value from the selected distribution:
XNN(:“Z) O-ZZ)

- Overall likelihood function
*L(D| 0) = HiZ,- wjp(xin;sz)
* QQ: What 1s 6 here?

23



Estimating Parameters

‘l(D, H) — Zl logZ] w]p(xl"u]’ 0'12) Intractable!

» Considering the first dervative of p;:

_y Op(xilu;,0?)
6u] > w,p(xllu, D 0wy
wip(xilp;,o?) 1 op (xiluj07)

. = ).

‘Y wip(xilu,of) plxilpjof)  Ou;

- =

wip(xilpj,o7) |dlogp(xilujo7)
Yjwiplrilujo;) 0y

/
Wij = P(Z =]|X = xl-,H) al(x:)\/a:u] 24




Apply EM algorithm

- An iterative algorithm
- E(expectation)-step
* Evaluate the weight Wi when U;j, 0j, wjare given
_ wjp(xilpjo)
Wi T S e (il ol
j ]p(xLW]»O'])
- M(maximization)-step

 Evaluate Uj, 0j, Wj when Wl-j'S are given that maximize the
weighted likelihood

* It is equivalent to Gaussian distribution parameter
estimation when each point has a weight belonging to
each distribution

2
-
xi=n oy X Syw,

= 2 WijXi 52 — Li Wij
b Eywy T 2 Wij
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K-Means: A Special Case of Gaussian
Mixture Model

When each Gaussian component with
covariance matrix ?1

* Soft K-means ___—1 Distance!

+p(x;|uj, 02) o exp{—(x; — Mj)z‘/Uz}
When g4 = 0

- Soft assignment becomes hard assignment

“w;i - 1, if x;1s closest to Uj (why?)
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Case 2: Multinomial Mixture Model

*Generative model

* For each object:

* Pick its distribution component:
Z~Multi(wq, ..., Wy)

» Sample a value from the selected distribution:
X~Multi(Bz1,Bz2, - »Bzm )

- Overall likelihood function
‘L(D|0) =11; 2; wjp(x;|B;)
‘Z](,l)] = 1;21,8]'1 =1
* QQ: What 1s 6 here?
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Application: Document Clustering

- A vocabulary containing m words
-Each document i:

- A m-dimensional vector: (Cj1, Ci2, -+, Cim)

* ¢;; 1s the number of occurrence of word 1
appearing 1n document 1

- Under unigwumpti@_— Length of document

. p(xi‘ﬁj) _| [Qim Cit) ﬁqu ___ﬁjc&m

Cil!---cim!

D Constant to all parameters

28



Example

Probability

0.4

0.3

0.2

01

0.0

|

1 8 16 26 36 46 56 66 76 86 96
Topics

“Genetics
human
genome
dna
genetic
genes
sequence

gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

“Evolution”
evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

“Computers”
computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations
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Estimating Parameters

‘1(D; 0) = X;logxw; Xy clogBy
-Apply EM algorithm
- I-step:

— w;ip(xi|Bj)
oY wip(xilB))

« M-step: maximize weighted likelihood
Qi Wi 2 cillogBii

':lez

\ Weighted percentage of word | in cluster j 30



Better Way for Topic Modeling

- Topic: a word distribution
- Unigram multinomial mixture model

- Once the topic of a document 1s decided, all its
words are generated from that topic

- PLSA (probabilistic latent semantic analysis)

- Every word of a document can be sampled from
different topics

- LDA (Latent Dirichlet Allocation)

- Assume priors on word distribution and/or
document cluster distribution

31



Why EM Works?

- I-Step: computing a tight lower bound 1 of the
original objective function at 8,4

* M-Step: find 8,,,,, to maximize the lower bound

‘ l(gnew) = f(gnew) = f(gold) — l(gold)

32



*How to Find Tight Lower Bound?

£(6) = log) p(d,h;6)
h
B q(h) .
~ lﬂgz;: amyPE0) g(h):the tight lower bound
we want to get
p(d, h;6)
= log » q(h
2 1W =)

-Jensen’s inequality

d h pld,h: @)
chf ¥ h Rl
oM 5 og 2

- When “=" holds to get a tight lower bound?
*q(h) = p(hld,0)

33



Advantages and Disadvantages of
Mixture Models

- Strength
- Mixture models are more general than partitioning
* Clusters can be characterized by a small number of parameters

* The results may satisty the statistical assumptions of the generative

models
- Weakness
« Converge to local optimal (overcome: run mult-times w. random
mitialization)
- Computationally expensive 1f the number of distributions 1s large,
or the data set contains very few observed data points

« Need large data sets

- Hard to estimate the number of clusters 3a



Matrix Data: Clustering: Part 2

* Revisit K-means

- Mixture Model and EM algorithm

-Kernel K-means 4@

*Summary
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Kernel K-Means

- How to cluster the following data?
ar &

2_

‘I-
:_:ND_

‘I_

2
3
24
b

- A non-linear map: ¢:R" > F
- Map a data pomnt into a higher/infinite dimensional space
*x = ¢(x)

* Dot product matrix Kj;
Kij =< p(x), d(x;) >

36



Typical Kernel Functions

- Recall kernel SVM:

Polynomial kernel of degree h: K(X;, X;)=(X;-X;+1)"
Gaussian radial basis function kernel : K(X;, X;) = o~ IXi—X5|% /20

Sigmoid kernel : K (X;, X;) = tanh(xX; - X; — 0)

37



Solution of Kernel K-Means

- Objective function under new feature space:
] =X Tiwilld () — ¢l
- Algorithm
* By fixing assignment wy;
c ¢ = X wij d(x;)/ Xy wij

- In the assignment step, assign the data points to the
closest center

2
ir Wirjd(xir)
- d(x, Cj) = H¢(xi) - Z'/‘J/Virj ‘ = ¢(x) - d(x;) —
5 20 Wl-rjd)(xi)-cb(xi,) N DY Wi’lejfl)(xi')'f.b(xl)
Wi Ey wir "2

Do not really need to know ¢(x), but only K;;




Advantages and Disadvantages of

- Advantages
 Algorithm 1s able to 1dentity the non-linear structures.

- Disadvantages
- Number of cluster centers need to be predefined.

 Algorithm 1s complex 1 nature and time complexity 1s
large.

- References

- Kernel k-means and Spectral Clustering by Max
Welling.

« Kernel k-means, Spectral Clustering and Normalized
Cut by Indemit S. Dhillon, Yuqiang Guan and Brian
Kulis.

- An Introduction to kernel methods by Colin Campbell.
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Matrix Data: Clustering: Part 2

*Revisit K-means
- Mixture Model and EM algorithm
-Kernel K-means

-Summary’
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Summary

*Revisit k-means

* Dernvative

* Mixture models

» Gaussian mixture model; multtnomial mixture
model; EM algorithm; Connection to k-means

*Kernel k-means

- Objective function; solution; connection to k-
means
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