CS6220: DATA MINING TECHNIQUES

Set Data: Frequent Pattern Mining

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

October 22, 2013

Reminder

- Homework 1

- Highest accuracy: 86.693% The winner is Sumit Ravinder Raina $)$
- Follow the submission rules!
- Late submission issue: "within 1 hour late: 90% max; within 8 hours late: 60% max; otherwise: 0% ".
- Homework 2 due date
- Monday night (Oct. 28)
- Midterm
- Tuesday (Nov. 5, two weeks later), 2-hour (6-8pm) in class
- Closed-book exam, and one A4 size cheating sheet is allowed
- Bring a calculator (NO cell phone)
- Cover to next lecture

Quiz of Last Week

What is the advantage and disadvantage of k -medoids over k means?
2. Suppose under a parameter setting for DBSCAN, we get the following clustering results. How shall we change the two parameters (eps and minpts) if we want to get two clusters?

Results of Q2

- 11 / 38 are correct
-10 / 38 are half correct
-17 / 38 are incorrect

Mining Frequent Patterns, Association and Correlations

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods
- Summary

Set Data

- A data point corresponds to a set of items

10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
- What products were often purchased together? - Beer and diapers?!
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
- Association, correlation, and causality analysis
- Sequential, structural (e.g., sub-graph) patterns
- Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
- Classification: discriminative, frequent pattern analysis
- Cluster analysis: frequent pattern-based clustering
- Broad applications

Basic Concepts: Frequent Patterns

10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items - k-itemset $X=\left\{x_{1}, \ldots, x_{k}\right\}$
- (absolute) support, or, support count of X : Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of
 transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

Basic Concepts: Association Rules

- Find all the rules $X \rightarrow Y$ with

10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

 minimum support and confidence

- support, s, probability that a transaction contains $\mathrm{X} \cup \mathrm{Y}$
- confidence, c, conditional probability that a transaction having X also contains Y
Let minsup $=50 \%$, minconf $=50 \%$
Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, \{Beer, Diaper\}:3
- Strong Association rules
- Beer \rightarrow Diaper (60\%, 100\%)
- Diaper \rightarrow Beer (60\%, 75\%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of sub-patterns, e.g., $\left\{a_{1}, \ldots, a_{100}\right\}$ contains $2^{100}-1=1.27^{*} 10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no superpattern Y Ј X , with the same support as X (proposed by Pasquier, et al. @ ICDT’99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y כ X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
- Reducing the \# of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. $\left.\mathrm{DB}=\left\{\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}\right\rangle,<\mathrm{a}_{1}, \ldots, \mathrm{a}_{50}\right\rangle\right\}$
- Min_sup = 1 .
-What is the set of closed itemset?
- $\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}>: 1\right.$
- $\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{50}\right\rangle$: 2
-What is the set of max-pattern?
- <a $a_{1}, \ldots, a_{100}>: 1$
-What is the set of all patterns?
-!!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
- The number of frequent itemsets to be generated is sensitive to the minsup threshold
- When minsup is low, there exist potentially an exponential number of frequent itemsets
- The worst case: \mathbf{M}^{N} where \mathbf{M} : \# distinct items, and \mathbf{N} : max length of transactions

- The worst case complexity vs. the

 expected probability- Ex. Suppose Walmart has 10^{4} kinds of products
- The chance to pick up one product 10^{-4}
- The chance to pick up a particular set of 10 products: ~10-40
- What is the chance this particular set of 10 products to be frequent, i.e., appearing 10^{3} times in 10^{9} transactions?

Mining Frequent Patterns, Association and Correlations

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods
- Summary

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Generating Association Rules

The Apriori Property and Scalable Mining Methods

- The Apriori property of frequent patterns
- Any nonempty subsets of a frequent itemset must be frequent
- If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
- i.e., every transaction having \{beer, diaper, nuts\} also contains \{beer, diaper\}
- Scalable mining methods: Three major approaches
- Apriori (Agrawal \& Srikant@VLDB’94)
- Freq. pattern growth (FPgrowth-Han, Pei \& Yin @SIGMOD’00)
- Vertical data format approach (Eclat)

Apriori: A Candidate Generation \& Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal \& Srikant @VLDB’94, Mannila, et al. @ KDD' 94)
- Method:
- Initially, scan DB once to get frequent 1-itemset
- Generate length $(\mathrm{k}+1)$ candidate itemsets from length k frequent itemsets
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

From Frequent k-1 Itemset

To Frequent k-Itemset

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k

- From L_{k-1} to C_{k} (Candidates Generation)
- The join step
- The prune step
- From C_{k} to L_{k}
- Test candidates by scanning database

The Apriori Algorithm—An Example

Database TDB $\mathrm{Sup}_{\text {min }}=2$

10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

C_{1}	$\{\mathrm{~B}\}$	3
	$\{\mathrm{C}\}$	3
${ }^{\text {st }} \operatorname{scan}$	$\{\mathrm{D}\}$	1
	$\{\mathrm{E}\}$	3

L_{2}			C_{2}	Itemse	sup	$2^{C_{2}} \text { scan }$	Itemset
	Itemset	sup		$\begin{aligned} & \{A, B\} \\ & \{A, C\} \end{aligned}$	$\begin{aligned} & 1 \\ & \hline 2 \end{aligned}$		
							\{A, B $\}$
	$\{\mathrm{A}, \mathrm{C}\}$	2		\{A, E\}	1		\{A, C $\}$
	$\{\mathrm{B}, \mathrm{C}\}$	2		\{ $\mathrm{B}, \mathrm{E}, \mathrm{C}\}$	2		\{A, E $\}$
	$\{\mathrm{B}, \mathrm{E}\}$	3		\{B, E\}	3		\{B, C $\}$
	\{C, E\}	2		\{C, E\}	2		\{B, E\}
\cdots							\{C, E\}

$$
C_{3} \begin{array}{|c|}
\hline \text { Itemset } \\
\hline\{\mathrm{B}, \mathrm{C}, \mathrm{E}\} \\
\hline
\end{array} 3^{\text {rd }} \text { scan } L_{3} \begin{array}{|c|c|}
\hline \text { Itemset } & \text { sup } \\
\hline & \{\mathrm{B}, \mathrm{C}, \mathrm{E}\} \\
\hline
\end{array}
$$

The A oriori A eqorithin (pseudo-code)

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=2 ; L_{k-1}!=\varnothing ; k++$) do begin
$C_{k}=$ candidates generated from $L_{k-1} ;$
for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support end
return $\cup_{k} L_{k}$;

Candidates Generation

Assume a pre-specified order of items

- How to generate candidates C_{k} ?
- Step 1: self-joining L_{k-1}
- Two length $\mathrm{k}-1$ itemsets l_{1} and l_{2} can join, only if the first k 2 items are the same, and the for the last term, $l_{1}[k-1]<$ $l_{2}[k-1]$ (why?)
- Step 2: pruning
- Why we need pruning for candidates?
- How?
- Again, use Apriori property
- A candidate itemset can be safely pruned, if it contains infrequent subset

- Example of Candidate-generation from L_{3}

 to C_{4}- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from $a b c$ and $a b d$
- acde from acd and ace
- Pruning:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

The Apriori Algorithm—Example Review

Database TDB Sup $_{\text {min }}=2$ -

10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

C_{1}	$\{\mathrm{~A}\}$	2
	$\{\mathrm{~B}\}$	3
$\boldsymbol{1}^{\text {st }} \operatorname{scan}$	$\{\mathrm{C}\}$	3
	$\{\mathrm{D}\}$	1
	$\{\mathrm{E}\}$	3

Questions

-How many scans on DB are needed for Apriori algorithm?
-When ($k=$?) does Apriori algorithm generate most candidate itemsets?

- Is support counting for candidates expensive?

Further Improvement of the Apriori Method

- Major computational challenges

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori: general ideas
- Reduce passes of transaction database scans
- Shrink number of candidates
- Facilitate support counting of candidates

*Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Scan 1: partition database and find local frequent patterns
- Scan 2: consolidate global frequent patterns
-A. Savasere, E. Omiecinski and S. Navathe,

$\sup _{1}(\mathrm{i})<\sigma \mathrm{DB}_{1} \quad \sup _{2}(\mathrm{i})<\sigma \mathrm{DB}_{2}$

$\sup _{k}(\mathrm{i})<\sigma \mathrm{DB}_{\mathrm{k}} \quad \sup (\mathrm{i})<\sigma \mathrm{DB}$

*Hash-based Technique: Reduce the Number of Candidates

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Candidates: a, b, c, d, e
- Hash entries
- $\{a b, a d, a e\}$
- \{bd, be, de\}
- ...

count	itemsets
35	$\{\mathrm{ab}, \mathrm{ad}, \mathrm{ae}\}$
88	$\{\mathrm{bd}, \mathrm{be}, \mathrm{de}\}$
\cdot	
\cdot	\cdot
\cdot	\cdot
102	$\{y z, q s, w t\}$

- Frequent 1-itemset: a, b, d, e

Hash Table

- ab is not a candidate 2 -itemset if the sum of count of $\{a b, a d, a e\}$ is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95

*Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
- Example: check abcd instead of $a b, a c, \ldots$, etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Generating Association Rules

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
- Breadth-first (i.e., level-wise) search
- Scan DB multiple times
- Candidate generation and test
- Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
- Depth-first search
- Avoid explicit candidate generation

Major philosophy

- Grow long patterns from short ones using local frequent items only
- "abc" is a frequent pattern
- Get all transactions having "abc", i.e., project DB on abc: DB|abc
- "d" is a local frequent item in $\mathrm{DB} \mid \mathrm{abc} \rightarrow$ abcd is a frequent pattern

FP-Growth Algorithm Sketch

- Construct FP-tree (frequent pattern-tree)
- Compress the DB into a tree
- Recursively mine FP-tree by FP-Growth
- Construct conditional pattern base from FPtree
- Construct conditional FP-tree from conditional pattern base
- Until the tree has a single path or empty

Construct FP-tree from a Transaction Database

TID	Items bought	(ordered) frequent items	
$\mathbf{1 0 0}$	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
$\mathbf{2 0 0}$	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, \boldsymbol{c}, w\}$	$\{f, b\}$	
$\mathbf{4 0 0}$	$\{b, c, k, s, p\}$	$\{c, b, p\}$	min_support $=3$
$\mathbf{5 0 0}$	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

1. Scan DB once, find frequent 1-itemset (single item pattern)
2. Sort frequent items in frequency descending order, f-list
3. Scan DB again, construct FP-tree
F-list = f-c-a-b-m-p

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
- F-list = f-c-a-b-m-p
- Patterns containing p
- Patterns having m but no p
-...
- Patterns having c but no a nor $\mathrm{b}, \mathrm{m}, \mathrm{p}$
- Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p 's conditional pattern base

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
- Accumulate the count for each item in the base
- Construct the FP-tree for the frequent items of the pattern base

m-conditional pattern base:
fca:2, fcab:1

m-conditional FP-tree

Recursion: Mining Each Conditional FP-tree

		$\}$
\{\}	Cond. pattern base of "am": (fc:3)	$f: 3$
1		c:3
$f: 3$	am-c	nditional FP-tree
$c: 3$	Cond pattern base of "cm": (f.3)	\{\}
$a: 3$	Cond. pattern base of "cm" (f.3)	$f: 3$
m-conditional FP-tree		ditional FP -t

Cond. pattern base of "cam": (f:3)

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
$\underset{\mid}{\text { \{ }}$. Reduction of the single prefix path into one node
$a_{1}: n_{1}$. Concatenation of the mining results of the two parts

Benefits of the FP-tree Structure

- Completeness
- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction
- Compactness
- Reduce irrelevant info-infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node-links and the count field)

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
- Recursively grow frequent patterns by pattern and database partition
- Method
- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path-single path will generate all the combinations of its subpaths, each of which is a frequent pattern

*Scaling FP-growth by Database Projection

- What about if FP-tree cannot fit in memory?
- DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques
- Parallel projection
- Project the DB in parallel for each frequent item
- Parallel projection is space costly
- All the partitions can be processed in parallel
- Partition projection
- Partition the DB based on the ordered frequent items
- Passing the unprocessed parts to the subsequent partitions

FP-Growth vs. Apriori: Scalability With the Support Threshold

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
- Decompose both the mining task and DB according to the frequent patterns obtained so far
- Lead to focused search of smaller databases
- Other factors
- No candidate generation, no candidate test
- Compressed database: FP-tree structure
- No repeated scan of entire database
- Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching

*Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD’03)
- A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD’03)
- Mine data sets with small rows but numerous columns
- Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI’03)
- Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM’06)

*Extension of Pattern Growth Mining Methodology

- Mining closed frequent itemsets and max-patterns
- CLOSET (DMKD’00), FPclose, and FPMax (Grahne \& Zhu, Fimi’03)
- Mining sequential patterns
- PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
- gSpan (ICDM'02), CloseGraph (KDD’03)
- Constraint-based mining of frequent patterns
- Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
- H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB’03)
- Pattern-growth-based Clustering
- MaPle (Pei, et al., ICDM’03)
- Pattern-Growth-Based Classification
- Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Generating Association Rules

ECLAT: Mining by Exploring Vertical Data Format

Similar idea for inverted index in storing text

- Vertical format: $\mathrm{t}(\mathrm{AB})=\left\{\mathrm{T}_{11}, \mathrm{~T}_{25}, \ldots\right\}$
- tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
- $\mathrm{t}(\mathrm{X})=\mathrm{t}(\mathrm{Y}): \mathrm{X}$ and Y always happen together
$\cdot \mathrm{t}(\mathrm{X}) \subset \mathrm{t}(\mathrm{Y}):$ transaction having X always has Y
- Using diffset to accelerate mining
- Only keep track of differences of tids
$\cdot t(X)=\left\{T_{1}, T_{2}, T_{3}\right\}, t(X Y)=\left\{T_{1}, T_{3}\right\}$
- Diffset (XY, X) $=\left\{\mathrm{T}_{2}\right\}$
- Eclat (Zaki et al. @KDD’97)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Generating Association Rules

Generating Association Rules

-Strong association rules

- Satisfying minimum support and minimum confidence
- Recall: Confidence $(A \Rightarrow B)=P(B \mid A)=$ support $(A \cup B)$ support(A)
- Steps of generating association rules from frequent pattern l :
- Step 1: generate all nonempty subsets of l
- Step 2: for every nonempty subset s, calculate the confidence for rule $s \Rightarrow(l-s)$

Example

- $X=\{I 1, I 2, I 5\}: 2$
- Nonempty subsets of X are:
$\{I 1, I 2\}: 4,\{I 1, I 5\}: 2,\{I 2, I 5\}: 2,\{I 1\}: 6,\{I 2\}: 7$, and $\{I 5\}: 2$
- Association rules are:

$$
\begin{aligned}
& \{I 1, I 2\} \Rightarrow I 5, \\
& \{I 1, I 5\} \Rightarrow I 2, \\
& \{I 2, I 5\} \Rightarrow I 1, \\
& I 1 \Rightarrow\{I 2, I 5\}, \\
& I 2 \Rightarrow\{I 1, I 5\}, \\
& I 5 \Rightarrow\{I 1, I 2\},
\end{aligned}
$$

Chapter 6: Mining Frequent Patterns, Association and Correlations

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods
- Summary

Misleading Strong Association Rules

- Not all strong association rules are interesting

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

- Shall we target people who play basketball for cereal ads? play basketball \Rightarrow eat cereal [40\%, 66.7\%]
- Hint: What is the overall probability of people who eat cereal?
- 3750/5000 $=75 \%>66.7 \%$!
- Confidence measure of a rule could be misleading

Other Measures

- From association to correlation
- Lift
- χ^{2}
- All_confidence
- Max_confidence
- Kulczynski
- Cosine

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal [40\%, 66.7\%] is misleading
- The overall \% of students eating cereal is $75 \%>66.7 \%$.
- play basketball \Rightarrow not eat cereal $[20 \%, 33.3 \%]$ is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$
\begin{gathered}
\text { lift }=\frac{P(A \cup B)}{P(A) P(B)} \\
\text { lift }(B, C)=\frac{2000 / 5000}{3000 / 5000 * 3750 / 5000}=0.89 \\
\left.\begin{array}{ll|l|l|l|}
\hline & \text { Basketball } & \text { Not basketball } & \text { Sum (row) } \\
\hline \text { Cereal } & 2000 & 1750 & 3750 \\
\hline \text { Not cereal } & 1000 & 250 & 1250 \\
\hline \text { Sum(col.) } & 3000 & 2000 & 5000 \\
\hline
\end{array} \quad \begin{array}{lll}
1000 / 5000 \\
3000 / 5000 * 1250 / 5000
\end{array} B, \neg C\right)=1.33
\end{gathered}
$$

Correlation Analysis (Nominal Data)

- χ^{2} (chi-square) test

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

- Independency test between two attributes
- The larger the χ^{2} value, the more likely the variables are related
- The cells that contribute the most to the χ^{2} value are those whose actual count is very different from the expected count under independence assumption
- Correlation does not imply causality
- \# of hospitals and \# of car-theft in a city are correlated
- Both are causally linked to the third variable: population

When Do We Need Chi-Square Test?

- Considering two attributes A and B
- A : a nominal attribute with c distinct values, a_{1}, \ldots, a_{c}
- E.g., Grades of Math
- B : a nominal attribute with r distinct values, b_{1}, \ldots, b_{r}
- E.g., Grades of Science
- Question: Are A and B related?

How Can We Run Chi-Square Test?

- Constructing contingency table
- Observed frequency $o_{i j}$: number of data objects taking value b_{i} for attribute B and taking value a_{j} for attribute A

	a_{1}	a_{2}	\ldots	a_{c}
$\boldsymbol{b}_{\mathbf{1}}$	o_{11}	o_{12}	\ldots	$o_{1 c}$
$\boldsymbol{b}_{\mathbf{2}}$	o_{21}	o_{22}	\ldots	$o_{2 c}$
\ldots	\ldots	\ldots	\ldots	\ldots
$\boldsymbol{b}_{\boldsymbol{r}}$	$o_{r 1}$	$o_{r 2}$	\ldots	$o_{r c}$

- Calculate expected frequency $e_{i j}=\frac{\operatorname{count}\left(B=b_{i}\right) \times \operatorname{count}\left(A=a_{j}\right)}{n}$
- Null hypothesis: A and B are independent
- The Pearson χ^{2} statistic is computed as:
- $\mathrm{X}^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}$
- Follows Chi-squared distribution with degree of freedom as $(r-1) \times(c-1)$

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum(col.)	300	1200	1500

- χ^{2} (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$
\chi^{2}=\frac{(250-90)^{2}}{90}+\frac{(50-210)^{2}}{210}+\frac{(200-360)^{2}}{360}+\frac{(1000-840)^{2}}{840}=507.93
$$

- It shows that like_science_fiction and play_chess are correlated in the group
- Degree of freedom $=(2-1)(2-1)=1$
- P -value $=\mathrm{P}\left(\mathrm{X}^{2}>507.93\right)=0.0$
- Reject the null hypothesis $=>A$ and B are dependent

Are lift and χ^{2} Good Measures of Correlation?

- Lift and χ^{2} are affected by null-transaction
- E.g., number of transactions that do not contain milk nor coffee
- All_confidence
- all_conf(A,B)=min\{P(A|B),P(B|A)\}
- Max_confidence
- max_conf $(A, B)=\max \{\mathrm{P}(\mathrm{A} \mid \mathrm{B}), \mathrm{P}(\mathrm{B} \mid \mathrm{A})\}$
- Kulczynski
- $\operatorname{Kulc}(A, B)=\frac{1}{2}(P(A \mid B)+P(B \mid A))$
- Cosine
- $\operatorname{cosine}(A, B)=\sqrt{P(A \mid B) \times P(B \mid A)}$

Comparison of Interestingness Measures

- Null-(transaction) invariance is crucial for correlation analysis
- Lift and χ^{2} are not null-invariant
- 5 null-invariant measures

	Milk	No Milk	Sum (row)
Coffee	m, c	$\sim \mathrm{m}, \mathrm{c}$	c
No Coffee	$\mathrm{m}, \sim \mathrm{c}$	$\sim \mathrm{m}, \sim \mathrm{c}$	$\sim \mathrm{c}$
Sum(col.)	m	$\sim \mathrm{m}$	Σ

Measure	Definition	Range	Null-Invariant
$\chi^{2}(a, b)$	$\sum_{i, j=0,1} \frac{\left(e\left(a_{i}, b_{j}\right)-o\left(a_{i}, b_{j}\right)\right)^{2}}{e\left(a_{i}, b_{j}\right)}$	$[0, \infty]$	No
$L i f t(a, b)$	$\frac{P(a b)}{P(a) P(b)}$	$[0, \infty]$	No
AllConf (a, b)	$\frac{\sup (a b)}{\max \{\sup (a), \sup (b)\}}$	$[0,1]$	
Coherence (a, b)	$\frac{\sup (a b)}{\sup (a)+\sup (b)-\sup (a b)}$	$[0,1]$	Yes
Cosine (a, b)	$\frac{\sup (a b)}{\sqrt{\sup (a) s u p(b)}}$	$[0,1]$	Yes
$K u l c(a, b)$	$\frac{\sup (a b)}{2}\left(\frac{1}{\sup (a)}+\frac{1}{\sup (b)}\right)$	$[0,1]$	Yes
$\text { MaxConf }(\mathrm{a}, \mathrm{~b})$	$\max \left\{\frac{\sup (a b)}{\sup (a)}, \frac{\sup (a b)}{\sup (b)}\right\}$	$[0,1]$	Yes

*Analysis of DBLP Coauthor Relationships

Recent DB conferences, removing balanced associations, low sup, etc.

ID	Author a	Author b	sup(ab)	sup(a)	\|sup(b)	Coherence	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163 (2)	0.315 (7)	0.355 (9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335 (4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152 (3)	0.331 (5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119 (7)	0.308 (10)	0.446 (7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123 (6)	0.351 (2)	0.562 (2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500 (4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133 (5)	0.365 (1)	0.567 (1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148 (4)	0.351 (3)	0.477 (6)
9	Divyakant Agrawal	Oliver Po	12	120	12	0.100 (10)	0.316 (6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	04885 (5)
Table 5. Experiment on DBLP data set.								
			Advisor-advisee relation: Kulc: high, coherence: low, cosine: middle					

- Tianyi Wu, Yuguo Chen and Jiawei Han, "Association Mining in Large Databases: A Re-Examination of Its Measures", Proc. 2007 Int. Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD'07), Sept. 2007

*Which Null-Invariant Measure Is Better?

- IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

$$
I R(A, B)=\frac{|\sup (A)-\sup (B)|}{\sup (A)+\sup (B)-\sup (A \cup B)}
$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D_{4} through D_{6}
- D_{4} is balanced \& neutral
- D_{5} is imbalanced \& neutral
- D_{6} is very imbalanced \& neutral

Data	$m c$	$\bar{m} c$	$m \bar{c}$	$\overline{m c}$	all_conf.	max_conf.	Kulc.	cosine	IR
D_{1}	10,000	1,000	1,000	100,000	0.91	0.91	0.91	0.91	0.0
D_{2}	10,000	1,000	1,000	100	0.91	0.91	0.91	0.91	0.0
D_{3}	100	1,000	1,000	100,000	0.09	0.09	0.09	0.09	0.0
D_{4}	1,000	1,000	1,000	100,000	0.5	0.5	0.5	0.5	0.0
D_{5}	1,000	100	10,000	100,000	0.09	0.91	0.5	0.29	0.89
D_{6}	1,000	10	100,000	100,000	0.01	0.99	0.5	0.10	0.99

Chapter 6: Mining Frequent Patterns, Association and Correlations

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods
- Summary \vDash

Summary

- Basic concepts
- Frequent pattern, association rules, supportconfident framework, closed and max-patterns
Scalable frequent pattern mining methods
- Apriori
- FPgrowth
- Vertical format approach (ECLAT)
- Which patterns are interesting?
- Pattern evaluation methods

Ref: Basic Concepts of Frequent Pattern Mining

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93.
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99.
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98.

Ref: Depth-First, Projection-Based FP Mining

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing:02.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00.
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02.
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02.
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03.
- G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Storing and Querying Frequent Patterns. KDD'03.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'O3), Melbourne, FL, Nov. 2003

Ref: Mining Correlations and Interesting Rules

- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94.
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97.
C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03.
- T. Wu, Y. Chen and J. Han, "Association Mining in Large Databases: A ReExamination of Its Measures", PKDD'07

Ref: Freq. Pattern Mining Applications

-

Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of Functional and Approximate Dependencies Using Partitions. ICDE'98.
H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern Extraction with Fascicles. VLDB'99.
T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.
K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT'02.

